JP2017173187A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2017173187A
JP2017173187A JP2016060833A JP2016060833A JP2017173187A JP 2017173187 A JP2017173187 A JP 2017173187A JP 2016060833 A JP2016060833 A JP 2016060833A JP 2016060833 A JP2016060833 A JP 2016060833A JP 2017173187 A JP2017173187 A JP 2017173187A
Authority
JP
Japan
Prior art keywords
modulated light
intensity
incident
distance measuring
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016060833A
Other languages
Japanese (ja)
Inventor
祐太 上永
Yuta Kaminaga
祐太 上永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016060833A priority Critical patent/JP2017173187A/en
Publication of JP2017173187A publication Critical patent/JP2017173187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measuring device whose ranging precision relative to a ranging object having low reflection rate is improved.SOLUTION: A distance measuring device 1 includes: a pixel arrangement section 401 having Fd for accumulating electrical charges related to intensity of each pixel G; a modulated light emission section 106 for emitting emission modulated light La toward an imaging range 6; a ranging section 102 for measuring a distance D to a ranging object 7 based on a phase difference φ between the emission modulated light La and reflection modulated light Lb reflected by the ranging object 7 to enter into the pixel G; and a modulated light control section 103 for controlling emission intensity of the emission modulated light La so that incident intensity of the reflection modulated light Lb to the pixel G becomes a reference value or more.SELECTED DRAWING: Figure 7

Description

本発明は、TOF(Time Of Flight:光飛行時間) 方式で測距を行う距離計測装置に関する。   The present invention relates to a distance measuring apparatus that performs distance measurement using a TOF (Time Of Flight) method.

TOF方式で測距を行う距離計測装置が知られている(例:特許文献1)。   A distance measuring device that performs distance measurement using the TOF method is known (eg, Patent Document 1).

このような距離計測装置は、例えば、平面上に分布した複数の画素と各画素への入射光の強度に関係する電荷量で電荷を蓄積する電荷蓄積部とを有する撮像素子と、強度変調した変調光を撮像素子の撮像範囲に向けて出射する変調光出射部と、変調光出射部が出射した出射変調光と該出射変調光が撮像範囲の測距対象に反射して撮像素子の画素に入射した反射変調光との位相差を電荷蓄積部の電荷量に基づいて検出する位相差検出部と、該位相差検出部が検出した位相差に基づいて測距対象までの距離を測定する測距部とを備える。   Such a distance measuring device is, for example, an image sensor having a plurality of pixels distributed on a plane and a charge storage unit that stores charges with a charge amount related to the intensity of incident light on each pixel, and intensity-modulated. The modulated light emitting unit that emits the modulated light toward the imaging range of the imaging device, the emitted modulated light emitted by the modulated light emitting unit, and the emitted modulated light reflected by the distance measurement target in the imaging range to be reflected on the pixels of the imaging device A phase difference detection unit that detects the phase difference from the incident reflected modulated light based on the amount of charge in the charge storage unit, and a measurement that measures the distance to the distance measurement object based on the phase difference detected by the phase difference detection unit. And a distance portion.

特開2008−89346号公報JP 2008-89346 A

撮像素子では、各画素に装備される電子素子(例えば電荷蓄積部としてのフローティングディフュージョンや、該フローティングディフュージョンに電荷を振り分けたり、該フローティングディフュージョンから電荷量を読み取るゲート等の素子)には、作動等のばらつきがある。したがって、同一の入射強度の反射光に対して電荷蓄積部の電荷量の読出し値にはばらつきが生じる。このばらつきは、入射強度の高いときと低いときとで差があまりなく、入射強度に関係なくほぼ一定の範囲となる。   In the image pickup device, an electronic element (such as a floating diffusion as a charge storage unit, an element such as a gate that distributes charges to the floating diffusion, or reads a charge amount from the floating diffusion) provided in each pixel is operated. There are variations. Accordingly, the readout value of the charge amount of the charge storage unit varies with respect to the reflected light having the same incident intensity. This variation is not much different between when the incident intensity is high and when the incident intensity is low, and is in a substantially constant range regardless of the incident intensity.

反射光の入射強度の低いときは、撮像素子の出力値が減少するので、その分、出力値に占めるばらつきの割合が増大することになる。したがって、反射率の低い測距対象の測距精度は、反射率の高い測距対象の測距精度より低下する。   When the incident intensity of the reflected light is low, the output value of the image sensor decreases, so that the proportion of variation in the output value increases accordingly. Therefore, the distance measurement accuracy of the distance measurement target having a low reflectance is lower than the distance measurement accuracy of the distance measurement object having a high reflectance.

本発明の目的は、反射率の低い測距対象に対する測距精度を改善した距離計測装置を提供することである。   An object of the present invention is to provide a distance measuring device with improved distance measuring accuracy for a distance measuring object having a low reflectance.

本発明の距離計測装置は、
平面上に分布した複数の画素と各画素への入射光の強度に関係する電荷量で電荷を蓄積する電荷蓄積部とを有する撮像素子と、
強度変調した変調光を前記撮像素子の撮像範囲に向けて出射する変調光出射部と、
前記変調光出射部が出射した出射変調光と該出射変調光が前記撮像範囲の測距対象に反射して前記撮像素子の画素に入射した反射変調光との位相差を前記電荷蓄積部の電荷量に基づいて検出する位相差検出部と、
前記位相差検出部が検出した位相差に基づいて前記測距対象までの距離を測定する測距部と、
前記画素における前記反射変調光の入射強度が基準値以上となるように、前記変調光出射部からの前記出射変調光の出射強度を制御する変調光制御部とを備えることを特徴とする。
The distance measuring device of the present invention is
An image sensor having a plurality of pixels distributed on a plane and a charge storage unit that stores charges with a charge amount related to the intensity of incident light on each pixel;
A modulated light emitting unit that emits intensity-modulated modulated light toward the imaging range of the imaging device;
The phase difference between the outgoing modulated light emitted from the modulated light emitting unit and the reflected modulated light reflected by the distance-measuring target in the imaging range and incident on the pixels of the imaging element is determined as the charge of the charge storage unit. A phase difference detector for detecting based on the quantity;
A distance measuring unit that measures a distance to the distance measuring object based on the phase difference detected by the phase difference detecting unit;
A modulation light control unit configured to control an emission intensity of the emission modulated light from the modulation light emission unit so that an incident intensity of the reflected modulation light in the pixel is equal to or higher than a reference value;

本発明によれば、画素における反射変調光の入射強度が基準値以上となる出射強度で変調光出射部から出射変調光が出射される。これにより、反射率の低い測距対象からの反射変調光も、十分な入射強度が確保され、測距精度を改善することができる。   According to the present invention, the emitted modulated light is emitted from the modulated light emitting unit with the emission intensity at which the incident intensity of the reflected modulated light in the pixel is equal to or higher than the reference value. As a result, the reflected modulated light from the distance measuring object having a low reflectance can also ensure a sufficient incident intensity and improve the distance measuring accuracy.

本発明の距離計測装置において、前記変調光制御部は、前記画素における反射変調光の入射強度を検出し、該検出した入射強度に基づいて前記画素における反射変調光の入射強度が基準値以上となる出射強度を算出し、該算出した出射強度に制御した出射強度で前記変調光出射部から前記出射変調光を出射する制御処理を繰り返し、各回の制御処理では、前記画素における入射強度の検出対象とする反射変調光は、前回の制御処理において出射した出射変調光由来の反射変調光であることが好ましい。   In the distance measuring device of the present invention, the modulated light control unit detects an incident intensity of the reflected modulated light in the pixel, and based on the detected incident intensity, the incident intensity of the reflected modulated light in the pixel is equal to or higher than a reference value. The control process for emitting the output modulated light from the modulated light output unit with the output intensity controlled to the calculated output intensity is repeated, and in each control process, the detection target of the incident intensity in the pixel The reflected modulated light is preferably reflected modulated light derived from the outgoing modulated light emitted in the previous control process.

この構成によれば、各制御処理で出射する出射変調光の出射強度は、前回の制御処理において出射した出射変調光由来の反射変調光の入射強度に基づいて算出される。したがって、各制御処理において、入射強度検出用の出射変調光を専用に出射する必要がなく、各回の制御処理の所要時間を短縮することができる。   According to this configuration, the emission intensity of the outgoing modulated light emitted in each control process is calculated based on the incident intensity of the reflected modulated light derived from the outgoing modulated light emitted in the previous control process. Therefore, in each control process, it is not necessary to exclusively emit the outgoing modulated light for detecting the incident intensity, and the time required for each control process can be shortened.

本発明の距離計測装置において、前記変調光制御部は、前記画素に入射した反射変調光の入射強度を前記電荷蓄積部の電荷量に基づいて検出することが好ましい。   In the distance measuring device according to the aspect of the invention, it is preferable that the modulated light control unit detects the incident intensity of the reflected modulated light incident on the pixel based on the charge amount of the charge storage unit.

この構成よれば、電荷蓄積部の電荷量は、位相差検出部による位相差検出と、画素に入射した反射変調光の入射強度検出とに共用される。したがって、入射強度検出用の出射変調光を位相差検出用の出射変調光とは別個に出射する必要がなく、各回の制御処理の所要時間を短縮することができる。   According to this configuration, the charge amount of the charge storage unit is shared by the phase difference detection by the phase difference detection unit and the incident intensity detection of the reflected modulated light incident on the pixel. Therefore, it is not necessary to emit the outgoing modulated light for detecting the incident intensity separately from the outgoing modulated light for detecting the phase difference, and the time required for each control process can be shortened.

本発明の距離計測装置において、前記変調光出射部は、強度変調された変調光を発生する光源と、該光源から入射した入射光を偏向して、前記出射変調光として前記撮像範囲に向けて出射する光偏向器とを有し、前記変調光制御部は、各制御処理において前記変調光出射部からの出射変調光が前記撮像範囲を一定の走査パターンで走査する走査サイクルで出射されるように、前記光偏向器を制御し、前記変調光出射部は、前回の走査サイクルにおいて各出射位相時に前記変調光出射部から出射された出射変調光の出射位相と該出射変調光由来の反射変調光が入射する画素との対応関係を検出し、次の走査サイクルでは、前記画素ごとに出射強度を算出した出射変調光の出射位相を前記対応関係に基づいて制御することが好ましい。   In the distance measuring device of the present invention, the modulated light emitting section deflects incident light incident from the light source that generates intensity-modulated modulated light, and directs the incident light as the emitted modulated light toward the imaging range. And the modulated light control unit is configured so that the modulated light emitted from the modulated light emission unit is emitted in a scanning cycle in which the imaging range is scanned with a constant scanning pattern in each control process. Further, the optical deflector is controlled, and the modulated light emitting unit is configured to output an outgoing phase of the outgoing modulated light emitted from the modulated light outgoing unit at each outgoing phase in the previous scanning cycle and a reflection modulation derived from the outgoing modulated light. It is preferable to detect a correspondence relationship with a pixel on which light is incident, and to control an emission phase of emission modulated light whose emission intensity is calculated for each pixel based on the correspondence relationship in the next scanning cycle.

この構成によれば、次の走査サイクルでは、画素ごとに出射強度を算出した出射変調光の出射位相を、前回の走査サイクルに基づいて検出した対応関係に基づいて制御する。これにより、各回の制御処理で算出した出射強度の出射変調光を撮像範囲の対応の測距対象に正確に出射することができる。   According to this configuration, in the next scanning cycle, the emission phase of the emission modulated light whose emission intensity is calculated for each pixel is controlled based on the correspondence detected based on the previous scanning cycle. Thereby, the outgoing modulated light having the outgoing intensity calculated in each control process can be accurately emitted to the corresponding distance measuring object in the imaging range.

距離計測装置の全体構成図。The whole block diagram of a distance measuring device. カメラが備える撮像素子の構成図。The block diagram of the image pick-up element with which a camera is provided. 画素の詳細な構成図。The detailed block diagram of a pixel. 出射変調光及び反射変調光のタイミングチャート。5 is a timing chart of outgoing modulated light and reflected modulated light. カメラの素子のばらつきが反射変調光の入射強度に関係して距離計測装置の測距精度に与える影響についての説明図。Explanatory drawing about the influence which the dispersion | variation in the element of a camera has on the ranging accuracy of a distance measuring device in relation to the incident intensity of reflected modulated light. 距離計測装置が出射強度制御を行わなかったときに測距値が測距対象の反射率から受ける影響を調べた実験の結果を示すグラフ。The graph which shows the result of the experiment which investigated the influence which ranging value receives from the reflectance of a ranging object when a distance measuring device did not perform output intensity control. 距離計測装置のブロック図。The block diagram of a distance measuring device. 距離計測装置が実施する測距方法のフローチャート。The flowchart of the distance measuring method which a distance measuring device implements. 反射変調光の強度区分と距離計測装置による測距のばらつきとの関係を示す図。The figure which shows the relationship between the intensity division of reflected modulation light, and the dispersion | variation in the ranging by a distance measuring device.

図1は距離計測装置1の全体構成図である。距離計測装置1は、レーザ光源2、光偏向器3、カメラ4及び制御装置5を備え、距離計測装置1−測距対象7間の距離DをTOF方式で計測する。距離計測装置1は、所定の走査パターンでカメラ4の撮像範囲6に向けて、強度変調した変調光としての出射変調光Laを出射する。撮像範囲6に測距対象7が存在するときは、出射変調光Laは、測距対象7に照射されると、距離計測装置1の方へ反射し、その反射光が、出射変調光La由来の反射変調光Lbとなって、距離計測装置1に入射する。制御装置5は、出射変調光Laと反射変調光Lbとの位相差に基づいて距離計測装置1−測距対象7間の距離Dを計測する。   FIG. 1 is an overall configuration diagram of the distance measuring apparatus 1. The distance measuring device 1 includes a laser light source 2, an optical deflector 3, a camera 4, and a control device 5, and measures a distance D between the distance measuring device 1 and the distance measuring object 7 by the TOF method. The distance measuring device 1 emits an outgoing modulated light La as intensity-modulated modulated light toward an imaging range 6 of the camera 4 with a predetermined scanning pattern. When the distance measuring object 7 is present in the imaging range 6, the emitted modulated light La is reflected toward the distance measuring device 1 when irradiated on the distance measuring object 7, and the reflected light is derived from the emitted modulated light La. The reflected modulated light Lb is incident on the distance measuring device 1. The control device 5 measures the distance D between the distance measuring device 1 and the distance measuring object 7 based on the phase difference between the outgoing modulated light La and the reflected modulated light Lb.

測距対象7は、撮像範囲6に1つだけでなく、複数、存在することがある。測距対象7には、白っぽいものや、黒っぽいもの等、種々の反射率のものがある。距離計測装置1からの出射変調光Laの出射強度Ioが同一であるときは、反射率の低い測距対象7ほど、また、距離計測装置1から遠い測距対象7ほど、距離計測装置1に入射する時の反射変調光Lbの入射強度Iiは低くなる。なお、測距対象7に当たらなかった出射変調光Laに対しては、該出射変調光La由来の反射変調光Lbは当然に生成されない。   There may be a plurality of distance measuring objects 7 instead of only one in the imaging range 6. The distance measuring object 7 has various reflectances such as whitish and blackish. When the emission intensity Io of the outgoing modulated light La from the distance measuring device 1 is the same, the distance measuring object 7 having a lower reflectance and the distance measuring object 7 farther from the distance measuring device 1 are applied to the distance measuring device 1. The incident intensity Ii of the reflected modulated light Lb when incident becomes low. Of course, the reflected modulated light Lb derived from the emitted modulated light La is not generated for the emitted modulated light La that did not hit the distance measuring object 7.

制御装置5は、光偏向器3及びカメラ4からの入力信号に基づいて、レーザ光源2、光偏向器3及びカメラ4を制御するとともに、距離Dの算出等の演算を行う。   The control device 5 controls the laser light source 2, the optical deflector 3, and the camera 4 based on the input signals from the optical deflector 3 and the camera 4, and performs calculations such as calculation of the distance D.

レーザ光源2は、制御装置5からの制御信号により点灯及び消灯を制御され、例えば10MHzで点滅して、強度を変調されたレーザ光を生成する。レーザ光源2は、また、制御装置5からの制御信号により点灯時に出射するレーザ光の出射強度も制御される。   The laser light source 2 is controlled to be turned on and off by a control signal from the control device 5 and blinks at, for example, 10 MHz to generate laser light whose intensity is modulated. The laser light source 2 is also controlled by the control signal from the control device 5 so that the emission intensity of the laser light emitted at the time of lighting is controlled.

光偏向器3は、MEMS(Micro Electro Mechanical Systems)デバイスの一種であり、構造自体は公知のものである。光偏向器3の詳細な構造については、例えば、本出願人が特許出願人になっている特開2016−9050号公報、特開2016−4155号公報、特開2015−230326号公報、及び特開2015−219516号公報等を参照することができる。   The optical deflector 3 is a kind of MEMS (Micro Electro Mechanical Systems) device, and the structure itself is known. Regarding the detailed structure of the optical deflector 3, for example, Japanese Patent Application Laid-Open No. 2006-9050, Japanese Patent Application Laid-Open No. 2014-4155, Japanese Patent Application Laid-Open No. 2015-230326, and the like, which have been filed by the present applicant. Reference can be made to Japanese Unexamined Patent Publication No. 2015-219516.

概略的に説明すると、光偏向器3は、ほぼ直交する第1及び第2回転軸線の回りにミラー部(図示せず)を第1及び第2周波数でそれぞれ往復回動させる。なお、後述のラスタースキャンを実現するために、第1周波数>第2周波数の関係が設定される。   Briefly described, the optical deflector 3 reciprocally rotates a mirror portion (not shown) at first and second frequencies around first and second rotation axes that are substantially orthogonal to each other. In order to realize a raster scan described later, a relationship of first frequency> second frequency is set.

レーザ光源2から出射されかつ強度変調されたレーザ光は、第1及び第2回転軸線の回りに第1及び第2周波数で往復回動するミラー部に当たって、第1及び第2回転軸線の回りのミラー部の回転角に応じた方向に向きを転換される。そして、強度変調された出射変調光Laとなって、光偏向器3から撮像範囲6に向けて出射される。   The laser light emitted from the laser light source 2 and intensity-modulated hits a mirror portion that reciprocally rotates around the first and second rotation axes at the first and second frequencies, and is rotated around the first and second rotation axes. The direction is changed in the direction corresponding to the rotation angle of the mirror part. Then, the intensity-modulated emission modulated light La is emitted from the optical deflector 3 toward the imaging range 6.

光偏向器3からの出射変調光Laは、光偏向器3におけるミラー部の第1及び第2回転軸線の回りの往復回動の結果、例えばラスタースキャン等の所定の走査パターンの走査サイクルで撮像範囲6を繰り返し走査する。典型的には、出射変調光Laは、第1回転軸線回りのミラー部の往復回動により撮像範囲6をその横方向としての水平方向に往復する。また、第2回転軸線回りのミラー部の往復回動により撮像範囲6をその縦方向としての垂直方向に往復する。   The outgoing modulated light La from the optical deflector 3 is imaged in a scanning cycle of a predetermined scanning pattern such as a raster scan, for example, as a result of reciprocal rotation around the first and second rotation axes of the mirror portion in the optical deflector 3. The range 6 is repeatedly scanned. Typically, the outgoing modulated light La reciprocates in the horizontal direction as the lateral direction of the imaging range 6 by reciprocating rotation of the mirror portion around the first rotation axis. Further, the imaging range 6 is reciprocated in the vertical direction as the vertical direction by the reciprocating rotation of the mirror portion around the second rotation axis.

光偏向器3において、第1及び第2回転軸線の回りのミラー部の往復回動は、ミラー部を第1及び第2回転軸線の回りに往復回動させる第1及び第2圧電アクチュエータにより行われる。制御装置5は、第1及び第2圧電アクチュエータの駆動電圧を制御して、出射変調光Laの走査サイクルを制御する。   In the optical deflector 3, the reciprocating rotation of the mirror portion around the first and second rotation axes is performed by the first and second piezoelectric actuators that reciprocate the mirror portion around the first and second rotation axes. Is called. The control device 5 controls the driving voltage of the first and second piezoelectric actuators to control the scanning cycle of the outgoing modulated light La.

撮像範囲6内に測距対象7が存在するときは、出射変調光Laは、測距対象7に反射し、反射後は、出射変調光La由来の反射変調光Lbとなって、距離計測装置1へ戻る。戻って来た反射変調光Lbは、カメラ4の撮像素子(イメージセンサー)400(図2)の対応画素Gに入射する。   When the distance measuring object 7 exists in the imaging range 6, the outgoing modulated light La is reflected by the distance measuring object 7, and after the reflection, the reflected modulated light Lb derived from the outgoing modulated light La becomes a distance measuring device. Return to 1. The reflected modulated light Lb that has returned enters the corresponding pixel G of the image sensor (image sensor) 400 (FIG. 2) of the camera 4.

図2は、カメラ4が備える撮像素子400の構成図である。撮像素子400は、主要構成要素として、画素配列部401、行制御部406、列制御部407及び画像プロセッサ408を備えている。   FIG. 2 is a configuration diagram of an image sensor 400 included in the camera 4. The imaging device 400 includes a pixel array unit 401, a row control unit 406, a column control unit 407, and an image processor 408 as main components.

図2の画素配列部401は、正面視で図示されており、平面上に格子配列で縦横に均一な密度で分布した複数の画素G(n,m)を有している。   The pixel array unit 401 shown in FIG. 2 is shown in a front view, and has a plurality of pixels G (n, m) distributed in a lattice arrangement on the plane with a uniform density in the vertical and horizontal directions.

なお、画素配列部401における画素Gを行番号nと列番号mとで表現する。画素G(n,m)とは、画素配列部401の正面視において上からn番目で、左からm番目の画素Gを指すものとする。画素配列部401は、例えば126×126個の画素Gから成る。以降、個々の画素を特に区別する必要がないときは、画素G(n,m)を画素Gと総称し、(n,m)は省略する。   Note that the pixel G in the pixel array unit 401 is represented by a row number n and a column number m. The pixel G (n, m) refers to the nth pixel G from the top and the mth pixel from the left in the front view of the pixel array unit 401. The pixel array unit 401 is composed of, for example, 126 × 126 pixels G. Hereinafter, when it is not necessary to distinguish individual pixels, the pixel G (n, m) is generically referred to as the pixel G, and (n, m) is omitted.

各画素Gは、正面視で左側の副画素Po(添え字「o」は、奇数を意味し、副画素Poは、副画素を含めて格子配列の列番号を定義したときに列番号が奇数になることを意味する)と右側の副画素Pe(添え字「e」は偶数を意味する)とを有している。   Each pixel G has a left-side subpixel Po (subscript “o” means an odd number in front view), and the subpixel Po has an odd column number when the column number of the grid array including the subpixel is defined. And the right sub-pixel Pe (the subscript “e” means an even number).

行制御部406は、行制御ライン409に制御信号を印加し、画素配列部401の画素Gを行ごとに制御できるようになっている。列制御部407は、列制御ライン410に制御信号を印加し、画素配列部401の画素Gを列ごとに制御できるようになっている。画像プロセッサ408は、制御装置5(図1)からの制御信号に基づいて行制御部406及び列制御部407を制御する。   The row control unit 406 applies a control signal to the row control line 409 so that the pixels G of the pixel array unit 401 can be controlled for each row. The column controller 407 applies a control signal to the column control line 410 to control the pixels G of the pixel array unit 401 for each column. The image processor 408 controls the row control unit 406 and the column control unit 407 based on a control signal from the control device 5 (FIG. 1).

図3は、画素Gの詳細な構成図である。画素Gは、副画素Poと副画素Peとの2つの副画素の対から成る。   FIG. 3 is a detailed configuration diagram of the pixel G. The pixel G is composed of a pair of two subpixels, a subpixel Po and a subpixel Pe.

副画素Poは、PD、M1,M3、Fd1,Fd3、及び2つのBMを備える。副画素Peは、PD、M2,M4、Fd2,Fd4、及び2つのBMを備える。なお、PDはフォトダイオードを意味し、Mは振分けスイッチを意味し、Fdは、電荷蓄積部としてのフローティングディフュージョンを意味し、BMは転送スイッチを意味するものとする。M1〜M4及びBMは、FET(電界効果トランジスタ)から成る。   The subpixel Po includes PD, M1, M3, Fd1, Fd3, and two BMs. The sub-pixel Pe includes PD, M2, M4, Fd2, Fd4, and two BMs. Note that PD means a photodiode, M means a sorting switch, Fd means a floating diffusion as a charge storage unit, and BM means a transfer switch. M1 to M4 and BM are composed of FETs (field effect transistors).

Tx1〜Tx4には、M1〜M4のオンオフを制御する制御信号が行制御部406から供給される。Biには、BMのオンオフを制御する制御信号が行制御部406から供給される。Tx1〜Tx4及びBiのラインの組は、各行制御ライン409(図2)に含まれる。   A control signal for controlling ON / OFF of M1 to M4 is supplied from the row control unit 406 to Tx1 to Tx4. A control signal for controlling on / off of the BM is supplied from the row control unit 406 to Bi. A set of lines Tx1 to Tx4 and Bi is included in each row control line 409 (FIG. 2).

Roは、対応列(該対応列ではFd1〜Fd4の各列は区別される)の全部のBMのドレンに接続されている。列制御部407は、Roを介して各画素GのFd1〜Fd4に蓄積されている電荷の電荷量の読出し値としてのC1〜C4を読出す。Roは、各列制御ライン410(図2)に含まれる。   Ro is connected to the drains of all the BMs in the corresponding column (in the corresponding column, each column of Fd1 to Fd4 is distinguished). The column control unit 407 reads C1 to C4 as read values of the amount of charges accumulated in Fd1 to Fd4 of each pixel G via Ro. Ro is included in each column control line 410 (FIG. 2).

副画素Poと副画素Peとは、副画素内のゲートとしてのM1〜M4及びBMの作動タイミングが異なるのみで、全体の作動は同一である。したがって、副画素Poの作動のみを説明する。   The sub-pixel Po and the sub-pixel Pe are the same in overall operation except that the operation timings of M1 to M4 and BM as gates in the sub-pixel are different. Therefore, only the operation of the subpixel Po will be described.

PDは、画素Gに入射する入射光(この入射光には背景光と反射変調光Lbとを含む)の強度が大きいほど、多数の電子を生成する。なお、電子の数の増大に連れて、電荷量は増大する。M1とM3とはTx1,Tx3の印加電圧により逆位相でオンオフされる。すなわち、オン、オフの1回ずつを1回のオンオフサイクルとして、各オンオフサイクルにおいて、M1のオン期間はM3のオフ期間とされ、M1のオフ期間はM3のオン期間とされる。レーザ光源2の点滅の周期は、反射変調光Lbが後述の走査サイクルで1つの画素Gを通過する時間よりも十分に短い。したがって、各画素Gは、反射変調光Lbの通過中、反射変調光Lbの入射を複数回、繰り返されて、該反射変調光Lbの入射強度Iiに関係した電荷の蓄積量を増大することができる。   The PD generates a larger number of electrons as the intensity of incident light incident on the pixel G (the incident light includes background light and reflected modulated light Lb) is larger. Note that the amount of charge increases as the number of electrons increases. M1 and M3 are turned on and off in opposite phases by the applied voltages Tx1 and Tx3. That is, each on / off cycle is defined as one on / off cycle, and in each on / off cycle, the on period of M1 is the off period of M3, and the off period of M1 is the on period of M3. The blinking cycle of the laser light source 2 is sufficiently shorter than the time during which the reflected modulated light Lb passes through one pixel G in the scanning cycle described later. Accordingly, each pixel G may repeat the incidence of the reflected modulated light Lb a plurality of times during the passage of the reflected modulated light Lb, thereby increasing the amount of accumulated charge related to the incident intensity Ii of the reflected modulated light Lb. it can.

M1,M3のオン期間では、PDが生成した電子が、Fd1,Fd3に供給され、蓄積される。Fd1,Fd3には、画素G(厳密には副画素Po又はPe)に入射した入射光の強さに関係する電荷量の電荷が蓄積される。Roは、所定の読出しタイミングで列制御部407内のスイッチの作動により通電状態になり、この時にオンになっているBMが属する副画素PoのFd1,Fd3の電荷量が列制御部407を介して画像プロセッサ408により読出し値C1,C3として読出される。C1,C3は、さらに、画像プロセッサ408から制御装置5(図1)に送られる。   In the ON period of M1 and M3, electrons generated by the PD are supplied to Fd1 and Fd3 and stored. In Fd1 and Fd3, charges having a charge amount related to the intensity of incident light incident on the pixel G (strictly, the subpixel Po or Pe) are accumulated. Ro is energized by the operation of a switch in the column control unit 407 at a predetermined readout timing, and the charge amounts of Fd1 and Fd3 of the subpixel Po to which the BM that is turned on at this time belong via the column control unit 407. Then, the read values C1 and C3 are read by the image processor 408. C1 and C3 are further sent from the image processor 408 to the control device 5 (FIG. 1).

図4は出射変調光La及び反射変調光Lbのタイミングチャートである。横軸の目盛は、時間経過を出射変調光Laの位相で表現した値となっている。出射変調光Laは、レーザ光源2が出射するレーザ光由来の光であり、出射変調光Laのレベルは、レーザ光源2の消灯時ではLow(ロー)、レーザ光源2の点灯時はHigh(ハイ)となっている。点灯時のHighレベルに対応する光強度は、レーザ光源2の給電電流の増減により増減される。   FIG. 4 is a timing chart of the outgoing modulated light La and the reflected modulated light Lb. The scale on the horizontal axis is a value representing the passage of time by the phase of the outgoing modulated light La. The emitted modulated light La is light derived from the laser light emitted from the laser light source 2, and the level of the emitted modulated light La is Low when the laser light source 2 is turned off, and High (high) when the laser light source 2 is turned on. ). The light intensity corresponding to the high level during lighting is increased or decreased by increasing or decreasing the power supply current of the laser light source 2.

出射変調光Laは、周期パルス波形の光であり、周期=100ns(周波数=10MHz)で、デューティ比=50%の矩形波となっている。図4では、出射変調光Laの立ち上がり時刻を位相=0°で表わしている。反射変調光Lbは、距離計測装置1から出射した出射変調光Laが測距対象7(図1)に到達し、測距対象7に反射して距離計測装置1に戻る。この結果、反射変調光Lbの位相は、測距対象7までの距離Dの2倍の長さを飛行する時間分だけ、出射変調光Laより位相が遅れ、出射変調光Laと反射変調光Lbとの間に位相差φが生じる。位相差φより、距離計測装置1−測距対象7間の距離Dを計測することができる。   The outgoing modulated light La is light having a periodic pulse waveform, and is a rectangular wave with a period = 100 ns (frequency = 10 MHz) and a duty ratio = 50%. In FIG. 4, the rising time of the outgoing modulated light La is represented by phase = 0 °. As for the reflected modulated light Lb, the outgoing modulated light La emitted from the distance measuring device 1 reaches the distance measuring object 7 (FIG. 1), is reflected by the distance measuring object 7, and returns to the distance measuring device 1. As a result, the phase of the reflected modulated light Lb is delayed from the outgoing modulated light La by the amount of time that flies twice as long as the distance D to the distance measuring object 7, and the outgoing modulated light La and the reflected modulated light Lb are delayed. A phase difference φ occurs between From the phase difference φ, the distance D between the distance measuring device 1 and the distance measuring object 7 can be measured.

前述したように、画像プロセッサ408(図2)は、Bi及びRoを介して画素GごとのFd1〜Fd4の電荷量を読出すことができるようになっている。画像プロセッサ408は、各画素GのFd1〜Fd4から該画素Gに入射した反射変調光Lbの入射強度Iiに関係する蓄積電荷量を読出すことができる。図4において、T1〜T4は、画像プロセッサ408が各画素GにおいてFd1〜Fd4からそれぞれ読出す電荷量の蓄積期間を示している。   As described above, the image processor 408 (FIG. 2) can read the charge amounts of Fd1 to Fd4 for each pixel G via Bi and Ro. The image processor 408 can read the accumulated charge amount related to the incident intensity Ii of the reflected modulated light Lb incident on the pixel G from Fd1 to Fd4 of each pixel G. In FIG. 4, T <b> 1 to T <b> 4 indicate accumulation periods of charge amounts that the image processor 408 reads from each of the pixels G from Fd <b> 1 to Fd <b> 4.

T1〜T4の期間は、開始位相が異なるものの、期間の長さは、出射変調光Laの周期の1/2(=半周期)に等しく設定されている。T1は位相0°〜180°の期間に設定される。T2は位相90°〜270°の期間に設定される。T3は位相180°〜360°の期間に設定される。T4は位相270°〜360°とその次の周期の位相0°〜90°との期間、換言すれば位相270°〜450°に設定される。この結果、Fd1〜Fd4には、T1〜T4に対応副画素に入射した反射変調光Lbの入射強度Iiに対応する電荷量で電荷が蓄積される。画像プロセッサ408は、各画素GにおいてT1〜T4に蓄積された電荷の電荷量を読出し値C1〜C4として読出す。   Although the start phase is different in the period from T1 to T4, the length of the period is set to be equal to 1/2 (= half period) of the period of the outgoing modulated light La. T1 is set to a period of phase 0 ° to 180 °. T2 is set to a period between 90 ° and 270 °. T3 is set to a period of 180 to 360 degrees. T4 is set to a period between phase 270 ° to 360 ° and phase 0 ° to 90 ° of the next cycle, in other words, phase 270 ° to 450 °. As a result, charges are accumulated in Fd1 to Fd4 with a charge amount corresponding to the incident intensity Ii of the reflected modulated light Lb incident on the subpixels corresponding to T1 to T4. The image processor 408 reads the charge amounts of the charges accumulated in T1 to T4 in each pixel G as read values C1 to C4.

制御装置5は、位相差φを次の式(1)により算出する。
式(1):位相差φ=tan−1{(C1−C3)/(C2−C4)}
上式において、「tan」は正接(タンジェント)を意味し、「tan−1」とは逆正接(アークタンジェント)を意味する。C1〜C4の個々には、背景光由来の入射光に因る蓄積電荷量が含まれるが、差分C1−C3、及び差分C2−C4からは、背景光由来の入射光に因る影響が除去されている。
The control device 5 calculates the phase difference φ by the following equation (1).
Formula (1): Phase difference φ = tan −1 {(C1−C3) / (C2−C4)}
In the above formula, “tan” means tangent, and “tan −1 ” means arc tangent. Each of C1 to C4 includes the accumulated charge amount due to the incident light derived from the background light, but the influence due to the incident light derived from the background light is removed from the difference C1-C3 and the difference C2-C4. Has been.

ここで、距離計測装置1の測距精度について説明する。カメラ4における反射変調光Lbの入射強度Iiは、C1〜C4に基づいて検出されるが、測距対象7の反射率の影響を受ける。すなわち、出射変調光Laの出射強度Ioが等しく、かつ測距対象7までの距離Dが等しくても、反射変調光Lbの入射強度Iiは、測距対象7の反射率が低いほど低下する。   Here, the ranging accuracy of the distance measuring apparatus 1 will be described. The incident intensity Ii of the reflected modulated light Lb in the camera 4 is detected based on C1 to C4, but is affected by the reflectance of the distance measuring object 7. In other words, even if the outgoing intensity Io of the outgoing modulated light La is equal and the distance D to the distance measuring object 7 is equal, the incident intensity Ii of the reflected modulated light Lb decreases as the reflectance of the distance measuring object 7 is lower.

また、カメラ4の撮像素子400内のゲートの作動等のばらつきのために、反射変調光Lbの入射強度Iiが等しくても、制御装置5が、カメラ4の画像プロセッサ408を介して各画素Gから読出すC1〜C4には、ばらつきが生じる。これらのばらつきは、反射変調光Lbの入射強度Iiに関係なく一定であるために、反射変調光Lbの入射強度Iiが低くなるほど、誤差率(=(誤差/真値)×100%)が増大する傾向がある。   In addition, because of variations in the operation of the gate in the image sensor 400 of the camera 4, even when the incident intensity Ii of the reflected modulated light Lb is the same, the control device 5 passes each pixel G through the image processor 408 of the camera 4. Variations occur in C1 to C4 read from. Since these variations are constant regardless of the incident intensity Ii of the reflected modulated light Lb, the error rate (= (error / true value) × 100%) increases as the incident intensity Ii of the reflected modulated light Lb decreases. Tend to.

図5は、撮像素子400内のゲートの作動等のばらつきが反射変調光Lbの入射強度Iiに関係して距離計測装置1の測距精度に与える影響についての説明図である。図5に示す特性の抽出では、距離計測装置1は、出射変調光Laの出射強度Ioの制御を実施しないで、出射強度Ioを標準値としてのIsoに固定している(Io=Iso)。   FIG. 5 is an explanatory diagram showing the influence of the variation in the operation of the gate in the image sensor 400 on the distance measurement accuracy of the distance measuring device 1 in relation to the incident intensity Ii of the reflected modulated light Lb. In the characteristic extraction shown in FIG. 5, the distance measuring device 1 does not control the emission intensity Io of the emission modulated light La, and fixes the emission intensity Io to the standard value Iso (Io = Iso).

図5において、横軸は、C1,C3の差分としてのC1−C3を示し、縦軸は、C2,C4の差分としてのC2−C4を示している。図5において、W1,W2は、反射変調光Lbの入射強度Iiがそれぞれ低いとき及び高いときのばらつき範囲を示している。C1〜C4のばらつきは、カメラ4の撮像素子内の各ゲートの作動等のばらつきからの影響を受け、これらばらつきは反射変調光Lbの入射強度Iiに関係しないので、ばらつき範囲W1,W2は、共に等しくなっている。   In FIG. 5, the horizontal axis indicates C1-C3 as the difference between C1 and C3, and the vertical axis indicates C2-C4 as the difference between C2 and C4. In FIG. 5, W1 and W2 indicate variation ranges when the incident intensity Ii of the reflected modulated light Lb is low and high, respectively. The variations in C1 to C4 are affected by variations in the operation of each gate in the image sensor of the camera 4, and these variations are not related to the incident intensity Ii of the reflected modulated light Lb. Both are equal.

この結果、制御装置5が前述の式(1)から算出する位相差φは、反射変調光Lbの入射強度Iiの低いW1の方が算出精度が低下する。このことは、測距対象7の反射率が低いときほど、及び測距対象7までの距離Dが遠いときほど、測距精度が低下することを意味する。   As a result, the calculation accuracy of the phase difference φ calculated by the control device 5 from the above-described equation (1) is lower in W1 where the incident intensity Ii of the reflected modulated light Lb is lower. This means that the distance measurement accuracy decreases as the reflectance of the distance measurement object 7 is lower and as the distance D to the distance measurement object 7 is longer.

図6は、距離計測装置1が出射強度制御を実施しないで出射強度を一律の標準強度にして測距したときに測距値が測距対象7の反射率から受ける影響を調べた実験の結果を示すグラフである。図6において、横軸は、測距対象7の場所までの実際の距離を示し、縦軸は距離計測装置1が計測した距離を示している。   FIG. 6 is a result of an experiment in which the distance measurement value is measured from the reflectance of the distance measurement object 7 when the distance measurement device 1 performs distance measurement with the emission intensity set to a uniform standard intensity without performing the emission intensity control. It is a graph which shows. In FIG. 6, the horizontal axis indicates the actual distance to the location of the distance measuring object 7, and the vertical axis indicates the distance measured by the distance measuring device 1.

この実験では、各走査サイクルにおける出射変調光Laの出射強度Ioは、標準値としてのIsoに固定している(Io=Iso)。また、測距対象7として周知のマンセルシートを使用した。距離計測装置1による測距値のばらつきを、反射率=12%のマンセルシートのときはWb(「b」は黒を意味する)で表し、反射率=95%のマンセルシートのときはWh(「h」は白を意味する)に表して、両者を対比している。   In this experiment, the emission intensity Io of the emission modulated light La in each scanning cycle is fixed to Iso as a standard value (Io = Iso). A well-known Munsell sheet was used as the distance measuring object 7. The variation of the distance measurement value by the distance measuring device 1 is expressed by Wb (“b” means black) when the reflectance = 12% of the Munsell sheet, and when the reflectance = 95% of the Munsell sheet, Wh ( "H" means white), and the two are compared.

実際の距離として、0.5m、1.0m、2.0m、3,0m、4.0mの5つを選択した。各選択距離において、いずれの距離において、Wb>Whとなっている。また、Wb及びWh共に、選択距離が大きいときほど、増大している。これは、測距対象7までの距離Dが遠い程、反射変調光Lbの入射強度Iiが低下するからである。すなわち、測距対象7までの距離Dが遠いことは、反射変調光Lbの入射強度Iiについては測距対象7の反射率が低いことと等価である。   Five actual distances of 0.5 m, 1.0 m, 2.0 m, 3, 0 m, and 4.0 m were selected. At each selected distance, Wb> Wh at any distance. Further, both Wb and Wh increase as the selection distance increases. This is because the incident intensity Ii of the reflected modulated light Lb decreases as the distance D to the distance measuring object 7 increases. That is, the distance D to the distance measuring object 7 being far is equivalent to the low reflectance of the distance measuring object 7 with respect to the incident intensity Ii of the reflected modulated light Lb.

距離計測装置1は、これから説明する出射変調光Laの出射強度Ioの制御の実施により、反射率の低い測距対象7に対する測距精度と、遠い測距対象7に対する測距精度との両方を改善することができる。   The distance measuring device 1 controls both the ranging accuracy for the ranging object 7 having a low reflectance and the ranging accuracy for the far ranging object 7 by controlling the emission intensity Io of the emission modulated light La described below. Can be improved.

図7は、距離計測装置1のブロック図である。制御装置5は、位相差検出部101、測距部102及び変調光制御部103を備える。レーザ光源2及び光偏向器3は、変調光出射部106を構成する。制御装置5は、カメラ4からのC1〜C4に基づいて変調光出射部106からの出射変調光Laの出射強度Ioを制御する。なお、出射変調光Laの出射強度Ioは、レーザ光源2のレーザ光の出力強度に等しいので、制御装置5が実際に制御しているのはレーザ光源2のレーザ光の出力強度である。   FIG. 7 is a block diagram of the distance measuring device 1. The control device 5 includes a phase difference detection unit 101, a distance measurement unit 102, and a modulated light control unit 103. The laser light source 2 and the optical deflector 3 constitute a modulated light emitting unit 106. The control device 5 controls the emission intensity Io of the modulated output light La from the modulated light output unit 106 based on C1 to C4 from the camera 4. The output intensity Io of the output modulated light La is equal to the output intensity of the laser light from the laser light source 2, so what the control device 5 actually controls is the output intensity of the laser light from the laser light source 2.

制御装置5は、プログラム(ソフトウェア)を汎用的に実施する通常の制御装置として、CPU、RAM、ROM、不揮発性半導体メモリ、及びI/Oポートを備える。制御装置5は、さらに、制御装置5の制御対象であって距離計測装置1が装備するアナログセンサやアナログアクチュエータに応じてA/D変換器及びD/A変換器も備えている。位相差検出部101、測距部102及び変調光制御部103は、制御装置5のCPUが測距方法に係るソフトウェアを実行することに伴って生成される。   The control device 5 includes a CPU, a RAM, a ROM, a nonvolatile semiconductor memory, and an I / O port as a normal control device that executes a program (software) for general purposes. The control device 5 further includes an A / D converter and a D / A converter in accordance with an analog sensor or an analog actuator that is a control target of the control device 5 and that the distance measuring device 1 is equipped with. The phase difference detection unit 101, the distance measurement unit 102, and the modulated light control unit 103 are generated as the CPU of the control device 5 executes software related to the distance measurement method.

図8は距離計測装置1が実施する測距方法のフローチャートである。該測距方法は、制御装置5が、ROMに実装しているソフトウェアを実行することにより、実施される。   FIG. 8 is a flowchart of a distance measuring method performed by the distance measuring apparatus 1. The distance measuring method is implemented by the control device 5 executing software installed in the ROM.

STEP110では、変調光制御部103は、標準強度走査サイクルを実施する。標準強度走査サイクルとは、距離計測装置1からの出射変調光Laの出射強度Ioを標準値としてのIsoに固定して(Io=Iso)、出射変調光Laを撮像範囲6にラスタースキャン等の一定の走査パターンで1回、走査する走査サイクルである。   In STEP 110, the modulated light control unit 103 performs a standard intensity scanning cycle. The standard intensity scanning cycle means that the emission intensity Io of the outgoing modulated light La from the distance measuring device 1 is fixed to Iso as a standard value (Io = Iso), and the outgoing modulated light La is scanned into the imaging range 6 such as a raster scan. This is a scanning cycle in which scanning is performed once with a constant scanning pattern.

出射変調光Laの出射強度Ioの強度は、レーザ光源2の給電電力の増減により制御される。撮像範囲6における出射変調光Laの走査は、制御装置5が光偏向器3の圧電アクチュエータの印加電圧を制御することにより行われる。   The intensity of the outgoing intensity Io of the outgoing modulated light La is controlled by increasing or decreasing the power supplied to the laser light source 2. The scanning of the outgoing modulated light La in the imaging range 6 is performed by the control device 5 controlling the voltage applied to the piezoelectric actuator of the optical deflector 3.

STEP111では、制御装置5は、画素G(n,m)ごとに、(a)反射変調光Lbの入射強度Iiの検出、(b)測距対象7の測距、及び(c)次の走査サイクルでの出射変調光Laの出射強度Ioの算出を行う。(b)の「測距対象7の測距」の処理は、位相差検出部101と測距部102とが行う。(a)の「反射変調光Lbの入射強度Iiの検出」と、(c)の「次の走査サイクルでの出射変調光Laの出射強度Ioの算出」との処理は、変調光制御部103が行う。   In STEP 111, for each pixel G (n, m), the control device 5 (a) detects the incident intensity Ii of the reflected modulated light Lb, (b) measures the range 7 and (c) performs the next scan. The emission intensity Io of the emission modulated light La in the cycle is calculated. The process of “ranging the distance measuring object 7” in (b) is performed by the phase difference detecting unit 101 and the distance measuring unit 102. The processing of “detection of incident intensity Ii of reflected modulated light Lb” in (a) and “calculation of emission intensity Io of emitted modulated light La in the next scanning cycle” in (c) is performed by modulated light control unit 103. Do.

なお、(a)〜(c)の処理のうち(b)の「測距対象7の測距」の処理は、1回目のSTEP111の実施時は中止され、2回目以降のSTEP111の実施時から実施される。すなわち、1回目のSTEP111の実施時では、全部の画素G(n,m)における反射変調光Lbの由来元の出射変調光Laの出射強度Ioは、標準値のIsoに固定されているので、所望の測距精度を得られない可能性があるからである。   Of the processes (a) to (c), the process of “ranging the distance measuring object 7” in (b) is stopped when the first STEP 111 is performed, and from the second and subsequent STEPs 111. To be implemented. That is, when STEP 111 is performed for the first time, the emission intensity Io of the emission modulated light La that is the origin of the reflected modulated light Lb in all the pixels G (n, m) is fixed to the standard value Iso. This is because there is a possibility that desired distance measurement accuracy cannot be obtained.

(b)の「測距対象7の測距」の処理の具体的内容を説明する。位相差検出部101は、画素G(n,m)ごとにC1〜C4を読出し、読出したC1〜C4を前述の式(1)に適用して、画素G(n,m)ごとに位相差φ(n,m)を算出する。   The specific contents of the “ranging of the distance measuring object 7” process of (b) will be described. The phase difference detection unit 101 reads C1 to C4 for each pixel G (n, m), applies the read C1 to C4 to the above equation (1), and outputs a phase difference for each pixel G (n, m). φ (n, m) is calculated.

測距部102は、位相差検出部101が算出した位相差φ(n,m)に基づいて測距対象7までの距離Dを測定する。これにより、画素G(n,m)ごとに測距対象までの距離Dが測定される。距離Dの測定は次の式(2)による算出に基づく。
式(2):距離D=(光速×100ns×位相差φ(n,m))/(360°×2)
ただし、位相差φの単位は「°」とする。
The distance measuring unit 102 measures the distance D to the distance measuring object 7 based on the phase difference φ (n, m) calculated by the phase difference detecting unit 101. Thereby, the distance D to the distance measurement object is measured for each pixel G (n, m). The measurement of the distance D is based on the calculation by the following equation (2).
Formula (2): Distance D = (speed of light × 100 ns × phase difference φ (n, m)) / (360 ° × 2)
However, the unit of the phase difference φ is “°”.

次に、(a)の「反射変調光Lbの入射強度Iiの検出」の処理の具体的内容を説明する。変調光制御部103は、各画素G(n,m)ごとの反射変調光Lbの入射強度Iiの検出を、各画素G(n,m)ごとに読出したC1〜C4に基づいて行う。この時に入射強度Iiの検出対象とする反射変調光Lbは、前回の走査サイクルで出射した出射変調光Laに由来する反射変調光Lbである。なお、ここで、前回の走査サイクルとは、直前の1回の走査サイクルに限定しない。前回の走査サイクルは、所定回数前の走査サイクルであってもよいし、現時点以前に行った複数回の走査サイクルをまとめて前回の走査サイクルとすることができる。   Next, the specific content of the “detection of the incident intensity Ii of the reflected modulated light Lb” in FIG. The modulated light control unit 103 detects the incident intensity Ii of the reflected modulated light Lb for each pixel G (n, m) based on C1 to C4 read for each pixel G (n, m). At this time, the reflected modulated light Lb to be detected for the incident intensity Ii is the reflected modulated light Lb derived from the outgoing modulated light La emitted in the previous scanning cycle. Here, the previous scanning cycle is not limited to the immediately preceding scanning cycle. The previous scanning cycle may be a scanning cycle a predetermined number of times before, or a plurality of scanning cycles performed before the present time may be collectively used as the previous scanning cycle.

各画素G(n,m)への入射光には、反射変調光Lbの他に、背景光も含まれる。したがって、C1〜C4の各々は、反射変調光Lb+背景光の入射強度になる。反射変調光Lbの入射強度Iiを単独で検出するために、例えば、C1−C3、C2−C4、又は(C1+C2)−(C3+C4)等の差分を使用して、入射強度Iiを検出する。   The incident light to each pixel G (n, m) includes background light in addition to the reflected modulated light Lb. Therefore, each of C1 to C4 has the incident intensity of the reflected modulated light Lb + background light. In order to detect the incident intensity Ii of the reflected modulated light Lb alone, for example, the incident intensity Ii is detected using a difference such as C1-C3, C2-C4, or (C1 + C2)-(C3 + C4).

(a)の処理では、対応関係の検出処理も併せて行う。対応関係とは、具体的には、走査サイクルにおける各出射位相Oiと、該各出射位相Oiで出射された出射変調光Laに由来する反射変調光Lbが入射した画素G(n,m)との対応関係である。以降、該対応関係を、「Oi−G関係」という。   In the process (a), the correspondence detection process is also performed. Specifically, the correspondence relationship refers to each emission phase Oi in the scanning cycle and the pixel G (n, m) on which the reflected modulation light Lb derived from the emission modulation light La emitted at each emission phase Oi is incident. Is the correspondence relationship. Hereinafter, this correspondence is referred to as “Oi-G relationship”.

(c)の「次の走査サイクルでの出射変調光Laの出射強度Ioの算出」の処理の具体的内容を説明する。   The specific contents of the process of “calculation of the emission intensity Io of the emission modulated light La in the next scanning cycle” in (c) will be described.

最初に、反射変調光Lbの入射強度Iiの基準値としてのIbiについて説明する。図9は、反射変調光Lbの強度区分と距離計測装置1による測距のばらつきとの関係を示している。制御装置5は、C1〜C4を8ビットの0〜255の離散値で処理する。図9の横軸の反射変調光Lbの強度区分1〜4は、0〜255の値に基づいて入射強度Iiを区分化したものとなっている。入射強度Iiの最大値は該離散値では255であり、入射強度Iiの最小値は該離散値では0である。   First, Ibi as a reference value of the incident intensity Ii of the reflected modulated light Lb will be described. FIG. 9 shows the relationship between the intensity classification of the reflected modulated light Lb and the variation in distance measurement by the distance measuring device 1. The control device 5 processes C1 to C4 with 8-bit discrete values of 0 to 255. Intensity categories 1 to 4 of the reflected modulated light Lb on the horizontal axis in FIG. 9 are obtained by segmenting the incident intensity Ii based on values of 0 to 255. The maximum value of the incident intensity Ii is 255 at the discrete value, and the minimum value of the incident intensity Ii is 0 at the discrete value.

強度区分1〜4は、入射強度Iiの大きい順に番号付けされており、入射強度Iiは強度区分1,2,3,4の順に低下する。すなわち、強度区分1は入射強度Iiの最大強度区分として定義され、強度区分4は入射強度Iiの最小強度区分として定義される。   The intensity sections 1 to 4 are numbered in descending order of the incident intensity Ii, and the incident intensity Ii decreases in the order of the intensity sections 1, 2, 3, and 4. That is, the intensity category 1 is defined as the maximum intensity category of the incident intensity Ii, and the intensity category 4 is defined as the minimum intensity category of the incident intensity Ii.

強度区分1〜4は、前述の数値範囲の0〜255を64ずつ均等に区分化したものではない。出射強度Ioの制御を適切に実行できるように強度区分1〜4の区分範囲が決定される。実施形態では、強度区分1〜4の区分番号順に数値範囲0〜255に占める区分量を増大させていて、区分量は、強度区分1が最小で、強度区分4が最大となるように設定している。   The intensity categories 1 to 4 are not obtained by equally dividing the above numerical range 0 to 255 by 64. The division ranges of the intensity divisions 1 to 4 are determined so that the emission intensity Io can be appropriately controlled. In the embodiment, the amount of division in the numerical range 0 to 255 is increased in the order of the division numbers of the strength categories 1 to 4, and the division amount is set so that the strength category 1 is the smallest and the strength category 4 is the largest. ing.

なお、C1〜C4の各々は、反射変調光Lbと共に背景光を含む入射光が各画素G(n,m)に入射した入射強度になっているが、区分1〜4の各々は、反射変調光Lb単独の入射強度Iiの強度区分となっている。すなわち、区分1〜4は、背景光の入射強度を排除するために、例えば差分C1−C3等に基づいて区分化されている。   Note that each of C1 to C4 has an incident intensity at which incident light including background light is incident on each pixel G (n, m) together with the reflected modulated light Lb. This is the intensity classification of the incident intensity Ii of the light Lb alone. That is, the sections 1 to 4 are divided based on, for example, the difference C1-C3 in order to exclude the incident intensity of the background light.

距離計測装置1における測距のばらつきの許容値は、ユーザ等が距離計測装置1に要求する測距精度等に応じて相違する値に設定されている。この距離計測装置1に対しては、測距のばらつきの許容値として0.2mが設定されていると、想定する。図9は、反射変調光Lbの入射強度Iiが強度区分2であれば、測距のばらつきが2m未満の0.18mであることを示している。したがって、反射変調光Lbの入射強度Iiの基準値としてのIbiは、強度区分2に対応する強度に設定する。そして、各画素Gに入射する反射変調光Lbの入射強度Iiについて、Ii≧Ibiとなるように、出射変調光Laの出射強度Ioが制御される。こうして、該許容値を満足する測距精度を得ることができる。   The tolerance of the variation in distance measurement in the distance measurement device 1 is set to a value that differs depending on the distance measurement accuracy requested by the user or the like from the distance measurement device 1. For this distance measuring apparatus 1, it is assumed that 0.2 m is set as an allowable value of variation in distance measurement. FIG. 9 shows that if the incident intensity Ii of the reflected modulated light Lb is the intensity category 2, the distance measurement variation is 0.18 m, which is less than 2 m. Therefore, Ibi as the reference value of the incident intensity Ii of the reflected modulated light Lb is set to an intensity corresponding to the intensity category 2. Then, the output intensity Io of the output modulated light La is controlled so that the input intensity Ii of the reflected modulated light Lb incident on each pixel G satisfies Ii ≧ Ibi. In this way, distance measurement accuracy that satisfies the tolerance can be obtained.

換言すると、STEP110の標準強度走査サイクルのように、出射強度Io=Isoで出射変調光Laを出射したときに、該出射変調光La由来の反射変調光Lbが強度区分3,4となるような反射率の低い測距対象7や遠方の測距対象7が存在する。このような測距対象7に対しては、次の出射変調光Laの出射時では、出射変調光Laの出射強度Ioは、出射強度Ioを適当な量、増大した調整値としてのItoに変更して出射されることになる。この結果、該次の出射変調光Laが該測距対象7に反射して入射する反射変調光Lbの入射強度Iiは、強度区分2に対応するIbi以上を確保される。   In other words, like the standard intensity scanning cycle of STEP 110, when the outgoing modulated light La is emitted at the outgoing intensity Io = Iso, the reflected modulated light Lb derived from the outgoing modulated light La is in the intensity categories 3 and 4. There is a distance measuring object 7 having a low reflectance and a distance measuring object 7 in the distance. For such a distance measuring object 7, when the next outgoing modulated light La is emitted, the outgoing intensity Io of the outgoing modulated light La is changed to Ito as an increased adjustment value of the outgoing intensity Io by an appropriate amount. Will be emitted. As a result, the incident intensity Ii of the reflected modulated light Lb incident after the next outgoing modulated light La is reflected and incident on the distance measuring object 7 is ensured to be equal to or higher than Ibi corresponding to the intensity category 2.

なお、前回の走査サイクルで、前々回の走査サイクルでの出射強度Ioより強めた調整値としてのItoにしたにもかかわらず、なお、出射変調光La由来の反射変調光Lbが強度区分3,4となる場合には、次の出射変調光Laの出射時では、出射強度Ioをさらに増大した再調整値としてのItoに変更して、出射変調光Laを出射する。   It should be noted that the reflected modulated light Lb derived from the outgoing modulated light La is still in the intensity categories 3 and 4 even though the adjustment value Ito is set to be larger than the outgoing intensity Io in the previous scanning cycle in the previous scanning cycle. In this case, when the next outgoing modulated light La is emitted, the outgoing intensity Io is changed to Ito as the readjustment value further increased, and the outgoing modulated light La is emitted.

また、出射強度Io=Iso又はIto(このItoは、前回の走査サイクルにおけるIto)で出射変調光Laを出射したときに、該出射変調光La由来の反射変調光Lbが強度区分1,2となるような反射率の高い測距対象7や近傍の測距対象7があるとする。このような測距対象7に対しては、次の出射変調光Laの出射時では、出射強度Ioを前回の走査サイクルと同一の値(出射強度Ioを前回の値と同一にしたものも「調整値」と呼ぶ)にして出射変調光Laを出射する。この結果、前回の走査サイクルと同一の値にした調整値の出射強度Ioで出射された出射変調光Laに由来する反射変調光Lbの入射強度Iiは、次の走査サイクルにおいてもそれぞれ強度区分1,2に収まるようになる。   Further, when the outgoing modulated light La is emitted at the outgoing intensity Io = Iso or Ito (this Ito is Ito in the previous scanning cycle), the reflected modulated light Lb derived from the outgoing modulated light La is divided into intensity categories 1 and 2. Suppose that there is a distance measuring object 7 having a high reflectance and a nearby distance measuring object 7. For such a distance measuring object 7, when the next outgoing modulated light La is emitted, the outgoing intensity Io is the same value as the previous scanning cycle (the outgoing intensity Io is the same as the previous value. The emission modulated light La is emitted as an “adjustment value”. As a result, the incident intensity Ii of the reflected modulated light Lb derived from the emitted modulated light La emitted with the adjusted emission intensity Io set to the same value as the previous scanning cycle is the intensity category 1 in the next scanning cycle. , 2 comes to fit.

なお、出射強度Io=Iso又はIto(このItoは、前回の走査サイクルにおけるIto)で出射変調光Laを出射したときに、該出射変調光La由来の反射変調光Lbが強度区分1となるような反射率の高い測距対象7や近傍の測距対象7に対しては、次の出射変調光Laの出射時では、該出射変調光La由来の反射変調光Lbの入射強度Iiが強度区分1から強度区分2になるように、次の走査サイクルにおける出射変調光Laの出射強度Ioを標準値としてのIso又は前回のItoから下げることもできる。この場合、レーザ光源2の発熱量を抑えたり、Fd1〜Fd4における電荷量の飽和を抑制する利点がある。   Note that, when the outgoing modulated light La is emitted at the outgoing intensity Io = Iso or Ito (this Ito is Ito in the previous scanning cycle), the reflected modulated light Lb derived from the outgoing modulated light La is in the intensity category 1. With respect to the distance measuring object 7 having a high reflectance and the nearby distance measuring object 7, the incident intensity Ii of the reflected modulated light Lb derived from the emitted modulated light La is determined as the intensity classification when the next emitted modulated light La is emitted. The emission intensity Io of the emission modulated light La in the next scanning cycle can be lowered from the standard value Iso or the previous Ito so that the intensity division is from 1 to 2. In this case, there is an advantage that the amount of heat generated by the laser light source 2 is suppressed and the saturation of the charge amount in Fd1 to Fd4 is suppressed.

以上を踏まえて、(c)の処理では、次の走査サイクル(STEP112の調整強度走査サイクル)で変調光出射部106から出射する出射変調光Laの出射強度Ioに由来する反射変調光Lbが、対応画素G(n,m)に、基準値としてのIbi以上が確保される強度区分2の入射強度Iiで入射するように、該出射変調光Laの出射強度Ioの調整値としてのIto(n,m)を算出する。こうして、Oi−G(n,m)を基にしてさらなる対応関係としてのOi−Ito(n,m)が作成される。   Based on the above, in the process of (c), the reflected modulated light Lb derived from the emission intensity Io of the emitted modulated light La emitted from the modulated light emitting unit 106 in the next scanning cycle (adjusted intensity scanning cycle of STEP 112) is Ito (n as an adjustment value of the output intensity Io of the output modulated light La so that the corresponding pixel G (n, m) is incident at the incident intensity Ii of the intensity category 2 in which Ibi or more is secured as a reference value. , M). Thus, Oi-Ito (n, m) as a further correspondence is created based on Oi-G (n, m).

STEP112では、変調光制御部103は、調整強度走査サイクルを実施する。STEP112の調整強度走査サイクルは、STEP111の処理(c)における次の走査サイクルに相当する。STEP112において、変調光制御部103は、STEP111の処理(c)で作成したOi−Ito(n,m)の対応関係を使って、該調整強度走査サイクルの各出射位相Oi時に、該出射位相Oiに対するIto(n,m)を求め、求めたIto(n,m)で出射変調光Laを変調光出射部106から出射させる。該調整強度走査サイクルにおいても、STEP110の標準走査サイクルと同様に、出射変調光Laは撮像範囲6をラスタースキャン等の走査パターンで1回、走査する。   In STEP 112, the modulated light control unit 103 performs an adjustment intensity scanning cycle. The adjustment intensity scanning cycle in STEP 112 corresponds to the next scanning cycle in the process (c) in STEP 111. In STEP 112, the modulated light control unit 103 uses the correspondence relationship of Oi-Ito (n, m) created in the process (c) of STEP 111 and outputs the output phase Oi at each output phase Oi of the adjustment intensity scanning cycle. Ito (n, m) with respect to is obtained, and the emitted modulated light La is emitted from the modulated light emitting unit 106 with the obtained Ito (n, m). Also in the adjustment intensity scanning cycle, similarly to the standard scanning cycle of STEP 110, the outgoing modulated light La scans the imaging range 6 once with a scanning pattern such as a raster scan.

STEP113では、制御装置5は、測距終了の指示の有無を調べ、指示有りのときは、測距処理を終了し、無しのときは処理をSTEP111に戻す。測距終了の指示は、例えば使用者が距離計測装置1の所定の操作部を操作することにより生じる。制御装置5は、測距処理の終了指示があるまで、STEP111,112(以下、STEP111,112の処理をまとめて「制御処理」という)を繰り返す。   In STEP 113, the control device 5 checks whether or not there is an instruction to end the distance measurement. If there is an instruction, the distance measuring process is terminated, and if not, the process returns to STEP 111. The instruction to end the distance measurement is generated, for example, when the user operates a predetermined operation unit of the distance measuring device 1. The control device 5 repeats STEPs 111 and 112 (hereinafter, the processes of STEPs 111 and 112 are collectively referred to as “control process”) until an instruction to end the distance measurement process is given.

制御処理の繰り返しでは、各回の制御処理において今回の制御処理で出射する出射変調光Laの出射強度Ioを、前回の制御処理において出射した出射変調光La由来の反射変調光Lbの入射強度Iiに基づいて制御することになる。これにより、変調光制御部103が用いる入射強度Iiの検出用の出射変調光Laを、位相差検出部101及び測距部102が用いる測距用の出射変調光Laとは別途、出射する手間が省略され、全体の測距処理を簡略化することができる。   In the repetition of the control process, the emission intensity Io of the outgoing modulated light La emitted in the current control process in each control process is changed to the incident intensity Ii of the reflected modulated light Lb derived from the outgoing modulated light La emitted in the previous control process. Based on the control. Thereby, the effort of emitting the outgoing modulated light La for detecting the incident intensity Ii used by the modulated light control unit 103 separately from the outgoing modulated light La for ranging used by the phase difference detecting unit 101 and the distance measuring unit 102 Is omitted, and the entire distance measurement process can be simplified.

制御処理の繰り返しにおいて、前回の制御処理では、撮像範囲6に存在しなかった測距対象7が、今回の制御処理で出現したり、前回の制御処理では、撮像範囲6に存在していた測距対象7が、今回の制御処理で消滅したりする場合がある。STEP111,112は、測距期間中、繰り返し実施されるとともに、各制御処理において画素G(n,m)ごとに適切なIto(n,m)を決めている。これにより、測距期間中の測距対象7の出現及び消滅に対して撮像範囲6内の測距対象7の測距を所定の精度で支障なく実施することができる。   In the repetition of the control process, the distance measurement object 7 that did not exist in the imaging range 6 in the previous control process appears in the current control process, or the measurement target that exists in the imaging range 6 in the previous control process. The distance object 7 may disappear in the current control process. STEPs 111 and 112 are repeatedly performed during the distance measurement period, and appropriate Ito (n, m) is determined for each pixel G (n, m) in each control process. Thereby, ranging of the ranging object 7 in the imaging range 6 can be performed with a predetermined accuracy without any trouble with respect to the appearance and disappearance of the ranging object 7 during the ranging period.

さらに、測距対象7が撮像範囲6を移動するために、該測距対象7からの反射変調光Lbが前回の制御処理で入射した画素Gと、今回の制御処理で入射した画素Gとが相違する場合がある。また、測距対象7までの距離が変化し、測距対象7が遠くなると、該測距対象7からの反射変調光Lbの入射強度Iiは、反射率の低い測距対象7からの反射変調光Lbの入射強度Iiと同様に低下する。STEP111,112は、測距期間中、繰り返し実施されるとともに、各制御処理において画素G(n,m)ごとに適切なIto(n,m)を決めている。これにより、測距期間中の測距対象7の移動や反射率の変化に対して撮像範囲6内の測距対象7の測距を所定の精度で支障なく実施することができる。   Further, since the distance measurement object 7 moves in the imaging range 6, the pixel G to which the reflected modulated light Lb from the distance measurement object 7 is incident in the previous control process and the pixel G that is incident in the current control process are There may be differences. When the distance to the distance measuring object 7 is changed and the distance measuring object 7 is farther, the incident intensity Ii of the reflected modulated light Lb from the distance measuring object 7 is reflected from the distance measuring object 7 having a low reflectance. It decreases similarly to the incident intensity Ii of the light Lb. STEPs 111 and 112 are repeatedly performed during the distance measurement period, and appropriate Ito (n, m) is determined for each pixel G (n, m) in each control process. Thereby, the distance measurement of the distance measurement object 7 in the imaging range 6 can be performed with a predetermined accuracy without any trouble with respect to the movement of the distance measurement object 7 and the change in reflectance during the distance measurement period.

本発明の実施形態について説明したが、本発明は、実施形態に限定されることなく、実施形態以外の種々の態様を包含する。   Although the embodiments of the present invention have been described, the present invention is not limited to the embodiments and includes various aspects other than the embodiments.

実施形態では、フローティングディフュージョンで電荷蓄積部が形成されているが、その他の容量素子で電荷蓄積部を構成することができる。   In the embodiment, the charge accumulation unit is formed by floating diffusion, but the charge accumulation unit can be configured by other capacitive elements.

実施形態では、1つの画素Gが2つの副画素Po,Peを含んでいるが、副画素無しの画素G単独であってもよい。その場合は、Fd1〜Fd4は、1つのPDから電荷を振り分けられて、それぞれ0〜90°、90°〜180°、180°〜270°、270°〜360°の各位相期間に蓄積した電荷の電荷量をC1〜C4として読出される。   In the embodiment, one pixel G includes two subpixels Po and Pe. However, the pixel G without a subpixel may be a single pixel G. In that case, the charges Fd1 to Fd4 are distributed from one PD, and the charges accumulated in each phase period of 0 to 90 °, 90 ° to 180 °, 180 ° to 270 °, and 270 ° to 360 °, respectively. Are read as C1 to C4.

実施形態では、出射変調光La由来の反射変調光Lbの入射強度Iiが基準値としてのIbiが属する強度区分2になるように、次の走査サイクルにおける出射変調光Laの出射強度Ioを制御している。本発明では、画素における反射変調光の入射強度が基準値以上となればよい。したがって、出射変調光La由来の反射変調光Lbの入射強度Iiが、強度区分2より強度の高い区分としての強度区分1に属するように、次の走査サイクルにおける出射変調光Laの出射強度Ioを制御することもできる。   In the embodiment, the emission intensity Io of the emission modulation light La in the next scanning cycle is controlled so that the incident intensity Ii of the reflection modulation light Lb derived from the emission modulation light La is in the intensity category 2 to which Ibi as a reference value belongs. ing. In the present invention, it is sufficient that the incident intensity of the reflected modulated light in the pixel is equal to or higher than the reference value. Therefore, the output intensity Io of the output modulated light La in the next scanning cycle is set so that the incident intensity Ii of the reflected modulated light Lb derived from the output modulated light La belongs to the intensity section 1 as an intensity section higher than the intensity section 2. It can also be controlled.

1・・・距離計測装置、2・・・レーザ光源、3・・・光偏向器、5・・・制御装置、6・・・撮像範囲、7・・・測距対象、101・・・位相差検出部、102・・・測距部、103・・・変調光制御部、106・・・変調光出射部、400・・・撮像素子。 DESCRIPTION OF SYMBOLS 1 ... Distance measuring device, 2 ... Laser light source, 3 ... Optical deflector, 5 ... Control device, 6 ... Imaging range, 7 ... Distance measuring object, 101 ... Position Phase difference detecting unit, 102... Distance measuring unit, 103... Modulated light control unit, 106.

Claims (4)

平面上に分布した複数の画素と各画素への入射光の強度に関係する電荷量で電荷を蓄積する電荷蓄積部とを有する撮像素子と、
強度変調した変調光を前記撮像素子の撮像範囲に向けて出射する変調光出射部と、
前記変調光出射部が出射した出射変調光と該出射変調光が前記撮像範囲の測距対象に反射して前記撮像素子の画素に入射した反射変調光との位相差を前記電荷蓄積部の電荷量に基づいて検出する位相差検出部と、
前記位相差検出部が検出した位相差に基づいて前記測距対象までの距離を測定する測距部と、
前記画素における前記反射変調光の入射強度が基準値以上となるように、前記変調光出射部からの前記出射変調光の出射強度を制御する変調光制御部とを備えることを特徴とする距離計測装置。
An image sensor having a plurality of pixels distributed on a plane and a charge storage unit that stores charges with a charge amount related to the intensity of incident light on each pixel;
A modulated light emitting unit that emits intensity-modulated modulated light toward the imaging range of the imaging device;
The phase difference between the outgoing modulated light emitted from the modulated light emitting unit and the reflected modulated light reflected by the distance-measuring target in the imaging range and incident on the pixels of the imaging element is determined as the charge of the charge storage unit. A phase difference detector for detecting based on the quantity;
A distance measuring unit that measures a distance to the distance measuring object based on the phase difference detected by the phase difference detecting unit;
A distance measurement comprising: a modulation light control unit that controls an emission intensity of the emission modulated light from the modulation light emission unit so that an incident intensity of the reflected modulation light in the pixel is equal to or higher than a reference value. apparatus.
請求項1記載の距離計測装置において、
前記変調光制御部は、前記画素における反射変調光の入射強度を検出し、該検出した入射強度に基づいて前記画素における反射変調光の入射強度が基準値以上となる出射強度を算出し、該算出した出射強度に制御した出射強度で前記変調光出射部から前記出射変調光を出射する制御処理を繰り返し、
各回の制御処理では、前記画素における入射強度の検出対象とする反射変調光は、前回の制御処理において出射した出射変調光由来の反射変調光であることを特徴とする距離計測装置。
The distance measuring device according to claim 1,
The modulated light control unit detects an incident intensity of the reflected modulated light at the pixel, calculates an emission intensity at which the incident intensity of the reflected modulated light at the pixel is a reference value or more based on the detected incident intensity, Repeat the control process of emitting the output modulated light from the modulated light output unit with the output intensity controlled to the calculated output intensity,
In each control process, the reflected modulated light to be detected for incident intensity in the pixel is reflected modulated light derived from the outgoing modulated light emitted in the previous control process.
請求項2に記載の距離計測装置において、
前記変調光制御部は、前記画素に入射した反射変調光の入射強度を前記電荷蓄積部の電荷量に基づいて検出することを特徴とする距離計測装置。
The distance measuring device according to claim 2,
The distance measuring device, wherein the modulated light control unit detects an incident intensity of reflected modulated light incident on the pixel based on a charge amount of the charge storage unit.
請求項2に記載の距離計測装置において、
前記変調光出射部は、強度変調された変調光を発生する光源と、該光源から入射した入射光を偏向して、前記出射変調光として前記撮像範囲に向けて出射する光偏向器とを有し、
前記変調光制御部は、各制御処理において前記変調光出射部からの出射変調光が前記撮像範囲を一定の走査パターンで走査する走査サイクルで出射されるように、前記光偏向器を制御し、
前記変調光出射部は、前回の走査サイクルにおいて各出射位相時に前記変調光出射部から出射された出射変調光の出射位相と該出射変調光由来の反射変調光が入射する画素との対応関係を検出し、次の走査サイクルでは、前記画素ごとに出射強度を算出した出射変調光の出射位相を前記対応関係に基づいて制御することを特徴とする距離計測装置。
The distance measuring device according to claim 2,
The modulated light emitting unit includes a light source that generates intensity-modulated modulated light, and an optical deflector that deflects incident light incident from the light source and emits the emitted modulated light as the emitted modulated light toward the imaging range. And
The modulated light control unit controls the optical deflector so that the modulated output light from the modulated light emitting unit is emitted in a scanning cycle in which the imaging range is scanned with a constant scanning pattern in each control process,
The modulated light emitting unit has a correspondence relationship between an emission phase of the emitted modulated light emitted from the modulated light emitting unit at each emission phase in the previous scanning cycle and a pixel on which the reflected modulated light derived from the emitted modulated light is incident. A distance measuring apparatus that detects and controls the emission phase of the emission modulated light whose emission intensity is calculated for each pixel based on the correspondence in the next scanning cycle.
JP2016060833A 2016-03-24 2016-03-24 Distance measuring device Pending JP2017173187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060833A JP2017173187A (en) 2016-03-24 2016-03-24 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060833A JP2017173187A (en) 2016-03-24 2016-03-24 Distance measuring device

Publications (1)

Publication Number Publication Date
JP2017173187A true JP2017173187A (en) 2017-09-28

Family

ID=59971913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060833A Pending JP2017173187A (en) 2016-03-24 2016-03-24 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2017173187A (en)

Similar Documents

Publication Publication Date Title
US11567175B2 (en) Apparatuses and method for light detection and ranging
JP6587185B2 (en) Distance image generating apparatus and distance image generating method
KR101891907B1 (en) Distance measuring device and parallax calculation system
JP2021507268A (en) Multi-pulse LIDAR system for multidimensional capture of objects
WO2019163673A1 (en) Optical distance measurement device
JP5617554B2 (en) Distance measuring device and distance measuring program
US11408982B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
JPWO2014097539A1 (en) Three-dimensional measuring apparatus and three-dimensional measuring method
US11650299B2 (en) Calibration method for solid-state LiDAR system
US20180106598A1 (en) Distance measuring apparatus and distance measuring method
JP6911825B2 (en) Optical ranging device
US11754678B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
JP6714665B2 (en) Device and method for light detection and ranging
JP6186863B2 (en) Ranging device and program
US11573301B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
US11906629B2 (en) Method and device for distance measurement
JP2022168956A (en) Laser measuring device, and measurement method thereof
US11194021B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system comprising a controller to update related information associating an emission direction and two elements defining two points on a path of electromagnetic waves
JP2017173187A (en) Distance measuring device
US20210396876A1 (en) Optical distance measurement apparatus
JP2019027937A (en) Ranging control device and ranging system
JP2007278940A (en) Radar device
WO2019124177A1 (en) Optical scanning device and distance measuring device
WO2022195669A1 (en) Measurement device
US20230079909A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems