JP2017173792A - Multilayer polyester film and method for manufacturing the manufacturing method - Google Patents

Multilayer polyester film and method for manufacturing the manufacturing method Download PDF

Info

Publication number
JP2017173792A
JP2017173792A JP2016234591A JP2016234591A JP2017173792A JP 2017173792 A JP2017173792 A JP 2017173792A JP 2016234591 A JP2016234591 A JP 2016234591A JP 2016234591 A JP2016234591 A JP 2016234591A JP 2017173792 A JP2017173792 A JP 2017173792A
Authority
JP
Japan
Prior art keywords
layer
polyester film
film
acid
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016234591A
Other languages
Japanese (ja)
Inventor
雄三 加藤
Yuzo Kato
雄三 加藤
賢 窪田
Masaru Kubota
賢 窪田
秀孝 木村
Hidetaka Kimura
秀孝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2017173792A publication Critical patent/JP2017173792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer polyester film which has a layer containing a quantum dot with an excellent color reproductivity and has a coating layer with an excellent adhesion with the layer containing a quantum dot and which can be preferably used for various different types of displays such as a display backlight unit and members of a liquid crystal display.SOLUTION: The present invention relates to a multilayer polyester film having a coating layer and a quantum-dot containing layer on at least one surface of a polyester film base material, and also relates to a method for manufacturing the multilayer polyester film on at least one surface of the polyester film base material. According to the method, a coating solution is applied and is extended so that the coating layer is formed, and the quantum-dot containing layer is deposited on the coating layer.SELECTED DRAWING: None

Description

本発明は、ディスプレイのバックライトユニットや液晶表示装置部材として好適に用いることのできる積層フィルムに関するものであり、色再現性に優れた量子ドット含有層、および量子ドットを含有する層に対する密着性に優れた塗布層を有する積層ポリエステルフィルムに関するものである。   The present invention relates to a laminated film that can be suitably used as a backlight unit of a display or a liquid crystal display device member, and is excellent in adhesion to a quantum dot-containing layer having excellent color reproducibility and a layer containing quantum dots. The present invention relates to a laminated polyester film having an excellent coating layer.

光学用途において、ポリエステルフィルムは透明性や光学特性に優れることから、バックライトユニットや液晶表示装置の部材など、各種ディスプレイ用途を中心に広く使用されている。   In optical applications, polyester films are widely used mainly for various display applications such as backlight units and members of liquid crystal display devices because they are excellent in transparency and optical characteristics.

近年のディスプレイには、より鮮明で実際に近い色の再現や、省エネルギー化の観点からエネルギー効率を高める部材が求められている。これらの要求性能を達成する方法として、量子ドットが注目されている。   In recent years, there has been a demand for a member that increases energy efficiency from the viewpoint of vivid color reproduction that is closer to reality and energy saving. Quantum dots are attracting attention as a method for achieving these required performances.

量子ドットはナノスケールの半導体微粒子であり、LEDからの光を吸収、放出し波長変換を行うことができる。この波長変換特性から、表示装置への応用が検討されている(特許文献1、特許文献2)   Quantum dots are nanoscale semiconductor fine particles that can absorb and emit light from the LED and perform wavelength conversion. From this wavelength conversion characteristic, application to a display device has been studied (Patent Document 1, Patent Document 2).

変換される光の波長は量子ドットのサイズによって決まるため、サイズと物質の組成を制御することで、赤、緑、青の三原色の狭い波長領域にエネルギーを集中させることができ、カラーフィルタを通過した場合の色彩をより鮮明にすることができる。また、狭い波長領域に集中するため、従来のLED等と比較してより透過性が高いカラーフィルタが使用可能になることから、バックライトの出力を抑えることができ、エネルギー効率を高めることができる。   Since the wavelength of the converted light is determined by the size of the quantum dot, by controlling the size and composition of the material, energy can be concentrated in a narrow wavelength region of the three primary colors of red, green, and blue, and pass through the color filter. In this case, the color can be made clearer. In addition, since it concentrates in a narrow wavelength region, a color filter having higher transparency than that of a conventional LED can be used, so that the output of the backlight can be suppressed and the energy efficiency can be increased. .

量子ドットをバックライトユニット部材や液晶表示装置の部材として用いる場合は、基材上に量子ドット含有層を形成する必要がある。量子ドットを基材上に直接設ける方法や、紫外線硬化タイプの樹脂中に分散して塗工する方法が例示されているが(特許文献3、特許文献4)、量子ドット自体と基材との密着性や、紫外線硬化タイプの樹脂と基材との密着性が不十分なものであった。   When quantum dots are used as a backlight unit member or a member of a liquid crystal display device, it is necessary to form a quantum dot-containing layer on the substrate. Although the method of providing a quantum dot directly on a base material, and the method of disperse | distributing and coating in ultraviolet curing type resin are illustrated (patent document 3, patent document 4), quantum dot itself and a base material Adhesion and adhesion between the UV curable resin and the substrate were insufficient.

特開2013−048094号公報JP 2013-048094 A 特開2015−222384号公報Japanese Patent Laying-Open No. 2015-222384 特開2006−216560号公報JP 2006-216560 A 特開2015−018131号公報Japanese Patent Laid-Open No. 2015-018131

本発明は、上記実情に鑑みなされたものであって、その解決課題は、色再現性に優れた量子ドット含有層、および量子ドットを含有する層に対する密着性に優れた塗布層を有する積層ポリエステルフィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is a laminated polyester having a quantum dot-containing layer having excellent color reproducibility and a coating layer having excellent adhesion to a layer containing quantum dots. To provide a film.

本発明者らは、上記の課題に関して鋭意検討を重ねた結果、特定の種類の化合物を含有する塗布層を設けることにより、上記課題が解決されることを見いだし、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by providing a coating layer containing a specific type of compound, and the present invention has been completed. .

すなわち、本発明の要旨は、ポリエステルフィルム基材の少なくとも片面に、塗布層および量子ドット含有層を有することを特徴とする積層ポリエステルフィルム、および、ポリエステルフィルム基材の少なくとも片面に、塗布層および量子ドット含有層を有する積層ポリエステルフィルムの製造方法であり、塗布液を塗布した後、延伸して塗布層を形成し、当該塗布層上に量子ドット含有層を積層することを特徴とする積層ポリエステルフィルムの製造方法に存する。   That is, the gist of the present invention is to provide a laminated polyester film having a coating layer and a quantum dot-containing layer on at least one side of a polyester film substrate, and a coating layer and a quantum on at least one side of the polyester film substrate. A method for producing a laminated polyester film having a dot-containing layer, which comprises applying a coating solution, stretching to form a coating layer, and laminating a quantum dot-containing layer on the coating layer. Exist in the manufacturing method.

本発明によれば、色再現性に優れた量子ドット含有層、および量子ドットを含有する層に対する密着性に優れた塗布層を有する積層ポリエステルフィルムを提供することができ、従来のものよりも高い色再現性の発現や省エネルギー化を可能とするディスプレイ部材として用いることができることから、本発明の工業的価値は高い。   According to the present invention, it is possible to provide a laminated polyester film having a quantum dot-containing layer having excellent color reproducibility and a coating layer having excellent adhesion to a layer containing quantum dots, which is higher than the conventional one. Since it can be used as a display member that enables color reproducibility and energy saving, the industrial value of the present invention is high.

本発明における積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。   The polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.

本発明において使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p−オキシ安息香酸など)等の1種または2種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4−シクロヘキサンジメタノール、ネオペンチルグリコール等の1種または2種以上が挙げられる。   The polyester used in the present invention may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, the dicarboxylic acid component of the copolyester includes isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxybenzoic acid, etc.), etc. 1 type or 2 types or more are mentioned, As a glycol component, 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.

ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、チタン化合物、ゲルマニウム化合物、アンチモン化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。その中でも、チタン化合物やゲルマニウム化合物は触媒活性が高く、少量で重合を行うことが可能であり、フィルム中に残留する金属量が少ないことから、フィルムの輝度が高くなるので好ましい。さらに、ゲルマニウム化合物は高価であることから、チタン化合物を用いることがより好ましい。   There is no restriction | limiting in particular as a polymerization catalyst of polyester, A conventionally well-known compound can be used, For example, a titanium compound, a germanium compound, an antimony compound, a manganese compound, an aluminum compound, a magnesium compound, a calcium compound etc. are mentioned. Among these, titanium compounds and germanium compounds are preferable because they have high catalytic activity, can be polymerized in a small amount, and the amount of metal remaining in the film is small, so that the brightness of the film is increased. Furthermore, since a germanium compound is expensive, it is more preferable to use a titanium compound.

本発明のポリエステルフィルム中にはフィルムの耐候性の向上、液晶などの劣化防止のために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線を吸収する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。   The polyester film of the present invention may contain an ultraviolet absorber for improving the weather resistance of the film and preventing deterioration of the liquid crystal. The ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.

紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、環状イミノエステル系、ベンゾトリアゾール系、ベンゾフェノン系などが挙げられる。耐久性の観点からは環状イミノエステル系、ベンゾトリアゾール系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。   As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.

本発明のフィルムのポリエステル層中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することも可能である。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。   In the polyester layer of the film of the present invention, particles can be blended mainly for the purpose of imparting slipperiness and preventing scratches in each step. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.

一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。   On the other hand, the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.

また、用いる粒子の平均粒径は、通常5μm以下、好ましくは0.01〜3μmの範囲である。5μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程において各種の表面機能層を形成させる場合等に不具合が生じる場合がある。   Moreover, the average particle diameter of the particle | grains to be used is 5 micrometers or less normally, Preferably it is the range of 0.01-3 micrometers. When the thickness exceeds 5 μm, the surface roughness of the film becomes too rough, and a problem may occur when various surface functional layers are formed in a subsequent process.

さらにポリエステル層中の粒子含有量は、通常5重量%以下、好ましくは0.0003〜3重量%の範囲である。粒子が無い場合、あるいは少ない場合は、フィルムの透明性が高くなり、良好なフィルムとなるが、滑り性が不十分となる場合があるため、塗布層中に粒子を入れることにより、滑り性を向上させる等の工夫が必要な場合がある。また、粒子含有量が5重量%を超えて添加する場合にはフィルムの透明性が不十分な場合がある。   Furthermore, the content of particles in the polyester layer is usually 5% by weight or less, preferably 0.0003 to 3% by weight. When there are no or few particles, the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required. Further, when the particle content exceeds 5% by weight, the transparency of the film may be insufficient.

ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。   The method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.

なお、本発明におけるポリエステルフィルム中には、上述の粒子や紫外線吸収剤以外に、必要に応じて従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。   In the polyester film of the present invention, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments and the like are added to the polyester film in the present invention, if necessary, in addition to the above-described particles and ultraviolet absorbers. be able to.

本発明におけるポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10〜350μm、好ましくは25〜250μmの範囲である。   The thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually in the range of 10 to 350 μm, preferably 25 to 250 μm.

次に、本発明におけるポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。すなわち、先に述べたポリエステル原料を乾燥したペレットを、押出機を用いてダイから溶融シートとして押し出し、冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法および/または液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70〜120℃、好ましくは80〜110℃であり、延伸倍率は通常2.5〜7倍、好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70〜170℃であり、延伸倍率は通常3.0〜7倍、好ましくは3.5〜6倍である。そして、引き続き180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。   Next, although the manufacture example of the polyester film in this invention is demonstrated concretely, it is not limited to the following manufacture examples at all. That is, a method is preferred in which pellets obtained by drying the polyester raw material described above are extruded as a molten sheet from a die using an extruder and cooled and solidified with a cooling roll to obtain an unstretched sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first stretching direction. In that case, the stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.

また、本発明においては積層ポリエステルフィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70〜120℃、好ましくは80〜110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4〜50倍、好ましくは7〜35倍、さらに好ましくは10〜25倍である。そして、引き続き、170〜250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。   In the present invention, the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is usually stretched and oriented in the machine direction and the width direction at a temperature controlled normally at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.

次に、本発明における積層ポリエステルフィルムを構成する塗布層の形成について説明する。塗布層に関しては、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。より好ましくはインラインコーティングにより形成されるものである。   Next, formation of the coating layer which comprises the laminated polyester film in this invention is demonstrated. Regarding the coating layer, it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. More preferably, it is formed by in-line coating.

インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押し出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻き上げ前のフィルムの何れかにコーティングする。以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層形成を同時に行うことができるため製造コスト上のメリットがあり、また。コーティング後に延伸を行うために、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングフィルムに比べ、薄膜コーティングをより容易に行うことができる。また、延伸前にフィルム上に塗布層を設けることにより、塗布層を基材フィルムと共に延伸することができ、それにより塗布層を基材フィルムに強固に密着させることができる。さらに、二軸延伸ポリエステルフィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。それゆえ、塗布後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、塗布層と基材フィルムをより強固に密着させることができ、さらには、強固な塗布層とすることができ、塗布層上に形成され得る各種の機能層との密着性や耐湿熱性等の性能を向上させることができる。   In-line coating is a method of coating within the process of manufacturing a polyester film, and specifically, a method of coating at any stage from melt extrusion of the polyester to heat setting after stretching and winding up. Usually, it is coated on any of an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, and a film after heat setting and before winding. Although not limited to the following, for example, in sequential biaxial stretching, a method of stretching in the transverse direction after coating a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction) is particularly excellent. According to this method, film formation and coating layer formation can be performed at the same time. In order to perform stretching after coating, the thickness of the coating layer can be changed depending on the stretching ratio, and thin film coating can be performed more easily than an off-line coating film. Further, by providing the coating layer on the film before stretching, the coating layer can be stretched together with the base film, whereby the coating layer can be firmly adhered to the base film. Furthermore, in the production of a biaxially stretched polyester film, the film can be restrained in the longitudinal and lateral directions by stretching while gripping the film end with a clip, etc. High temperature can be applied while maintaining the properties. Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer can be improved, and the coating layer and the base film can be more firmly adhered to each other. Furthermore, it can be set as a firm coating layer, and performances such as adhesion to various functional layers that can be formed on the coating layer and wet heat resistance can be improved.

本発明における塗布層は、量子ドット含有層との密着性を向上させることができるものであり、バックライトユニットの部材や液晶表示装置の部材として好適に用いることができる。   The coating layer in the present invention can improve adhesion with the quantum dot-containing layer, and can be suitably used as a member of a backlight unit or a member of a liquid crystal display device.

本発明のフィルムにおける塗布層には、量子ドット含有層との密着性を向上させる目的で、バインダー樹脂を使用することが好ましい。バインダー樹脂の具体例としては、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリビニル(ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらは単独で用いても、複数種併用してもよい。   In the coating layer in the film of the present invention, it is preferable to use a binder resin for the purpose of improving the adhesion with the quantum dot-containing layer. Specific examples of the binder resin include acrylic resin, polyurethane resin, polyester resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkylene imine, methyl cellulose, hydroxy cellulose, starch And the like. These may be used alone or in combination.

これらのバインダー樹脂の中でも、より密着性を向上させる観点から、アクリル樹脂またはポリウレタン樹脂を使用することが好ましい。   Among these binder resins, it is preferable to use an acrylic resin or a polyurethane resin from the viewpoint of further improving the adhesion.

本発明のフィルムにおける塗布層の形成に使用されうるアクリル樹脂とは、アクリル系、メタアクリル系のモノマーを含む重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体、さらにはアクリル系、メタアクリル系のモノマー以外の重合性モノマーとの共重合体、いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。あるいは、ポリエステル溶液、またはポリエステル分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。また、密着性をより向上させるために、ヒドロキシル基、アミノ基を含有することも可能である。   The acrylic resin that can be used for forming the coating layer in the film of the present invention is a polymer composed of a polymerizable monomer including an acrylic or methacrylic monomer. These may be either homopolymers or copolymers, and copolymers with polymerizable monomers other than acrylic and methacrylic monomers. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer in a polyester solution or a polyester dispersion is also included. Similarly, a polymer obtained by polymerizing a polymerizable monomer in a polyurethane solution or a polyurethane dispersion (sometimes a mixture of polymers) is also included. Similarly, a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer in another polymer solution or dispersion is also included. Moreover, in order to improve adhesiveness more, it is also possible to contain a hydroxyl group and an amino group.

上記重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N−メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有化合物;スチレン、α−メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、プロピオン酸ビニルのような各種のビニルエステル類;γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類が挙げられる。密着性向上の観点から、ガラス転移温度が50℃以下、より好ましくは40℃以下のアクリル樹脂が好ましい。またブロッキング悪化の観点から、ガラス転移温度の好ましい下限は−30℃である。   The polymerizable monomer is not particularly limited, but particularly representative compounds include, for example, various carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid. Monomers, and salts thereof; such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutyl hydroxyl fumarate, monobutyl hydroxy itaconate Various hydroxyl group-containing monomers; various (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate; (Meth) acrylamide, Various nitrogen-containing compounds such as acetone acrylamide, N-methylol acrylamide or (meth) acrylonitrile; various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene, vinyltoluene, and various vinyls such as vinyl propionate Esters; various silicon-containing polymerizable monomers such as γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, etc .; phosphorus-containing vinyl monomers; various vinyl halides such as vinyl chloride and biridene chloride Various conjugated dienes such as butadiene. From the viewpoint of improving adhesion, an acrylic resin having a glass transition temperature of 50 ° C. or lower, more preferably 40 ° C. or lower is preferable. Moreover, from a viewpoint of deterioration of blocking, a preferable lower limit of the glass transition temperature is −30 ° C.

本発明のフィルムにおける塗布層の形成に使用されうるポリウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことであり、通常ポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリカーボネートポリオール類、ポリエステルポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。密着性向上の観点から、ポリカーボネートポリオール類またはポリエステルポリオール類が好ましく、ポリカーボネートポリオール類がより好ましい。   The polyurethane resin that can be used for forming the coating layer in the film of the present invention is a polymer compound having a urethane bond in the molecule, and is usually prepared by the reaction of a polyol and an isocyanate. Examples of the polyol include polycarbonate polyols, polyester polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination. From the viewpoint of improving adhesion, polycarbonate polyols or polyester polyols are preferable, and polycarbonate polyols are more preferable.

ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、トリメチロールプロパン、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6−ヘキシレン)カーボネート、ポリ(3−メチル−1,5−ペンチレン)カーボネート等が挙げられる。   Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. Polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, trimethylolpropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, , 10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylol heptane and the like. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of polycarbonate polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.

ポリエステルポリオール類としては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−ブチル−2−ヘキシル−1,3−プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるもの、ポリカプロラクトン等のラクトン化合物の誘導体ユニットを有するもの等が挙げられる。   Polyester polyols include polycarboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides. Product and polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl-1 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, cyclohexane Diol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyl dialkanolamine, lactone diol, etc.) and those having derivative units of lactone compounds such as polycaprolactone.

ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。   Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.

ポリウレタン樹脂を構成するポリイソシアネート類としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても複数種併用してもよく、これらのポリイソシアネート化合物は2量体やイソシアヌル環に代表されるような3量体、あるいはそれ以上の重合体であっても良い。また、上記イソシアネートの中でも、活性エネルギー線硬化性塗料との密着性の向上、および紫外線による黄変防止の点から、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。   Examples of the polyisocyanates constituting the polyurethane resin include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α′-tetra. Aliphatic diisocyanates having an aromatic ring such as methylxylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4 -Cyclohexyl Isocyanate), dicyclohexylmethane diisocyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination of two or more. These polyisocyanate compounds may be a dimer, a trimer represented by an isocyanuric ring, or a polymer higher than that. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of improving adhesion to the active energy ray-curable coating material and preventing yellowing due to ultraviolet rays.

ポリウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。   A chain extender may be used when synthesizing the polyurethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.

水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2−ジメチル−1,3−プロパンジアミン、2−メチル−1,5−ペンタンジアミン、トリメチルヘキサンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、1 ,8−オクタンジアミン、1 ,9−ノナンジアミン、1 ,10−デカンジアミン等の脂肪族ジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル−4,4’−ジアミン、1,4−ジアミノシクロヘキサン、1 ,3−ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環族ジアミン等が挙げられる。   Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl. Examples include glycols such as ester glycols such as glycol hydroxypivalate. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isoprobilitincyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexa And alicyclic diamines such as isophorone diamine.

本発明のフィルムにおける塗布層の形成に使用されうるポリウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ポリウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ポリウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ポリウレタン樹脂の骨格中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性、密着性に優れており好ましい。
また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ポリウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。例えば、ポリウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス−(2−ヒドロキシエチル)プロピオン酸、ビス−(2−ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。かかるポリウレタン樹脂は、塗布液の乾燥工程において中和剤が外れたカルボキシル基を他の架橋剤による架橋反応点として用いることができる。これにより、塗布前の液の状態での安定性に優れる上、得られる塗布層の耐久性、耐水性、耐ブロッキング性等を更に改善することが可能となる。
The polyurethane resin that can be used for forming the coating layer in the film of the present invention may be one that uses a solvent as a medium, but preferably one that uses water as a medium. In order to disperse or dissolve the polyurethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the polyurethane resin, and a water-soluble type. In particular, a self-emulsification type in which an ionic group is introduced into a skeleton of a polyurethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency and adhesion of the resulting coating layer.
Examples of the ionic group to be introduced include various groups such as a carboxyl group, sulfonic acid, phosphoric acid, phosphonic acid, and quaternary ammonium salt, and a carboxyl group is preferred. As a method for introducing a carboxyl group into a polyurethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred. For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, etc. are copolymerized with a diol used for polymerization of polyurethane resin. Can do. The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine. In such a polyurethane resin, the carboxyl group from which the neutralizing agent is removed in the drying step of the coating solution can be used as a crosslinking reaction point by another crosslinking agent. Thereby, it is possible to further improve the durability, water resistance, blocking resistance, and the like of the obtained coating layer as well as excellent stability in a liquid state before coating.

本発明のフィルムにおける塗布層の形成に使用されうるポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなる。   The polyester resin that can be used for forming the coating layer in the film of the present invention includes, for example, the following polyvalent carboxylic acid and polyvalent hydroxy compound as main components.

多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’−ジフェニルジカルボン酸、2,5−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸および、2,6−ナフタレンジカルnボン酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2−カリウムスルホテレフタル酸、5−ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができる。   Examples of the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6-naphthalene. Dicarnonic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt and ester-forming derivatives thereof can be used. .

多価ヒドロキシ化合物としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−プロパンジオ−ル、1,4−ブタンジオール、1,6−ヘキサンジオ−ル、2−メチル−1,5−ペンタンジオ−ル、ネオペンチルグリコール、1,4−シクロヘキサンジメタノ−ル、p−キシリレングリコ−ル、エチレングリコール変性ビスフェノールA、ジエチレングリコール変性ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、ポリテトラメチレンオキシドグリコ−ル、ジメチロ−ルプロピオン酸、グリセリン、トリメチロ−ルプロパン、ジメチロ−ルエチルスルホン酸ナトリウム、ジメチロ−ルプロピオン酸カリウムなどを用いることができる。これらの多価カルボン酸と多価ヒドロキシ化合物の中からそれぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。   Examples of the polyvalent hydroxy compound include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2- Methyl-1,5-pentanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, ethylene glycol modified bisphenol A, diethylene glycol modified bisphenol A, diethylene glycol, triethylene glycol, polyethylene Glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, dimethylo Or the like can be used potassium Rupuropion acid. One or more of these polyvalent carboxylic acids and polyvalent hydroxy compounds may be appropriately selected, and a polyester resin may be synthesized by a conventional polycondensation reaction.

本発明のフィルムにおける塗布層の形成に使用されうるポリビニルアルコールとは、ポリビニルアルコール部位を有する化合物であり、例えば、ポリビニルアルコールに対し、部分的にアセタール化やブチラール化等された変成化合物も含め、従来公知のポリビニルアルコールを使用することができる。ポリビニルアルコールの重合度は特に限定されるものではないが、通常100以上、好ましくは300〜40000の範囲である。重合度が100未満の場合、塗布層の耐水性が低下する場合がある。また、ポリビニルアルコールのケン化度は特に限定されるものではないが、通常70モル%以上、好ましくは70〜99.9モル%の範囲、より好ましくは80〜97モル%、特に好ましくは86〜95モル%であるポリ酢酸ビニルケン化物が実用上用いられる。   The polyvinyl alcohol that can be used for forming the coating layer in the film of the present invention is a compound having a polyvinyl alcohol moiety, for example, a modified compound partially acetalized or butyralized with respect to polyvinyl alcohol, Conventionally known polyvinyl alcohol can be used. The degree of polymerization of polyvinyl alcohol is not particularly limited, but is usually 100 or more, preferably in the range of 300 to 40,000. When the degree of polymerization is less than 100, the water resistance of the coating layer may decrease. The saponification degree of polyvinyl alcohol is not particularly limited, but is usually 70 mol% or more, preferably in the range of 70 to 99.9 mol%, more preferably 80 to 97 mol%, and particularly preferably 86 to 97 mol%. A saponified polyvinyl acetate of 95 mol% is practically used.

本発明のフィルムにおける塗布層には、塗布層と量子ドット含有層の密着性の向上や、塗膜を強固にするために、架橋剤を併用してもよい。架橋剤としては、オキサゾリン化合物、イソシアネート化合物、エポキシ化合物、メラミン化合物、カルボジイミド化合物を使用することが好ましい。これらの中でも密着性の向上の観点から、オキサゾリン化合物またはイソシアネート化合物の少なくとも1種を使用することがより好ましい。   In the coating layer in the film of the present invention, a crosslinking agent may be used in combination in order to improve the adhesion between the coating layer and the quantum dot-containing layer or to strengthen the coating film. As the crosslinking agent, it is preferable to use an oxazoline compound, an isocyanate compound, an epoxy compound, a melamine compound, or a carbodiimide compound. Among these, it is more preferable to use at least one of an oxazoline compound or an isocyanate compound from the viewpoint of improving adhesion.

オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン等の含ハロゲンα,β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα,β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。密着性向上の観点から、オキサゾリン化合物のオキサゾリン基量は、好ましくは0.5〜10mmol/g、より好ましくは1〜9mmol/g、さらに好ましくは3〜8mmol/g、特に好ましくは4〜6mmol/gの範囲である。   The oxazoline compound is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, (meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, As the alkyl group, unsaturated amides such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group and cyclohexyl group); vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride and vinylidene chloride; styrene, An α, β-unsaturated aromatic monomer such as α-methylstyrene can be used, and one or more of these monomers can be used. From the viewpoint of improving adhesion, the amount of the oxazoline group of the oxazoline compound is preferably 0.5 to 10 mmol / g, more preferably 1 to 9 mmol / g, still more preferably 3 to 8 mmol / g, and particularly preferably 4 to 6 mmol / g. The range of g.

イソシアネート化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。   The isocyanate compound is a compound having an isocyanate derivative structure represented by isocyanate or blocked isocyanate. Examples of the isocyanate include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.

ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、イソブタノイル酢酸メチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。   When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as methyl isobutanoyl acetate, dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan, dodecyl mercaptan, ε-caprolactam, δ-valerolactam, etc. Lactam compounds, amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, Examples include oxime compounds such as maldehyde, acetoald oxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.

また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。   In addition, the isocyanate compound in the present invention may be used alone, or may be used as a mixture or bond with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.

エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン等が挙げられる。密着性向上の観点から、ポリエーテル系のエポキシ化合物が好ましい。また、エポキシ基の量としては、2官能より、3官能以上の多官能であるポリエポキシ化合物が好ましい。   The epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane. From the viewpoint of improving adhesion, a polyether-based epoxy compound is preferable. Further, the amount of the epoxy group is preferably a polyepoxy compound having a polyfunctionality of 3 or more rather than a bifunctional.

メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolized melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and these Mixtures can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.

カルボジイミド化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。   A carbodiimide compound is a compound having a carbodiimide structure and is a compound having one or more carbodiimide structures in the molecule, but for better adhesion, etc., a polycarbodiimide compound having two or more in the molecule Compounds are more preferred.

カルボジイミド化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。   The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.

カルボジイミド化合物に含有されるカルボジイミド基の含有量は、カルボジイミド当量(カルボジイミド基1molを与えるためのカルボジイミド化合物の重さ[g])で、通常100〜1000、好ましくは250〜800、より好ましくは300〜700の範囲である。上記範囲で使用することで、塗膜の耐久性が向上する。   The content of the carbodiimide group contained in the carbodiimide compound is carbodiimide equivalent (weight of the carbodiimide compound to give 1 mol of carbodiimide group [g]), and is usually 100 to 1000, preferably 250 to 800, more preferably 300 to The range is 700. By using it in the above range, the durability of the coating film is improved.

さらに本発明の効果を消失させない範囲において、ポリカルボジイミド化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。   Further, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound as long as the effects of the present invention are not lost, a surfactant is added, a polyalkylene oxide, a quaternary ammonium salt of a dialkylamino alcohol, a hydroxy A hydrophilic monomer such as an alkyl sulfonate may be added and used.

かかる架橋成分を含有する場合、同時に架橋を促進するための成分、例えば架橋触媒などを併用することができる。   When such a crosslinking component is contained, a component for accelerating crosslinking, for example, a crosslinking catalyst can be used in combination.

本発明のフィルムにおける塗布層に用いられる架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。   The crosslinking agent used for the coating layer in the film of the present invention is used in a design that improves the performance of the coating layer by reacting in the drying process or the film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.

本発明のフィルムにおける塗布層には、滑り性やブロッキングの改良のため、塗布層の構成成分として、粒子を併用することも可能である。   In the coating layer in the film of the present invention, particles can be used in combination as a constituent component of the coating layer in order to improve slipperiness and blocking.

粒子を併用する場合、その平均粒径は、フィルムの透明性の観点から好ましくは1.0μm以下の範囲であり、さらに好ましくは0.5μm以下、特に好ましくは0.2μm以下の範囲である。粒子の具体例としてはシリカ、アルミナ、カオリン、炭酸カルシウム、有機粒子等が挙げられる。   When the particles are used in combination, the average particle size is preferably in the range of 1.0 μm or less, more preferably 0.5 μm or less, and particularly preferably 0.2 μm or less from the viewpoint of the transparency of the film. Specific examples of the particles include silica, alumina, kaolin, calcium carbonate, and organic particles.

さらに本発明の主旨を損なわない範囲において、塗布層には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。これらの添加剤は単独で用いてもよいし、必要に応じて2種類以上を併用してもよい。   Furthermore, as long as it does not impair the gist of the present invention, the coating layer may include an antifoaming agent, a coating property improver, a thickener, an organic lubricant, an ultraviolet absorber, an antioxidant, a foaming agent, a dye, A pigment or the like may be contained. These additives may be used independently and may use 2 or more types together as needed.

本発明のフィルムにおける塗布層中の割合として、バインダー樹脂の含有量の下限は通常30重量%以上、好ましくは40重量%以上、さらに好ましくは50重量%以上である。バインダー樹脂の含有量が30重量%以上であれば、量子ドット含有層との良好な密着性が得られる。   As a ratio in the coating layer in the film of the present invention, the lower limit of the content of the binder resin is usually 30% by weight or more, preferably 40% by weight or more, and more preferably 50% by weight or more. If content of binder resin is 30 weight% or more, favorable adhesiveness with a quantum dot content layer will be acquired.

本発明のフィルムにおける塗布層中の割合として、バインダー樹脂の含有量の上限は通常90重量%以下、好ましくは80重量%以下、さらに好ましくは75重量%以下である。バインダー樹脂の含有量が90重量%以下であれば、良好な塗膜強度が得られる。   As a ratio in the coating layer in the film of the present invention, the upper limit of the binder resin content is usually 90% by weight or less, preferably 80% by weight or less, and more preferably 75% by weight or less. If the content of the binder resin is 90% by weight or less, good coating strength can be obtained.

本発明のフィルムにおける塗布層中の割合として、架橋剤の含有量の下限は通常10重量%以上、好ましくは20重量%以上、さらに好ましくは25重量%以上の範囲である。架橋剤の含有量が10重量%以上であれば、良好な塗膜強度が得られる。   As a ratio in the coating layer in the film of the present invention, the lower limit of the content of the crosslinking agent is usually 10% by weight or more, preferably 20% by weight or more, and more preferably 25% by weight or more. If the content of the crosslinking agent is 10% by weight or more, good coating strength can be obtained.

本発明のフィルムにおける塗布層中の割合として、架橋剤の含有量の上限は通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下の範囲である。架橋剤の含有量が70重量%以下であれば、量子ドット含有層との良好な密着性が得られる。   As a ratio in the coating layer in the film of the present invention, the upper limit of the content of the crosslinking agent is usually 70% by weight or less, preferably 60% by weight or less, and more preferably 50% by weight or less. If content of a crosslinking agent is 70 weight% or less, favorable adhesiveness with a quantum dot content layer will be acquired.

インラインコーティングによって塗布層を設ける場合は、上述の一連の化合物を水溶液または水分散体として、固形分濃度が0.1〜50重量%程度を目安に調整した塗布液をポリエステルフィルム上に塗布する要領にて積層ポリエステルフィルムを製造するのが好ましい。また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。   When providing a coating layer by in-line coating, the above-mentioned series of compounds is applied as an aqueous solution or dispersion, and the coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight as a guide is applied onto the polyester film. It is preferable to produce a laminated polyester film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.

本発明のフィルムにおける塗布層の膜厚は、通常0.002〜1.0μm、好ましくは0.005〜0.5μm、より好ましくは0.01〜0.2μm、特に好ましくは0.01〜0.1μmの範囲である。膜厚が上記の範囲を下回る場合は密着性が不十分となることがあり、上記の範囲を超える場合には、ブロッキングの悪化やヘーズの上昇等の弊害の発生する懸念がある。   The film thickness of the coating layer in the film of the present invention is usually 0.002 to 1.0 μm, preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.2 μm, and particularly preferably 0.01 to 0. The range is 1 μm. When the film thickness is less than the above range, the adhesion may be insufficient. When the film thickness exceeds the above range, there is a concern that adverse effects such as deterioration of blocking and increase of haze may occur.

本発明のフィルムにおいて、塗布層を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。   In the film of the present invention, as a method for providing the coating layer, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.

本発明のフィルムにおいて、ポリエステルフィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではなく、例えば、オフラインコーティングにより塗布層を設ける場合、通常、80〜200℃で3〜40秒間、好ましくは100〜180℃で3〜40秒間を目安として熱処理を行うのが良い。   In the film of the present invention, the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited. For example, when the coating layer is provided by off-line coating, it is usually 3 at 80 to 200 ° C. The heat treatment may be performed for ˜40 seconds, preferably 100 to 180 ° C. for 3 to 40 seconds.

一方、インラインコーティングにより塗布層を設ける場合、通常、70〜280℃で3〜200秒間を目安として熱処理を行うのが良い。   On the other hand, when the coating layer is provided by in-line coating, heat treatment is usually performed at 70 to 280 ° C. for 3 to 200 seconds as a guide.

また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層ポリエステルフィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。   Further, irrespective of off-line coating or in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as required. The polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.

塗布層中の各種成分の分析は、例えば、TOF−SIMS、ESCA、蛍光X線等の分析によって行うことができる。   Analysis of various components in the coating layer can be performed by analysis of TOF-SIMS, ESCA, fluorescent X-rays, and the like.

本発明において、塗布層上に設けられる量子ドット含有層に使用される量子ドットとは、量子閉じ込め効果を有する直径1nm〜10nmのサイズの半導体を指す。   In the present invention, the quantum dot used in the quantum dot-containing layer provided on the coating layer refers to a semiconductor having a diameter of 1 nm to 10 nm having a quantum confinement effect.

量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに該当するエネルギーを放出する。よって、量子ドットのサイズまたは物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。   When the quantum dot absorbs light from the excitation source and reaches an energy excited state, the quantum dot emits energy corresponding to the energy band gap of the quantum dot. Therefore, by adjusting the size of the quantum dots or the composition of the substance, the energy band gap can be adjusted, and energy in various levels of wavelength bands can be obtained.

よって、量子ドットを用いることで、赤色、緑色、青色を含む様々な色を狭スペクトルで得ることができる。従って、それぞれの波長で発光する色を作ることもでき、赤色、緑色、青色を混合して白色または様々な色を生成・再現することができる。   Therefore, by using quantum dots, various colors including red, green, and blue can be obtained with a narrow spectrum. Accordingly, it is possible to create colors that emit light at respective wavelengths, and it is possible to generate and reproduce white or various colors by mixing red, green, and blue.

本発明における量子ドット含有層に使用される量子ドットは、粒子の状態でも溶媒に分散された状態のものを使用してもよい。溶媒に分散された量子ドットは、例えば液相中での化学合成法によって得ることができ、用いられる溶媒は水系でも有機溶剤系であってもよい。   The quantum dots used in the quantum dot-containing layer in the present invention may be in the form of particles or dispersed in a solvent. The quantum dots dispersed in the solvent can be obtained, for example, by a chemical synthesis method in a liquid phase, and the solvent used may be an aqueous solvent or an organic solvent solvent.

本発明における量子ドット含有層に使用される量子ドットとして用いられる半導体粒子としては、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgS、HgSe、HgTeなどのII−VI族化合物、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSbなどのIII−V族化合物が挙げられる。   Semiconductor particles used as quantum dots used in the quantum dot-containing layer in the present invention include CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, II-VI group compounds such as HgS, HgSe, HgTe, GaAs, GaP, Examples include III-V group compounds such as GaN, GaSb, InN, InAs, InP, and InSb.

また、本発明における量子ドット含有層に使用される量子ドットは、コア部とシェル部が異なる半導体微粒子からなるコアシェル構造であってもよい。シェル部にバンドギャップの高い材料を使用することで、発光強度を向上することができる。ここで前記コアは、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgS、HgSe、HgTeなどのII−VI族化合物、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSbなどのIII−V族化合物などからなる群から選択されるいずれか1つの物質を含み、前記シェルも、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgS、HgSe、HgTeなどのII−VI族化合物、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSbなどのIII−V族化合物などからなる群から選択されるいずれか1つの物質を含む。   Further, the quantum dots used in the quantum dot-containing layer in the present invention may have a core-shell structure composed of semiconductor fine particles having different core portions and shell portions. By using a material having a high band gap for the shell portion, the emission intensity can be improved. Here, the core is made of II-VI group compounds such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgS, HgSe, and HgTe, and III- such as GaAs, GaP, GaN, GaSb, InN, InAs, InP, and InSb. The shell includes any one substance selected from the group consisting of a group V compound and the like, and the shell is also a group II-VI compound such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgS, HgSe, HgTe, GaAs, It includes any one material selected from the group consisting of III-V group compounds such as GaP, GaN, GaSb, InN, InAs, InP, and InSb.

本発明における量子ドット含有層に使用される量子ドットは、分散性や安定性を向上するために量子ドットの表面が有機リガンドで置換されていてもよい。有機リガンドは、ピリジン、メルカプトアルコール、チオール、ホスフィン、およびホスフィン酸化物などを含み、合成後に不安定な量子ドットを安定化させる役割を果たす。なお、市販品として、入手可能な量子ドットとして、例えば、SIGMA−ALDRICH社製の各種量子ドット等が例示される。   In the quantum dot used in the quantum dot-containing layer in the present invention, the surface of the quantum dot may be substituted with an organic ligand in order to improve dispersibility and stability. Organic ligands include pyridine, mercaptoalcohol, thiol, phosphine, phosphine oxide, and the like, and serve to stabilize unstable quantum dots after synthesis. Examples of commercially available quantum dots include various quantum dots manufactured by SIGMA-ALDRICH.

本発明における量子ドット含有層は、量子ドットを基材に直接設けても、樹脂分散体を用いてもよいが、樹脂に分散したものを用いることが好ましい。量子ドットの分散に使用できる樹脂としては、従来公知のものを使用することができ、例えば活性エネルギー線硬化性樹脂からなるものが挙げられ、(メタ)アクリレート系樹脂が代表例である。樹脂の構成化合物としては、一般的には、例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ヘキサメチレングリコール等の多価アルコール成分、ビスフェノールA構造、ポリウレタン構造、ポリエステル構造、エポキシ構造等を有する(メタ)アクリレート系樹脂が挙げられる。   The quantum dot-containing layer in the present invention may be provided with quantum dots directly on a substrate or a resin dispersion, but it is preferable to use a layer dispersed in a resin. As the resin that can be used for dispersing the quantum dots, conventionally known resins can be used. Examples thereof include those made of an active energy ray-curable resin, and (meth) acrylate resins are typical examples. As a constituent compound of the resin, generally, for example, it has a polyhydric alcohol component such as ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, bisphenol A structure, polyurethane structure, polyester structure, epoxy structure and the like ( A meth) acrylate resin is mentioned.

本発明における量子ドット含有層として樹脂分散体を用いる場合、量子ドット含有層に対する量子ドットの含有量は、通常1〜50重量%、好ましくは3〜40重量%の範囲である。1%より少ない場合は発色や輝度が十分でない場合があり、50重量%を超える場合は塗布層との密着性が不十分になる場合がある。   When using a resin dispersion as a quantum dot content layer in the present invention, content of a quantum dot to a quantum dot content layer is usually 1-50% by weight, preferably 3-40% by weight. If it is less than 1%, the color development and the luminance may not be sufficient, and if it exceeds 50% by weight, the adhesion to the coating layer may be insufficient.

本発明における量子ドット含有層の厚みは、通常0.1μm〜100μm、好ましくは1μm〜50μmの範囲である。0.1μmより薄い場合は、量子ドットの個数が少なくなるため発色や輝度が十分でない場合があり、100μmより厚い場合は量子ドット含有層の硬化が不足する懸念がある。   The thickness of the quantum dot containing layer in this invention is 0.1 micrometer-100 micrometers normally, Preferably it is the range of 1 micrometer-50 micrometers. When the thickness is less than 0.1 μm, the number of quantum dots decreases, so that color development and luminance may not be sufficient, and when the thickness is greater than 100 μm, there is a concern that the quantum dot-containing layer is insufficiently cured.

本発明におけるポリエステルフィルム基材は少なくとも片面に塗布層を有するが、フィルムの反対面に同様のあるいは他の塗布層や機能層を設けていても、本発明の概念に当然含まれるものである。   The polyester film substrate in the present invention has a coating layer on at least one surface, but even if a similar or other coating layer or functional layer is provided on the opposite surface of the film, it is naturally included in the concept of the present invention.

量子ドットは水蒸気にさらされると耐久性の悪化が懸念されることから、本発明におけるポリエステルフィルムにはバリア性を付与することが好ましい。バリア性を付与する方法としては、ポリエステルフィルムの量子ドット含有層とは反対側の面にバリア層を設ける方法や、ポリエステルフィルム基材上にバリア層を設けてその上に塗付層を設ける方法、塗布層上にバリア層を設ける方法、他のバリア性を有する基材をポリエステルフィルムに貼り合わせる方法が挙げられる。これらの中でも、バリアフィルムを貼り合せる工程が省略でき、加工コスト削減や基材の薄膜化ができることから、ポリエステルフィルム基材の量子ドット含有層とは反対側の面にバリア層を設ける方法が好ましい。   Since quantum dots are concerned about deterioration of durability when exposed to water vapor, it is preferable to impart barrier properties to the polyester film in the present invention. As a method of imparting barrier properties, a method of providing a barrier layer on the surface of the polyester film opposite to the quantum dot-containing layer, or a method of providing a barrier layer on a polyester film substrate and providing a coating layer thereon And a method of providing a barrier layer on the coating layer, and a method of bonding a substrate having other barrier properties to a polyester film. Among these, a method of providing a barrier layer on the surface opposite to the quantum dot-containing layer of the polyester film substrate is preferable because the step of bonding the barrier film can be omitted, and the processing cost can be reduced and the substrate can be thinned. .

バリア層の材料としては、バリア性を所望のレベル、本発明においては、JIS−K7129 B法に準じた測定による水蒸気透過度が温度40℃、湿度90%RHの測定条件下で通常0.01g/m/day以下、好ましくは0.005g/m/day以下である。0.01g/m/dayを超えた場合には、量子ドット含有層に徐々に水分が入り込み、劣化が起こりやすくなる傾向にある。 As a material for the barrier layer, the barrier property is at a desired level. In the present invention, the water vapor permeability measured according to the JIS-K7129 B method is usually 0.01 g under the measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH. / M 2 / day or less, preferably 0.005 g / m 2 / day or less. When the amount exceeds 0.01 g / m 2 / day, moisture gradually enters the quantum dot-containing layer and tends to be deteriorated.

本発明に使用されうるバリア層の材料としては、例えば、ポリシラザン化合物、ポリカルボシラン化合物、ポリシラン化合物、ポリオルガノシロキサン化合物、テトラオルガノシラン化合物等のケイ素化合物、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、酸窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物、窒化ケイ素、窒化アルミニウム等の無機窒化物、酸化窒化ケイ素等の無機酸化窒化物等、アルミニウム、マグネシウム、亜鉛、スズ等の金属などが挙げられる。これらは単独でも、2種以上を組み合わせて使用してもよい。   Examples of the material for the barrier layer that can be used in the present invention include silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, Inorganic oxides such as aluminum oxynitride, magnesium oxide, zinc oxide, indium oxide and tin oxide, inorganic nitrides such as silicon nitride and aluminum nitride, inorganic oxynitrides such as silicon oxynitride, aluminum, magnesium, zinc and tin And the like. These may be used alone or in combination of two or more.

本発明に使用されうるバリア層の厚さは、1nm〜10μmであることが好ましく、10〜1000nmであることがより好ましく、20〜500nmであることがさらに好ましい。バリア層の厚みが1nm未満ではバリア効果が不十分となる場合がある。一方、10μmを超える場合、性能面では飽和状態にあり、それ以上バリア効果が期待し難い傾向にある。   The thickness of the barrier layer that can be used in the present invention is preferably 1 nm to 10 μm, more preferably 10 to 1000 nm, and still more preferably 20 to 500 nm. If the thickness of the barrier layer is less than 1 nm, the barrier effect may be insufficient. On the other hand, when it exceeds 10 μm, it is in a saturated state in terms of performance, and it is difficult to expect a barrier effect any more.

また、本発明に使用されうるバリア層は、単層構成であってもよく、2層以上から構成される複数層であってもよい。   In addition, the barrier layer that can be used in the present invention may have a single layer configuration or a plurality of layers composed of two or more layers.

本発明に使用されうるバリア層を形成する方法に関して、バリア層を構成する材料に応じて、従来公知の方法を用いることが可能であり、目的に応じて適宜選択することができる。例えば、上記バリア層の材料を、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等によりポリエステルフィルム上に形成する方法、あるいは上記バリア層の材料を有機溶剤に溶解した溶液を、ポリエステルフィルムに塗布し、得られた塗膜に対してプラズマイオン注入する方法などが挙げられる。プラズマイオン注入にて注入されるイオンとしては、例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の金属のイオンなどが挙げられる。   Regarding a method for forming a barrier layer that can be used in the present invention, a conventionally known method can be used depending on the material constituting the barrier layer, and can be appropriately selected according to the purpose. For example, a method in which the barrier layer material is formed on a polyester film by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like, or a solution in which the barrier layer material is dissolved in an organic solvent Is applied to a polyester film, and plasma ion implantation is performed on the obtained coating film. Examples of ions implanted by plasma ion implantation include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; gold, Examples include ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない範囲において、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example in the range which does not exceed the summary. The measurement method and evaluation method used in the present invention are as follows.

(1)ポリエステルの極限粘度の測定
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity of polyester 1 g of polyester from which other polymer components and pigments incompatible with polyester have been removed are precisely weighed, and 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) is added. It was dissolved and measured at 30 ° C.

(2)平均粒径の測定方法
TEM(Hitachi社製 H−7650、加速電圧100V)を使用して塗布層を観察し、粒子10個の粒径の平均値を平均粒径とした。
(2) Measuring method of average particle diameter The coating layer was observed using TEM (H-7650 made by Hitachi, acceleration voltage 100V), and the average value of the particle diameters of 10 particles was defined as the average particle diameter.

(3)塗布層の膜厚測定方法
塗布層の表面をRuOで染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuO染色し、塗布層断面をTEM(Hitachi社製 H−7650、加速電圧100V)を用いて測定した。
(3) Method for measuring film thickness of coating layer The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by the ultrathin section method was stained with RuO 4, and the cross section of the coating layer was measured using TEM (H-7650 manufactured by Hitachi, accelerating voltage 100 V).

(4)ヘーズの測定方法
村上色彩技術研究所製ヘーズメーターHM−150を使用して、JIS K 7136で測定した。
(4) Measuring method of haze It measured by JISK7136 using Murakami Color Research Laboratory make haze meter HM-150.

(5)塗布層と量子ドット含有層の密着性の評価方法
下記に示す塗布剤組成からなる、量子ドットを含有した活性エネルギー線硬化性樹脂を塗布層上に厚み10μmになるよう塗布し、離型フィルムでラミネート後紫外線照射装置から高圧水銀ランプ160Wで積算光量が1000mJ/cmとなるよう紫外線を照射し、樹脂を硬化させた。次いで離型フィルムを剥離し、量子ドット含有層が形成されたフィルムを得た。得られた量子ドット含有層にカッターナイフで5mm間隔にキズをつけて、24mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT−24)を貼り付け、180度の剥離角度で急激にはがした後、剥離面を観察し、剥離面積が5%以下ならばA、5%を超え20%以下ならB、20%を超え50%以下ならばC、50%を超えるならばDとした。
・活性エネルギー線硬化樹脂組成物:
量子ドット1:CdSe/ZnS(発光ピーク530nm)2重量部
量子ドット2:CdSe/ZnS(発光ピーク620nm)2重量部
ジペンタエリスリトールペンタアクリレート 63重量部
KARAYAD R―128H 10重量部
エチレングリコール変性ビスフェノールAアクリレート(エチレングリコール鎖=8) 20重量部
ジフェニル(2,4,6−トリメチルベンゾイル)ホスフィンオキサイド 3重量部
(5) Evaluation method of adhesion between coating layer and quantum dot-containing layer Applying an active energy ray-curable resin containing quantum dots, having the coating composition shown below, to a thickness of 10 μm on the coating layer, and releasing After laminating with a mold film, the resin was cured by irradiating with ultraviolet rays from an ultraviolet irradiation device with a high-pressure mercury lamp 160W so that the integrated light amount was 1000 mJ / cm 2 . Subsequently, the release film was peeled off to obtain a film in which a quantum dot-containing layer was formed. The obtained quantum dot-containing layer is scratched at 5 mm intervals with a cutter knife, and a 24 mm wide tape (Cello Tape (registered trademark) CT-24 manufactured by Nichiban Co., Ltd.) is applied, and suddenly at a peeling angle of 180 degrees. After peeling, the peeled surface was observed, and if the peeled area was 5% or less, A was 5% and 20% or less, B was 20% and 50% or less C, and 50% or more was D. .
Active energy ray curable resin composition:
Quantum dot 1: CdSe / ZnS (emission peak 530 nm) 2 parts by weight Quantum dot 2: CdSe / ZnS (emission peak 620 nm) 2 parts by weight Dipentaerythritol pentaacrylate 63 parts by weight KARAYAD R-128H 10 parts by weight Ethylene glycol modified bisphenol A Acrylate (ethylene glycol chain = 8) 20 parts by weight Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide 3 parts by weight

(6)水蒸気バリア性の評価
温度40℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の水蒸気透過率透過率測定装置(機種名、“パ−マトラン”(登録商標)W3/31)を使用してJIS K7129(2000年版)に記載のB法(赤外センサー法)に基づいて測定した。1つのサンプルから2枚の試験片を切り出し、各々の試験片について測定を1回ずつ行い、2つの測定値の平均値をそのサンプルの水蒸気透過率の値とした。
(6) Evaluation of water vapor barrier property Under conditions of a temperature of 40 ° C. and a humidity of 90% RH, a water vapor transmission rate measuring device (model name, “Permatran” (registered trademark) W3 manufactured by MOCON, USA) / 31) was used and measured based on the B method (infrared sensor method) described in JIS K7129 (2000 version). Two test pieces were cut out from one sample, each test piece was measured once, and the average value of the two measured values was taken as the value of the water vapor transmission rate of the sample.

<ポリエステル(A)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63のポリエステル(A)を得た。
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.

<ポリエステル(B)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 was obtained.

<ポリエステル(C)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<Method for producing polyester (C)>
In the production method of polyester (A), polyester (C) is obtained using the same method as the production method of polyester (A) except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.

塗布組成物としては以下を用いた。
(A1):エチルアクリレート/n−ブチルアクリレート/メチルメタクリレート/N−メチロールアクリルアミド/アクリル酸=65/21/10/2/2(重量%)の乳化重合アクリル樹脂(ガラス転移点40℃、乳化剤:アニオン系界面活性剤)
(U1):1,6−ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール:メチレンビス(4−シクロヘキシルイソシアネート):ジメチロールプロパン酸=45:50:5(mol%)から形成されるポリカーボネートポリウレタン樹脂の水分散体。
(E1):(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)からなる組成で重合したポリエステル樹脂の水分散体。
The following was used as the coating composition.
(A1): Emulsion-polymerized acrylic resin of ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid = 65/21/10/2/2 (% by weight) (glass transition point 40 ° C., emulsifier: Anionic surfactant)
(U1): formed from polycarbonate polyol consisting of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000: methylenebis (4-cyclohexylisocyanate): dimethylolpropanoic acid = 45: 50: 5 (mol%) An aqueous dispersion of polycarbonate polyurethane resin.
(E1): (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56/40/4 // 70/20 / An aqueous dispersion of a polyester resin polymerized with a composition consisting of 10 (mol%).

(C1): オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロス(オキサゾリン基量=4.5mmol/g、株式会社日本触媒製)
(C2):ヘキサメチレンジイソシアネート1000部を60℃で攪拌し、触媒としてテトラメチルアンモニウム・カプレート0.1部を加えた。4時間後、リン酸0.2部を添加して反応を停止させ、イソシアヌレート型ポリイソシアネート組成物を得た。得られたイソシアヌレート型ポリイソシアネート組成物100部、数平均分子量400のメトキシポリエチレングリコール42.3部、プロピレングリコールモノメチルエーテルアセテート29.5部を仕込み、80℃で7時間保持した。その後反応液温度を60℃に保持し、イソブタノイル酢酸メチル35.8部、マロン酸ジエチル32.2部、ナトリウムメトキシドの28%メタノール溶液0.88部を添加し、4時間保持した。n−ブタノール58.9部を添加し、反応液温度80℃で2時間保持し、その後、2−エチルヘキシルアシッドホスフェート0.86部を添加して得られたブロックポリイソシアネート。
(C1): Acrylic polymer having an oxazoline group and a polyalkylene oxide chain Epocross (Oxazoline group amount = 4.5 mmol / g, manufactured by Nippon Shokubai Co., Ltd.)
(C2): 1000 parts of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part of tetramethylammonium caprate was added as a catalyst. After 4 hours, 0.2 part of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts of the obtained isocyanurate type polyisocyanate composition, 42.3 parts of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours. Thereafter, the reaction solution temperature was kept at 60 ° C., 35.8 parts of methyl isobutanoyl acetate, 32.2 parts of diethyl malonate, and 0.88 part of 28% methanol solution of sodium methoxide were added and kept for 4 hours. Block polyisocyanate obtained by adding 58.9 parts of n-butanol, maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 part of 2-ethylhexyl acid phosphate.

(C3):水溶性ヘキサメトキシメチロール化メラミン
(C4):水溶性ポリグリセロールポリグリシジルエーテル。
(C5):カルボジイミド化合物カルボジライト(カルボジイミド当量:430)(日清紡株式会社製)
(C3): Water-soluble hexamethoxymethylolated melamine (C4): Water-soluble polyglycerol polyglycidyl ether.
(C5): Carbodiimide compound carbodilite (carbodiimide equivalent: 430) (Nisshinbo Co., Ltd.)

実施例1:
ポリエステル(A)、(B)、(C)をそれぞれ89%、5%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ95%、5%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1:8:1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液1を塗布し、テンターに導き、横方向に110℃で4.0倍延伸し、225℃で熱処理を行ったのち、横方向に2%弛緩し、塗布層の膜厚(乾燥後)が0.03μmの、厚さ25μmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which polyesters (A), (B), and (C) are mixed at a ratio of 89%, 5%, and 6%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (B) are each 95 %, 5% mixed raw materials were used as intermediate layer raw materials, each was supplied to two extruders, melted at 285 ° C., and then on a cooling roll set at 40 ° C. Coextruded and cooled and solidified in a layer structure of layers (surface layer / intermediate layer / surface layer = 1: 8: 1 discharge amount) to obtain an unstretched sheet. Next, the film was stretched 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the difference in peripheral speed of the roll, and then the coating solution 1 shown in Table 1 below was applied to one side of the longitudinally stretched film, which was led to a tenter. Polyester with a thickness of 25 μm, stretched 4.0 times at 110 ° C. in the transverse direction, heat treated at 225 ° C., relaxed 2% in the transverse direction, and the coating layer thickness (after drying) is 0.03 μm. A film was obtained.

次いで、前記塗布層とは反対のポリエステルフィルム面に、下記バリア層を積層した。具体的には、スパッタリング前の真空チャンバーの水圧力が1×10−4Paであることを確認後、実施した。スパッタリングの条件は、ターゲットにAl−Si(組成比Al:Si=5:5、高純度化学製)を用い、3W/cmのDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。この際、磁場強度は600ガウスであった。また、センターロール温度は0℃として、Gencoa社製のSpeedfloを用いてスパッタリング時の放電電圧が一定になるように酸素流量を制御しながら行った。この際、Arガスのみを流した場合の放電電圧を100%、ArガスとO2ガスを50sccm流した場合の放電電圧を0%とした時、50%の値の放電電圧になるように設定した。以上のようにして、膜厚40nmのバリア層を堆積させた。 Subsequently, the following barrier layer was laminated | stacked on the polyester film surface opposite to the said coating layer. Specifically, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 × 10 −4 Pa. As sputtering conditions, Al—Si (composition ratio Al: Si = 5: 5, manufactured by High Purity Chemical) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss. The center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, a 40 nm-thickness barrier layer was deposited.

続いて、量子ドットを含有した活性エネルギー線硬化性樹脂を塗布層上に厚み10μmになるよう塗布し、離型フィルム(三菱樹脂株式会社製MRF38)でラミネート後紫外線照射装置から高圧水銀ランプ160Wで積算光量が1000mJ/cmとなるよう紫外線を照射し、樹脂を硬化させた。次いで離型フィルムを剥離し、量子ドット含有層が形成されたフィルムを得た。 Subsequently, an active energy ray-curable resin containing quantum dots was applied on the coating layer so as to have a thickness of 10 μm, laminated with a release film (MRF38 manufactured by Mitsubishi Plastics, Inc.), and then irradiated with a high-pressure mercury lamp 160W from an ultraviolet irradiation device. The resin was cured by irradiating with ultraviolet rays so that the integrated light amount was 1000 mJ / cm 2 . Subsequently, the release film was peeled off to obtain a film in which a quantum dot-containing layer was formed.

得られたポリエステルフィルムを評価したところ、塗布層と量子ドット含有層との密着性は良好であり、水蒸気透過度は0.005(g/m2/day)であった。このフィルムの特性を下記表2に示す。   When the obtained polyester film was evaluated, the adhesion between the coating layer and the quantum dot-containing layer was good, and the water vapor transmission rate was 0.005 (g / m2 / day). The properties of this film are shown in Table 2 below.

実施例2〜31:
実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。これらの特性を下記表2に示す。
Examples 2-31:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. These characteristics are shown in Table 2 below.

比較例1
実施例1において、塗布層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。得られたポリエステルフィルムに量子ドット含有層を塗工し密着性を評価したところ、実施例に比べ劣るものであった。この特性を下記表2に示す
Comparative Example 1
In Example 1, it manufactured similarly to Example 1 except having not provided the application layer, and obtained the polyester film. When the quantum dot content layer was applied to the obtained polyester film and adhesiveness was evaluated, it was inferior to an example. This characteristic is shown in Table 2 below.

Figure 2017173792
Figure 2017173792

Figure 2017173792
Figure 2017173792

本発明のフィルムは、バックライトユニット部材や液晶表示装置部材として好適に利用することができる。   The film of the present invention can be suitably used as a backlight unit member or a liquid crystal display device member.

Claims (6)

ポリエステルフィルム基材の少なくとも片面に、塗布層および量子ドット含有層を有することを特徴とする積層ポリエステルフィルム。 A laminated polyester film comprising a coating layer and a quantum dot-containing layer on at least one surface of a polyester film substrate. ポリエステルフィルム基材が、塗布層および量子ドット含有層、およびバリア層を有する請求項1に記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1, wherein the polyester film substrate has a coating layer, a quantum dot-containing layer, and a barrier layer. ポリエステルフィルム基材の片面に、当該基材に近い側から塗布層、量子ドット含有層を、その反対面にバリア層が積層されてなる請求項2に記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 2, wherein a coating layer and a quantum dot-containing layer are laminated on one side of the polyester film substrate from the side close to the substrate, and a barrier layer is laminated on the opposite surface. 量子ドット含有層が、樹脂を含有する請求項1〜3のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 3, wherein the quantum dot-containing layer contains a resin. ポリエステルフィルム基材の少なくとも片面に、塗布層および量子ドット含有層を有する積層ポリエステルフィルムの製造方法であり、塗布液を塗布した後、延伸して塗布層を形成し、当該塗布層上に量子ドット含有層を積層することを特徴とする積層ポリエステルフィルムの製造方法。 A method for producing a laminated polyester film having a coating layer and a quantum dot-containing layer on at least one surface of a polyester film substrate. After coating a coating solution, the coating film is stretched to form a quantum dot on the coating layer. A method for producing a laminated polyester film, comprising laminating a content layer. バックライトユニット部材または液晶表示装置部材に用いられる、請求項1〜4のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 4, which is used for a backlight unit member or a liquid crystal display device member.
JP2016234591A 2016-03-19 2016-12-02 Multilayer polyester film and method for manufacturing the manufacturing method Pending JP2017173792A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016056339 2016-03-19
JP2016056339 2016-03-19

Publications (1)

Publication Number Publication Date
JP2017173792A true JP2017173792A (en) 2017-09-28

Family

ID=59972987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234591A Pending JP2017173792A (en) 2016-03-19 2016-12-02 Multilayer polyester film and method for manufacturing the manufacturing method

Country Status (1)

Country Link
JP (1) JP2017173792A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216560A (en) * 2005-02-03 2006-08-17 Samsung Electronics Co Ltd Energy conversion film and quantum dot thin film
JP2015018131A (en) * 2013-07-11 2015-01-29 Jsr株式会社 Radiation-sensitive resin composition, cured film, light-emitting element, wavelength conversion film, and method for forming light-emitting layer
WO2015015900A1 (en) * 2013-07-28 2015-02-05 三菱樹脂株式会社 Coating film
WO2015147073A1 (en) * 2014-03-25 2015-10-01 コニカミノルタ株式会社 Organic electroluminescent element and lighting device
JP2015215577A (en) * 2014-05-13 2015-12-03 富士フイルム株式会社 Liquid crystal display device
JP2016194989A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Backlight device and display device
JP2016194558A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Quantum dot sheet, backlight device, and display
JP2017014484A (en) * 2015-06-29 2017-01-19 東レ株式会社 Polyester film for barrier film substrate used for display application and barrier film using the same
WO2017051845A1 (en) * 2015-09-24 2017-03-30 シャープ株式会社 Illumination device, display device, and television receiver

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216560A (en) * 2005-02-03 2006-08-17 Samsung Electronics Co Ltd Energy conversion film and quantum dot thin film
JP2015018131A (en) * 2013-07-11 2015-01-29 Jsr株式会社 Radiation-sensitive resin composition, cured film, light-emitting element, wavelength conversion film, and method for forming light-emitting layer
WO2015015900A1 (en) * 2013-07-28 2015-02-05 三菱樹脂株式会社 Coating film
WO2015147073A1 (en) * 2014-03-25 2015-10-01 コニカミノルタ株式会社 Organic electroluminescent element and lighting device
JP2015215577A (en) * 2014-05-13 2015-12-03 富士フイルム株式会社 Liquid crystal display device
JP2016194989A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Backlight device and display device
JP2016194558A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Quantum dot sheet, backlight device, and display
JP2017014484A (en) * 2015-06-29 2017-01-19 東レ株式会社 Polyester film for barrier film substrate used for display application and barrier film using the same
WO2017051845A1 (en) * 2015-09-24 2017-03-30 シャープ株式会社 Illumination device, display device, and television receiver

Similar Documents

Publication Publication Date Title
WO2016098504A1 (en) Sealing film for electronic members
JP5882440B2 (en) Laminated polyester film
JP5739783B2 (en) Laminated polyester film
JP2017182041A (en) Laminated polyester film and method for producing the same
WO2013125288A1 (en) Coated film
JP2016141024A (en) Sealing film for electronic member
WO2015015900A1 (en) Coating film
JP5679946B2 (en) Laminated polyester film
JP2016155262A (en) Sealing film for electronic member
JP5726925B2 (en) Laminated polyester film
JP5557870B2 (en) Laminated polyester film
JP5809016B2 (en) Polyester film
JP2017173792A (en) Multilayer polyester film and method for manufacturing the manufacturing method
WO2014097715A1 (en) Coated film
JP2017182040A (en) Laminated polyester film and method for producing the same
JP5728144B2 (en) Laminated polyester film
JP2014210422A (en) Laminated polyester film
JP5826157B2 (en) Laminated polyester film
JP5830208B2 (en) Laminated polyester film
JP5714034B2 (en) Laminated polyester film
JP5342632B2 (en) Laminated polyester film
JP5342631B2 (en) Laminated polyester film
JP6154833B2 (en) Laminated polyester film
JP6052845B2 (en) Laminated polyester film
JP5826161B2 (en) Laminated polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113