JP2022168956A - Laser measuring device, and measurement method thereof - Google Patents

Laser measuring device, and measurement method thereof Download PDF

Info

Publication number
JP2022168956A
JP2022168956A JP2021074678A JP2021074678A JP2022168956A JP 2022168956 A JP2022168956 A JP 2022168956A JP 2021074678 A JP2021074678 A JP 2021074678A JP 2021074678 A JP2021074678 A JP 2021074678A JP 2022168956 A JP2022168956 A JP 2022168956A
Authority
JP
Japan
Prior art keywords
distance
laser
measurement
fog
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021074678A
Other languages
Japanese (ja)
Inventor
勇人 森
Isato Mori
亮介 小林
Ryosuke Kobayashi
祐二 松井
Yuji Matsui
克宜 上野
Katsunobu Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2021074678A priority Critical patent/JP2022168956A/en
Publication of JP2022168956A publication Critical patent/JP2022168956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

To provide a laser measuring device capable of suppressing degradation of accuracy in measurement results even in an environment where density of fog varies moment by moment depending on the place, and a measurement method thereof.SOLUTION: A disclosed laser measuring device 100 for measuring a distance to an object includes: a fog condition detection unit 1 that detects received light intensity by receiving reflected light from the object to be measured irradiated with a visible light laser; and a distance measurement unit 2 that measures the distance using the reflected light from the object irradiated with a near-infrared laser and finds the distance to the measured object in a range determined to be least affected by fog on the basis of, the received light intensity detected by the fog condition detection unit on the basis of, determination information in which the minimum value of received light intensity that satisfies given ranging accuracy is stored as permissible received light intensity for each distance to the measured object.SELECTED DRAWING: Figure 4

Description

本発明は、パルスレーザ光を対象物に照射してから、反射光を受光するまでの時間を計測して距離を求めるTOF(Time of Flight)方式のレーザ計測装置およびその計測方法に関する。 The present invention relates to a TOF (Time of Flight) type laser measuring device and a measuring method for determining a distance by measuring the time from irradiating an object with a pulsed laser beam to receiving reflected light.

港湾や河川、森林等や屋内で霧が発生する環境では、レーザ光が霧に影響されて測定誤差を生じることがある。このため、レーザ計測装置のレーザ光に、可視光よりも波長が長く、霧に対しての透過性が良い、近赤外光を使用している。 In harbors, rivers, forests, and indoor environments where fog occurs, laser light may be affected by fog, resulting in measurement errors. For this reason, near-infrared light, which has a longer wavelength than visible light and is highly transparent to fog, is used as the laser light for the laser measurement device.

レーザ計測装置において、霧の影響による測距精度の低下を抑えるために、種々の技術が考案されている。
例えば、測定環境の空気の透明度に応じて、レーザ光の波長を選択することで、測定環境が悪くても(測定環境の空気の透明度が悪くても)距離計測を行うことができ、また測定環境が良い場合は、高精度の計測を行うことができる距離測定装置がある(特許文献1)。この距離測定装置では、測定環境の空気の透明度が悪い場合は、塵や水蒸気による散乱の程度がより小さい波長1064nmの長波長が選択される。
Various techniques have been devised in order to suppress deterioration in distance measurement accuracy due to the influence of fog in laser measurement devices.
For example, by selecting the wavelength of the laser light according to the transparency of the air in the measurement environment, distance measurement can be performed even if the measurement environment is poor (even if the air transparency in the measurement environment is poor). There is a distance measuring device capable of highly accurate measurement when the environment is good (Patent Document 1). In this distance measuring device, when the transparency of the air in the measurement environment is poor, a long wavelength of 1064 nm, which is less likely to be scattered by dust or water vapor, is selected.

また、近赤外のパルスレーザ光の少なくともひとつの対象物によって反射される複数の反射光を受光可能とし、計測時間すなわち距離に応じて受光強度の閾値の設定を変更することにより、霧と霧以外の反射体を識別する回路を備えたレーザ距離計がある(特許文献2)。 In addition, by making it possible to receive a plurality of reflected lights of near-infrared pulsed laser light reflected by at least one target, and by changing the setting of the threshold value of the received light intensity according to the measurement time, that is, the distance, fog and fog can be obtained. There is a laser rangefinder equipped with a circuit that identifies reflectors other than the reflector (Patent Document 2).

特開2008-292370号公報JP 2008-292370 A 特開2017-032547号公報JP 2017-032547 A

一般的に霧の水滴の粒径は数μm~数十μm程度であり、近赤外のレーザ光の波長に対して同程度から数倍、数十倍の大きさであるため、上記の特許文献1の距離測定装置では、霧の影響による精度低下を完全に抑止することはできない。 In general, the particle size of water droplets in fog is about several μm to several tens of μm, which is about the same size, several times, or several tens of times larger than the wavelength of near-infrared laser light. With the distance measuring device of Document 1, it is not possible to completely prevent the deterioration of accuracy due to the influence of fog.

また、上記の特許文献2のレーザ距離計では、霧の水滴からの反射光と霧を透過した奥の対象物からの反射光を受光できるが、霧の水滴の濃度によって、霧の奥に光が透過しない、または、透過しても散乱や干渉の影響により幾何学的な伝搬経路からずれるため、計測する対象物までの測距精度が低下する問題がある。 In addition, the laser range finder disclosed in Patent Document 2 can receive reflected light from water droplets in the fog and reflected light from an object in the back that has passed through the fog. However, even if it does pass, it deviates from the geometrical propagation path due to scattering and interference.

本発明の目的は、霧の濃度が時々刻々と場所によって変化する環境においても、計測結果の精度が低下することのないレーザ計測装置およびその計測方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a laser measurement apparatus and a measurement method that do not lower the accuracy of measurement results even in an environment where the concentration of fog varies from place to place from moment to moment.

前記課題を解決するため、本発明の測定対象までの距離を計測するレーザ計測装置は、可視光レーザを照射した測定対象からの反射光を受光して受光強度を検出する霧状態検出部と、近赤外光レーザを照射した測定対象からの反射光により距離計測して、前記霧状態検出部で検出した受光強度により霧の影響が少ないと判定した範囲における測定対象までの距離を求める距離計測部と、を備えるようにした。 In order to solve the above-mentioned problems, a laser measuring device for measuring the distance to a measurement object of the present invention includes a fog state detection unit that receives reflected light from a measurement object irradiated with a visible light laser and detects the received light intensity, Distance measurement using reflected light from a measurement object irradiated with a near-infrared light laser, and determining the distance to the measurement object in a range determined to be less affected by fog based on the received light intensity detected by the fog state detection unit. I tried to prepare a part and.

また、本発明のレーザ計測装置の計測方法は、可視光レーザを照射した測定対象からの反射光を受光して受光強度を検出する霧状態検出ステップと、前記霧状態検出ステップに並行して、近赤外光レーザを照射した測定対象からの反射光により距離計測するステップと、前記距離計測するステップで計測した測定対象までの距離において、前記霧状態検出ステップで検出した受光強度により霧の影響が少ないと判定した範囲の距離を求めて測定対象までの距離を取得する距離取得ステップと、を含むようにした。 Further, the measurement method of the laser measurement device of the present invention includes a fog state detection step of receiving reflected light from a measurement object irradiated with a visible light laser and detecting the light reception intensity, and in parallel with the fog state detection step, The step of measuring the distance by the light reflected from the object to be measured irradiated with a near-infrared light laser, and the effect of fog on the distance to the object measured in the step of measuring the distance, based on the received light intensity detected in the step of detecting the fog state. and a distance obtaining step of obtaining the distance to the measurement object by obtaining the distance in the range determined to be small.

本発明によれば、霧の濃度が時々刻々と場所によって変化する環境において、測距精度低下に及ぼす霧の影響が小さい範囲のレーザ計測装置による対象物までの距離計測を行うので、計測結果の信憑性を維持することができる。 According to the present invention, in an environment where the density of fog changes from place to place, the distance to the object is measured by the laser measurement device within a range where the influence of fog on the deterioration of distance measurement accuracy is small. Credibility can be maintained.

実施形態のレーザ計測装置が距離計測を行う環境を示す図である。It is a figure which shows the environment where the laser measuring device of embodiment performs distance measurement. 測定対象で反射した近赤外光レーザの光ビームの反射光における、近赤外光レーザの光ビームを照射してからの受光強度の時間変化を示す図である。FIG. 10 is a diagram showing a time change of the received light intensity of the light beam of the near-infrared light laser reflected by the measurement target after the light beam of the near-infrared light laser is irradiated. 霧濃度ごとの測定対象からの反射光の受光強度と距離の関係を示す図である。It is a figure which shows the relationship of the light reception intensity|strength of the reflected light from a measuring object, and distance for every fog density. 反射光の受光強度と距離に対する計測誤差の関係を示すデータベースを説明する図である。It is a figure explaining the database which shows the relationship between the light reception intensity|strength of reflected light, and a measurement error with respect to a distance. 実施形態のレーザ計測装置の構成図である。It is a lineblock diagram of a laser measuring device of an embodiment. モニタ3に表示されるカメラパラメータ記憶部の情報の登録・修正画面の一例を示す図である。3 is a diagram showing an example of an information registration/correction screen displayed on a monitor 3 in a camera parameter storage unit; FIG. 実施形態のレーザ計測装置の動作フローを説明する図である。It is a figure explaining the operation|movement flow of the laser measuring device of embodiment. 実施形態のレーザ計測装置の他の動作フローを説明する図である。It is a figure explaining the other operation|movement flow of the laser measuring device of embodiment.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、実施形態のレーザ計測装置100が距離計測を行う環境を示す図である。
実施形態のレーザ計測装置100は、近赤外光レーザの光ビームを照射してTOF方式で距離を計測するとともに、可視光レーザのスリット光を照射して撮像画像により3次元計測を行う。図1に示すように、レーザ計測装置100は、照射範囲6を走査するように近赤外光レーザの光ビームと可視光レーザのスリット光を照射し、測定対象4までの距離Lを計測する。
FIG. 1 is a diagram showing an environment in which the laser measurement device 100 of the embodiment performs distance measurement.
The laser measurement apparatus 100 of the embodiment irradiates a near-infrared laser light beam to measure a distance by the TOF method, and irradiates a visible light laser slit light to perform three-dimensional measurement based on a captured image. As shown in FIG. 1, the laser measurement device 100 irradiates a near-infrared laser light beam and a visible light laser slit light so as to scan an irradiation range 6, and measures the distance L to the measurement target 4. .

港湾や河川、森林等や屋内で計測する際に、照射範囲6に霧5が生じることがある。霧5により、レーザ計測装置100から照射する近赤外光レーザの光ビームと可視光レーザのスリット光は、霧5により散乱され減衰するとともに、散乱光が測定対象4の反射光に混じることにより、計測する距離の精度が低下する。
近赤外光レーザは可視光レーザに比べて霧の影響を受け難いが、近赤外光レーザの光ビームでも、霧による精度低下を無視できない。
Fog 5 may occur in the irradiation range 6 when measuring in harbors, rivers, forests, etc., or indoors. The light beam of the near-infrared laser emitted from the laser measurement device 100 and the slit light of the visible light laser are scattered and attenuated by the fog 5. , the accuracy of the measured distance decreases.
A near-infrared light laser is less susceptible to fog than a visible light laser, but even the light beam of the near-infrared light laser cannot ignore the deterioration in accuracy due to fog.

図2は、測定対象4で反射した近赤外光レーザの光ビームの反射光における、近赤外光レーザの光ビームを照射してからの受光強度の時間変化を示す図である。
TOF方式の距離計測では、照射してから反射光を受光するまでの時間を距離に換算して、レーザ計測装置100から測定対象4までの距離を求めている。
FIG. 2 is a diagram showing the change over time of the received light intensity of the light beam of the near-infrared light laser reflected by the measurement object 4 after the light beam of the near-infrared light laser is irradiated.
In the TOF method distance measurement, the distance from the laser measurement device 100 to the measurement target 4 is obtained by converting the time from irradiation to reception of the reflected light into a distance.

図2は、霧濃度が異なる2つの霧5の状態における近赤外光レーザの光ビームを照射してからの時間変化を、実線と破線で示している。実線は、破線よりも、霧が薄い(霧濃度が小さい)状態を示している。 FIG. 2 shows, with a solid line and a dashed line, changes over time after irradiation with a light beam of a near-infrared light laser in two states of fog 5 with different fog densities. The solid line indicates a thinner fog (lower fog density) than the dashed line.

図2に示すように、霧5の散乱による第1反射光(霧)と、測定対象4からの第2反射光が観測される。破線に示されるように、霧が濃く(霧濃度が大きく)なると、第1反射光の受光強度が大きくなり、第2反射光の受光強度が小さくなる。 As shown in FIG. 2, the first reflected light (fog) scattered by the fog 5 and the second reflected light from the measurement object 4 are observed. As indicated by the dashed line, when the fog is dense (fog density is high), the received light intensity of the first reflected light increases and the received light intensity of the second reflected light decreases.

霧が薄い場合には、適当な受光強度の閾値を設けることで、第1反射光を除去して、第2反射光から測定対象4までの距離を求めることができる。しかし、霧が濃い場合には、第1反射光と第2反射光の受光強度が同程度となるため、第1反射光を除去することができない。
さらに霧が濃くなると、測定対象4の第2反射光を受光できなくなり、距離を求めることができなくなる。
When the fog is thin, the first reflected light can be removed and the distance from the second reflected light to the measurement object 4 can be obtained by setting an appropriate threshold for the received light intensity. However, when the fog is thick, the received light intensity of the first reflected light and the second reflected light are approximately the same, so the first reflected light cannot be removed.
If the fog becomes thicker, the second reflected light from the measurement object 4 cannot be received, and the distance cannot be determined.

また、図2では、第2反射光を矩形で示しているが、霧が濃くなるに従って反射光が散乱して受光強度分布が滑らかになる。このため、一点鎖線の縦線で示す第2反射光の中心値がずれて第2反射光の検出時刻のずれとなり、破線の縦線で示す距離L(真値)からの誤差ΔLとなる。つまり、霧が濃いほど、計測した距離の誤差ΔLが大きくなる。 Also, in FIG. 2, the second reflected light is indicated by a rectangle, but as the fog thickens, the reflected light scatters and the received light intensity distribution becomes smoother. Therefore, the center value of the second reflected light indicated by the dashed-dotted vertical line shifts, resulting in a shift in the detection time of the second reflected light, resulting in an error ΔL from the distance L (true value) indicated by the dashed vertical line. That is, the thicker the fog, the larger the error ΔL of the measured distance.

実施形態のレーザ計測装置100は、霧による距離の誤差を予め把握しておき、所定の測距精度で計測できる計測範囲を特定できるようにして、距離計測の信憑性を向上する。 The laser measurement device 100 of the embodiment grasps the distance error due to fog in advance, and enables to specify the measurement range that can be measured with a predetermined distance measurement accuracy, thereby improving the reliability of the distance measurement.

詳しくは、レーザ計測装置100は、予め、測定対象4の代表的な形状(角柱、円筒、平板等)や材質(鉄、アルミ、コンクリート等)や表面状態(塗装、錆の有無等)に応じて、霧濃度ごとに、測定対象4からの反射光の受光強度と距離と計測誤差の関係を求め、データベース(以下では、判定情報と記すことがある)として保持する。 Specifically, the laser measurement device 100 is configured in advance according to the typical shape (prism, cylinder, flat plate, etc.), material (iron, aluminum, concrete, etc.) and surface condition (coating, presence or absence of rust, etc.) of the object 4 to be measured. Then, the relationship between the received light intensity of the reflected light from the measurement object 4, the distance, and the measurement error is obtained for each fog density, and stored as a database (hereinafter, sometimes referred to as determination information).

レーザ計測装置100は、近赤外光レーザの光ビームを照射してTOF方式の距離計測とは別のレーザ光による距離計測によって、測定対象4からの反射光の受光強度と距離を計測する。そして、前記データベースを参照して、計測した距離に対応する反射光の受光強度と計測誤差との関係から、測距精度を得るために必要な反射光の受光強度を求め、計測した測定対象4からの反射光の受光強度がこれを満たすか否かを判定する。計測した測定対象4からの反射光の受光強度が、前記データベースを参照して求めた受光強度以上であれば、近赤外光レーザの光ビームを照射してTOF方式の距離計測は、所定の測距精度を満たしているとする。 The laser measuring device 100 measures the received light intensity and the distance of the reflected light from the measurement object 4 by irradiating a light beam of a near-infrared laser and measuring the distance using the laser light, which is different from the distance measurement of the TOF method. Then, referring to the database, from the relationship between the received light intensity of the reflected light corresponding to the measured distance and the measurement error, the received light intensity of the reflected light required to obtain the distance measurement accuracy is obtained, and the measured object 4 It is determined whether or not the received light intensity of the reflected light from is satisfied. If the measured received light intensity of the reflected light from the measurement object 4 is equal to or higher than the received light intensity obtained by referring to the database, the TOF method distance measurement by irradiating the light beam of the near-infrared light laser is performed at a predetermined level. Suppose that the distance measurement accuracy is satisfied.

実施形態のレーザ計測装置100は、霧濃度に対して感度の高い可視光レーザのスリット光により測定対象4からの反射光の受光強度と距離を計測して、測距精度の判定を行う。 The laser measuring device 100 of the embodiment measures the received light intensity and the distance of the reflected light from the measurement object 4 by slit light of a visible light laser that is highly sensitive to fog density, and determines the distance measurement accuracy.

図3Aは、霧濃度ごとの測定対象4からの反射光の受光強度と距離の関係を示す図である。図3Aは、霧濃度Aと霧濃度Bと霧濃度Cに(霧濃度A<B<C)おいて計測した測定対象物までの距離と反射光の受光強度の関係を示している。 FIG. 3A is a diagram showing the relationship between the received light intensity of the reflected light from the measuring object 4 and the distance for each fog density. FIG. 3A shows the relationship between the distance to the measurement object and the received intensity of the reflected light measured at fog densities A, B, and C (fog densities A<B<C).

図3Aに示すように、測定対象4からの反射光の受光強度は、距離が離れる(計測距離が大きくなる)に従い、小さくなる。また、測定対象4からの反射光の受光強度は、霧濃度が大きくなるに従い、小さくなる。
さらに、霧によるレーザ光の散乱により、霧濃度が大きく(濃く)なるに従い計測誤差が大きくなる(測距精度が低下する)。
As shown in FIG. 3A, the received light intensity of the reflected light from the measurement object 4 decreases as the distance increases (the measurement distance increases). Further, the received light intensity of the reflected light from the measuring object 4 decreases as the fog density increases.
Furthermore, due to the scattering of laser light by fog, the measurement error increases (distance measurement accuracy decreases) as the fog density increases (deepens).

例えば、霧濃度Bで距離nLを計測した際の反射強度がnQ(交点Q)と、霧濃度Cで距離Lを計測した際の反射強度がnP(交点P)とで計測結果の測距精度は、交点Qの方がよくなる。従って、霧濃度Cにおける計測誤差に相当する精度を満たす計測を行う際には、距離nLを計測した際の反射光の受光強度が、nP以上であればよいことが分かる。 For example, if the reflection intensity is nQ (intersection point Q) when the distance nL is measured with the fog density B and the reflection intensity is nP (intersection point P) when the distance L is measured with the fog density C, the distance measurement accuracy of the measurement result is is better at the intersection point Q. Therefore, in order to perform measurement that satisfies the accuracy corresponding to the measurement error in the fog density C, it is sufficient that the received light intensity of the reflected light when measuring the distance nL is nP or more.

実施形態のレーザ計測装置100は、図3Aに示した霧濃度ごとの測定対象4からの反射光の受光強度と距離の関係を予め求め、図3Bの反射光の受光強度と距離に対する計測誤差の関係を示すデータベース(判定情報)として保持する。 The laser measurement device 100 of the embodiment obtains in advance the relationship between the received light intensity and the distance of the reflected light from the measurement object 4 for each fog concentration shown in FIG. It is held as a database (determination information) that indicates the relationship.

詳細には、レーザ計測装置100は、可視光レーザのスリット光により測定対象4までの距離3Lを計測すると、図3Bのデータベース(判定情報)を参照して、計測誤差3CΔ・3BΔ・3AΔから目標の計測精度に相当する計測誤差3CΔを達成するための霧濃度C(反射光の受光強度nP行)を得る(図中の点線矢印参照)。そして、霧濃度Cにおいて距離3Lが計測される反射光の受光強度3Pを抽出する(図中の一点鎖線矢印参照)。可視光レーザのスリット光により測定対象4までの距離3Lを計測した際の反射光の受光強度が、受光強度3Pより大きければ、計測誤差は3CΔより小さくなるので目標の計測精度を満たす(計測精度が高い)ことができると判定する。 Specifically, when the laser measurement device 100 measures the distance 3L to the measurement object 4 by the slit light of the visible light laser, it refers to the database (determination information) in FIG. (Refer to the dotted line arrow in the figure) for achieving a measurement error of 3C.DELTA. corresponding to the measurement accuracy of .DELTA. Then, the received light intensity 3P of the reflected light at which the distance 3L is measured at the fog density C is extracted (see the dashed-dotted line arrow in the figure). If the received light intensity of the reflected light when measuring the distance 3L to the measurement object 4 by the slit light of the visible light laser is greater than the received light intensity 3P, the measurement error becomes smaller than 3CΔ, and the target measurement accuracy is satisfied (measurement accuracy is high).

データベース(判定情報)は、所定の測距精度を満たす受光強度の最小値を許容受光強度として測定対象までの距離ごとに求められれば良く、受光強度と距離と計測誤差の関数(数式)で保持してもよい。 The database (judgment information) can be obtained for each distance to the measurement target as the minimum value of the received light intensity that satisfies the predetermined distance measurement accuracy, and is stored as a function (formula) of the received light intensity, distance, and measurement error. You may

つぎに、図4により、実施形態のレーザ計測装置100の構成を説明する。
レーザ計測装置100は、可視光レーザを照射した測定対象4からの反射光を受光して受光強度を検出する霧状態検出部1と、近赤外光レーザを照射した測定対象4からの反射光によりTOF方式の距離計測をして、霧状態検出部1で取得した受光強度により霧の影響が少ないと判定した範囲における測定対象4までの距離を求める距離計測部2と、を備える。
Next, the configuration of the laser measurement device 100 according to the embodiment will be described with reference to FIG.
The laser measurement device 100 includes a fog state detection unit 1 that receives reflected light from a measurement object 4 irradiated with a visible light laser and detects the intensity of received light, and a reflected light from the measurement object 4 irradiated with a near-infrared light laser. and a distance measuring unit 2 for measuring the distance to the measurement object 4 in a range determined to be less affected by fog based on the received light intensity acquired by the fog state detecting unit 1.

霧状態検出部1は、ラインレーザ11とカメラ12とカメラ・レーザ制御部13とカメラパラメータ記憶部14と画像記録部15とを備え、可視光レーザのスリット光(ストライブ光とも呼ばれる)による光切断法により計測する装置を構成する。 The fog state detection unit 1 includes a line laser 11, a camera 12, a camera/laser control unit 13, a camera parameter storage unit 14, and an image recording unit 15. Configure a device that measures by the cutting method.

詳しくは、ラインレーザ11は、測定対象4に可視光レーザのスリット光を照射する。
カメラ12は、可視光レーザのスリット光が照射された測定対象4を撮像する。
カメラ・レーザ制御部13は、ラインレーザ11のスリット光の照射タイミングと照射方向を制御して測定対象4にスリット光を走査するとともに、スリット光の照射に同期して撮像するようにカメラ12を制御する。
画像記録部15は、カメラ12で撮像した可視光レーザのスリット光が照射された測定対象4の撮像画像を記憶する。
Specifically, the line laser 11 irradiates the object 4 to be measured with slit light of a visible light laser.
The camera 12 captures an image of the measuring object 4 irradiated with the slit light of the visible light laser.
The camera/laser control unit 13 controls the irradiation timing and irradiation direction of the slit light of the line laser 11 to scan the measurement object 4 with the slit light, and operates the camera 12 so as to capture an image in synchronization with the irradiation of the slit light. Control.
The image recording unit 15 stores the captured image of the measurement object 4 captured by the camera 12 and irradiated with the slit light of the visible light laser.

霧状態検出部1は、さらに、レーザ輝線抽出部16とカメラパラメータ記憶部14と反射光解析部17とを備える。
レーザ輝線抽出部16は、画像記録部15から順次測定対象4の撮像画像を取得し、撮像画像からスリット光の測定対象4の表面の照射像であるレーザ輝線を抽出し、レーザ輝線の画素位置とスリット光の反射光の受光強度を求める。
The fog state detection unit 1 further includes a laser bright line extraction unit 16 , a camera parameter storage unit 14 and a reflected light analysis unit 17 .
The laser bright line extraction unit 16 sequentially acquires the captured images of the measurement object 4 from the image recording unit 15, extracts the laser bright lines, which are the images of the surface of the measurement object 4 illuminated by the slit light, from the captured images, and extracts the pixel positions of the laser bright lines. and the received light intensity of the reflected light of the slit light.

詳しくは、レーザ輝線抽出部16は、まず、カメラパラメータ記憶部14のカメラパラメータ(図5)により、画像記録部15から取得した撮像画像の歪み補正処理を行う。つぎに、カメラパラメータ記憶部14の計測パラメータ(図5)に設定された可視光レーザの反射光の受光強度の閾値(レーザ光強度値)に従って2値化処理を行う。そして、線抽出の画像処理を行って、レーザ輝線を抽出する。 Specifically, the laser bright line extraction unit 16 first performs distortion correction processing on the captured image acquired from the image recording unit 15 using the camera parameters ( FIG. 5 ) in the camera parameter storage unit 14 . Next, binarization processing is performed according to the threshold value (laser light intensity value) of the received light intensity of the reflected light of the visible light laser set in the measurement parameters (FIG. 5) of the camera parameter storage unit 14 . Then, image processing for line extraction is performed to extract laser emission lines.

測定対象4の種類によって可視光レーザの反射率が異なる場合には、カメラパラメータに、測定対象物に応じた反射光の受光強度の閾値を設けてもよい。また、カメラパラメータに、可視光レーザの波長範囲に応じて反射光の受光強度の閾値の設定を変えてもよい。 If the reflectance of the visible light laser differs depending on the type of the measurement target 4, the camera parameters may be provided with a threshold value for the received light intensity of the reflected light according to the measurement target. Also, the setting of the threshold value of the received light intensity of the reflected light may be changed according to the wavelength range of the visible light laser as the camera parameter.

反射光解析部17は、レーザ輝線抽出部16で求めたレーザ輝線の画素位置と後述するカメラパラメータとから、光切断法によりレーザ輝線の3次元位置を算出し、スリット光が照射された測定対象4の形状を得る。
反射光解析部17は、求めたレーザ輝線の反射位置(スリット光の照射位置)と反射光の受光強度を計測時刻ととともに、不図示の記憶部に一時記憶する。
The reflected light analysis unit 17 calculates the three-dimensional position of the laser bright line by the light section method from the pixel position of the laser bright line obtained by the laser bright line extracting unit 16 and the camera parameters described later, and measures the measurement object irradiated with the slit light. 4 shapes are obtained.
The reflected light analysis unit 17 temporarily stores the obtained reflection position of the laser bright line (irradiation position of the slit light) and the received light intensity of the reflected light together with the measurement time in a storage unit (not shown).

霧状態検出部1は、既知の距離計測装置と同様に、カメラ12を基点に測定対象4の3次元形状を計測する装置であり、ここでは計測動作の説明を省略する。 The fog state detection unit 1 is a device that measures the three-dimensional shape of the measurement object 4 with the camera 12 as a base point, similarly to a known distance measurement device, and the description of the measurement operation is omitted here.

距離計測部2は、レーザ発光部21とレーザ受光部22と測距制御部23と計測データ記憶部24とを備え、近赤外光レーザの光ビームを照射してTOF方式で距離を計測する距離計測装置を構成する。 The distance measurement unit 2 includes a laser light emission unit 21, a laser light reception unit 22, a distance measurement control unit 23, and a measurement data storage unit 24, and measures a distance by a TOF method by irradiating a light beam of a near-infrared laser. Construct a distance measuring device.

レーザ発光部21は、近赤外レーザのビーム光を出射する半導体レーザダイオード等のレーザ発光素子である。
レーザ受光部22は、レーザ発光部21から出射され、測定対象4で反射した近赤外レーザの反射光を受光するレーザ受光素子である。レーザ受光素子には、アバランシェフォトダイオード等を使用する。
The laser light emitting unit 21 is a laser light emitting element such as a semiconductor laser diode that emits near-infrared laser beam light.
The laser light receiving unit 22 is a laser light receiving element that receives the reflected light of the near-infrared laser emitted from the laser light emitting unit 21 and reflected by the measurement object 4 . An avalanche photodiode or the like is used as the laser light receiving element.

測距制御部23は、レーザ発光部21とレーザ受光部22とが所定方向に向くように走査機構を制御するとともに、レーザ発光部21の発光タイミングとレーザ受光部22の受光タイミングから近赤外光レーザを出射してから測定対象4で反射して戻ってくるまでの時間(飛行時間)を計測し、測定対象4の照射位置(反射位置)までの距離を求める。測定対象4の反射位置は、レーザ発光部21とレーザ受光部22の位置を基点に、照射方向と飛行時間から求めた距離により算出する。
また、測距制御部23は、測定対象4で反射した近赤外レーザの受光強度を取得する。
The distance measurement control unit 23 controls the scanning mechanism so that the laser light emitting unit 21 and the laser light receiving unit 22 are oriented in a predetermined direction, and the near infrared light is detected from the light emission timing of the laser light emitting unit 21 and the light receiving timing of the laser light receiving unit 22. The time (flight time) from when the light laser is emitted until it is reflected by the measurement object 4 and returns is measured, and the distance to the irradiation position (reflection position) of the measurement object 4 is obtained. The reflection position of the object 4 to be measured is calculated from the distance obtained from the direction of irradiation and the time of flight, with the positions of the laser emitting section 21 and the laser receiving section 22 as base points.
In addition, the ranging control unit 23 acquires the received light intensity of the near-infrared laser reflected by the measurement object 4 .

計測データ記憶部24は、測距制御部23で求めた測定対象4の反射位置までの距離と受光強度とを、近赤外光レーザの照射方向に対応する反射位置ごとに計測時刻とともに記憶する。 The measurement data storage unit 24 stores the distance to the reflection position of the measurement object 4 and the received light intensity obtained by the distance measurement control unit 23 together with the measurement time for each reflection position corresponding to the irradiation direction of the near-infrared light laser. .

判定情報記憶部26は、図3Bで説明した反射光の受光強度と距離に対する計測誤差の関係を示すデータベース(判定情報)を記憶する。 The determination information storage unit 26 stores a database (determination information) indicating the relationship between the received light intensity of the reflected light and the distance and the measurement error described with reference to FIG. 3B.

霧影響判定部25は、判定情報記憶部26の判定情報を参照して、反射光解析部17で解析した反射位置における可視光レーザの反射強度が、所定の測距精度を満たす反射強度以上であるかを判定する。所定の測距精度を満たす反射強度以上であれば、霧の影響が少なく測距精度を満たす状態と判定し、反射光解析部17で解析した反射位置に対応する測定対象4の反射位置までの距離を計測データ記憶部24から取得する。なお、測距精度は、後述するカメラパラメータ記憶部14に設定する。 The fog effect determination unit 25 refers to the determination information in the determination information storage unit 26, and determines if the reflected intensity of the visible light laser at the reflection position analyzed by the reflected light analysis unit 17 is equal to or higher than the reflection intensity that satisfies a predetermined distance measurement accuracy. Determine if there is If the reflection intensity is greater than or equal to a predetermined distance measurement accuracy, it is determined that the effect of fog is small and the distance measurement accuracy is satisfied. The distance is acquired from the measurement data storage unit 24 . Note that the distance measurement accuracy is set in the camera parameter storage unit 14, which will be described later.

距離データ記憶部27は、霧影響判定部25で判定した所定の測距精度をもつ測定対象4の反射位置までの近赤外光レーザで計測した距離を、計測時刻とともに記憶する。
また、距離データ記憶部27に、測定対象4の反射位置に対応付けて、反射位置までの近赤外光レーザで計測した距離と、霧影響判定部25における測距精度の判定結果を記憶するようにしてもよい。
The distance data storage unit 27 stores the distance measured by the near-infrared laser to the reflection position of the measurement object 4 having the predetermined distance measurement accuracy determined by the fog influence determination unit 25, together with the measurement time.
In addition, the distance data storage unit 27 stores the distance measured by the near-infrared light laser to the reflection position of the measurement target 4 and the determination result of the distance measurement accuracy in the fog effect determination unit 25 in association with the reflection position of the measurement object 4 . You may do so.

モニタ3は、表示部と操作入力部を有する端末部である。レーザ計測装置100の操作者が、装置の動作指示を行うとともに、後述するカメラパラメータ記憶部14の各種パラメータ等の情報の登録・修正を行えるようにする。 The monitor 3 is a terminal unit having a display unit and an operation input unit. An operator of the laser measurement device 100 can perform operation instructions of the device and register/modify information such as various parameters in the camera parameter storage unit 14, which will be described later.

カメラパラメータ記憶部14は、レーザ輝線抽出部16で補正処理する際のカメラパラメータと、近赤外光レーザを照射して距離を求める距離計測部2の計測パラメータと、距離計測部2のレーザスキャナパラメータと、距離計測部2(レーザ発光部21およびレーザ受光部22)とカメラ12とラインレーザ11のセンサ幾何学的配置条件とを記憶する。 The camera parameter storage unit 14 stores the camera parameters for correction processing in the laser bright line extraction unit 16, the measurement parameters of the distance measurement unit 2 for obtaining the distance by irradiating the near-infrared laser, and the laser scanner of the distance measurement unit 2. Parameters and sensor geometric arrangement conditions of the distance measuring unit 2 (the laser emitting unit 21 and the laser receiving unit 22), the camera 12, and the line laser 11 are stored.

図5は、モニタ3に表示されるカメラパラメータ記憶部14の情報の登録・修正画面の一例を示す図である。
カメラ12のカメラパラメータとして、撮像素子サイズと、撮像素子の水平画素数および垂直画素数と、焦点距離の設定情報を、登録・修正できるように表示する。
FIG. 5 is a diagram showing an example of an information registration/correction screen of the camera parameter storage unit 14 displayed on the monitor 3. As shown in FIG.
As the camera parameters of the camera 12, the size of the imaging device, the number of horizontal and vertical pixels of the imaging device, and the setting information of the focal length are displayed so that they can be registered and corrected.

距離計測部2の計測パラメータとして、霧影響判定部25における目的の測距精度として参照される測定測距精度と、計測対象物の代表的な形状・材質・表面状態等の特性情報を示す計測対象物と、レーザ輝線抽出部16で参照されるレーザ輝線抽出のための可視光レーザの反射光の受光強度の閾値(レーザ光強度値)と、霧状態検出部1と距離計測部2とが計測を行う測定対象4の位置情報である距離測定範囲の設定情報を、登録・修正できるように表示する。 As measurement parameters of the distance measurement unit 2, the measurement distance measurement accuracy referred to as the target distance measurement accuracy in the fog effect determination unit 25, and the characteristic information such as the typical shape, material, surface state, etc. of the object to be measured. The object, the threshold value (laser light intensity value) of the received light intensity of the reflected light of the visible light laser for extracting the laser bright line referred to by the laser bright line extracting unit 16, the fog state detecting unit 1, and the distance measuring unit 2 The setting information of the distance measurement range, which is the position information of the object 4 to be measured, is displayed so that it can be registered and corrected.

そして、距離計測部2のレーザスキャナパラメータとして、走査回数と、距離測定する際のデータ平均化回数と、測定した距離の平均値の測距精度をデータ標準偏差により評価する際の閾値を、登録・修正できるように表示する。これらの設定情報の使用方法については後述する。 Then, as the laser scanner parameters of the distance measurement unit 2, the number of times of scanning, the number of times of data averaging when measuring the distance, and the threshold value when evaluating the distance measurement accuracy of the average value of the measured distances by the data standard deviation are registered.・Display it so that it can be corrected. How to use these setting information will be described later.

また、モニタ3には、カメラパラメータ記憶部14に記憶されるセンサ幾何学的配置条件を、登録・修正する画面への遷移指示を行う「センサ幾何学的配置条件」指示ボタンを表示する。詳しくは、センサ幾何学的配置条件の画面では、レーザ発光部21およびレーザ受光部22の設置位置(近赤外光レーザの光ビームによる測距の基点)と、カメラ12の設置位置(可視光レーザのスリット光による測距の基点)との関係を登録・修正する。 In addition, the monitor 3 displays a "sensor geometric arrangement condition" instruction button for instructing transition to a screen for registering/correcting the sensor geometric arrangement condition stored in the camera parameter storage unit 14. FIG. More specifically, on the sensor geometrical arrangement condition screen, the installation positions of the laser light emitting unit 21 and the laser light receiving unit 22 (base point for distance measurement by the light beam of the near-infrared laser) and the installation position of the camera 12 (visible light The reference point for distance measurement by laser slit light) is registered and corrected.

以上の構成により、レーザ計測装置100の霧状態検出部1と距離計測部2とは、測定対象4の所定の距離測定範囲を、並行に同期して距離の計測を行う。そして、計測時刻を示す時間情報と計測値ともに記録する。霧影響判定部25は、霧の影響が少なく測距精度を満たす状態と判定した際に、霧状態検出部1での計測時刻に対して、距離計測部2の計測時刻が所定時間内である計測距離の結果を求める。 With the above configuration, the fog state detection unit 1 and the distance measurement unit 2 of the laser measurement device 100 measure the distance in parallel and synchronously within the predetermined distance measurement range of the measurement object 4 . Then, both the time information indicating the measurement time and the measured value are recorded. The fog effect determination unit 25 determines that the measurement time of the distance measurement unit 2 is within a predetermined time with respect to the measurement time of the fog state detection unit 1 when determining that the fog effect is small and the distance measurement accuracy is satisfied. Obtain the result of the measured distance.

距離計測部2の測距の動作時間が霧状態検出部1の測距の動作時間より早い場合には、距離計測部2が複数回の計測を平均化して、反射位置の計測距離を求め、霧状態検出部1の計測結果と対応付けるようにしてもよい。 When the operation time of the distance measurement of the distance measurement unit 2 is earlier than the operation time of the distance measurement of the fog state detection unit 1, the distance measurement unit 2 averages a plurality of measurements to obtain the measured distance of the reflection position, You may make it correspond with the measurement result of the fog state detection part 1. FIG.

実施形態のレーザ計測装置100は、具体的には、半導体レーザやフォト・ダイオード等の半導体素子と、カメラと、走査機構と、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等の記憶装置、入出力インタフェース、から構成される情報処理装置とにより実現され、カメラ・レーザ制御部13、レーザ輝線抽出部16、反射光解析部17、測距制御部23、霧影響判定部25の機能部は、記憶装置に格納されるプログラムをCPUが実行することで実現する。 Specifically, the laser measurement device 100 of the embodiment includes a semiconductor element such as a semiconductor laser or a photodiode, a camera, a scanning mechanism, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), HDD (Hard Disk Drive), storage devices such as flash memory, and an input/output interface. The functional units of the unit 17, the distance measurement control unit 23, and the fog effect determination unit 25 are realized by the CPU executing a program stored in the storage device.

つぎに、図6により、実施形態のレーザ計測装置100の動作フローを説明する。 Next, the operation flow of the laser measurement device 100 according to the embodiment will be described with reference to FIG.

ステップS61で、カメラパラメータ記憶部14は、計測処理に必要な、カメラパラメータと距離計測部2の計測パラメータと距離計測部2のレーザスキャナパラメータと、距離計測部2(レーザ発光部21およびレーザ受光部22)とカメラ12とラインレーザ11のセンサ幾何学的配置条件の計測条件設定を行う。 In step S61, the camera parameter storage unit 14 stores the camera parameters, the measurement parameters of the distance measurement unit 2, the laser scanner parameters of the distance measurement unit 2, and the distance measurement unit 2 (the laser light emission unit 21 and the laser light reception unit) necessary for the measurement process. 22), the camera 12 and the line laser 11 are set as measurement conditions for the sensor geometric arrangement conditions.

ステップS62で、霧状態検出部1が測定対象4に可視光レーザのスリット光を照射してカメラ撮像を行いながら走査するとともに、距離計測部2が、カメラ撮像に並行して、近赤外光レーザの光ビームを走査してTOF方式で距離を計測・記録して、カメラ撮像・近赤外レーザ走査の処理を行う。 In step S62, the fog state detection unit 1 irradiates the measurement object 4 with slit light of a visible light laser and performs scanning while performing camera imaging. A laser light beam is scanned, the distance is measured and recorded by the TOF method, and processing of camera imaging and near-infrared laser scanning is performed.

ステップS63で、霧状態検出部1は、ステップS62でカメラ撮像した測定対象4の撮像画像からレーザ輝線を抽出するカメラ画像のレーザ輝線抽出の処理を行う。 In step S63, the fog state detection unit 1 performs laser bright line extraction processing for extracting laser bright lines from the captured image of the measurement target 4 captured by the camera in step S62.

ステップS64で、霧状態検出部1は、ステップS63で抽出したレーザ輝線の画素位置とカメラパラメータとから、光切断法によりレーザ輝線の3次元位置を算出するレーザ輝線の距離・方位(反射位置)の算出処理を行う。この際に、レーザ輝線の方位(反射位置)における可視光レーザの反射光の反射光の受光強度を対応付ける。 In step S64, the fog state detection unit 1 calculates the three-dimensional position of the laser emission line by the light section method from the pixel position of the laser emission line extracted in step S63 and the camera parameters. is calculated. At this time, the received light intensity of the reflected light of the visible light laser is associated with the direction (reflection position) of the laser emission line.

ステップS65で、距離計測部2は、ステップS64で算出したレーザ輝線の方位(反射位置)に対応する、S62で計測した距離を取得して、レーザ輝線の距離・方位(反射位置)に対応する近赤外光レーザで計測した距離を抽出する処理を行う。
同じ測定対象4を継続して計測する場合には、S62で計測した距離の移動平均を算出するようにして、近赤外光レーザで計測した距離としてもよい。
In step S65, the distance measurement unit 2 acquires the distance measured in S62 corresponding to the direction (reflection position) of the laser emission line calculated in step S64, and obtains the distance and direction (reflection position) of the laser emission line. A process of extracting the distance measured by the near-infrared laser is performed.
When the same measurement object 4 is continuously measured, the moving average of the distances measured in S62 may be calculated as the distance measured by the near-infrared laser.

ステップS66で、距離計測部2は、予め設定した可視光レーザの反射光の受光強度と距離に対する計測誤差の関係を示すデータベース(判定情報)を参照して、所望の計測誤差を含む距離を計測するために必要な反射光の受光強度を求め、ステップS65で抽出した距離を取得した際の近赤外光レーザの方位に対応するレーザ輝線の反射光の受光強度が、必要な反射光の受光強度以上であるかを判定する。そして、距離計測部2は、必要な反射光の受光強度以上である場合に、ステップS65で抽出した距離は、霧の影響が少なく測距精度を満たす状態と判定することで、距離データの霧影響を判定する。 In step S66, the distance measurement unit 2 measures the distance including the desired measurement error by referring to a database (determination information) indicating the relationship between the distance and the received light intensity of the reflected light of the visible light laser set in advance and the measurement error. The received light intensity of the reflected light required to obtain the distance extracted in step S65 is obtained. Determine whether the intensity is equal to or higher than the intensity. If the received intensity of the reflected light is greater than or equal to the required intensity, the distance measurement unit 2 determines that the distance extracted in step S65 is less affected by fog and satisfies the accuracy of distance measurement. Determine impact.

ステップS67で、距離計測部2は、ステップS67で霧の影響が少なく測距精度を満たす状態と判定した距離と計測時刻を距離データとして記憶し、距離データ記憶の処理を行う。
なお、ステップS67で、距離計測部2が、ステップS65で抽出した距離と計測時刻とステップS66の判定結果を記憶するようにしてもよい。
In step S67, the distance measurement unit 2 stores the distance and the measurement time determined in step S67 as a state in which the influence of fog is small and satisfies the distance measurement accuracy as distance data, and performs distance data storage processing.
In step S67, the distance measurement unit 2 may store the distance extracted in step S65, the measurement time, and the determination result of step S66.

ステップS68で、レーザ計測装置100は、計測を継続する場合には(S68のNo)、ステップS62に戻り、計測を終える場合には(S68のYes)、処理を終了する。 In step S68, the laser measurement device 100 returns to step S62 if the measurement is to be continued (No in S68), and ends the processing if the measurement is finished (Yes in S68).

図6のフロー図は、霧状態検出部1と距離計測部2とが測定対象4の所定の距離測定範囲を並行に同期して距離の計測を行う際に、それぞれが、所定の距離測定範囲の計測を一度行う場合についての処理を示している。図7に、距離計測部2が複数回の計測を平均化して、反射位置の計測距離を求め、霧状態検出部1の計測結果と対応付ける場合について説明する。 The flowchart of FIG. 6 shows that when the fog state detection unit 1 and the distance measurement unit 2 measure the distance in parallel and in synchronization with each other in the predetermined distance measurement range of the measurement object 4, each of the predetermined distance measurement ranges This shows the processing for the case where the measurement of is performed once. FIG. 7 illustrates a case where the distance measurement unit 2 averages a plurality of measurements to obtain the measured distance of the reflection position, and associates the result with the measurement result of the fog state detection unit 1 .

図7のフロー図のステップS61からステップS68は、図6と同様のため、ここでは説明を省略する。
ステップS71で、距離計測部2は、ステップS65で抽出した複数の近赤外光レーザで計測した距離の平均値を算出し、距離データの平均化の処理を行う。
Steps S61 to S68 in the flow chart of FIG. 7 are the same as those in FIG. 6, so description thereof will be omitted here.
In step S71, the distance measurement unit 2 calculates the average value of the distances measured by the plurality of near-infrared light lasers extracted in step S65, and performs the process of averaging the distance data.

ステップS72で、距離計測部2は、距離データの標準偏差を算出し、測距精度以下か確認する処理を行う。詳しくは、ステップS65で抽出した複数の近赤外光レーザで計測した距離の標準偏差を算出し、算出した標準偏差が測距精度以下かを判定する。算出した標準偏差が測距精度以下の場合に、ステップS71で算出した距離の平均値を、ステップS67で記憶する距離データとする。
このように、平均化処理を追加することにより、さらに霧の影響による測距精度の低下を抑えることができる。
In step S72, the distance measurement unit 2 calculates the standard deviation of the distance data, and performs a process of confirming whether it is equal to or less than the distance measurement accuracy. Specifically, the standard deviation of the distances measured by the plurality of near-infrared light lasers extracted in step S65 is calculated, and it is determined whether the calculated standard deviation is equal to or less than the distance measurement accuracy. If the calculated standard deviation is less than the distance measurement accuracy, the average value of the distances calculated in step S71 is used as the distance data to be stored in step S67.
By adding the averaging process in this way, it is possible to further suppress the deterioration of the ranging accuracy due to the influence of fog.

上記では、霧の影響が少ないと判定した複数の近赤外光レーザで計測した距離の平均値を距離データとする処理を説明したが、霧の影響が少ないと判定した近赤外光レーザで計測した距離と、ステップS64で算出した同じ反射位置において可視光レーザのレーザ輝線から求めた距離と、の差分が、測距精度以下の場合に、霧の影響が少ないと判定した近赤外光レーザで計測した距離をステップS67で記憶する距離データとしてもよい。 In the above, we explained the process of using the average value of the distances measured by multiple near-infrared lasers determined to be less affected by fog as the distance data. Near-infrared light determined to be less affected by fog when the difference between the measured distance and the distance obtained from the laser emission line of the visible light laser at the same reflection position calculated in step S64 is less than or equal to the distance measurement accuracy. The distance measured by the laser may be used as the distance data stored in step S67.

この場合に、霧の影響が少ないと判定した複数の近赤外光レーザで計測した距離の平均値と、ステップS64で算出した同じ反射位置において可視光レーザのレーザ輝線から求めた距離と、の差分が、測距精度以下の場合に、霧の影響が少ないと判定した近赤外光レーザで計測した距離をステップS67で記憶する距離データとしてもよい。 In this case, the average value of the distances measured by a plurality of near-infrared light lasers determined to be less affected by fog, and the distance obtained from the laser emission line of the visible light laser at the same reflection position calculated in step S64. If the difference is equal to or less than the distance measurement accuracy, the distance measured by the near-infrared laser determined to be less affected by fog may be used as the distance data to be stored in step S67.

さらに、霧の影響が少ないと判定した複数の近赤外光レーザで計測した距離の平均値と、同じ反射位置において可視光レーザのレーザ輝線から求めた距離の平均値を算出し、2つの平均値の差分が測距精度以下の場合に、霧の影響が少ないと判定した近赤外光レーザで計測した距離の平均値をステップS67で記憶する距離データとしてもよい。 Furthermore, we calculated the average value of the distances measured with multiple near-infrared lasers that were judged to have little effect from fog, and the average value of the distances obtained from the laser emission line of the visible light laser at the same reflection position, and calculated the two averages. If the difference in values is equal to or less than the distance measurement accuracy, the average value of the distances measured by the near-infrared light laser determined to be less affected by fog may be used as the distance data to be stored in step S67.

上記の実施形態のレーザ計測装置100では、霧状態検出部1と距離計測部2とが測定対象4の所定の距離測定範囲を並行に同期して動作する場合について説明したが、霧状態検出部1が測定対象4の計測を行った後に、霧状態検出部1の計測結果に基づいて、距離計測部2が霧の影響が少なく測距精度を満たす状態と判定した範囲に近赤外光レーザを照射して、距離を計測するようにしてもよい。 In the laser measurement device 100 of the above embodiment, the case where the fog state detection unit 1 and the distance measurement unit 2 operate in parallel and synchronously over the predetermined distance measurement range of the measurement object 4 has been described. After 1 measures the measurement object 4, based on the measurement result of the fog state detection unit 1, the distance measurement unit 2 determines that the range is less affected by fog and satisfies the distance measurement accuracy. may be emitted to measure the distance.

また、実施形態のレーザ計測装置100では、霧状態検出部1が可視光レーザのスリット光を測定対象4に照射して測定対象4からの反射光を受光して受光強度を取得する構成について説明したが、この構成に限らず、霧状態検出部1が他の方式により、レーザ計測装置100と測定対象4の間の霧の状態を検出するようにしてもよい。 Further, in the laser measurement device 100 of the embodiment, a configuration will be described in which the fog state detection unit 1 irradiates the measurement object 4 with slit light of a visible light laser, receives reflected light from the measurement object 4, and acquires the received light intensity. However, without being limited to this configuration, the fog state detection unit 1 may detect the state of fog between the laser measuring device 100 and the measurement object 4 by another method.

例えば、霧環境においてミリ波レーダによる距離計測を行って、反射波の受信強度と距離と計測誤差の関係を予め求め、ミリ波レーダの反射波の受信強度と距離に対する計測誤差の関係を示すデータベース(判定情報記憶部26)として保持する。そして、霧状態検出部1が、ミリ波レーダを測定対象4に照射して、測定対象4からの反射波を受信して受信強度を取得し、霧影響判定部25でミリ波レーダの反射波の受信強度により霧の影響を判定するように構成する。 For example, distance measurement is performed using a millimeter-wave radar in a foggy environment, and the relationship between the received intensity of the reflected wave, the distance, and the measurement error is obtained in advance. (determination information storage unit 26). Then, the fog state detection unit 1 irradiates the measurement target 4 with the millimeter wave radar, receives the reflected wave from the measurement target 4 to obtain the reception intensity, and the fog effect determination unit 25 detects the reflected wave of the millimeter wave radar. It is configured to determine the influence of fog based on the received intensity of the

実施形態のレーザ計測装置100の技術は、パルスレーザ光を対象物に照射してから、反射光を受光するまでの時間を計測して3次元形状を求めるTOF方式の形状計測装置に適用できることは言うまでもない。 The technique of the laser measurement device 100 of the embodiment can be applied to a TOF type shape measurement device that obtains a three-dimensional shape by measuring the time from when the object is irradiated with the pulsed laser beam to when the reflected light is received. Needless to say.

本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

1 霧状態検出部
2 距離計測部
3 モニタ
4 測定対象
11 ラインレーザ
12 カメラ
13 カメラ・レーザ制御部
14 カメラパラメータ記憶部
15 画像記録部
16 レーザ輝線抽出部
17 反射光解析部
21 レーザ発光部
22 レーザ受光部
23 測距制御部
24 計測データ記憶部
25 霧影響判定部
26 判定情報記憶部
27 距離データ記憶部
100 レーザ計測装置
Reference Signs List 1 fog state detection unit 2 distance measurement unit 3 monitor 4 measurement object 11 line laser 12 camera 13 camera/laser control unit 14 camera parameter storage unit 15 image recording unit 16 laser emission line extraction unit 17 reflected light analysis unit 21 laser emission unit 22 laser Light receiving unit 23 Ranging control unit 24 Measurement data storage unit 25 Fog effect determination unit 26 Determination information storage unit 27 Distance data storage unit 100 Laser measurement device

Claims (12)

測定対象までの距離を計測するレーザ計測装置であって、
可視光レーザを照射した測定対象からの反射光を受光して受光強度を検出する霧状態検出部と、
近赤外光レーザを照射した測定対象からの反射光により距離計測して、前記霧状態検出部で検出した受光強度により霧の影響が少ないと判定した範囲における測定対象までの距離を求める距離計測部と、
を備えることを特徴とするレーザ計測装置。
A laser measuring device for measuring the distance to a measurement object,
a fog state detection unit that receives reflected light from a measurement target irradiated with a visible light laser and detects the received light intensity;
Distance measurement using reflected light from a measurement object irradiated with a near-infrared light laser, and determining the distance to the measurement object in a range determined to be less affected by fog based on the received light intensity detected by the fog state detection unit. Department and
A laser measurement device comprising:
請求項1に記載のレーザ計測装置において、
前記距離計測部は、近赤外光レーザを照射して複数回距離を計測し、計測した距離の平均値を算出し、前記平均値の標準偏差が所定の測距精度以下の場合に前記平均値を測定対象までの距離とする
ことを特徴とするレーザ計測装置。
In the laser measurement device according to claim 1,
The distance measurement unit irradiates a near-infrared light laser to measure the distance a plurality of times, calculates the average value of the measured distances, and calculates the average value when the standard deviation of the average value is equal to or less than a predetermined distance measurement accuracy. A laser measuring device characterized in that a value is set as a distance to an object to be measured.
請求項1に記載のレーザ計測装置において、
前記霧状態検出部は、
測定対象に可視光レーザのスリット光を照射するラインレーザと、
測定対象の撮像画像から前記スリット光の輝線情報を抽出するレーザ輝線抽出部と、
測定対象における前記スリット光の反射位置と、前記反射位置ごとの前記スリット光の反射光の受光強度とを前記輝線情報から求める反射光解析部と、を備え、
前記距離計測部は、
前記受光強度に基づいて、測定対象における可視光レーザの反射位置に近赤外光レーザを照射して前記反射位置ごとに距離計測を行う際の霧の影響を判定する霧影響判定部と、
を備えることを特徴とするレーザ計測装置。
In the laser measurement device according to claim 1,
The fog state detection unit is
A line laser that irradiates a slit light of a visible light laser to the measurement object,
a laser bright line extraction unit that extracts bright line information of the slit light from the captured image of the measurement target;
a reflected light analysis unit that obtains, from the bright line information, the reflection position of the slit light on the measurement target and the received light intensity of the reflected light of the slit light for each of the reflection positions,
The distance measurement unit
a fog effect determination unit that determines, based on the received light intensity, the effect of fog when irradiating a near-infrared light laser onto a reflection position of a visible light laser on a measurement object and performing distance measurement for each of the reflection positions;
A laser measurement device comprising:
請求項3に記載のレーザ計測装置において、
前記距離計測部は、
測定対象までの複数の距離に対する可視光レーザの反射光の受光強度と近赤外光レーザによる距離計測の測距精度とを、霧の濃度を変えて予め測定し、所定の測距精度を満たす前記受光強度の最小値を許容受光強度として測定対象までの距離ごとに記憶する判定情報記憶部を備え、
前記霧影響判定部は、
前記判定情報記憶部を参照して、前記反射光解析部で求めた反射光の受光強度が許容受光強度より大きい場合に、測定対象への近赤外光レーザの照射による距離計測に際し霧の影響は少ないと判定し、
前記距離計測部は、前記霧影響判定部が霧の影響が少ないと判定した前記可視光レーザの反射位置を、測定対象の距離を求める範囲とする
ことを特徴とするレーザ計測装置。
In the laser measurement device according to claim 3,
The distance measurement unit
The received light intensity of the reflected light of the visible light laser and the distance measurement accuracy of the near-infrared light laser for a plurality of distances to the measurement object are measured in advance by changing the density of the fog, and the predetermined distance measurement accuracy is satisfied. A determination information storage unit that stores the minimum value of the received light intensity as an allowable received light intensity for each distance to the measurement object,
The fog effect determination unit
When the received light intensity of the reflected light determined by the reflected light analysis unit is greater than the allowable received light intensity by referring to the determination information storage unit, the effect of fog on distance measurement by irradiating the measurement target with a near-infrared light laser. determined to be less,
The laser measuring device, wherein the distance measuring unit uses the reflection position of the visible light laser determined by the fog influence determining unit to be less affected by fog as a range for obtaining the distance of the object to be measured.
請求項4に記載のレーザ計測装置において、さらに、
前記距離計測部は、前記測定対象における可視光レーザの反射位置から算出した測定対象までの距離と前記測定対象における可視光レーザの反射位置に近赤外光レーザを照射して計測した距離との差分が、所定の測距精度以下の場合に、近赤外光レーザを照射して計測した距離を測定対象までの距離とする
ことを特徴とするレーザ計測装置。
The laser measurement device according to claim 4, further comprising:
The distance measurement unit calculates the distance to the measurement object calculated from the reflection position of the visible light laser on the measurement object and the distance measured by irradiating the reflection position of the visible light laser on the measurement object with a near-infrared light laser. 1. A laser measuring device, wherein a distance measured by irradiating a near-infrared light laser is used as a distance to an object to be measured when the difference is equal to or less than a predetermined distance measuring accuracy.
請求項4に記載のレーザ計測装置において、さらに、
前記霧状態検出部は、
前記測定対象における可視光レーザの反射位置から算出した測定対象までの距離を複数回求めて平均値を算出して可視光レーザによる前記測定対象までの距離を求め、
前記距離計測部は、
前記測定対象における可視光レーザの反射位置に近赤外光レーザを照射して計測した距離を複数回求めて平均値を算出して近赤外光レーザによる前記測定対象までの距離を求め、
前記可視光レーザによる前記測定対象までの距離と前記近赤外光レーザによる前記測定対象までの距離との差分が、所定の測距精度以下の場合に、前記近赤外光レーザによる前記測定対象までの距離を測定対象までの距離とする
ことを特徴とするレーザ計測装置。
The laser measurement device according to claim 4, further comprising:
The fog state detection unit is
The distance to the measurement object calculated from the reflected position of the visible light laser on the measurement object is obtained a plurality of times, and the average value is calculated to obtain the distance to the measurement object by the visible light laser,
The distance measurement unit
The distance measured by irradiating the reflection position of the visible light laser on the measurement object with the near-infrared laser is obtained a plurality of times, and the average value is calculated to obtain the distance to the measurement object by the near-infrared laser,
When the difference between the distance to the measurement object by the visible light laser and the distance to the measurement object by the near-infrared light laser is equal to or less than a predetermined distance measurement accuracy, the measurement object by the near-infrared light laser A laser measuring device characterized in that the distance to is set as the distance to the object to be measured.
請求項4に記載のレーザ計測装置において、さらに、
前記距離計測部は、近赤外光レーザを照射して複数回距離を計測し、計測した距離の平均値を算出し、前記平均値の標準偏差が所定の測距精度以下の場合に前記平均値を測定対象までの距離とする
ことを特徴とするレーザ計測装置。
The laser measurement device according to claim 4, further comprising:
The distance measurement unit irradiates a near-infrared light laser to measure the distance a plurality of times, calculates the average value of the measured distances, and calculates the average value when the standard deviation of the average value is equal to or less than a predetermined distance measurement accuracy. A laser measuring device characterized in that a value is set as a distance to an object to be measured.
レーザ計測装置の計測方法であって、
可視光レーザを照射した測定対象からの反射光を受光して受光強度を検出する霧状態検出ステップと、
前記霧状態検出ステップに並行して、近赤外光レーザを照射した測定対象からの反射光により距離計測するステップと、
距離計測するステップで計測した測定対象までの距離において、霧状態検出ステップで検出した受光強度により霧の影響が少ないと判定した範囲の距離を求めて測定対象までの距離を取得する距離取得ステップと、
を含むことを特徴とする計測方法。
A measuring method for a laser measuring device,
a fog state detection step of receiving reflected light from a measurement object irradiated with a visible light laser and detecting the received light intensity;
In parallel with the fog state detection step, a step of measuring a distance by reflected light from a measurement target irradiated with a near-infrared light laser;
a distance acquisition step of acquiring the distance to the measurement object by obtaining the distance to the measurement object measured in the step of measuring the distance in a range determined to be less affected by fog based on the received light intensity detected in the fog state detection step; ,
A measuring method comprising:
請求項8に記載の計測方法において、
前記霧状態検出ステップは、
ラインレーザから可視光レーザのスリット光を測定対象に照射し、
スリット光を照射した前記測定対象の撮像画像から前記スリット光の輝線情報を抽出し、
前記輝線情報から測定対象における前記スリット光の反射位置と、前記反射位置ごとの前記スリット光の反射光の受光強度とを求め、
前記距離取得ステップは、
測定対象までの複数の距離に対する可視光レーザの反射光の受光強度と近赤外光レーザによる距離計測の測距精度とを、霧の濃度を変えて予め測定し、所定の測距精度を満たす前記受光強度の最小値を許容受光強度として測定対象までの距離ごとに記憶する判定情報を参照して、前記霧状態検出ステップで取得した受光強度により霧の影響が少ないと判定する
ことを特徴とする計測方法。
In the measuring method according to claim 8,
The fog state detection step includes:
A slit light of a visible light laser is irradiated from a line laser to the measurement object,
Extracting bright line information of the slit light from the captured image of the measurement object irradiated with the slit light,
Obtaining the reflection position of the slit light on the measurement target from the bright line information and the received light intensity of the reflected light of the slit light for each of the reflection positions,
The distance acquisition step includes:
The received light intensity of the reflected light of the visible light laser and the distance measurement accuracy of the distance measurement by the near-infrared light laser for a plurality of distances to the measurement object are measured in advance by changing the density of the fog, and the predetermined distance measurement accuracy is satisfied. With reference to determination information stored for each distance to the measurement target, the minimum value of the received light intensity being the allowable received light intensity, it is determined that the influence of fog is small based on the received light intensity acquired in the fog state detection step. measurement method.
請求項9に記載の計測方法において、
前記距離取得ステップは、さらに、
前記測定対象における可視光レーザの反射位置から算出した測定対象までの距離と前記測定対象における可視光レーザの反射位置に近赤外光レーザを照射して計測した距離との差分が、所定の測距精度以下の場合に、近赤外光レーザを照射して計測した距離を測定対象までの距離とする
ことを含むことを特徴とする計測方法。
In the measuring method according to claim 9,
The distance acquisition step further includes:
The difference between the distance to the measurement object calculated from the reflection position of the visible light laser on the measurement object and the distance measured by irradiating the reflection position of the visible light laser on the measurement object with a near-infrared laser is a predetermined measurement. A measuring method, comprising: setting a distance measured by irradiating a near-infrared light laser as a distance to a measurement target when the distance accuracy is equal to or less than the distance accuracy.
請求項9に記載の計測方法において、
前記距離取得ステップは、さらに、
前記測定対象における可視光レーザの反射位置から算出した測定対象までの距離を複数回求めて平均値を算出して可視光レーザによる前記測定対象までの距離を求め、
前記測定対象における可視光レーザの反射位置に近赤外光レーザを照射して計測した距離を複数回求めて平均値を算出して近赤外光レーザによる前記測定対象までの距離を求め、
前記可視光レーザによる前記測定対象までの距離と前記近赤外光レーザによる前記測定対象までの距離との差分が、所定の測距精度以下の場合に、前記近赤外光レーザによる前記測定対象までの距離を測定対象までの距離とする
ことを特徴とする計測方法。
In the measuring method according to claim 9,
The distance acquisition step further includes:
The distance to the measurement object calculated from the reflected position of the visible light laser on the measurement object is obtained a plurality of times, and the average value is calculated to obtain the distance to the measurement object by the visible light laser,
The distance measured by irradiating the reflection position of the visible light laser on the measurement object with the near-infrared laser is obtained a plurality of times, and the average value is calculated to obtain the distance to the measurement object by the near-infrared laser,
When the difference between the distance to the measurement object by the visible light laser and the distance to the measurement object by the near-infrared light laser is equal to or less than a predetermined distance measurement accuracy, the measurement object by the near-infrared light laser A measuring method, characterized in that the distance to is taken as the distance to the object to be measured.
請求項9に記載の計測方法において、
前記距離取得ステップは、さらに、
近赤外光レーザを照射して複数回距離を計測し、計測した距離の平均値を算出し、前記平均値の標準偏差が所定の測距精度以下の場合に前記平均値を測定対象までの距離とする
ことを特徴とする計測方法。
In the measuring method according to claim 9,
The distance acquisition step further includes:
Measure the distance multiple times by irradiating a near-infrared laser, calculate the average value of the measured distances, and calculate the average value when the standard deviation of the average value is less than a predetermined distance measurement accuracy. A measuring method characterized by measuring a distance.
JP2021074678A 2021-04-27 2021-04-27 Laser measuring device, and measurement method thereof Pending JP2022168956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021074678A JP2022168956A (en) 2021-04-27 2021-04-27 Laser measuring device, and measurement method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021074678A JP2022168956A (en) 2021-04-27 2021-04-27 Laser measuring device, and measurement method thereof

Publications (1)

Publication Number Publication Date
JP2022168956A true JP2022168956A (en) 2022-11-09

Family

ID=83944160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021074678A Pending JP2022168956A (en) 2021-04-27 2021-04-27 Laser measuring device, and measurement method thereof

Country Status (1)

Country Link
JP (1) JP2022168956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117492027A (en) * 2024-01-03 2024-02-02 成都量芯集成科技有限公司 Laser scanning-based identification device and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117492027A (en) * 2024-01-03 2024-02-02 成都量芯集成科技有限公司 Laser scanning-based identification device and method thereof
CN117492027B (en) * 2024-01-03 2024-03-15 成都量芯集成科技有限公司 Laser scanning-based identification device and method thereof

Similar Documents

Publication Publication Date Title
US10901090B2 (en) TOF camera system and a method for measuring a distance with the system
US6369401B1 (en) Three-dimensional optical volume measurement for objects to be categorized
US6721679B2 (en) Distance measuring apparatus and distance measuring method
WO2019163673A1 (en) Optical distance measurement device
US11859976B2 (en) Automatic locating of target marks
US20070121122A1 (en) Method for the automatic parameterization of measuring systems
JP2009186260A (en) Object detecting device and distance measuring method
US20190033068A1 (en) Apparatus for three-dimensional measurement of an object, method and computer program
US10955555B2 (en) Depth sensor combining line triangulation and time of flight
KR102460791B1 (en) Method and arrangements for providing intensity peak position in image data from light triangulation in a three-dimensional imaging system
CN109099860A (en) 3 dimensional coil geometry measuring device and 3 dimensional coil geometry measurement method
US20230296373A1 (en) Three-dimensional measurement device
JP2020160044A (en) Distance measuring device and distance measuring method
JP2022168956A (en) Laser measuring device, and measurement method thereof
JP3690260B2 (en) Vehicle distance measurement method
US20220196386A1 (en) Three-dimensional scanner with event camera
JP6362058B2 (en) Test object measuring apparatus and article manufacturing method
JP5802917B2 (en) Distance image camera and distance measuring method using the same
JP2019007744A (en) Object sensing device, program, and object sensing system
JP2007192755A (en) Range finder
CN110476080B (en) Lidar device and method for scanning a scanning angle and for analyzing a treatment detector
KR101255194B1 (en) Distance measuring method and device
JP2009186216A (en) Three-dimensional shape measuring device
JP2008180646A (en) Shape measuring device and shape measuring technique
Long et al. Lidar Essential Beam Model for Accurate Width Estimation of Thin Poles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240206