JP2017173211A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2017173211A
JP2017173211A JP2016061361A JP2016061361A JP2017173211A JP 2017173211 A JP2017173211 A JP 2017173211A JP 2016061361 A JP2016061361 A JP 2016061361A JP 2016061361 A JP2016061361 A JP 2016061361A JP 2017173211 A JP2017173211 A JP 2017173211A
Authority
JP
Japan
Prior art keywords
heat
measurement
sensor
heat transfer
transfer amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016061361A
Other languages
Japanese (ja)
Other versions
JP6776574B2 (en
Inventor
宗篤 柿木
Muneatsu Kakigi
宗篤 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016061361A priority Critical patent/JP6776574B2/en
Publication of JP2017173211A publication Critical patent/JP2017173211A/en
Application granted granted Critical
Publication of JP6776574B2 publication Critical patent/JP6776574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device and measurement method, which allow for reducing the amount of heat transferred to a sensor of the measurement device for measuring temperature and concentration of a measurement target at a relatively high temperature, and prolonging life of the sensor.SOLUTION: A measurement device is configured to have a heat transfer reduction mechanism disposed between a measurement target and a sensor for detecting a physical quantities indicative of condition of the measurement target, the heat transfer reduction mechanism being configured to reduce radiant heat transferred from the measurement target to the sensor.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の燃焼室などの測定対象から輻射や対流などにより熱が測定装置に移動してくることを抑制できる測定装置及び測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method that can suppress heat from being transferred to a measuring apparatus due to radiation, convection, or the like from a measuring object such as a combustion chamber of an internal combustion engine.

内燃機関の気筒(シリンダ)内の燃焼状況などを計測する計測装置においては、測定対象である燃焼室などの比較的高温となる部分が多く、測定時においては、測定対象と測定装置との間にすき間を設けていても、この測定対象から輻射や対流などにより測定装置に熱が移動してきて、測定装置のセンサ部分が高温になり破損する可能性がある。   In a measuring device that measures the combustion state in a cylinder (cylinder) of an internal combustion engine, there are many relatively high portions such as a combustion chamber that is a measurement target. Even if a gap is provided, heat may be transferred from the measurement object to the measuring device due to radiation, convection, or the like, and the sensor portion of the measuring device may become hot and be damaged.

これに関連して、燃焼機関内における温度及び圧力を測定する光センサにおいて、光センサの前方に配置されている光ファイバー(導波手段)を銅又はその他の熱伝導性金属などの金属によって囲む温度降下手段を備えて光ファイバーの熱を放射したり、光ファイバーから出射するビームを透過する中空の管体で形成されるスペーサを設けたりして、測定対象のある高温側端部からセンサのある低温側端部への熱を低減している光センサが提案されている(例えば、特許文献1参照)。   In this connection, in an optical sensor for measuring temperature and pressure in a combustion engine, the temperature at which an optical fiber (waveguide means) arranged in front of the optical sensor is surrounded by a metal such as copper or other thermally conductive metal. Provide a descent means to radiate the heat of the optical fiber, or provide a spacer formed of a hollow tube that transmits the beam emitted from the optical fiber, and from the high temperature side end where the measurement object is located to the low temperature side where the sensor is located An optical sensor that reduces heat to the end has been proposed (see, for example, Patent Document 1).

特許5628044号公報Japanese Patent No. 5628044

しかしながら、中空の管体では、熱対流や熱伝導による熱伝達量を減少することはできるが、輻射熱(放射熱)による熱伝達を低減することができず、高温で輻射熱の熱量が多い測定対象からの熱がセンサに到達するのを十分に阻止できないという問題がある。   However, with a hollow tube, the amount of heat transfer due to heat convection and heat conduction can be reduced, but heat transfer due to radiant heat (radiant heat) cannot be reduced, and there is a large amount of radiant heat at high temperatures. There is a problem that it is not possible to sufficiently prevent heat from reaching the sensor.

本発明の目的は、比較的高温の測定対象の温度や濃度などを測定する測定装置のセンサへ伝熱される熱量を低減できて、センサの寿命を延ばすことができる測定装置及び測定方法を提供することにある。   An object of the present invention is to provide a measuring device and a measuring method capable of reducing the amount of heat transferred to a sensor of a measuring device that measures the temperature, concentration, etc. of a relatively high temperature measuring object, and extending the life of the sensor. There is.

上記の目的を達成するための本発明の測定装置は、測定対象とこの測定対象の状態を示す物理量を検出するセンサとの間に、前記測定対象から前記センサに伝達される輻射熱を低減する伝熱量低減機構を設けていることを特徴とする測定装置である。   In order to achieve the above object, a measuring apparatus of the present invention reduces the radiant heat transmitted from the measuring object to the sensor between the measuring object and a sensor that detects a physical quantity indicating the state of the measuring object. A measuring apparatus is provided with a heat quantity reduction mechanism.

なお、このセンサに関しては、赤外線や電磁波などを受けて測定する場合にはその受信部のことをいうが、温度やガス成分の濃度の測定のためにテラヘルツ波などを測定対象に送信して、その反射波若しくは散乱波を受信して測定するような場合には、受信部のみならず発信部も含む。   As for this sensor, it refers to the receiving part when measuring by receiving infrared rays or electromagnetic waves, etc., but for measuring the temperature and the concentration of the gas component, the terahertz wave is transmitted to the measurement object, When the reflected wave or the scattered wave is received and measured, the transmitter includes not only the receiver but also the transmitter.

この構成によれば、輻射熱を低減する伝熱量低減機構を設けたことにより、内燃機関等の比較的高温になる部分の温度や内部のガス濃度等の測定を、センサの熱による故障を防止しながら行うことができるようになる。   According to this configuration, by providing a heat transfer amount reduction mechanism that reduces radiant heat, it is possible to prevent failure due to sensor heat by measuring the temperature of internal combustion engines and other parts that are relatively hot and the concentration of gas inside. You will be able to do it.

また、上記の測定装置において、前記伝熱量低減機構が、輻射熱を吸収する熱吸収部を備えたり、輻射熱を反射する熱反射部を備えたり、空気層を排除した空間部を備えたり、さらには、前記熱吸収部で吸収した熱を放熱する放熱部を備えたりする。   Further, in the measurement apparatus, the heat transfer amount reducing mechanism includes a heat absorption part that absorbs radiant heat, a heat reflection part that reflects radiant heat, a space part that excludes an air layer, and And a heat dissipating part that dissipates heat absorbed by the heat absorbing part.

また、より具体的には、上記の測定装置において、前記伝熱量低減機構が筒状体で構成され、この筒状体の内部に、前方から後方に順にガラス層と、希ガスが充填した空間部又は真空の空間部と、ガラス層を設けているように構成される。   More specifically, in the measurement apparatus, the heat transfer amount reduction mechanism is configured by a cylindrical body, and a space in which the glass layer and a rare gas are filled in the cylindrical body in order from the front to the rear. Or a vacuum space and a glass layer.

この構成によれば、ガラス層を設けることにより、このガラス層を熱吸収部としたり、ガラス層の表面にコート層を設けてその上面に熱反射部を設けたり、前方のガラス層と後方のガラス層の間を空間部としたりすることができるようになり、容易に、熱吸収部、熱反射部、空気層を排除した空間部、放熱部などをコンパクトに設けることができる。   According to this configuration, by providing a glass layer, this glass layer can be used as a heat absorption part, a coating layer can be provided on the surface of the glass layer, and a heat reflection part can be provided on the upper surface thereof. The space between the glass layers can be made a space portion, and the heat absorption portion, the heat reflection portion, the space portion excluding the air layer, the heat radiation portion, and the like can be easily provided in a compact manner.

また、上記の測定装置において、内燃機関の燃焼室の内部、又は、排気マニホールドの内部、又は、排気管の内部の状態を示す物理量を測定する測定装置として構成すると、温度が高くなる内燃機関の燃焼室の内部、又は、排気マニホールドの内部、又は、排気管の内部の状態を、センサを保護しながら、内燃機関の状態を精度良く測定できる。   Further, in the above measurement device, when the measurement device is configured to measure a physical quantity indicating the state inside the combustion chamber of the internal combustion engine, the exhaust manifold, or the exhaust pipe, the temperature of the internal combustion engine becomes high. The state of the internal combustion engine can be accurately measured while protecting the sensor in the combustion chamber, the exhaust manifold, or the exhaust pipe.

そして、上記の目的を達成するための本発明の測定方法は、測定対象の状態を示す物理量を検出する測定方法において、測定対象とこの測定対象の状態を示す物理量を検出するセンサとの間に設けた伝熱量低減機構により、前記測定対象から前記センサに伝達される輻射熱を低減することを特徴とする方法である。この方法によれば、輻射熱を低減する伝熱量低減機構により、内燃機関等の比較的高温になる部分の温度や内部のガス濃度等の測定を、センサの故障を防止しながら行うことができるようになる。   And the measuring method of the present invention for achieving the above object is a measuring method for detecting a physical quantity indicating a state of a measuring object, between the measuring object and a sensor for detecting a physical quantity indicating the state of the measuring object. The method is characterized in that the radiant heat transmitted from the measurement object to the sensor is reduced by a heat transfer amount reduction mechanism provided. According to this method, the heat transfer amount reducing mechanism for reducing the radiant heat can be used to measure the temperature of the relatively high temperature portion of the internal combustion engine or the like, the internal gas concentration, and the like while preventing the failure of the sensor. become.

本発明の測定装置及び測定方法によれば、比較的高温の測定対象の温度や濃度などを測定する測定装置のセンサへ伝えられる熱量を低減できて、センサの寿命を延ばすことができる。   According to the measuring apparatus and the measuring method of the present invention, the amount of heat transmitted to the sensor of the measuring apparatus that measures the temperature and concentration of a relatively high temperature measurement target can be reduced, and the life of the sensor can be extended.

本発明に係る第1の実施の形態の測定装置の構成を模式的に示す図である。It is a figure showing typically composition of a measuring device of a 1st embodiment concerning the present invention. 本発明に係る第2の実施の形態の測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the measuring apparatus of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施の形態の測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the measuring apparatus of 3rd Embodiment which concerns on this invention. ガラス層とコート層の配置と電磁波の入射、透過、反射の様子を模式的に示す図である。It is a figure which shows typically the arrangement | positioning of a glass layer and a coating layer, and the mode of incidence | injection of electromagnetic waves, permeation | transmission, and reflection. ガラス層とコート層と誘電体多層膜の配置と電磁波の入射、反射の様子を模式的に示す図である。It is a figure which shows typically the mode of arrangement | positioning of a glass layer, a coating layer, and a dielectric multilayer film, and the incidence | injection and reflection of electromagnetic waves. 本発明に係る第1の実施の形態における発信部と受信部と測定対象の燃焼室との配置の関係を模式的に示す図である。It is a figure which shows typically the relationship of arrangement | positioning with the transmission part in the 1st Embodiment which concerns on this invention, a receiving part, and the combustion chamber of a measuring object. 伝熱量低減機構が無い比較例における発信部と受信部と測定対象の燃焼室との配置の関係を模式的に示す図である。It is a figure which shows typically the relationship of arrangement | positioning with the transmission part in a comparative example without a heat-transfer amount reduction mechanism, a receiving part, and the combustion chamber of a measuring object. 図7の比較例における発信部と受信部への燃焼室からの輻射熱の移動を模式的に示す図である。It is a figure which shows typically the movement of the radiant heat from a combustion chamber to the transmission part and receiving part in the comparative example of FIG. 発信部と燃焼室の間、及び、受信部と燃焼室との間に、空気層が有る場合の予測結果と、空気層が有る場合の実験結果と、空気層が無い場合の予測結果とを模式的に示す、温度と信号強度の比の値の関係を示す図である。The prediction result when there is an air layer between the transmitter and the combustion chamber, and between the receiver and the combustion chamber, the experimental result when there is an air layer, and the prediction result when there is no air layer. It is a figure which shows the relationship between the value of ratio of temperature and signal intensity shown typically.

以下、本発明に係る実施の形態の測定装置及び測定方法について図面を参照しながら説明する。なお、以下に述べる実施の形態では、測定対象として、内燃機関の燃焼室の内部を例にし、測定する物理量としては温度及びガス成分の濃度を例とし、この温度及びガス成分をテラヘルツ波を用いて測定する測定装置を例にしているが、本発明は、これらに限定されることなく、例えば、内燃機関の排気マニホールドの内部や、排気管の内部等における温度やガス成分の濃度の測定や、温度を非接触で測定する放射温度計などの測定装置にも適用することができる。   Hereinafter, a measuring device and a measuring method according to embodiments of the present invention will be described with reference to the drawings. In the embodiment described below, the inside of the combustion chamber of the internal combustion engine is taken as an example of the measurement object, and the physical quantity to be measured is taken as an example of the temperature and the concentration of the gas component. However, the present invention is not limited to these examples. For example, the present invention is not limited to these. For example, the measurement of the temperature and the concentration of gas components in the exhaust manifold of an internal combustion engine, the interior of an exhaust pipe, etc. The present invention can also be applied to a measuring device such as a radiation thermometer that measures temperature in a non-contact manner.

なお、ここでいうセンサに関しては、電磁波などを受けて測定する場合にはその受信部のことをいうが、図6に示すように、発信部10から、温度やガス成分の濃度を測定のためにテラヘルツ波(0.02THz(テラヘルツ)〜30THz)などの電磁波Wmを燃焼室3に送信して、その反射波若しくは散乱波を受信部30で受信して、燃焼室3の内部の温度やガス成分の濃度を測定するような場合には、受信部30のみならず発信部10もここでいうセンサに含むこととする。   Note that the sensor here refers to the receiving unit when measuring by receiving electromagnetic waves or the like, but as shown in FIG. 6, the temperature and the concentration of gas components are measured from the transmitting unit 10. The electromagnetic wave Wm such as a terahertz wave (0.02 THz (terahertz) to 30 THz) is transmitted to the combustion chamber 3, and the reflected wave or the scattered wave is received by the receiving unit 30, and the temperature and gas inside the combustion chamber 3 are received. In the case where the concentration of the component is measured, not only the receiver 30 but also the transmitter 10 is included in the sensor here.

図7に示すように、従来技術では、内燃機関の燃焼室3の状態を測定する場合には、この燃焼室3から離れた位置に空気層を挟んで測定装置の発信部10と受信部30を設置して、燃焼室3の内部を通過した測定用信号(電磁波:ここではテラヘルツ波)が受信部30に到達し、この測定用信号を解析して燃焼室3の内部の物理的、化学的状況を検出する。この場合、図8に示すように、燃焼室3から発する輻射熱Hが発信部10や受信部30に到達し、これらの発信部10や受信部30が、熱によって破壊される可能性がある。   As shown in FIG. 7, in the prior art, when measuring the state of the combustion chamber 3 of the internal combustion engine, the transmitter 10 and the receiver 30 of the measuring device with an air layer sandwiched at a position away from the combustion chamber 3. And a measurement signal (electromagnetic wave: terahertz wave in this case) that has passed through the inside of the combustion chamber 3 reaches the receiving unit 30, and the measurement signal is analyzed to analyze the physical and chemical inside the combustion chamber 3. The target situation. In this case, as shown in FIG. 8, the radiant heat H emitted from the combustion chamber 3 reaches the transmitter 10 and the receiver 30, and the transmitter 10 and the receiver 30 may be destroyed by heat.

これに対して、本発明では、図6に示すように、本発明の第1の実施の形態の測定装置1は、内燃機関の燃焼室(測定対象)3と、この燃焼室3の状態を示す温度やガス成分等の物理量を検出するためにテラヘルツ波を送信する発信部(センサ)10との間に、燃焼室3から発信部10に伝達される輻射熱Hを低減する伝熱量低減機構20を設けている構成とされる。また、テラヘルツ波を受信する受信部(センサ)30との間に、燃焼室3から受信部30に伝達される輻射熱Hを低減する伝熱量低減機構20を設けている構成とされる。なお、発信部10と受信部30に設けられている伝熱量低減機構20は同じものを使用できるので、以下では、受信部30に設けられている伝熱量低減機構20で説明するが、発信部10に設けられている伝熱量低減機構20も同じ構成で同じ効果を発揮できる。   On the other hand, in the present invention, as shown in FIG. 6, the measuring apparatus 1 according to the first embodiment of the present invention includes the combustion chamber (measurement target) 3 of the internal combustion engine and the state of the combustion chamber 3. A heat transfer amount reduction mechanism 20 that reduces the radiant heat H transmitted from the combustion chamber 3 to the transmission unit 10 with the transmission unit (sensor) 10 that transmits a terahertz wave to detect a physical quantity such as a temperature and a gas component. It is set as the structure which has provided. Further, a heat transfer amount reducing mechanism 20 that reduces the radiant heat H transmitted from the combustion chamber 3 to the receiving unit 30 is provided between the receiving unit (sensor) 30 that receives the terahertz wave. In addition, since the heat transfer amount reduction mechanism 20 provided in the transmission part 10 and the reception part 30 can use the same thing, below, although demonstrated with the heat transfer amount reduction mechanism 20 provided in the reception part 30, a transmission part The heat transfer amount reduction mechanism 20 provided in 10 can also exhibit the same effect with the same configuration.

なお、本発明は、図6に示すような発信部10と受信部30とが対向して発信部10からの測定対象の燃焼室3の内部を通過した測定用信号を受信部30で受信する測定装置1のみでならず、発信部10の発信方向と受信部30の受信方向が交差していて、測定用信号が測定対象の内部の物質に衝突して生じた散乱波を受信部30で受信する測定装置、及び、発信部10と受信部30とが同じ側にあって発信部10から測定対象に発信した測定用信号の反射信号を受信部30で受信する測定装置などにも適用できる。   In the present invention, the transmitter 30 and the receiver 30 as shown in FIG. 6 face each other, and the receiver 30 receives the measurement signal that has passed through the inside of the combustion chamber 3 to be measured from the transmitter 10. Not only the measuring apparatus 1 but also the transmitting direction of the transmitting unit 10 and the receiving direction of the receiving unit 30 cross each other, and the receiving unit 30 detects scattered waves generated by the measurement signal colliding with the substance inside the measurement target. It can also be applied to a measuring device for receiving, and a measuring device for receiving the reflected signal of the measurement signal transmitted from the transmitting unit 10 to the measurement object by the receiving unit 30 when the transmitting unit 10 and the receiving unit 30 are on the same side. .

そして、図1に示すように、第1の実施の形態の測定装置1の伝熱量低減機構20は、円筒21を有する筒状体で構成されており、この筒状体の円筒21の内部に、燃焼室3側の前方から、受信部30側の後方に向かって、順に、ガラス層22と空間部23とを交互に設けていると共に、受信部30のセンサ基板31の直前にガラス層22を設けている構成とする。   As shown in FIG. 1, the heat transfer amount reduction mechanism 20 of the measuring apparatus 1 according to the first embodiment is configured by a cylindrical body having a cylinder 21, and the cylindrical body 21 has a cylindrical body 21. The glass layers 22 and the space portions 23 are alternately provided in this order from the front on the combustion chamber 3 side to the rear on the reception unit 30 side, and the glass layer 22 is provided immediately before the sensor substrate 31 of the reception unit 30. The structure is provided.

この燃焼室3と受信部30のセンサ基板31との間に設けたガラス層22の内部に黒体に類似した黒鉛や煤などの熱を吸収し易い熱吸収用物質を混入することで熱吸収部を構成でき、これらの熱吸収用物質に輻射熱Hである電磁波(例えば、赤外線:波長で1μm〜1mm程度)Whiを吸収させて、ガラス層22に熱を蓄熱させて、後方に輻射熱Hの電磁波Whiが届かないようにすることができる。この構成により、伝熱量低減機構20に輻射熱Hを吸収する熱吸収部22を設けている構成となる。   Heat absorption by mixing a heat-absorbing substance such as graphite or soot that resembles a black body into the glass layer 22 provided between the combustion chamber 3 and the sensor substrate 31 of the receiving unit 30. The heat absorbing material absorbs electromagnetic waves that are radiant heat H (for example, infrared rays: about 1 μm to 1 mm in wavelength) Whi, heat is stored in the glass layer 22, and the radiant heat H The electromagnetic wave Whi can be prevented from reaching. With this configuration, the heat transfer amount reduction mechanism 20 is provided with a heat absorbing portion 22 that absorbs the radiant heat H.

また、図1に示すように、このガラス層22の最も燃焼室3側に最前方のコート層22aを設け、この最前方のコート層22aの表面に輻射熱Hである電磁波Whiを反射させるコーティングを設ける。また、さらに、図1及び図4に示すように、この円筒21の中間や後方にあるガラス層22の前方のコート層22bの表面22bfと、ガラス層22の後方のコート層22bとガラス層22との境面22sに輻射熱Hの電磁波Whiを反射させるコーティングを設ける。   Further, as shown in FIG. 1, the foremost coat layer 22a is provided on the most combustion chamber 3 side of the glass layer 22, and a coating for reflecting the electromagnetic wave Whi which is radiant heat H is applied to the surface of the foremost coat layer 22a. Provide. Further, as shown in FIGS. 1 and 4, the front surface 22 bf of the coating layer 22 b in front of the glass layer 22 in the middle or rear of the cylinder 21, and the coating layer 22 b and the glass layer 22 behind the glass layer 22. A coating for reflecting the electromagnetic wave Whi of the radiant heat H is provided on the boundary surface 22s.

この測定装置1が燃焼室3の測定に用いられる場合には、図1に示すように、燃焼室3を囲む周壁3aに燃焼室3内に通じる窓となる貫通孔3bを設けて、測定装置1の入口側をその貫通孔3bに挿入して、燃焼ガスが触れる状態とする。つまり、円筒21が燃焼室3の壁面3aに開口された貫通孔3bに挿入されて、燃焼室3側のガラス層22が燃焼室3の燃焼ガスに接触する。なお、この燃焼ガスに接触するガラス層22の前面においては、燃焼ガスのような特に高温となる物質に曝されて、加熱によるコート層22aが破損する可能性があるような場合では最前方のコート層22aを設けてなくてもよい。   When this measuring device 1 is used for measuring the combustion chamber 3, as shown in FIG. 1, a through-hole 3b serving as a window communicating with the combustion chamber 3 is provided in the peripheral wall 3a surrounding the combustion chamber 3, thereby measuring the measuring device. 1 is inserted into the through-hole 3b so that the combustion gas is in contact therewith. That is, the cylinder 21 is inserted into the through hole 3 b opened in the wall surface 3 a of the combustion chamber 3, and the glass layer 22 on the combustion chamber 3 side comes into contact with the combustion gas in the combustion chamber 3. Note that the front surface of the glass layer 22 in contact with the combustion gas is exposed to a particularly high temperature substance such as the combustion gas, and the coat layer 22a due to heating may be damaged. The coat layer 22a may not be provided.

また、図5に示すように、このガラス層22とコート層22bとが接触する境面22sを、電磁波Whiを反射し易くするために、また、コート層22bを形成し易くするために、鏡面仕上とすることが好ましく、例えば、表面粗さが、JISの算術平均粗さ(中心線平均粗さ)Raで10μm以下とすることが好ましい。   Further, as shown in FIG. 5, the boundary surface 22s where the glass layer 22 and the coating layer 22b are in contact with each other is made to be a mirror surface so that the electromagnetic wave Whi can be easily reflected and the coating layer 22b can be easily formed. For example, the surface roughness is preferably 10 μm or less in terms of JIS arithmetic average roughness (centerline average roughness) Ra.

また、この電磁波Whiを反射させる構造の一つとして、輻射熱(赤外線波長)を反射または吸収するコーテイングがある。このコーテイングは、複数の屈折率の異なる材質や膜厚を適切に選択することにより、特殊な透過率・反射率波長特性を作ることができるものである。つまり、このコーテイングを用いることにより、特定の波長を設計の中心波長として、その波長より長波長側だけを通したり、逆に反射したりすることができ、また、特定の波長だけ透過させることもできる構造とすることができる。また、熱反射部として金の薄膜コートを使用することもできる。   As one of the structures for reflecting the electromagnetic wave Whi, there is a coating for reflecting or absorbing radiant heat (infrared wavelength). This coating can produce special transmittance / reflectance wavelength characteristics by appropriately selecting a plurality of materials and film thicknesses having different refractive indexes. In other words, by using this coating, a specific wavelength can be used as the center wavelength of the design, and only a longer wavelength side than that wavelength can be transmitted or reflected, or only a specific wavelength can be transmitted. The structure can be made. Also, a gold thin film coat can be used as the heat reflecting portion.

この反射させるコーテイングにより、図4に示すように、輻射熱Hとなる電磁波Whiの一部である電磁波Whrを反射して、電磁波Whiの受信部30のセンサ基板31への到達を阻止しつつ、測定用信号のテラヘルツ波などの必要な電磁波Wmを通過させてセンサ基板31へ到達させることができる。このように、コーテイングをガラス層22の表面のコート層22a、22bの表面に設けることにより、伝熱量低減機構20に輻射熱Hを反射する熱反射部を構成できる。   As shown in FIG. 4, the reflected coating reflects the electromagnetic wave Whr that is a part of the electromagnetic wave Whi that becomes the radiant heat H, and prevents the electromagnetic wave Whi from reaching the sensor substrate 31 of the receiving unit 30. Necessary electromagnetic waves Wm such as terahertz waves of the signal for use can be passed through and reach the sensor substrate 31. Thus, by providing the coating on the surface of the coating layers 22 a and 22 b on the surface of the glass layer 22, it is possible to configure a heat reflecting portion that reflects the radiant heat H to the heat transfer amount reducing mechanism 20.

なお、測定用にテラヘルツ波(0.02THz(テラヘルツ)〜30THz:波長で0.01m〜15mm程度)の一部の電磁波Wmを使用した場合には、反射する電磁波Whrの周波数帯域は、この測定用のテラヘルツ波の電磁波Wmを除く周波数帯域とする。この反射する電磁波Whrの周波数帯域と、透過させる電磁波Wmの周波数帯域との選択は、ガラス層22の厚さやコート層22a、22bの材質、厚さや輻射熱を反射または吸収するコーテイングの構成等によってコントロールすることができる。   When a part of the electromagnetic wave Wm having a terahertz wave (0.02 THz (terahertz) to 30 THz: about 0.01 m to 15 mm in wavelength) is used for measurement, the frequency band of the reflected electromagnetic wave Whr is measured by this measurement. Frequency band excluding the terahertz wave electromagnetic wave Wm for use. The selection of the frequency band of the reflected electromagnetic wave Whr and the frequency band of the transmitted electromagnetic wave Wm is controlled by the thickness of the glass layer 22, the material of the coating layers 22a and 22b, the thickness and the coating configuration that reflects or absorbs radiant heat, and the like. can do.

そして、このガラス層22とガラス層22の間に空間部23を設け、この空間部23においては、電磁波Wなどの吸収し難いアルゴン(Ar)などの希ガス系のガスGaを封入したり、真空にしたりして空気量を希薄にして、空気層を排除する。この構成により、空気層により燃焼室3に照射する電磁波Wmが減衰して、受信部30で受信する測定用信号が弱くなることを防止する。これにより、測定用信号の減衰を軽減できるので、センサ基板31に到達する信号強度を高く維持でき、検出精度の低下を防止する。なお、真空とした場合はこの空気層の排除と共に、空間部23の内部における対流による熱伝達も防止できる。   And the space part 23 is provided between this glass layer 22 and the glass layer 22, and in this space part 23, rare gas type gas Ga, such as argon (Ar) which is hard to absorb electromagnetic waves W etc., is enclosed, Vacuum is used to dilute the air volume and eliminate the air layer. With this configuration, the electromagnetic wave Wm irradiated to the combustion chamber 3 by the air layer is attenuated, and the measurement signal received by the receiving unit 30 is prevented from becoming weak. Thereby, the attenuation of the measurement signal can be reduced, so that the signal intensity reaching the sensor substrate 31 can be maintained high, and the detection accuracy is prevented from being lowered. In addition, when it is set as a vacuum, the heat transfer by the convection in the space part 23 can be prevented with the exclusion of this air layer.

更に、伝熱量低減機構20に、熱吸収部であるガラス層22で吸収した熱を放熱する放熱部をガラス層22の周囲に設けて構成する。図1に示す第1の実施の形態の測定装置1では、この放熱部は、筒体21の周囲に設けたフィン構造の放熱板24を用いて外部に放熱する。また、図2に示す第2の実施の形態の測定装置1Aでは、この放熱部は、筒体21の内部に設けたヒートパイプ25を用いて、熱を円筒21の低温部分に移動させたり、外部に熱移動させたりする。   Furthermore, the heat transfer amount reducing mechanism 20 is configured by providing a heat dissipating part that dissipates heat absorbed by the glass layer 22 that is a heat absorbing part around the glass layer 22. In the measuring apparatus 1 according to the first embodiment shown in FIG. 1, the heat radiating part radiates heat to the outside using a fin-shaped heat radiating plate 24 provided around the cylindrical body 21. In addition, in the measuring apparatus 1A of the second embodiment shown in FIG. 2, the heat radiating section uses a heat pipe 25 provided inside the cylindrical body 21 to move heat to the low temperature portion of the cylinder 21, Move heat to the outside.

また、図3に示す第3の実施の形態の測定装置1Bでは、空間部23を希ガスGaが循環するように円筒21の内部に流路26を形成し、この流路26に入口側流路26aと出口側流路26bを接続して構成し、希ガスGaを入口側流路26aから流路26を経由して空間部23に入れて、ガラス層22を冷却する。その後のガラス層22の熱で昇温した希ガスGaを流路26を経由させて出口側流路26bから空間部23の外部に導出させて、この外部で冷却装置(図示しない)などで希ガスGaを冷却する。そして、この冷却されて温度が低くなった希ガスGaを再度、入口側流路26aから流路26に入れて、循環させる。なお、この希ガスGaの代わりに温度上昇により融けて流動性のあるポリエチレンなどを用いたりすることもできる。   Further, in the measuring apparatus 1B of the third embodiment shown in FIG. 3, a flow path 26 is formed inside the cylinder 21 so that the rare gas Ga circulates in the space 23, and an inlet side flow is formed in the flow path 26. The path 26a and the outlet side flow path 26b are connected to each other, and the rare gas Ga is introduced from the inlet side flow path 26a through the flow path 26 into the space 23 to cool the glass layer 22. Thereafter, the rare gas Ga heated by the heat of the glass layer 22 is led out from the outlet side channel 26b to the outside of the space portion 23 through the channel 26, and is rarely discharged outside by a cooling device (not shown) or the like. The gas Ga is cooled. Then, the noble gas Ga, which has been cooled and whose temperature has been lowered, is again put into the channel 26 from the inlet-side channel 26a and circulated. Instead of the rare gas Ga, it is also possible to use polyethylene that melts due to temperature rise and has fluidity.

この放熱部24、25、26を備えた構成により、この輻射熱Hを吸収した熱吸収部であるガラス層22を冷却して、ガラス層22の熱を放熱できるので、ガラス層22に熱が蓄積して温度が昇温するのを防止できると共に、このガラス層22の熱がセンサ基板31に伝熱されるのを防止することができる。   With the configuration including the heat radiating portions 24, 25, and 26, the glass layer 22, which is a heat absorbing portion that has absorbed the radiant heat H, can be cooled to dissipate the heat of the glass layer 22, so heat accumulates in the glass layer 22. Thus, the temperature can be prevented from rising, and the heat of the glass layer 22 can be prevented from being transferred to the sensor substrate 31.

つまり、測定装置1、1A、1Bにおいて、伝熱量低減機構20、20A、20Bを筒状体で構成して、この筒状体を形成する筒体21の内部に、前方から後方に順にガラス層22と、希ガスGaが充填した空間部23又は真空の空間部23と、ガラス層22を設けているように構成される。なお、図1〜図3では、このガラス層22が3つで、その間の空間部23は2つとなっている。   That is, in the measuring devices 1, 1 </ b> A, 1 </ b> B, the heat transfer amount reduction mechanisms 20, 20 </ b> A, 20 </ b> B are configured by a cylindrical body, and a glass layer is sequentially formed from the front to the rear inside the cylindrical body 21 forming the cylindrical body. 22, a space 23 filled with a rare gas Ga or a vacuum space 23, and a glass layer 22. In FIG. 1 to FIG. 3, there are three glass layers 22, and there are two space portions 23 therebetween.

この構成によれば、ガラス層22を設けることにより、このガラス層22を熱吸収部としたり、ガラス層22の表面にコート層22a、22bを設けて、このコート層の上面に熱反射部(コーテイング)を設けたりすることができ、また、前方のガラス層22と後方のガラス層22の間を空間部23とすることができるようになるので、容易に、熱吸収部22、熱反射部22bf、22s空気層を排除した空間部23、放熱部24、25、26などをコンパクトに設けることができる。   According to this configuration, by providing the glass layer 22, the glass layer 22 can be used as a heat absorption part, or the coat layers 22a and 22b can be provided on the surface of the glass layer 22, and the heat reflection part ( Coating), and the space 23 can be formed between the front glass layer 22 and the rear glass layer 22, so that the heat absorbing portion 22 and the heat reflecting portion can be easily provided. The space part 23 excluding the 22bf, 22s air layer, the heat radiation parts 24, 25, 26, etc. can be provided in a compact manner.

つまり、これらにより、内燃機関の燃焼室3の内部等の比較的高温となる測定対象をセンシングする測定装置1、1A、1Bにおいて、輻射熱Hが受信部30に到達するのを防止して、発信部10や受信部30を熱から保護することができると共に、受信部30に到達する測定用信号を低減することが無く検出精度を向上できる仕組みを設けることができる。   That is, these prevent the radiant heat H from reaching the receiving unit 30 in the measuring devices 1, 1 </ b> A, and 1 </ b> B that sense a relatively high temperature measuring object such as the inside of the combustion chamber 3 of the internal combustion engine. It is possible to provide a mechanism that can protect the unit 10 and the receiving unit 30 from heat and can improve the detection accuracy without reducing the measurement signal reaching the receiving unit 30.

また、これらの測定装置1、1A、1Bにおいて、内燃機関の燃焼室3の内部、又は、内燃機関の排気マニホールド(図示しない)の内部、又は、内燃機関の排気管(図示しない)の内部の状態を示す温度やガス成分の濃度等の物理量を測定するように構成すると、温度が高くなる内燃機関の燃焼室3の内部、排気マニホールドの内部、排気管の内部の状態を、センサ基板31を保護しながら、内燃機関の状態を精度良く測定できるようになる。   Further, in these measuring devices 1, 1A, 1B, inside the combustion chamber 3 of the internal combustion engine, inside the exhaust manifold (not shown) of the internal combustion engine, or inside the exhaust pipe (not shown) of the internal combustion engine. When the physical quantity such as the temperature indicating the state or the concentration of the gas component is measured, the sensor substrate 31 is used to indicate the state of the combustion chamber 3 of the internal combustion engine, the exhaust manifold, and the exhaust pipe. While protecting, the state of the internal combustion engine can be accurately measured.

次に、本発明の実施の形態における測定方法について説明する。この測定方法は、燃焼室(測定対象)3の状態を示す温度やガス成分の濃度などの物理量を検出する測定方法において、燃焼室3とこの燃焼室3の状態を示す物理量を検出する受信部(センサ)30との間に設けた伝熱量低減機構20、20A、20Bにより、燃焼室3から受信部30に伝達される輻射熱Hを低減することを特徴とする方法である。   Next, a measurement method in the embodiment of the present invention will be described. This measuring method is a measuring method for detecting a physical quantity such as a temperature indicating the state of the combustion chamber (measuring object) 3 and a concentration of a gas component, and a receiving unit for detecting the physical quantity indicating the state of the combustion chamber 3 and the combustion chamber 3. This is a method characterized in that the radiant heat H transmitted from the combustion chamber 3 to the receiving unit 30 is reduced by the heat transfer amount reducing mechanisms 20, 20 </ b> A, 20 </ b> B provided between the (sensor) 30.

また、さらに、この測定方法において、伝熱量低減機構20、20A、20Bに備えた輻射熱Hを吸収する熱吸収部22で輻射熱Hを吸収して輻射熱Hが受信部30に伝達されるのを防止したり、輻射熱Hを反射する熱反射部22bf、22sで輻射熱Hを反射して輻射熱Hが受信部30に伝達されるのを防止したり、空気層を排除した空間部23で、空気層により燃焼室3に照射する電磁波Wmが減衰して、受信部30で受信する測定用信号が弱くなることを回避したりする。さらには、熱吸収部22で吸収した熱を放熱する放熱部24、25、26で放熱し、熱吸収部22の温度上昇を防止して、熱吸収部22で吸収した熱が受信部30に伝達されるのを防止したりする。   Further, in this measurement method, the heat absorption unit 22 that absorbs the radiant heat H provided in the heat transfer amount reduction mechanism 20, 20 </ b> A, 20 </ b> B absorbs the radiant heat H and prevents the radiant heat H from being transmitted to the receiver 30. Or the heat reflecting portions 22bf and 22s that reflect the radiant heat H to prevent the radiant heat H from being transmitted to the receiving portion 30 by reflecting the radiant heat H, It is avoided that the electromagnetic wave Wm irradiated to the combustion chamber 3 is attenuated and the measurement signal received by the receiving unit 30 is weakened. Further, the heat absorbed by the heat absorbing unit 22 is radiated by the heat radiating units 24, 25, and 26, the temperature of the heat absorbing unit 22 is prevented from rising, and the heat absorbed by the heat absorbing unit 22 is transferred to the receiver 30. Or prevent it from being transmitted.

上記の構成の本発明の実施の形態の測定装置1、1A、1B、及び、測定方法によれば、輻射熱Hを低減する伝熱量低減機構20、20A、20Bにより、内燃機関等の比較的高温になる部分の温度や内部のガス濃度等の測定を、発信部10や受信部30の熱による故障を防止しながら行うことができるようになる。   According to the measuring apparatus 1, 1A, 1B and the measuring method of the embodiment of the present invention having the above-described configuration, the heat transfer amount reducing mechanisms 20, 20A, 20B that reduce the radiant heat H are used to relatively increase the temperature of an internal combustion engine or the like. It becomes possible to measure the temperature of the portion to become and the internal gas concentration while preventing the transmitter 10 and the receiver 30 from being damaged by heat.

つまり、図7及び図8に示すような、燃焼室3などの測定対象(検出対象)と発信部10と受信部30との間に隙間を設けて配置されるために空気層が存在して、この空気層における輻射(放射)や対流により発信部10と受信部30に輻射熱Hや対流熱が伝達されたり、この空気層により測定用信号が受信部30に到達するまでに低減されたりする場合や、図示しないが、受信部30を熱から保護するための保護カバーを受信部30の前方に設けて検出信号が弱くなる場合などに比べて、受信部30のセンサに加わる輻射熱Hを低減し、また、空気層を排除することで受信部30に入力される測定用信号を強い状態のままで維持でき、測定精度(検出精度)を向上することができる。そのため、内燃機関の燃焼室3等の測定対象の状態をより正確に検出することができるようになる。さらに、受信部30に加わる熱を低減することで、受信部30の寿命を延ばすことが可能となる。   That is, as shown in FIGS. 7 and 8, there is an air layer because a gap is provided between the measurement target (detection target) such as the combustion chamber 3 and the transmission unit 10 and the reception unit 30. The radiation (radiation) or convection in the air layer causes the radiant heat H or convection heat to be transmitted to the transmitting unit 10 and the receiving unit 30, or the measurement signal is reduced by the air layer until it reaches the receiving unit 30. Although not shown, the radiant heat H applied to the sensor of the receiver 30 is reduced as compared with a case where a protective cover for protecting the receiver 30 from heat is provided in front of the receiver 30 and the detection signal becomes weak. In addition, by eliminating the air layer, the measurement signal input to the receiving unit 30 can be maintained in a strong state, and the measurement accuracy (detection accuracy) can be improved. Therefore, the state of the measurement target such as the combustion chamber 3 of the internal combustion engine can be detected more accurately. Furthermore, it is possible to extend the life of the receiving unit 30 by reducing the heat applied to the receiving unit 30.

なお、図9に示すように、センサと燃焼室の間に隙間(空気層)が存在することにより、信号強度の減衰が発生する。この図9の横軸は温度を、縦軸は基準状態に対する信号強度の比の値を示す。この図9のAは、受信部30と測定対象の間にすき間がある場合の予測結果(計算値)を示し、図9のBは、受信部30と測定対象の間にすき間がある場合の実験結果を示し、図9のCは、受信部30と測定対象の間にすき間がない場合の予測結果(計算値)を示す。同じ距離における、隙間ありの予測結果Aと隙間なしの予測結果Cでは信号強度の比の値に大きく差が出ており、空気層における信号強度の比の値を検出困難とする効果を抑えるためには、隙間、つまり、空気層を存在させないようにする必要があることが分かる。   Note that, as shown in FIG. 9, the signal strength is attenuated due to the presence of a gap (air layer) between the sensor and the combustion chamber. In FIG. 9, the horizontal axis indicates the temperature, and the vertical axis indicates the ratio of the signal intensity to the reference state. 9A shows a prediction result (calculated value) when there is a gap between the receiving unit 30 and the measurement target, and FIG. 9B shows a case where there is a gap between the receiving unit 30 and the measurement target. An experimental result is shown and C of Drawing 9 shows a prediction result (calculated value) when there is no gap between receiving part 30 and a measuring object. There is a large difference in the signal strength ratio value between the prediction result A with a gap and the prediction result C without a gap at the same distance, in order to suppress the effect of making it difficult to detect the value of the signal strength ratio in the air layer. It is understood that it is necessary to prevent the gap, that is, the air layer from being present.

1、1A、1B 測定装置
3 燃焼室(測定対象)
3a 燃焼室の周壁
3b 貫通孔
10 発信部(センサ)
20 伝熱量低減機構
21 円筒
22 ガラス層(熱吸収部)
22a 最前方のコート層(熱反射部)
22b コート層
22bf コート層の表面(熱反射部)
22s コート層とガラス層の境面
23 空間部
24 放熱板(放熱部)
25 ヒートパイプ(放熱部)
26 流路(放熱部)
26a 入口側流路(放熱部)
26b 出口側流路(放熱部)
30 受信部(センサ)
31 センサ基板(センサ)
Ga 希ガス
H 輻射熱
W 電磁波
Whi 輻射熱に大きく関与する電磁波
Whr 反射する電磁波
Wm 測定用の電磁波
1, 1A, 1B Measuring device 3 Combustion chamber (measuring object)
3a Combustion chamber peripheral wall 3b Through hole 10 Transmitter (sensor)
20 Heat transfer reduction mechanism 21 Cylinder 22 Glass layer (heat absorption part)
22a Frontmost coat layer (heat reflection part)
22b Coat layer 22bf Surface of coat layer (heat reflection part)
22s Boundary surface 23 between coat layer and glass layer 24 Space 24 Heat sink (heat sink)
25 Heat pipe (heat dissipation part)
26 Flow path (heat dissipation part)
26a Inlet side flow path (heat dissipation part)
26b Outlet side flow path (heat radiation part)
30 Receiver (sensor)
31 Sensor board (sensor)
Ga Noble gas H Radiant heat W Electromagnetic wave Whi Electromagnetic wave Wr greatly involved in radiant heat Reflected electromagnetic wave Wm Electromagnetic wave for measurement

Claims (8)

測定対象とこの測定対象の状態を示す物理量を検出するセンサとの間に、前記測定対象から前記センサに伝達される輻射熱を低減する伝熱量低減機構を設けていることを特徴とする測定装置。   A measurement apparatus comprising a heat transfer amount reduction mechanism for reducing radiant heat transmitted from the measurement object to the sensor between the measurement object and a sensor that detects a physical quantity indicating the state of the measurement object. 前記伝熱量低減機構が輻射熱を吸収する熱吸収部を備えている請求項1に記載の測定装置。   The measuring apparatus according to claim 1, wherein the heat transfer amount reduction mechanism includes a heat absorption unit that absorbs radiant heat. 前記伝熱量低減機構が輻射熱を反射する熱反射部を備えている請求項1又は2に記載の測定装置。   The measuring apparatus according to claim 1, wherein the heat transfer amount reducing mechanism includes a heat reflecting portion that reflects radiant heat. 前記伝熱量低減機構が空気層を排除した空間部を備えている請求項1〜3に記載の測定装置。   The measurement apparatus according to claim 1, wherein the heat transfer amount reduction mechanism includes a space portion from which an air layer is excluded. 前記伝熱量低減機構が前記熱吸収部で吸収した熱を放熱する放熱部を備えている請求項2〜4のいずれか1項に記載の測定装置。   The measuring apparatus according to claim 2, wherein the heat transfer amount reducing mechanism includes a heat radiating unit that radiates heat absorbed by the heat absorbing unit. 前記伝熱量低減機構が筒状体で構成され、この筒状体の内部に、前方から後方に順にガラス層と、希ガスが充填した空間部又は真空の空間部と、ガラス層を設けている請求項1〜5のいずれか1項に記載の測定装置。   The heat transfer amount reducing mechanism is configured by a cylindrical body, and a glass layer, a space portion filled with a rare gas or a vacuum space portion, and a glass layer are provided in this cylindrical body in order from the front to the rear. The measuring apparatus of any one of Claims 1-5. 内燃機関の燃焼室の内部、又は、排気マニホールドの内部、又は、排気管の内部の状態を示す物理量を測定することを特徴とする請求項1〜6のいずれか1項に記載の測定装置。   The measuring apparatus according to claim 1, wherein a physical quantity indicating a state inside a combustion chamber of an internal combustion engine, an exhaust manifold, or an exhaust pipe is measured. 測定対象の状態を示す物理量を検出する測定方法において、測定対象とこの測定対象の状態を示す物理量を検出するセンサとの間に設けた伝熱量低減機構により、前記測定対象から前記センサに伝達される輻射熱を低減することを特徴とする測定方法。   In a measurement method for detecting a physical quantity indicating a state of a measurement target, the measurement target is transmitted from the measurement target to the sensor by a heat transfer amount reduction mechanism provided between the measurement target and a sensor for detecting a physical quantity indicating the state of the measurement target. A measurement method characterized by reducing radiant heat.
JP2016061361A 2016-03-25 2016-03-25 measuring device Active JP6776574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061361A JP6776574B2 (en) 2016-03-25 2016-03-25 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061361A JP6776574B2 (en) 2016-03-25 2016-03-25 measuring device

Publications (2)

Publication Number Publication Date
JP2017173211A true JP2017173211A (en) 2017-09-28
JP6776574B2 JP6776574B2 (en) 2020-10-28

Family

ID=59972982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061361A Active JP6776574B2 (en) 2016-03-25 2016-03-25 measuring device

Country Status (1)

Country Link
JP (1) JP6776574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435112A (en) * 2019-01-11 2020-07-21 横河电机株式会社 Gas analysis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435112A (en) * 2019-01-11 2020-07-21 横河电机株式会社 Gas analysis apparatus

Also Published As

Publication number Publication date
JP6776574B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN103797345B (en) Infrared sensor
EP2627979B1 (en) Dewar assembly for ir detection systems
CA2212432C (en) Gas monitors
EP2205992B1 (en) Scintillation detector with heatable entrance window
US6441368B1 (en) Infrared/visible energy protection for millimeter wave bolometer antenna method and apparatus
JP2006153845A (en) Refractory thickness measuring method and refractory thickness measuring apparatus
US3487685A (en) Absorption radiometer
CN109163810A (en) High-temperature rotor radiation temperature measurement device and method
JP2017173211A (en) Measurement device and measurement method
JP5786191B2 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device and heat flux measuring device
US20160054176A1 (en) High energy laser target board apparatus
JP2009276126A (en) Thermopile infrared detector
US4647778A (en) Clear aperture cryostat for an infrared detector
US9823134B1 (en) Burn saver device
JP2019003102A (en) Display device
KR101935016B1 (en) Non-dispersive Infrared gas sensor using multi internal reflection
Zur et al. Fiber optic distributed thermal sensor
US7133126B2 (en) Method for the detection of coatings using emissivity and reflectivity
KR102003224B1 (en) Apparatus for measuring temperature of glass transmission type and induction range having the same
US10024722B2 (en) Temperature detection device for a vehicle heater
KR20200007438A (en) Non-dispersive Infra Red(NDIR) gas sensor and manufacturing method thereof
JP2013068611A (en) Calibration blackbody standard for submillimeter frequency band
JP2011123023A (en) Photosensor
JPH07120197A (en) Infrared ray radiation amount control device
JP2008277673A (en) Cvd device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6776574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150