JP2017173062A - Thickness measuring device for electrode body - Google Patents

Thickness measuring device for electrode body Download PDF

Info

Publication number
JP2017173062A
JP2017173062A JP2016057770A JP2016057770A JP2017173062A JP 2017173062 A JP2017173062 A JP 2017173062A JP 2016057770 A JP2016057770 A JP 2016057770A JP 2016057770 A JP2016057770 A JP 2016057770A JP 2017173062 A JP2017173062 A JP 2017173062A
Authority
JP
Japan
Prior art keywords
rolling
active material
material layer
electrode body
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057770A
Other languages
Japanese (ja)
Other versions
JP6674297B2 (en
Inventor
高木 寛
Hiroshi Takagi
寛 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016057770A priority Critical patent/JP6674297B2/en
Publication of JP2017173062A publication Critical patent/JP2017173062A/en
Application granted granted Critical
Publication of JP6674297B2 publication Critical patent/JP6674297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Coating Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure precise thickness of an active material layer 4 after rolling at a measurement position of an after-rolling thickness measuring instrument 15 while removing an affection caused at the active material layer 4 after rolling an electrode body 2.SOLUTION: An after-rolling guide roller 9 for carrying a rolled electrode body 2 is arranged on a downstream side of a rolling roller. The electrode body 2 is structured by intermittently coating a power collecting foil 3 with an active material layer 4. An annular protruding object 19 is attached to an outer peripheral surface 9a of the after-rolling guide roller 9. The protruding object 19 faces an after-rolling thickness measuring instrument 15. At the time of carrying the rolled electrode body 2, tension is applied to the electrode body 2 in association with winding of the electrode body 2, and thereby the electrode body 2 is locally extended below a measurement surface 15a of the after-rolling thickness measuring instrument 15 by a contact surface 20 of the protruding object 19. Therefore, precise thickness of the active material layers 4 on both sides after rolling is measured in a state where there is no wrinkle at a position for measuring thickness of the active material layer 4.SELECTED DRAWING: Figure 5

Description

本発明は、集電箔上に間欠的に塗工した活物質層の厚みを圧延後に計測する電極体の厚み計測装置に関する。   The present invention relates to an electrode body thickness measuring apparatus that measures the thickness of an active material layer applied intermittently on a current collector foil after rolling.

特許文献1には、電池用電極体を圧延する圧延装置が開示されており、この電極体は、集電箔上に活物質層を連続的に塗工することにより形成されている。この圧延装置は、圧延前の電極体の単位時間当たりの移動量を検出する圧延前移動量検出器と、圧延後の電極体の単位時間当たりの移動量を検出する圧延後移動量検出器と、圧延後の電極体の厚みを計測する厚み計と、を備えている。上記圧延装置では、圧延前移動量検出器および圧延後移動量検出器により検出した各移動量から求めた電極体の伸び量と、厚み計により計測した圧延後の電極体の厚みと、に基づいて、電極体の活物質層の密度が管理されている。   Patent Document 1 discloses a rolling device for rolling a battery electrode body, and this electrode body is formed by continuously coating an active material layer on a current collector foil. This rolling apparatus includes a pre-rolling movement amount detector that detects a movement amount per unit time of an electrode body before rolling, and a post-rolling movement amount detector that detects a movement amount per unit time of the electrode body after rolling. And a thickness meter for measuring the thickness of the electrode body after rolling. In the above rolling apparatus, based on the elongation amount of the electrode body obtained from each movement amount detected by the movement amount detector before rolling and the movement amount detector after rolling, and the thickness of the electrode body after rolling measured by a thickness meter. Thus, the density of the active material layer of the electrode body is controlled.

特開2000−188103号公報JP 2000-188103 A

特許文献1の圧延装置を用いて、活物質層が集電箔上に間欠的に塗工されてなる電極体を圧延する場合には、活物質層は長さ方向および幅方向に伸びるのに対し、活物質層が塗工されていない部分の集電箔は幅方向に伸びることがないので、しわが活物質層に発生する虞がある。   When rolling an electrode body in which an active material layer is intermittently applied on a current collector foil using the rolling apparatus of Patent Document 1, the active material layer extends in the length direction and the width direction. On the other hand, the portion of the current collector foil where the active material layer is not coated does not extend in the width direction, so that wrinkles may occur in the active material layer.

ここで、圧延装置では、活物質層の密度は、圧延後の活物質層の厚みに基づいて求められる。   Here, in the rolling apparatus, the density of the active material layer is determined based on the thickness of the active material layer after rolling.

しかし、しわを有する活物質層の厚みを厚み計で計測し、この厚みを活物質層の密度の算出に用いると、正確な密度を算出できなくなる。   However, if the thickness of the active material layer having wrinkles is measured with a thickness meter and this thickness is used for calculating the density of the active material layer, an accurate density cannot be calculated.

本発明では、集電箔上に間欠的に塗工した活物質層の厚みを圧延後に計測する電極体の厚み計測装置が、圧延後の電極体を搬送するように圧延ローラの下流側に設けられたガイドローラと、前記ガイドローラの外周面から外周側に突出する環状突起物と、前記環状突起物と対向する厚み計測器と、を備えている。   In the present invention, an electrode body thickness measuring device for measuring the thickness of the active material layer intermittently coated on the current collector foil after rolling is provided on the downstream side of the rolling roller so as to convey the rolled electrode body. A guide roller, an annular protrusion protruding from the outer peripheral surface of the guide roller toward the outer periphery, and a thickness measuring instrument facing the annular protrusion.

これにより、圧延後に電極体がガイドローラ上の環状突起物を通過するときに、厚み計測器の下方における活物質層のしわが、環状突起物によって局所的に伸ばされる。   Thereby, when the electrode body passes through the annular projection on the guide roller after rolling, the wrinkles of the active material layer below the thickness measuring device are locally extended by the annular projection.

本発明によれば、活物質層の厚みの計測箇所にしわが無い状態で、厚み計測器により活物質層の正確な厚みを計測することができる。   According to the present invention, it is possible to measure the accurate thickness of the active material layer with the thickness measuring instrument in a state where there is no wrinkle at the measurement position of the thickness of the active material layer.

本発明の一実施例の圧延装置の説明図である。It is explanatory drawing of the rolling apparatus of one Example of this invention. 図1の圧延装置の上面図である。It is a top view of the rolling apparatus of FIG. 圧延前後の活物質層および集電箔の状態を示す説明図である。It is explanatory drawing which shows the state of the active material layer and current collection foil before and behind rolling. 圧延後ガイドローラ上の環状突起物の配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the annular protrusion on a guide roller after rolling. 圧延ローラ側から見た圧延後ガイドローラおよび圧延後厚み計測器の説明図である。It is explanatory drawing of the after-rolling guide roller and the after-rolling thickness measuring device seen from the rolling roller side. 第2の実施例の環状突起物の説明図である。It is explanatory drawing of the cyclic | annular protrusion of a 2nd Example. 第3の実施例の環状突起物の説明図である。It is explanatory drawing of the annular protrusion of a 3rd Example. 第4の実施例の環状突起物の説明図である。It is explanatory drawing of the cyclic | annular protrusion of a 4th Example. 図8のA−A線に沿った環状突起物および圧延後ガイドローラの断面図である。It is sectional drawing of the annular protrusion and the after-rolling guide roller along the AA line of FIG. 第5の実施例の環状突起物の説明図である。It is explanatory drawing of the annular protrusion of a 5th Example.

以下、図面を参照しながら、本発明の一実施例について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1には、本発明の厚み計測装置を有した圧延装置1が示されている。圧延装置1は、電池、例えばリチウムイオン二次電池の電極体2を圧延するために用いられる。電極体2は、活物質、導電助剤、バインダおよび有機溶媒等を混合してなるスラリーを、集電箔3(図2)、例えばアルミニウム箔や銅箔の両面に所定の厚さで間欠的に塗工して乾燥させることにより帯状に形成されている。スラリーの乾燥後には、図2にドットで示す複数の活物質層4が、集電箔3の両面に所定の間隔で形成されている。   FIG. 1 shows a rolling device 1 having the thickness measuring device of the present invention. The rolling device 1 is used for rolling an electrode body 2 of a battery, for example, a lithium ion secondary battery. The electrode body 2 is obtained by intermittently mixing a slurry obtained by mixing an active material, a conductive additive, a binder, an organic solvent and the like with a predetermined thickness on both surfaces of a current collector foil 3 (FIG. 2), for example, an aluminum foil or a copper foil. It is formed into a band shape by coating and drying. After the slurry is dried, a plurality of active material layers 4 indicated by dots in FIG. 2 are formed on both surfaces of the current collector foil 3 at predetermined intervals.

圧延装置1は、ロール状に巻かれた乾燥後の帯状電極体2を送出す送出しロール5と、この送出しロール5から送出された電極体2を案内する第1および第2の圧延前ガイドローラ6,7と、電極体2を圧延する上下一対の圧延ローラ8,8と、該圧延ローラ8,8を通過した電極体2を案内する円柱状または円筒状の圧延後ガイドローラ9と、圧延後に電極体2の品質を確認する上下一対の画像処理部10,10と、該画像処理部10,10により発見された電極体2の不良品にマーキングするマーキング部11と、電極体2を切断する切断部12と、送出しロール5から送出された電極体2を巻取る巻取りロール13と、を備えている。なお、巻取りロール13は、切断前の電極体2の巻取りと、所定の長さの電極体2を切断してからの電極体2の巻取りと、を交互に行えるように2軸で構成されている。   The rolling apparatus 1 includes a feed roll 5 that feeds the strip-shaped electrode body 2 after being wound in a roll shape, and the first and second pre-rolling guides for the electrode body 2 fed from the feed roll 5. Guide rollers 6 and 7, a pair of upper and lower rolling rollers 8 and 8 for rolling the electrode body 2, and a cylindrical or cylindrical post-rolling guide roller 9 for guiding the electrode body 2 that has passed through the rolling rollers 8 and 8. A pair of upper and lower image processing units 10 and 10 for confirming the quality of the electrode body 2 after rolling, a marking unit 11 for marking defective products of the electrode body 2 discovered by the image processing units 10 and 10, and the electrode body 2 And a winding roll 13 that winds up the electrode body 2 fed from the feed roll 5. The winding roll 13 is biaxial so that the winding of the electrode body 2 before cutting and the winding of the electrode body 2 after cutting the electrode body 2 of a predetermined length can be alternately performed. It is configured.

上記圧延装置1において、送出しロール5が図中時計回りに回転することにより、帯状電極体2は、第1および第2の圧延前ガイドローラ6,7、圧延ローラ8,8、圧延後ガイドローラ9、画像処理部10,10、マーキング部11、切断部12および巻取りロール13に連続的に供給される。   In the rolling apparatus 1, when the feed roll 5 rotates clockwise in the drawing, the strip-shaped electrode body 2 has the first and second pre-rolling guide rollers 6 and 7, the rolling rollers 8 and 8, and the post-rolling guide. It is continuously supplied to the roller 9, the image processing units 10 and 10, the marking unit 11, the cutting unit 12 and the winding roll 13.

第2の圧延前ガイドローラ7の左斜め上方には、圧延前の活物質層4の厚み、具体的には、両面の活物質層4を含む電極体2全体の厚みを計測する複数の圧延前厚み計測器14が、第2の圧延前ガイドローラ7に対向するように設けられている。一方、圧延後ガイドローラ9の上方には、圧延後の活物質層4の厚み、具体的には、両面の活物質層4を含む電極体2全体の厚みを計測する複数の圧延後厚み計測器15が、圧延後ガイドローラ9に対向するように設けられている。圧延後厚み計測器15は、非接触式厚み計測器、例えば分光干渉レーザ変位計である。また、圧延前厚み計測器14および圧延後厚み計測器15により、活物質層4の塗工開始および塗工終了における活物質層4の傾斜やかすれによる比較的薄い厚みを判断することで、圧延前後の活物質層4の塗工長さがそれぞれ計測される。   A plurality of rollings measuring the thickness of the active material layer 4 before rolling, specifically, the thickness of the entire electrode body 2 including the active material layers 4 on both sides, on the upper left side of the second pre-rolling guide roller 7. A front thickness measuring instrument 14 is provided so as to face the second pre-rolling guide roller 7. On the other hand, above the guide roller 9 after rolling, a plurality of post-rolling thickness measurements for measuring the thickness of the active material layer 4 after rolling, specifically, the thickness of the entire electrode body 2 including the active material layers 4 on both sides. A vessel 15 is provided to face the guide roller 9 after rolling. The post-rolling thickness measuring instrument 15 is a non-contact type thickness measuring instrument, for example, a spectral interference laser displacement meter. Further, the thickness measuring device 14 before rolling and the thickness measuring device 15 after rolling determine the relatively thin thickness due to the inclination or fading of the active material layer 4 at the start of coating of the active material layer 4 and at the end of coating. The coating lengths of the front and rear active material layers 4 are measured.

ここで、以下の説明の便宜のために、活物質層4の長さ方向である図2のX方向を「活物質層長さ方向」と定義し、活物質層4の幅方向である図2のY方向を「活物質層幅方向」と定義する。   Here, for convenience of the following description, the X direction of FIG. 2 that is the length direction of the active material layer 4 is defined as “active material layer length direction”, and is a view that is the width direction of the active material layer 4. The Y direction of 2 is defined as the “active material layer width direction”.

本実施例では、図2に示すように、3つの圧延前厚み計測器14,14,14および3つの圧延後厚み計測器15,15,15が、活物質層幅方向Yに沿って所定の間隔でそれぞれ設けられている。   In this example, as shown in FIG. 2, three pre-rolling thickness measuring devices 14, 14, 14 and three post-rolling thickness measuring devices 15, 15, 15 are arranged in a predetermined direction along the active material layer width direction Y. Each is provided at intervals.

さらに、圧延前厚み計測器14と一対の圧延ロール8,8との間に、圧延前の活物質層4の幅を計測する上下一対の圧延前幅計測器16,16が、活物質層幅方向Yに沿った電極体2の両側にそれぞれ設けられている。一方、圧延後厚み計測器15の下流側に、圧延後の活物質層4の幅を計測する上下一対の圧延後幅計測器17,17が、圧延前幅計測器16,16と同様に、活物質層幅方向Yに沿った電極体2の両側にそれぞれ設けられている。   Further, a pair of upper and lower pre-rolling width measuring instruments 16 and 16 for measuring the width of the active material layer 4 before rolling are provided between the thickness measuring instrument 14 before rolling and the pair of rolling rolls 8 and 8. It is provided on each side of the electrode body 2 along the direction Y. On the other hand, on the downstream side of the post-rolling thickness measuring instrument 15, a pair of upper and lower post-rolling width measuring instruments 17 and 17 that measure the width of the active material layer 4 after rolling are similar to the pre-rolling width measuring instruments 16 and 16, respectively. They are provided on both sides of the electrode body 2 along the active material layer width direction Y, respectively.

圧延装置1では、圧延後の活物質層4の密度を算出することにより、電極体2の品質を管理している。活物質層4の密度は、集電箔3の両面の活物質層4の単位面積当たりの重量(以下、「デポジション」と呼ぶ)を、圧延後の両面の活物質層4の厚みで割ることで算出される。電極体2の圧延後には、活物質層4の厚みが減少することに加えて、図3に誇張して示すように、活物質層4が活物質層長さ方向Xおよび活物質層幅方向Yの双方に伸びる。従って、圧延後の活物質層4の密度を算出する際には、まず、厚み計測器14,15により計測した圧延前後の活物質層4の塗工長さから活物質層4の活物質層長さ方向Xの伸び量を求め、幅計測器16,17により計測した圧延前後の活物質層4の幅から活物質層4の活物質層幅方向Yの伸び量を求める。そして、これらの伸び量を考慮してデポジションを算出し、このデポジションを、圧延後厚み計測器15で計測した活物質層4の厚みで除算する。   In the rolling apparatus 1, the quality of the electrode body 2 is managed by calculating the density of the active material layer 4 after rolling. The density of the active material layer 4 is obtained by dividing the weight per unit area of the active material layer 4 on both sides of the current collector foil 3 (hereinafter referred to as “deposition”) by the thickness of the active material layer 4 on both sides after rolling. It is calculated by. After the electrode body 2 is rolled, in addition to the thickness of the active material layer 4 being reduced, the active material layer 4 has an active material layer length direction X and an active material layer width direction as shown exaggeratedly in FIG. It extends to both sides of Y. Therefore, when calculating the density of the active material layer 4 after rolling, first, the active material layer of the active material layer 4 is calculated from the coating length of the active material layer 4 before and after rolling measured by the thickness measuring devices 14 and 15. The elongation amount in the length direction X is obtained, and the elongation amount in the active material layer width direction Y of the active material layer 4 is obtained from the width of the active material layer 4 before and after rolling measured by the width measuring devices 16 and 17. Then, the deposition is calculated in consideration of these elongation amounts, and this deposition is divided by the thickness of the active material layer 4 measured by the thickness meter 15 after rolling.

また、電極体2の圧延後には、活物質層4が活物質層長さ方向Xおよび活物質層幅方向Yの双方に伸びるが、活物質層4が塗工されていない部分における集電箔3は幅方向に伸びることがないので、波形のしわ18が、圧延後の活物質層4に生じることがある。さらに、しわ18の発生箇所は、活物質層4の塗工形状やパスライン上の電極体2の傾き等により変化する。しわ18を有した活物質層4の厚みを計測すると、しわ18により凹凸となった活物質層4の厚みを計測してしまうので、活物質層4の不正確な密度を算出する要因となる。   In addition, after the electrode body 2 is rolled, the active material layer 4 extends in both the active material layer length direction X and the active material layer width direction Y, but the current collecting foil in a portion where the active material layer 4 is not coated. Since 3 does not extend in the width direction, wavy wrinkles 18 may occur in the active material layer 4 after rolling. Furthermore, the generation | occurrence | production location of the wrinkle 18 changes with the inclination of the electrode body 2 on the coating shape of the active material layer 4, a pass line, etc. If the thickness of the active material layer 4 having the wrinkles 18 is measured, the thickness of the active material layer 4 that is uneven due to the wrinkles 18 is measured, which is a factor for calculating an inaccurate density of the active material layer 4. .

従って、本実施例では、圧延後に活物質層4に生じるしわ18の影響を排除した状態で、圧延後の活物質層4の厚みを計測する。   Therefore, in the present embodiment, the thickness of the active material layer 4 after rolling is measured in a state where the influence of the wrinkles 18 generated in the active material layer 4 after rolling is eliminated.

本実施例では、図4に示すように、圧延後の活物質層4のしわ18を局所的に伸ばす3つの環状突起物19,19,19が、3つの圧延後厚み計測器15,15,15(図2)の下方で、圧延後ガイドローラ9に取り付けられている。ここで、環状突起物19の内径は、圧延後ガイドローラ9の外径に対応しており、突起物19は、圧延後ガイドローラ9の外周面(接触面)9aに取り付けられている。また、突起物19を、圧延後ガイドローラ9に形成された環状凹部に嵌合するようにしても良い。なお、突起物19を、圧延後ガイドローラ9と一体に形成するようにしても良い。   In this embodiment, as shown in FIG. 4, the three annular protrusions 19, 19, 19 that locally stretch the wrinkles 18 of the active material layer 4 after rolling have three post-rolling thickness measuring instruments 15, 15, It is attached to the guide roller 9 after rolling below 15 (FIG. 2). Here, the inner diameter of the annular protrusion 19 corresponds to the outer diameter of the guide roller 9 after rolling, and the protrusion 19 is attached to the outer peripheral surface (contact surface) 9a of the guide roller 9 after rolling. Moreover, you may make it the protrusion 19 fit in the cyclic | annular recessed part formed in the guide roller 9 after rolling. The protrusions 19 may be formed integrally with the guide roller 9 after rolling.

この実施例の環状突起物19は、圧延後ガイドローラ9と同等の剛性を有した材料で構成されている。圧延後ガイドローラ9は、例えば、スチールやステンレス鋼(SUS)から構成されている。従って、環状突起物19は、圧延後ガイドローラ9と同様に、スチールやステンレス鋼から構成されている。   The annular projection 19 of this embodiment is made of a material having rigidity equivalent to that of the guide roller 9 after rolling. The after-rolling guide roller 9 is made of, for example, steel or stainless steel (SUS). Accordingly, the annular protrusion 19 is made of steel or stainless steel, like the guide roller 9 after rolling.

環状突起物19は、圧延後ガイドローラ9の外周面9aから外周側に突出している。突起物19の突出高さは、電極体2が突起物19に局所的に押し付けられた状態で搬送されるときに転写すじが活物質層4に生じない程度の高さに設定されている。一例では、突起物19の突出高さは、数ミリ程度である。また、突起物19の幅Wは、圧延後の活物質層4のしわ18同士の間隔よりも狭くなるように設定されている。一例では、突起物19の幅Wは、約6mmである。これにより、伸ばす対象となるしわ18に隣接したしわ18に突起物19が接触することがないので、活物質層4にたるみや新たなしわ18が発生することが防止される。   The annular protrusion 19 protrudes from the outer peripheral surface 9a of the guide roller 9 after rolling to the outer peripheral side. The protrusion height of the protrusion 19 is set to such a height that no transfer streaks are generated in the active material layer 4 when the electrode body 2 is conveyed in a state of being locally pressed against the protrusion 19. In one example, the protrusion height of the protrusion 19 is about several millimeters. Further, the width W of the protrusion 19 is set to be narrower than the interval between the wrinkles 18 of the active material layer 4 after rolling. In one example, the width W of the protrusion 19 is about 6 mm. Thereby, since the protrusion 19 does not contact the wrinkle 18 adjacent to the wrinkle 18 to be stretched, the sagging and the new wrinkle 18 are prevented from occurring in the active material layer 4.

図5に示すように、環状突起物19は、電極体2の下面2aと接触する接触面20を有しており、この接触面20は、活物質層4の厚みの計測位置となる中央の平坦面20aと、この平坦面20aの両側の外側に凸とされた円弧面20b,20bと、を備えている。平坦面20aは、圧延後厚み計測器15の計測面15aと対向している。   As shown in FIG. 5, the annular protrusion 19 has a contact surface 20 that comes into contact with the lower surface 2 a of the electrode body 2, and this contact surface 20 is a central position where the thickness of the active material layer 4 is measured. A flat surface 20a and arcuate surfaces 20b and 20b that are convex outward on both sides of the flat surface 20a are provided. The flat surface 20a is opposed to the measurement surface 15a of the thickness meter 15 after rolling.

圧延後の電極体2が突起物19および圧延後ガイドローラ9を通過するときには、巻取りロール13の巻取りに伴い張力が電極体2にかかることにより、電極体2は、圧延後厚み計測器15の計測面15aの下方で突起物19の接触面20に局所的に押し付けられる。これにより、活物質層4のしわ18は、圧延後の活物質層4の厚みの計測位置で、平坦面20aおよび円弧面20b,20bに追従しながら活物質層幅方向Yに局所的に伸ばされる。   When the electrode body 2 after rolling passes through the protrusions 19 and the guide roller 9 after rolling, the tension is applied to the electrode body 2 as the winding roll 13 is wound, so that the electrode body 2 has a thickness meter after rolling. It is pressed locally against the contact surface 20 of the projection 19 below the 15 measurement surfaces 15a. Thereby, the wrinkle 18 of the active material layer 4 is locally extended in the active material layer width direction Y while following the flat surface 20a and the arcuate surfaces 20b and 20b at the measurement position of the thickness of the active material layer 4 after rolling. It is.

なお、図5では、実際には、圧延後ガイドローラ9の接触面9aと接触している電極体2の活物質層4には多少のしわ18が生じているが、図を簡潔にするために省略している。   In FIG. 5, the wrinkles 18 are actually generated in the active material layer 4 of the electrode body 2 that is in contact with the contact surface 9 a of the guide roller 9 after rolling. Is omitted.

上記のように、本実施例では、環状突起物19により圧延後の活物質層4のしわ18を局所的に伸ばすようにしたことから、活物質層4の厚みの計測箇所にしわ18が無い状態で、平坦な活物質層4に圧延後厚み計測器15からのレーザ光21(図5に点線の矢印で示す)を照射することにより、圧延後の活物質層4の正確な厚み(両面の活物質層4の厚みの総和)を計測することができる。従って、活物質層4の正確な厚みでデポジションを除算することにより、圧延後の活物質層4の密度が精度良く算出される。これにより、圧延後の電極体2の品質の管理が向上する。   As described above, in the present embodiment, the wrinkles 18 of the active material layer 4 after rolling are locally stretched by the annular protrusions 19, so that there are no wrinkles 18 at the location where the thickness of the active material layer 4 is measured. In this state, the flat active material layer 4 is irradiated with a laser beam 21 (shown by a dotted arrow in FIG. 5) from the post-rolling thickness measuring instrument 15, so that the accurate thickness (both sides of the active material layer 4 after rolling) The total thickness of the active material layers 4) can be measured. Therefore, by dividing the deposition by the exact thickness of the active material layer 4, the density of the active material layer 4 after rolling can be accurately calculated. Thereby, management of the quality of the electrode body 2 after rolling improves.

また、本実施例では、環状突起物19が平坦面20aの両側に円弧面20b,20bを有するようにしたことから、圧延後の電極体2の搬送時に、活物質層4の剥離や転写すじが生じることを防止することができる。仮に円弧面20bに相当する部分が角部で形成されている場合には、電極体2の巻取り時に電極体2にかかる張力により、応力が上記角部に集中的にかかるため、活物質層4の剥離や転写すじが生じ易くなる。従って、滑らかな曲線を有した円弧面20bを設けることで、接触面20への応力を緩和しつつ、活物質層4の剥離や転写すじを防止している。   Further, in this embodiment, since the annular protrusion 19 has the arc surfaces 20b, 20b on both sides of the flat surface 20a, the active material layer 4 is peeled off or transferred when the electrode body 2 is rolled. Can be prevented. If the portion corresponding to the arcuate surface 20b is formed at the corner, the stress is concentrated on the corner due to the tension applied to the electrode body 2 when the electrode body 2 is wound, so that the active material layer 4 is likely to be peeled off or transferred. Therefore, by providing the circular arc surface 20b having a smooth curve, the active material layer 4 is prevented from being peeled off or transferred while the stress on the contact surface 20 is relaxed.

図6には、第2の実施例の環状突起物19が示されている。本実施例では、環状突起物19は、図4および図5の環状突起物19とは異なる材料で構成されている。環状突起物19は、少なくとも電極体2に応力を与える側部27つまり円弧面20bの剛性が、スチールやステンレス鋼からなる圧延後ガイドローラ9の接触面9aの剛性よりも低いことが望ましい。さらに望ましくは、上記円弧面20b(側部27)の剛性が、活物質層4の剛性と同等の剛性であることが好ましい。   FIG. 6 shows an annular protrusion 19 of the second embodiment. In this embodiment, the annular protrusion 19 is made of a material different from that of the annular protrusion 19 shown in FIGS. In the annular protrusion 19, it is desirable that the rigidity of at least the side portion 27 that applies stress to the electrode body 2, that is, the arc surface 20b, is lower than the rigidity of the contact surface 9a of the post-rolling guide roller 9 made of steel or stainless steel. More desirably, the rigidity of the arcuate surface 20b (side portion 27) is preferably equal to the rigidity of the active material layer 4.

本実施例では、環状突起物19は、その全体が活物質層4の剛性と同等の剛性を有した材料(図6にドットで示す)で構成されている。突起物19は、弾性体、例えばゴムやフッ素樹脂から構成されている。   In the present embodiment, the annular protrusion 19 is entirely made of a material (shown by dots in FIG. 6) having the same rigidity as that of the active material layer 4. The protrusion 19 is made of an elastic body such as rubber or fluororesin.

第2の実施例では、環状突起物19が活物質層4の剛性と同等の剛性を有した材料、例えば弾性体で構成されるようにしたことから、環状突起物19の弾性変形により、圧延後の電極体2の搬送時に接触面20、特に円弧面20b,20bにかかる応力を吸収することができる。これにより、活物質層4の剥離や転写すじが、より確実に防止される。   In the second embodiment, since the annular protrusion 19 is made of a material having rigidity equivalent to the rigidity of the active material layer 4, for example, an elastic body, the annular protrusion 19 is rolled by elastic deformation. It is possible to absorb the stress applied to the contact surface 20, particularly the arcuate surfaces 20b and 20b, when the electrode body 2 is transported later. Thereby, peeling of the active material layer 4 and transfer streaks are more reliably prevented.

図7には、第3の実施例の環状突起物19が示されている。本実施例では、突起物19は、3つの部分からなり、図4〜図6と同様の平坦面20aを有した環状突起物基部22と、図4〜図6と同様の円弧面20b,20bをそれぞれ有した2つの環状突起物側部23,23と、を備えている。   FIG. 7 shows an annular protrusion 19 of the third embodiment. In the present embodiment, the projection 19 is composed of three parts, an annular projection base 22 having a flat surface 20a similar to that shown in FIGS. 4 to 6, and arcuate surfaces 20b and 20b similar to those shown in FIGS. Are provided with two annular protrusion side portions 23 and 23 respectively.

突起物基部22は、圧延後ガイドローラ9と同等の剛性を有した材料で構成されている。また、突起物側部23,23は、活物質層4の剛性と同等の剛性を有した材料で構成されている。例えば、前述した実施例と同様に、ゴムやフッ素樹脂から構成されている。   The protrusion base 22 is made of a material having rigidity equivalent to that of the guide roller 9 after rolling. Further, the protrusion side parts 23 and 23 are made of a material having rigidity equivalent to that of the active material layer 4. For example, it is made of rubber or fluororesin as in the above-described embodiments.

従って、第3の実施例によっても、圧延後の電極体2の搬送時に円弧面20b,20bにかかる応力を吸収することができる。   Therefore, also according to the third embodiment, it is possible to absorb the stress applied to the arcuate surfaces 20b and 20b when the electrode body 2 after rolling is conveyed.

図8には、第4の実施例の環状突起物19が示されている。本実施例では、環状突起物19は、4つの部分からなり、第3の実施例の環状突起物基部22よりも外径の小さな環状突起物基部24(図9にハッチングで示す)と、第3の実施例の環状突起物側部23,23と同様の突起物側部23,23と、を備えている。従って、突起物基部24と突起物側部23,23との間に、突起物基部24の外周面24aを底面とする図示せぬ環状溝部が形成されている。この環状溝部には、溝幅に対応した幅を有した環状カバー部25が嵌合される。環状カバー部25を嵌合した状態では、図9に示すように、圧延後ガイドローラ9の外周面9aに環状突起物基部24が取り付けられ、さらに、環状突起物基部24の外周面24aに環状カバー部25が取り付けられている。なお、突起物基部24を、圧延後ガイドローラ9と一体に形成するようにしても良い。   FIG. 8 shows an annular protrusion 19 of the fourth embodiment. In the present embodiment, the annular protrusion 19 is composed of four parts, and an annular protrusion base 24 (shown by hatching in FIG. 9) having a smaller outer diameter than the annular protrusion base 22 of the third embodiment, The projection side portions 23 and 23 are the same as the annular projection side portions 23 and 23 of the third embodiment. Therefore, an annular groove (not shown) having the outer peripheral surface 24a of the protrusion base 24 as a bottom surface is formed between the protrusion base 24 and the protrusion side parts 23 and 23. An annular cover portion 25 having a width corresponding to the groove width is fitted into the annular groove portion. In the state in which the annular cover portion 25 is fitted, as shown in FIG. 9, the annular protrusion base 24 is attached to the outer peripheral surface 9 a of the guide roller 9 after rolling, and further, the annular protrusion base 24 is annular on the outer peripheral surface 24 a. A cover portion 25 is attached. Note that the protrusion base 24 may be formed integrally with the guide roller 9 after rolling.

突起物側部23,23は、第3の実施例と同様に、活物質層4の剛性と同等の剛性を有した材料、例えばゴムやフッ素樹脂から構成されている。   Similar to the third embodiment, the protrusion side parts 23 and 23 are made of a material having rigidity equivalent to that of the active material layer 4, such as rubber or fluororesin.

突起物基部24は、圧延後ガイドローラ9と同等の剛性を有した材料、例えばスチールやステンレス鋼から構成されている。また、環状カバー部25は、突起物側部23と同じく、活物質層4の剛性と同等の剛性を有した材料、例えばゴムやフッ素樹脂で構成されている。従って、活物質層4の厚みの計測位置となる環状突起物19の中央部分28が、内周側の相対的に剛性が高い突起物基部24と、外周側の相対的に剛性が低いカバー部25と、を有している。   The projection base 24 is made of a material having rigidity equivalent to that of the guide roller 9 after rolling, for example, steel or stainless steel. The annular cover portion 25 is made of a material having rigidity equivalent to that of the active material layer 4, for example, rubber or fluororesin, like the protrusion side portion 23. Accordingly, the central portion 28 of the annular protrusion 19 serving as a measurement position of the thickness of the active material layer 4 includes a protrusion base 24 having a relatively high rigidity on the inner peripheral side and a cover part having a relatively low rigidity on the outer peripheral side. 25.

第4の実施例では、環状カバー部25が環状突起物側部23,23と同様の材料で構成されているので、環状突起物19の接触面20の全体が、第2の実施例と同様に、活物質層4の剛性と同等の剛性を有している。従って、第4の実施例の環状突起物19は、第2の実施例と同様に、圧延後の電極体2の搬送時に接触面20、特に円弧面20b,20bにかかる応力を吸収することができる。   In the fourth embodiment, since the annular cover portion 25 is made of the same material as the annular protrusion side portions 23, 23, the entire contact surface 20 of the annular protrusion 19 is the same as in the second embodiment. Furthermore, it has a rigidity equivalent to that of the active material layer 4. Therefore, like the second embodiment, the annular protrusion 19 of the fourth embodiment can absorb the stress applied to the contact surface 20, particularly the arc surfaces 20 b and 20 b, when the rolled electrode body 2 is conveyed. it can.

図10には、第5の実施例の環状突起物19が示されている。本実施例では、図7の実施例の環状突起物基部22を、この突起物基部22と同様の形状を有した環状加熱部26に置き換えたものである。環状加熱部26は、例えば図示せぬ内部ヒータによって熱を出すことにより電極体2を加熱する。ここで、加熱部26による加熱温度は、活物質層4内のバインダの融点よりも約20〜40℃だけ低くなるように設定されている。加熱部26による加熱幅(図10の活物質層幅方向Yに沿った幅)は、しわ18同士の間隔よりも狭くなるように設定されている。   FIG. 10 shows an annular protrusion 19 of the fifth embodiment. In the present embodiment, the annular protrusion base 22 in the embodiment of FIG. 7 is replaced with an annular heating portion 26 having the same shape as the protrusion base 22. The annular heating unit 26 heats the electrode body 2 by generating heat with, for example, an internal heater (not shown). Here, the heating temperature by the heating unit 26 is set to be lower by about 20 to 40 ° C. than the melting point of the binder in the active material layer 4. The heating width by the heating unit 26 (the width along the active material layer width direction Y in FIG. 10) is set to be narrower than the interval between the wrinkles 18.

第5の実施例では、加熱部26により圧延後の電極体2を加熱するようにしたことから、活物質層4内のバインダが軟化し、これにより、活物質層4が、突起物19の接触面20、特に加熱部26の平坦面26aに沿って動き易くなる。従って、圧延後の活物質層4のしわ18が、突起物19の接触面20に沿って伸び易くなる。   In the fifth embodiment, since the electrode body 2 after rolling is heated by the heating unit 26, the binder in the active material layer 4 is softened. It becomes easy to move along the contact surface 20, particularly the flat surface 26 a of the heating unit 26. Accordingly, the wrinkles 18 of the active material layer 4 after rolling are likely to extend along the contact surface 20 of the protrusion 19.

1・・・圧延装置
2・・・電極体
3・・・集電箔
4・・・活物質層
8・・・圧延ローラ
9・・・圧延後ガイドローラ
15・・・圧延後厚み計測器
19・・・突起物
20・・・接触面
20a・・・平坦面
20b・・・円弧面
22・・・突起物基部
23・・・突起物側部
24・・・突起物基部
25・・・カバー部
26・・・加熱部
DESCRIPTION OF SYMBOLS 1 ... Rolling apparatus 2 ... Electrode body 3 ... Current collecting foil 4 ... Active material layer 8 ... Rolling roller 9 ... Rolling guide roller 15 ... Rolling thickness measuring instrument 19 ... Projection 20 ... Contact surface 20a ... Flat surface 20b ... Arc surface 22 ... Projection base 23 ... Projection side 24 ... Projection base 25 ... Cover Part 26 .. heating part

Claims (6)

集電箔上に間欠的に塗工した活物質層の厚みを圧延後に計測する電極体の厚み計測装置であって、
圧延後の電極体を搬送するように圧延ローラの下流側に設けられたガイドローラと、
前記ガイドローラの外周面から外周側に突出する環状突起物と、
前記環状突起物と対向する厚み計測器と、
を備えた厚み計測装置。
A thickness measuring device for an electrode body that measures the thickness of an active material layer applied intermittently on a current collector foil after rolling,
A guide roller provided on the downstream side of the rolling roller so as to convey the electrode body after rolling;
An annular projection projecting outward from the outer peripheral surface of the guide roller;
A thickness measuring instrument facing the annular projection;
Thickness measuring device with
前記環状突起物の少なくとも側部の剛性が、前記ガイドローラの接触面の剛性よりも低いことを特徴とする請求項1に記載の厚み計測装置。   The thickness measuring apparatus according to claim 1, wherein rigidity of at least a side portion of the annular protrusion is lower than rigidity of a contact surface of the guide roller. 前記環状突起物は、厚み計測位置となる中央の環状突起物基部と、該環状突起物基部の両側の環状突起物側部と、を有し、前記環状突起物側部は、前記環状突起物基部に比較して剛性が低いことを特徴とする請求項1または2に記載の厚み計測装置。   The annular protrusion has a central annular protrusion base serving as a thickness measurement position, and annular protrusion side portions on both sides of the annular protrusion base, and the annular protrusion side portion is the annular protrusion. The thickness measuring device according to claim 1, wherein the thickness is lower than that of the base portion. 前記環状突起物の厚み計測位置となる中央部分が、内周側の相対的に剛性が高い環状突起物基部と、この環状突起物基部の外周面に取り付けられた相対的に剛性が低い環状カバー部と、からなることを特徴とする請求項1〜3のいずれかに記載の厚み計測装置。   An annular projection base having a relatively high rigidity on the inner peripheral side, and an annular cover having a relatively low rigidity attached to the outer peripheral surface of the annular projection base. The thickness measuring device according to claim 1, wherein the thickness measuring device comprises: a portion. 前記環状突起物は、平坦面と、該平坦面の両側の円弧面と、を備えることを特徴とする請求項1〜4のいずれかに記載の厚み計測装置。   The thickness measurement device according to claim 1, wherein the annular protrusion includes a flat surface and arc surfaces on both sides of the flat surface. 前記環状突起物は加熱部を備えることを特徴とする請求項1,2,3,5のいずれかに記載の厚み計測装置。   The thickness measuring device according to claim 1, wherein the annular protrusion includes a heating unit.
JP2016057770A 2016-03-23 2016-03-23 Electrode thickness measuring device Active JP6674297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057770A JP6674297B2 (en) 2016-03-23 2016-03-23 Electrode thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057770A JP6674297B2 (en) 2016-03-23 2016-03-23 Electrode thickness measuring device

Publications (2)

Publication Number Publication Date
JP2017173062A true JP2017173062A (en) 2017-09-28
JP6674297B2 JP6674297B2 (en) 2020-04-01

Family

ID=59970859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057770A Active JP6674297B2 (en) 2016-03-23 2016-03-23 Electrode thickness measuring device

Country Status (1)

Country Link
JP (1) JP6674297B2 (en)

Also Published As

Publication number Publication date
JP6674297B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP5411371B1 (en) Roll press equipment and thickness measurement system
WO2010082335A1 (en) Method of detecting the width of a coated film and detection device used in said detection method
KR102115991B1 (en) Roll press machine and roll press method by roll press machine
CN104143628A (en) Rolling method and rolling device for electrode material
KR102206057B1 (en) An electrode rolling apparatus having a heating unit for heating a non-coated portion and Manufacturing system for an electrode comprising the same
KR101810025B1 (en) Measuring methode for electrode of secondary cell
JP2011042458A (en) Web carrying device, method thereof and method of manufacturing battery
JP5394588B1 (en) Roll press equipment
JP6093244B2 (en) Double-side coating system
JP2011134479A (en) Electrode manufacturing system
JP6082885B2 (en) Method and apparatus for manufacturing battery electrode sheet
JP5359671B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP5413655B2 (en) Film thickness measuring device
JP5280593B1 (en) Roll press equipment and thickness gauge used therefor
JP2017173062A (en) Thickness measuring device for electrode body
JP2009047665A (en) Film thickness distribution measurement apparatus and film-forming apparatus
JP2014024617A (en) Electrode sheet winding device and electrode sheet winding method
JP2016018647A (en) Roll press apparatus
JP3584273B2 (en) Film thickness measurement method
JP7247395B2 (en) Correlation of thermographic image data to online scanning basis weight measurements
JP2014078448A (en) Edge detection method
JP2012238529A (en) Coating method and roller for coating liquid
JP2017059473A (en) Manufacturing apparatus
KR101654641B1 (en) Measuring apparatus for electrode of secondary cell
JP6778358B2 (en) Method and device for dividing sheet-shaped electrode members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200306

R150 Certificate of patent or registration of utility model

Ref document number: 6674297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250