JP2017172678A - Roller bearing for cryogenic environment - Google Patents

Roller bearing for cryogenic environment Download PDF

Info

Publication number
JP2017172678A
JP2017172678A JP2016058641A JP2016058641A JP2017172678A JP 2017172678 A JP2017172678 A JP 2017172678A JP 2016058641 A JP2016058641 A JP 2016058641A JP 2016058641 A JP2016058641 A JP 2016058641A JP 2017172678 A JP2017172678 A JP 2017172678A
Authority
JP
Japan
Prior art keywords
separator
rolling bearing
separators
rolling
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016058641A
Other languages
Japanese (ja)
Inventor
鈴木 康介
Kosuke Suzuki
康介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016058641A priority Critical patent/JP2017172678A/en
Publication of JP2017172678A publication Critical patent/JP2017172678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/20Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing for cryogenic environment in which an assembling characteristic of a separator can be improved without being restricted against resiliency of resin raw material having solid lubricating characteristic, it can be easily assembled into a location where the adjoining rollers are most approached to each other at the final stage of assembling work and after assembling work, the rollers can be rotated in stable manner.SOLUTION: This invention relates to a roller bearing in which several balls 3 are arranged between an outer peripheral surface of an inner ring and an inner peripheral surface of an outer ring, several separators S containing solid lubricants of fluorine-contained resin system are present between the adjoining balls 3, each of spherical-surface-shaped recesses 5 contacted with each of the rollers is formed at about a middle part in an axial direction of both side surfaces 4a of the separators S opposing to their peripheral directions to hold the balls 3 in a rotatable manner. A wall surface part 6 including one end surface of both end surfaces of the inner ring and the outer ring in their axial directions of one separator 4 of several separators S is a divided piece, remaining portions are applied as prismatic barrels 7 of the separators 4 including the other end surface and formed with recesses 5, the divided piece can be separated in an axial direction in respect to the remaining portions and the divided pieces are arranged under connected states with a bolt 8 against the remaining portions.SELECTED DRAWING: Figure 2

Description

この発明は、液化天然ガスなどの極低温状態の液化ガスを移送するポンプなどに装着され極低温下で用いられる極低温環境用転がり軸受に関するものである。   The present invention relates to a rolling bearing for a cryogenic environment that is attached to a pump or the like that transfers a liquefied gas in a cryogenic state such as liquefied natural gas and is used at a cryogenic temperature.

一般に、常温環境下で用いられる転がり軸受は、内輪と外輪の間に転動体を回転自在に保持し、潤滑が必要なものであるが、例えば液化ガス等が存在する−100℃以下または−200℃以下のような極低温の環境下で用いる転がり軸受には、潤滑油等による液体潤滑を行なうことが困難である。
また、極低温環境用転がり軸受には、冷却される部品の収縮変形に伴う強度低下や耐久性の低下などが起こりやすく、そのような厳しい使用条件に耐える必要がある。
In general, a rolling bearing used in a room temperature environment is one in which a rolling element is rotatably held between an inner ring and an outer ring and needs to be lubricated. For example, a liquefied gas is present at −100 ° C. or below or −200. It is difficult to perform liquid lubrication with a lubricating oil or the like for a rolling bearing used in an extremely low temperature environment such as ° C or less.
In addition, rolling bearings for cryogenic environments are liable to decrease in strength and durability due to shrinkage and deformation of components to be cooled, and must withstand such severe use conditions.

因みに、極低温の液化ガスの代表例である液化天然ガス(LNG)は、常圧下で−161.5℃(約−162℃)以下に冷却されると液化する物性であり、この他にも、例えば冷媒、熱媒体、充填用ガスなどに液化状態で利用されるガスとしては、窒素、ヘリウムなども挙げられる。   Incidentally, liquefied natural gas (LNG), which is a typical example of cryogenic liquefied gas, has physical properties that liquefy when cooled to -161.5 ° C (about -162 ° C) or lower under normal pressure. For example, nitrogen, helium, etc. are mentioned as gas utilized in a liquefied state for a refrigerant | coolant, a heat medium, filling gas, etc.

また、極低温の液化ガスを液体の状態を維持して移送したり保管したりする場合には、極低温下での使用に適した型式のポンプを用いる必要があり、そのようなポンプの型式としてサブマージド型のポンプが知られている。
この型式のポンプは、モータを含むポンプ装置の全体を液化ガス中に浸漬して用いるので、本体を外気から密封するためのメカニカルシールを必要とせず、そのため気化ガスの散逸によるロスの少ない点でも優れている。
In addition, when transporting or storing a cryogenic liquefied gas in a liquid state, it is necessary to use a pump of a type suitable for use at a cryogenic temperature. A submerged pump is known.
Since this type of pump is used by immersing the entire pump device including the motor in liquefied gas, there is no need for a mechanical seal for sealing the main body from the outside air, so there is little loss due to dissipation of the vaporized gas. Are better.

しかし、サブマージド型のポンプは、モータ軸などを支持する転がり軸が直接に液化ガスに触れる状態で用いられるので、潤滑性に乏しいLNGによって潤滑されることになる。   However, since the submerged pump is used in a state where the rolling shaft that supports the motor shaft or the like is in direct contact with the liquefied gas, the submerged pump is lubricated by LNG having poor lubricity.

上記以外にも極低温環境用の転がり軸受の例としては、地表から遠く離れた成層圏より高高度の宇宙空間や、さらに離れた宇宙空間での環境温度が−50〜−270℃程度になることから、そのような人工衛星や宇宙船で用いられる転がり軸受は上記同様な極低温環境用の特性が求められる。   In addition to the above, as an example of a rolling bearing for a cryogenic environment, the environment temperature in the high altitude space farther from the stratosphere far from the surface of the earth, and the environment temperature in a further far space should be about −50 to −270 ° C. Therefore, rolling bearings used in such artificial satellites and spacecraft are required to have the same characteristics for cryogenic environments as described above.

ところで、このような極低温環境下で用いられる転がり軸受には、組み込む保持器に固体潤滑性を発揮させるため、フッ素樹脂で形成されたものが知られている(特許文献1)。   By the way, as a rolling bearing used in such a cryogenic environment, a bearing formed of a fluororesin is known in order to allow the cage to be incorporated to exhibit solid lubricity (Patent Document 1).

また、同様の使用条件での転がり軸受用の保持器の形態として、環状の保持器を周方向に分割した形態や球状などの形態のセパレータと称されるものがあり、隣り合う転動体間の間隔を適切に保持するために回転体または非回転体として配置され、このようなセパレータは、固体潤滑性に優れたPTFE系高分子材料で形成して潤滑性を持たせたものが知られている(特許文献2)。   In addition, as a form of a cage for rolling bearings under the same usage conditions, there is a so-called separator having a form in which an annular retainer is divided in the circumferential direction or a form such as a spherical form, and between adjacent rolling elements. In order to properly maintain the interval, the separator is arranged as a rotating body or a non-rotating body, and such a separator is known to have a lubricity formed by a PTFE polymer material having excellent solid lubricity. (Patent Document 2).

特開2014−020490号公報Japanese Patent Application Laid-Open No. 2014-020490 特開2002−147462号公報JP 2002-147462 A

しかし、上記のセパレータは、周方向に対向する両側面に、ボールを保持するための溝または凹部が形成されており、凹部以外のセパレータの両側面間の距離(厚み)は、当然に凹部同士の距離(厚み)よりも大きい。
そのため、転がり軸受の製造工程において、内輪と外輪の間に転動体とセパレータを交互に組み込んでいくとき、最後に残った1組の隣り合う転動体同士の隙間に対し、セパレータをそのまま変形させずに組み込むことはできず、組み込み作業の最終段階では、セパレータを弾性変形させて強制的に押し込む必要があった。
However, in the separator described above, grooves or recesses for holding the ball are formed on both side surfaces facing in the circumferential direction, and the distance (thickness) between the side surfaces of the separator other than the recesses is naturally between the recesses. Greater than the distance (thickness).
Therefore, when rolling elements and separators are alternately assembled between the inner ring and the outer ring in the manufacturing process of the rolling bearing, the separator is not deformed as it is with respect to the gap between the pair of adjacent rolling elements remaining at the end. In the final stage of the assembling operation, the separator had to be elastically deformed and forced to be pushed in.

そのような組み込み作業の困難性を改善するために、セパレータに周方向の幅を弾性的に減少させるための弾性伸縮機構を設け、弾性的に圧縮した状態でセパレータを組み込むことにより、組み込み作業が容易になるように対応を検討した。   In order to improve the difficulty of such assembly work, the separator is provided with an elastic expansion / contraction mechanism for elastically reducing the circumferential width, and the separator is assembled in an elastically compressed state. We examined the response to make it easier.

しかしながら、保持器の材質によって弾性力が不足すると、押し込みによって塑性変形した保持器と転動体との間に隙間が残ってしまい、転動体の回転が安定しなくなる可能性も検討する必要がある。   However, if the elastic force is insufficient due to the material of the cage, a gap remains between the cage and the rolling element plastically deformed by the pushing, and it is necessary to consider the possibility that the rotation of the rolling element becomes unstable.

そこで、この発明の課題は上記の問題点を解決し、固体潤滑性のある樹脂素材の弾性を制限されることなくセパレータの組み込み性を改善し、組み込みの最終段階で隣り合う転動体同士の最も接近した箇所に容易に組み込むことができ、組み込み後には転動体が安定して回転できる極低温環境用転がり軸受とすることである。   Therefore, the object of the present invention is to solve the above-mentioned problems, improve the incorporation of the separator without restricting the elasticity of the resin material having solid lubricity, and achieve the best of the adjacent rolling elements in the final assembly stage. It is a rolling bearing for a cryogenic environment that can be easily assembled in an approached place, and the rolling element can rotate stably after the assembly.

上記の課題を解決するために、この発明においては、内輪外周と外輪内周の間に複数の転動体を配列し、固体潤滑剤を含む角柱状セパレータを隣り合う前記転動体間に介在させ、前記セパレータの内外輪周方向に対向する両側面にそれぞれ転動体を案内する凹部を形成して前記転動体を回転自在に保持する転がり軸受において、前記セパレータの内外輪軸方向の両端面のうち一端面を含むセパレータの一部を、残りの部分に対して軸方向に切離可能な分割片とし、この分割片を前記残りの部分と結合状態に設けたことを特徴とする極低温環境用転がり軸受としたのである。   In order to solve the above problems, in the present invention, a plurality of rolling elements are arranged between the inner ring outer periphery and the outer ring inner periphery, and a prismatic separator containing a solid lubricant is interposed between the adjacent rolling elements, In a rolling bearing that forms recesses for guiding the rolling elements on both side surfaces facing the circumferential direction of the inner and outer rings of the separator so as to rotatably hold the rolling elements, one end face of both end faces of the separator in the inner and outer ring axial directions A rolling bearing for a cryogenic environment, characterized in that a part of a separator including a part is a split piece that is axially separable from the remaining part, and the split piece is provided in a coupled state with the remaining part. It was.

上記したように構成されるこの発明の極低温環境用転がり軸受は、内輪と外輪の間に転動体とセパレータを交互に組み込んでいき、最後に残る1組の隣り合う転動体同士の隙間に対し、セパレータの内外輪軸方向の両端面のうち一端面を含むセパレータの一部を分割片として、転がり軸受の軸方向の一方側から差し込むときに、予め転がり軸受の軸方向の反対側から前記セパレータの残りの部分を差し込んでおくことにより、この部分と分割片を結合して一体化することができる。   The rolling bearing for the cryogenic environment of the present invention configured as described above is configured by alternately incorporating rolling elements and separators between the inner ring and the outer ring, and with respect to the gap between a pair of adjacent rolling elements remaining at the end. , When inserting from one side of the rolling bearing in the axial direction, a part of the separator including one end surface of both end faces in the inner and outer ring axial directions of the separator is inserted into the axial direction of the rolling bearing in advance from the opposite side of the rolling bearing. By inserting the remaining part, this part and the split piece can be combined and integrated.

すなわち、セパレータを最後に残った1組の隣り合う転動体同士の隙間に組み込む際に、軸方向の一方向からの組み込みの妨げになるのは、隣り合う転動体同士の最も離れている凹部外側に位置する「セパレータの内外輪軸方向の両端面」であるが、この両端面のうち一端面を含むセパレータの一部を、残りの部分に対して軸方向に切離可能な分割片としたことにより、前記各端面を転がり軸受の内外輪軸方向の両側から取り付けることが可能になる。
そして、分割片をセパレータの残りの部分に対してねじなどで結合可能とすれば、セパレータを弾性変形させる必要はなく、特に上記転動体が玉であり、かつ凹部が球面状凹部であっても、転がり軸受の転動体およびセパレータの組み込み作業も速やかに効率よく行なえる。
That is, when assembling the separator into the gap between the pair of adjacent rolling elements remaining at the end, it is the outer side of the recesses that are the farthest adjacent rolling elements that hinders the incorporation from one axial direction. It is the “both end surfaces of the inner and outer ring axial direction of the separator” located in, but part of the separator including one end surface of the both end surfaces is a split piece that can be separated in the axial direction from the remaining portion Thus, the end faces can be attached from both sides in the inner and outer ring axial directions of the rolling bearing.
If the split piece can be coupled to the remaining part of the separator with a screw or the like, the separator need not be elastically deformed. In particular, even if the rolling element is a ball and the recess is a spherical recess. In addition, the work of assembling the rolling elements and separator of the rolling bearing can be performed quickly and efficiently.

上記セパレータは、分割片と残りの部分との結合面の縁に形成される結合線が、セパレータ表面の転動体と接触する面以外に配置されたセパレータであることが好ましい。なぜなら、分割した部分同士を嵌め合わせる結合面の縁は、機械的な強度が最も弱い部分であるのは物理的に当然であり、このような結合線が回転する転動体に触れないようにすることによって、結合面の縁の損傷を防止できるから、セパレータの耐久性は向上する。   The separator is preferably a separator in which a bonding line formed at the edge of the bonding surface between the split piece and the remaining portion is disposed on a surface other than the surface in contact with the rolling element on the separator surface. This is because it is naturally natural that the edge of the joint surface that fits the divided parts is the part where the mechanical strength is the weakest, so that the joint line does not touch the rotating rolling elements. As a result, damage to the edge of the coupling surface can be prevented, so that the durability of the separator is improved.

また、上記セパレータは、分割片と残りの部分との結合面の縁に形成される結合線が、セパレータ表面の転動体との接触面に配置されている場合、前記結合線上に重ねて逃げ溝(ヌスミとも別称される。)が設けられていることにより、結合線が回転する転動体に接触しないので、損傷を防止できる。   In addition, the separator has a relief groove that overlaps with the coupling line when a coupling line formed at the edge of the coupling surface between the split piece and the remaining portion is disposed on the contact surface with the rolling element on the separator surface. By providing (also referred to as "Nusumi"), damage can be prevented because the connecting wire does not come into contact with the rotating rolling elements.

前記したセパレータの分割片と、このセパレータの残りの部分との結合は、ねじまたはリベットによる結合を採用することにより、結合状態が確実で使用耐久性に優れた極低温環境用転がり軸受になる。   The separator piece and the remaining part of the separator are joined by screws or rivets to form a rolling bearing for a cryogenic environment that is surely connected and has excellent durability.

また、上記したセパレータは、極低温環境用転がり軸受に用いることにより、固体潤滑剤を含む素材の弾性特性に制限されることなく、組み込み性の良いセパレータになり、これを用いて転動体が安定して回転する極低温環境用転がり軸受になる。   In addition, by using the above separator for rolling bearings for cryogenic environments, it becomes a separator with good embedding without being restricted by the elastic characteristics of the material containing the solid lubricant, and the rolling element is stable using this. Thus, it becomes a rolling bearing for a cryogenic environment that rotates.

この発明は、転がり軸受のセパレータの内外輪軸方向の両端面のうち一端面を含むセパレータの一部を、残りの部分に対して軸方向に切離可能として結合状態に設けたので、固体潤滑性のある樹脂素材の弾性を制限することなくセパレータの組み込み性を改善し、組み込みの最終段階で隣り合う転動体同士の最も接近した箇所にセパレータを容易に組み込むことができ、組み込み後には転動体が安定して回転できる極低温環境用転がり軸受となる利点があり、またそのような利点を奏する極低温環境用転がり軸受用のセパレータとなる利点がある。   In the present invention, a part of the separator including one end face of both end faces in the inner and outer ring axial directions of the separator of the rolling bearing is provided in a coupled state so as to be axially separable from the remaining part. Improves the separator's incorporation without restricting the elasticity of certain resin materials, and can easily incorporate the separator at the closest location between adjacent rolling elements at the final stage of assembly. There is an advantage that it can be a rolling bearing for a cryogenic environment that can be stably rotated, and an advantage that it can be a separator for a rolling bearing for a cryogenic environment that exhibits such an advantage.

第1の実施形態の極低温環境用転がり軸受の側面図Side view of rolling bearing for cryogenic environment according to the first embodiment 第1の実施形態における配列された玉とセパレータの関係を示す断面図Sectional drawing which shows the relationship between the ball | bowl arranged in 1st Embodiment, and a separator 第1の実施形態に用いた第1のセパレータの斜視図The perspective view of the 1st separator used for a 1st embodiment. 第2のセパレータの斜視図Perspective view of second separator 第3のセパレータの斜視図Perspective view of third separator 第4のセパレータの斜視図Perspective view of the fourth separator 第4のセパレータの結合線上に重ねた逃げ溝を示す要部の断面図Sectional drawing of the principal part which shows the escape groove accumulated on the coupling line of the 4th separator

この発明の実施形態を以下に、添付図面に基づいて説明する。
図1〜3に示すように、第1実施形態は、深溝玉軸受の内輪1の外周面と外輪2の内周面の間に複数の玉3を配列し、フッ素樹脂系固体潤滑剤を含む複数のセパレータSを隣り合う玉3の間に介在させ、セパレータSの周方向に対向する両側面4aの軸方向中ほどにそれぞれ転動体(玉3)の接触する角溝状の凹部5を形成して玉3を回転自在に保持する転がり軸受である。
そして、上記転がり軸受の複数のセパレータSのうち、1つのセパレータ4の内外輪軸方向の両端面のうち、一端面を含む壁面部分6を分割片とし、残りの部分は、他端面を含み凹部5の形成されたセパレータ4の角柱状胴部7として、分割片を前記残りの部分に対して軸方向に切離可能とし、この分割片を前記残りの部分とボルト8で結合状態に設けた極低温環境用転がり軸受である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIGS. 1-3, 1st Embodiment arrange | positions the several ball | bowl 3 between the outer peripheral surface of the inner ring | wheel 1 and the inner peripheral surface of the outer ring | wheel 2 of a deep groove ball bearing, and contains a fluororesin-type solid lubricant. A plurality of separators S are interposed between the adjacent balls 3, and the angular groove-shaped recesses 5 with which the rolling elements (balls 3) contact each other are formed in the middle in the axial direction of both side surfaces 4 a facing the separator S in the circumferential direction. Thus, it is a rolling bearing that holds the ball 3 rotatably.
Of the plurality of separators S of the rolling bearing, among the two end faces in the inner and outer ring axial directions of one separator 4, the wall surface portion 6 including one end surface is used as a split piece, and the remaining portion includes the other end surface and includes a recess 5. As the prism-shaped body portion 7 of the separator 4 formed with the poles, the divided pieces can be axially separated from the remaining portions, and the divided pieces are connected to the remaining portions by bolts 8. This is a rolling bearing for low temperature environments.

実施形態の玉軸受の内輪1および外輪2は、極低温環境下の使用に良く耐える素材からなり、例えば内輪1および外輪2は、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、析出硬化系ステンレス鋼、または高速度工具鋼であり、これらは硬質で耐摩耗性に優れた鋼材である。   The inner ring 1 and the outer ring 2 of the ball bearing of the embodiment are made of a material that can withstand use in a cryogenic environment. For example, the inner ring 1 and the outer ring 2 are martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, These are precipitation hardened stainless steel or high-speed tool steel, which are hard and excellent in wear resistance.

玉3を例示した転動体の素材は、耐摩耗性が良くて、しかもフッ素樹脂などの固体潤滑剤の移着性に優れているものが好ましく、例えば、前述したマルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、析出硬化系ステンレス鋼や、高速度工具鋼、またはセラミックスを使用することが好ましい。使用するセラミックスの種類は、窒化ケイ素系、ジルコニア系、炭化ケイ素系、アルミナ系その他各系のセラミックスを例示できる。
なお、転がり軸受は、深溝玉軸受を代表例として図示したが、セパレータを採用した転がり軸受であれば、玉軸受であっても良く、ころ軸受であっても良い。
The material of the rolling element exemplified by the ball 3 is preferably one having good wear resistance and excellent transferability of a solid lubricant such as a fluororesin. For example, the martensitic stainless steel, ferrite type described above It is preferable to use stainless steel, austenitic stainless steel, precipitation hardening stainless steel, high-speed tool steel, or ceramics. Examples of the type of ceramic used include silicon nitride, zirconia, silicon carbide, alumina, and other ceramics.
The rolling bearing is illustrated as a deep groove ball bearing as a representative example, but may be a ball bearing or a roller bearing as long as it is a rolling bearing employing a separator.

この発明に用いるセパレータ4は、固体潤滑剤を含む素材からなり固体潤滑剤としてはグラファイトや二硫化タングステン、二硫化モリブデンなどの層状物質、金、銀、鉛などの軟質金属、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂を含む樹脂材もしくはフッ素樹脂成形体または固体潤滑剤をコーティングした金属、セラミックスまたはこれらの複合材などを用いることが好ましい。
特に、PTFE等のフッ素樹脂素材からなるセパレータ4は、極低温でも転動体の表面に固体潤滑材であるフッ素樹脂を移着させて、良好かつ安定した固体潤滑性を発揮させるために好ましい。
The separator 4 used in the present invention is made of a material containing a solid lubricant, and the solid lubricant includes a layered material such as graphite, tungsten disulfide and molybdenum disulfide, a soft metal such as gold, silver and lead, polytetrafluoroethylene ( It is preferable to use a resin material containing a fluororesin such as PTFE), a fluororesin molded body, a metal coated with a solid lubricant, ceramics, or a composite material thereof.
In particular, the separator 4 made of a fluororesin material such as PTFE is preferable in order to transfer a fluororesin as a solid lubricant to the surface of the rolling element even at an extremely low temperature so as to exhibit good and stable solid lubricity.

また、セパレータ4の実施形態は、内輪1の外周および外輪2の内周の間に収まる所要高さの短円筒状、すなわちリング状の素材を、周方向に分割して隣り合う転動体の間隔を保持する適切な大きさに設けているが、他の周知形状のものを採用しても良い。   In the embodiment of the separator 4, a short cylindrical shape having a required height that fits between the outer circumference of the inner ring 1 and the inner circumference of the outer ring 2, that is, a ring-shaped material is divided in the circumferential direction and the interval between the adjacent rolling elements. However, other known shapes may be employed.

図3に示すようにセパレータ4は、略角柱状であって軸直交断面が扇形のフッ素樹脂系素材で形成され、軸方向の両端面のうち、一端面を含む壁面部分6を分割片とし、残りの部分(他端面を含む壁面部分9および凹部5の形成されたセパレータ4の角柱状胴部7)に対して軸方向に切離可能としたものであり、分割片と残りの部分とを結合するようにボルト8を一端面を含む壁面部分6から角柱状胴部7に軸方向にねじ込んで固定している。   As shown in FIG. 3, the separator 4 has a substantially prismatic shape and is formed of a fluorine resin material having a fan-shaped axial cross section, and the wall surface portion 6 including one end surface of both end surfaces in the axial direction is divided into pieces, The remaining portion (the wall surface portion 9 including the other end surface and the prismatic body portion 7 of the separator 4 in which the recess 5 is formed) can be separated in the axial direction, and the divided piece and the remaining portion are separated from each other. The bolt 8 is screwed in the axial direction from the wall surface portion 6 including one end surface to the prismatic body portion 7 so as to be coupled.

このような第1実施形態の転がり軸受は、玉3およびセパレータ4の組み込み工程において、玉3と、固体潤滑剤を含む角柱状のセパレータ4を交互に組み込んでいくとき、最後に残った隣り合う玉3同士の隙間に、一端面を含む壁面部分6を、残りの部分に対して軸方向からボルト8で結合したものである。   In the rolling bearing according to the first embodiment, when the balls 3 and the prismatic separator 4 including the solid lubricant are alternately assembled in the assembling process of the balls 3 and the separators 4, the rolling bearings are adjacent to each other. A wall surface portion 6 including one end face is coupled to the remaining portion by a bolt 8 from the axial direction in a gap between the balls 3.

すなわち、第1実施形態は、分割片である一端面を含む壁面部分6が、予め転がり軸受の軸方向の反対側から差し込んでおいた前記セパレータの残りの部分に対して軸方向の一方側からボルト8で結合して一体化することができる。   That is, according to the first embodiment, the wall surface portion 6 including one end face which is a divided piece is inserted from the opposite side of the axial direction of the rolling bearing in advance from the one side in the axial direction with respect to the remaining portion of the separator. The bolts 8 can be combined and integrated.

上記セパレータ4は、分割片と残りの部分との結合面の縁に形成される結合線10が、セパレータ4の表面のうち玉3と接触する面以外に配置されている。このように結合線10が回転する玉3と接触しないようにすることによって、分割されているセパレータ4の使用状態における耐久性は向上する。   In the separator 4, the connecting line 10 formed at the edge of the connecting surface between the split piece and the remaining portion is arranged on the surface of the separator 4 other than the surface that contacts the ball 3. By preventing the connecting wire 10 from coming into contact with the rotating balls 3 in this manner, the durability of the divided separators 4 in use is improved.

図4に示す第2実施形態は、第1実施形態に用いたセパレータの分割片とその残りの部分を変更したものであり、それ以外は第1実施形態と同様の構成である。
すなわち、第2実施形態に用いるセパレータ11は、断面扇形の角柱状のフッ素樹脂系素材を用いて成形され、その内外輪軸方向の両端面のうち、一端面を含む壁面部分12と2分割された角柱状胴部13の1つを結合し、例えて言えば「一本歯の高下駄状部分」を1つの分割片とし、同形状の残りの部分とを組み合わせて、対向する結合面を2本のボルト8で結合した極低温環境用転がり軸受である。
The second embodiment shown in FIG. 4 is the same as the first embodiment except that the separator split piece used in the first embodiment and the remaining part thereof are changed.
That is, the separator 11 used in the second embodiment is formed using a prismatic fluororesin material having a sectoral cross section, and is divided into two wall surfaces 12 including one end surface among both end surfaces in the inner and outer ring axial directions. Combine one of the prismatic body parts 13, for example, a “single-tooth high clog-like part” as one divided piece, and combine the remaining part of the same shape with 2 opposing coupling surfaces. It is a rolling bearing for a cryogenic environment connected by a bolt 8.

図5に示す第3実施形態についても第2実施形態と同様に、セパレータの分割片とその残りの部分の形態を変更したものであり、それ以外は第2実施形態と同様に構成したものである。   As in the second embodiment, the third embodiment shown in FIG. 5 is also the same as the second embodiment except that the separator pieces and the remaining portions are changed. is there.

すなわち、第3実施形態に用いるセパレータ14は、断面扇形の角柱状のフッ素樹脂系素材を用いて成形する際に、軸方向の両端面のうち、一端面を含む壁面部分15と共に、角柱状の胴部を長方形状の外周面および内周面の平行する2つの対角線を含む面で2分割し、そのように2分割された角柱状胴部16の一つとボルト8で結合して設けた極低温環境用転がり軸受である。   That is, the separator 14 used in the third embodiment has a prismatic shape together with the wall surface portion 15 including one end face among both end faces in the axial direction when the separator 14 is formed using a prismatic fluorine resin material having a sectoral cross section. A pole provided by dividing the body part into two parts by a rectangular outer peripheral surface and an inner peripheral surface including two parallel diagonal lines, and connecting with one of the two divided prismatic body parts 16 by bolts 8 This is a rolling bearing for low temperature environments.

図4、図5に示すように第2、第3実施形態に用いるセパレータ11、14については、分割片と残りの部分との結合面の縁に形成される結合線17、18は、セパレータ11、14の表面の玉3と接触する面以外に配置されるから、結合線17、18が回転する玉3に触れないようにすることによって、結合面の縁部分の損傷を防止でき、セパレータ11、14の耐久性は向上する。   As shown in FIGS. 4 and 5, for the separators 11 and 14 used in the second and third embodiments, the connecting lines 17 and 18 formed at the edge of the connecting surface between the split piece and the remaining part are connected to the separator 11. , 14 is arranged on a surface other than the surface that contacts the ball 3, so that the edge of the coupling surface can be prevented from being damaged by preventing the coupling lines 17 and 18 from touching the rotating ball 3, and the separator 11 , 14 is improved.

図6、7に示す第4実施形態についても第3実施形態と同様に、セパレータ19の分割片とその残りの部分の形態を変更したものであり、それ以外は全く同様に構成したものである。   The fourth embodiment shown in FIGS. 6 and 7 is also the same as the third embodiment except that the divided pieces of the separator 19 and the remaining portions are changed, and the other parts are configured in exactly the same manner. .

すなわち、第4実施形態に用いるセパレータ19は、断面扇形の角柱状のフッ素樹脂系素材を用いて成形する際、内外輪軸方向の両端面のうち、一端面を含む壁面部分20と共に、内外輪周方向に対向する両側面19aにそれぞれ玉3を案内する略球面状の凹部21を形成すると共に、セパレータ19の中央部で軸方向を2分割し、各部分をボルト8で結合して設けた極低温環境用転がり軸受である。   That is, when the separator 19 used in the fourth embodiment is formed using a prismatic fluororesin-based material having a sectoral cross section, the inner and outer ring periphery together with the wall surface portion 20 including one end face among the both end faces in the inner and outer ring axial directions. A substantially spherical concave portion 21 for guiding the ball 3 is formed on both side surfaces 19a opposed to each other in the direction, and the axial direction is divided into two at the central portion of the separator 19, and each portion is connected by a bolt 8 This is a rolling bearing for low temperature environments.

上記セパレータ19は、2分割した部分同士の結合面の縁に形成される結合線22が、玉3との接触面である凹部21の内側部分を通って配置されるが、この部分については結合線22に重ねて逃げ溝(ヌスミとも別称される。)23を設けて、結合線22が回転する転動体3に接触しないようにして損傷を防止している。   In the separator 19, a connecting line 22 formed at the edge of the connecting surface between the two divided parts is disposed through the inner part of the recess 21 that is a contact surface with the ball 3. An escape groove (also referred to as “Nusumi”) 23 is provided so as to overlap the wire 22 so that the connecting wire 22 does not come into contact with the rotating rolling elements 3 to prevent damage.

図7に示すように、逃げ溝23の形状は、円溝(図7(a))ばかりでなく、三角溝(図7(b))23aその他の多角形溝などの周知の溝形状を採用できる。   As shown in FIG. 7, the shape of the relief groove 23 is not only a circular groove (FIG. 7 (a)) but also a known groove shape such as a triangular groove (FIG. 7 (b)) 23a and other polygonal grooves. it can.

このセパレータ19は、玉3に対し、できるだけ広い面積で接触可能であるように両側面19aの中程に半球曲面状の凹部5を有しているので、セパレータと玉との接触面積が広く、固体潤滑剤であるフッ素樹脂を効率良く供給できる。   Since this separator 19 has the hemispherically curved concave portion 5 in the middle of both side surfaces 19a so as to be able to contact the ball 3 in as wide an area as possible, the contact area between the separator and the ball is wide, A fluororesin that is a solid lubricant can be supplied efficiently.

第1〜4実施形態では、結合状態が、ねじを用いたボルト8を示したが、分割片と残りの部分に対して貫通する孔を設けてリベットを用いた結合状態を採用することもできる。また転がり軸受の回転時の振動によるねじの緩みを防止するために、接着や溶着を利用した周知の緩み止め手段を採用することもできる。   In the first to fourth embodiments, the bolt 8 using a screw is shown as a connected state, but a combined state using a rivet by providing a hole penetrating the split piece and the remaining part can also be adopted. . In order to prevent loosening of the screw due to vibration during rotation of the rolling bearing, known loosening prevention means using adhesion or welding can be employed.

以上のように構成されるこの発明の実施形態1〜4の極低温環境用転がり軸受は、その具体的な用途として、前述のように潤滑条件が極めて厳しい液化ガス用ポンプの転がり軸受として適用でき、また同様に極低温下で液体潤滑の不可能な人工衛星アンテナの支持や駆動装置に用いる転がり軸受としても適用できる。   As described above, the rolling bearings for the cryogenic environment according to the first to fourth embodiments of the present invention configured as described above can be applied as rolling bearings for liquefied gas pumps with extremely severe lubrication conditions as described above. Similarly, it can also be applied as a rolling bearing used for supporting or driving an artificial satellite antenna that cannot be liquid lubricated at extremely low temperatures.

転がり軸受の用途が液化ガス用ポンプである場合は、液化天然ガス(LNG)用サブマージドポンプに適用でき、その場合に、転がり軸受が直接に極低温のLNGに接触するが、長期間の使用に耐えて耐摩耗性および潤滑性の低下しない耐久性に優れた極低温環境用転がり軸受となる。   When the rolling bearing is used for a liquefied gas pump, it can be applied to a submerged pump for liquefied natural gas (LNG). In that case, the rolling bearing is in direct contact with the cryogenic LNG, but it is used for a long time. It is a rolling bearing for a cryogenic environment that is resistant to wear and has excellent durability without deterioration of wear resistance and lubricity.

1 内輪
2 外輪
3 玉
4、11、14、19 セパレータ
4a 両側面
5、21 凹部
6、12、15、20 一端面を含む壁面部分
7 角柱状胴部
8 ボルト
9 他端面を含む壁面部分
10、17、18、22 結合線
13、16 2分割された角柱状胴部
23、23a 逃げ溝
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Balls 4, 11, 14, 19 Separator 4a Both side surfaces 5, 21 Recess 6, 12, 15, 20 Wall surface part including one end surface 7 Square columnar body portion 8 Bolt 9 Wall surface portion 10 including the other end surface 17, 18, 22 Connecting lines 13, 16 Divided prismatic body parts 23, 23a Escape groove

Claims (6)

内輪外周と外輪内周の間に複数の転動体を配列し、固体潤滑剤を含む角柱状のセパレータを複数設け、これらを隣り合う転動体間のそれぞれに介在させると共に、前記セパレータの内外輪周方向に対向する両側面にそれぞれ転動体を案内する凹部を形成して前記転動体を回転自在に保持する転がり軸受において、
前記複数のセパレータのうち、少なくとも一つのセパレータの内外輪軸方向の両端面のうち一端面を含むセパレータの一部を、残りの部分に対して軸方向に切離可能な分割片とし、この分割片を前記残りの部分と結合状態に設けたことを特徴とする極低温環境用転がり軸受。
A plurality of rolling elements are arranged between the inner ring outer periphery and the outer ring inner periphery, and a plurality of prismatic separators including a solid lubricant are provided. These separators are interposed between adjacent rolling elements, and the inner and outer ring circumferences of the separators. In the rolling bearing for holding the rolling element rotatably by forming a recess for guiding the rolling element on both side surfaces facing in the direction,
Among the plurality of separators, a part of the separator including one end face of both end faces in the inner and outer ring axial directions of at least one separator is a split piece that can be separated in the axial direction from the remaining part. A rolling bearing for a cryogenic environment, characterized in that is provided in a coupled state with the remaining portion.
上記転動体が玉であり、かつ凹部が球面状凹部である請求項1に記載の極低温環境用転がり軸受。   The rolling bearing for a cryogenic environment according to claim 1, wherein the rolling element is a ball and the concave portion is a spherical concave portion. 上記セパレータは、分割片と残りの部分との結合面の縁に形成される結合線が、セパレータ表面の転動体と接触する面以外に配置されたセパレータである請求項1または2に記載の極低温環境用転がり軸受。   3. The electrode according to claim 1, wherein the separator is a separator in which a bonding line formed at an edge of a bonding surface between the divided piece and the remaining portion is disposed on a surface other than a surface in contact with the rolling element on the separator surface. Rolling bearing for low temperature environment. 上記セパレータは、分割片と残りの部分との結合面の縁に形成される結合線が、セパレータ表面の転動体との接触面に配置され、かつ前記結合線に重ねて逃げ溝を設けたセパレータである請求項1〜3のいずれかに記載の極低温環境用転がり軸受。   The separator is a separator in which a connecting line formed at the edge of the connecting surface between the split piece and the remaining part is disposed on the contact surface with the rolling element on the separator surface, and a relief groove is provided on the connecting line. The rolling bearing for a cryogenic environment according to any one of claims 1 to 3. 上記結合状態が、ボルトまたはリベットを用いた結合状態である請求項1〜4のいずれかに記載の極低温環境用転がり軸受。   The rolling bearing for a cryogenic environment according to any one of claims 1 to 4, wherein the coupled state is a coupled state using bolts or rivets. 請求項1〜5のいずれかに記載の極低温環境用転がり軸受に用いるセパレータ。   The separator used for the rolling bearing for cryogenic environments in any one of Claims 1-5.
JP2016058641A 2016-03-23 2016-03-23 Roller bearing for cryogenic environment Pending JP2017172678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058641A JP2017172678A (en) 2016-03-23 2016-03-23 Roller bearing for cryogenic environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058641A JP2017172678A (en) 2016-03-23 2016-03-23 Roller bearing for cryogenic environment

Publications (1)

Publication Number Publication Date
JP2017172678A true JP2017172678A (en) 2017-09-28

Family

ID=59971067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058641A Pending JP2017172678A (en) 2016-03-23 2016-03-23 Roller bearing for cryogenic environment

Country Status (1)

Country Link
JP (1) JP2017172678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126448A (en) * 2020-01-15 2021-07-16 佳能株式会社 Exposure apparatus and method for manufacturing article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126448A (en) * 2020-01-15 2021-07-16 佳能株式会社 Exposure apparatus and method for manufacturing article

Similar Documents

Publication Publication Date Title
JP2014020490A (en) Roller bearing and pump device for liquid gas
WO2017082249A1 (en) Rolling bearing for extremely low-temperature environment
US8894292B2 (en) Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing
EP0962676A2 (en) Bearing assembly with spherical bearing surfaces
US6318899B1 (en) Non-lubricated rolling element ball bearing
EP2743528A1 (en) Tapered roller bearing and mounting structure therefor
US20060147139A1 (en) Member for the guidance of a movable piece
JP2007224978A (en) Double row thrust roller bearing
WO2017146047A1 (en) Roller bearing for extremely low-temperature environments
JP2009138863A (en) Retainer for bearings
JP2017172678A (en) Roller bearing for cryogenic environment
JP2005083467A (en) Cylindrical roller bearing
WO2017082205A1 (en) Roller bearing for very low temperature environments
US20220186776A1 (en) Rolling bearing
EP3607215B1 (en) Improved efficiency journal bearing
WO2017043445A1 (en) Rolling bearing for extremely low temperature environments
JP5985684B2 (en) Thrust bearing and its cage
JP2010065827A (en) Ball bearing
JP2020153495A (en) Holder for rolling bearing, and rolling bearing
WO2021171879A1 (en) Solid-lubrication rolling bearing
WO2024019012A1 (en) Outer ring guide retainer-attached ball bearing and eccentric rotary device
JP2007298184A (en) Angular ball-bearing
WO2017078151A1 (en) Rolling bearing for use in extremely low-temperature environment
WO2021187032A1 (en) Solid-lubricated rolling bearing
KR102490414B1 (en) Lubrication-free bearing