JP2017172641A - Industrial belt - Google Patents

Industrial belt Download PDF

Info

Publication number
JP2017172641A
JP2017172641A JP2016057374A JP2016057374A JP2017172641A JP 2017172641 A JP2017172641 A JP 2017172641A JP 2016057374 A JP2016057374 A JP 2016057374A JP 2016057374 A JP2016057374 A JP 2016057374A JP 2017172641 A JP2017172641 A JP 2017172641A
Authority
JP
Japan
Prior art keywords
belt
core wire
fiber
metal
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057374A
Other languages
Japanese (ja)
Other versions
JP6697297B2 (en
Inventor
慎二 牛島
Shinji Ushijima
慎二 牛島
金子 健
Takeshi Kaneko
健 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2016057374A priority Critical patent/JP6697297B2/en
Publication of JP2017172641A publication Critical patent/JP2017172641A/en
Application granted granted Critical
Publication of JP6697297B2 publication Critical patent/JP6697297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an industrial belt that can be manufactured without increasing the number of steps at the time of manufacturing belt and attain both restriction of initial elongation of a core wire and flex resistance.SOLUTION: Several fibrous core wires 41 and several metallic core wires 42 are arranged in a belt main body 2 in such a way that they may be mixed and present in a width direction of the belt main body 2. It is preferable that a ratio in the number of wires between the fibrous core wires 41 and the metallic core wires 42, fibrous core wires:metallic core wires=0.75:1 to 1:0.75, that the fibrous core wires 41 and the metallic core wires 42 are arranged in a symmetrical manner while a center of the belt main body 2 in its width direction being applied as a reference and that core wires arranged at both ends of the belt main body 2 in its width direction are metallic core wires 42.SELECTED DRAWING: Figure 2

Description

本発明は、工業用ベルトに関し、詳しくは、ベルト製造時の工程数を何ら増加させずに製造でき、心線の初期伸びの抑制と耐屈曲性の向上とを両立できる工業用ベルトに関する。   The present invention relates to an industrial belt, and more particularly, to an industrial belt that can be manufactured without increasing the number of steps in manufacturing the belt and can simultaneously suppress the initial elongation of the core wire and improve the bending resistance.

動力伝達用ベルトや搬送用ベルト等の工業用ベルトには、ベルト強度と抗張力を付与するため、ベルト本体の長さ方向に延びる複数本の心線が埋設されている。   Industrial belts such as power transmission belts and conveyor belts are embedded with a plurality of core wires extending in the length direction of the belt body in order to impart belt strength and tensile strength.

例えば、スチールコードからなる心線を用いて構成された工業用ベルトが提案されている(特許文献1)。   For example, an industrial belt configured using a core wire made of a steel cord has been proposed (Patent Document 1).

このような工業用ベルトは、使用時にベルトが弛まないように最初に張力を付与するが、この張力付与により、使用開始後数日の間に心線に初期伸びが発生する。初期伸びとは、心線に初期段階で生じる永久伸びのことである。心線は複数本の素線が撚られて構成されているため、ベルトに付与された張力によって素線同士の間隙が締まり、密着状態に至る過程で心線に伸びが生じ、初期伸びが生ずる。   Such an industrial belt is initially tensioned so that the belt does not slack during use, and this tension imparts initial elongation to the core wire within a few days after the start of use. The initial elongation is permanent elongation that occurs in the core wire at an early stage. Since the core wire is formed by twisting a plurality of strands, the gap between the strands is tightened by the tension applied to the belt, and the core wire is stretched in the process of coming into close contact, resulting in initial elongation. .

初期伸びが発生するとベルト張力が低下するため、初期伸びが問題となる用途の場合、初期伸びが収束した後に、ユーザーにてベルトの張力を張り直す手間を必要としている。   When the initial elongation occurs, the belt tension is lowered. Therefore, in applications where the initial elongation is a problem, it is necessary for the user to re-tighten the belt tension after the initial elongation has converged.

一般に、初期伸びを抑えるためには、心線を構成する素線径を小さくすることにより素線同士の間隔を小さくしたり、心線の撚り回数を減らすことにより、張力を付与した後の心線締まりによる影響を小さくしている。このような心線締まりによる影響を小さくするには、スチールコードのような金属系心線よりも、繊維系心線のほうが、心線素線径を小さくでき、且つ素線間を密にすることができるため適している。   Generally, in order to suppress the initial elongation, the core after applying tension by reducing the distance between the strands by reducing the diameter of the strands constituting the core, or by reducing the number of twists of the strands. The effect of wire tightening is reduced. In order to reduce the influence of such core wire tightening, the fiber core wire can make the core wire diameter smaller and the space between the strands denser than the metal core wire such as a steel cord. Suitable because it can.

例えば、化学繊維や無機繊維からなる心線を用いて構成された工業用ベルトが提案されている(特許文献2)。   For example, an industrial belt configured using a core made of chemical fiber or inorganic fiber has been proposed (Patent Document 2).

特許第5381141号公報Japanese Patent No. 5381141 特開2012−197857号公報JP 2012-197857 A

ところで、心線として繊維系心線を使用した工業用ベルトは、局所的に屈曲した場合に屈曲疲労を起こす虞がある。これは、繊維系心線は金属系心線に比べて折り曲げ強度が低いことが原因であると考えられる。   By the way, an industrial belt using a fiber-based core wire as a core wire may cause bending fatigue when locally bent. This is considered to be because the fiber core wire has a lower bending strength than the metal core wire.

そこで、本発明は、心線の初期伸びの抑制と耐屈曲性の向上とを両立できる工業用ベルトを提供することを課題とする。   Then, this invention makes it a subject to provide the industrial belt which can make compatible suppression of the initial stage elongation of a core wire, and the improvement of a bending resistance.

本発明の他の課題は、以下の記載によって明らかとなる。   The other subject of this invention becomes clear by the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

1.ベルト本体の内部に、複数本の繊維系心線と複数本の金属系心線とが、前記ベルト本体の幅方向に混在するように配置されていることを特徴とする工業用ベルト。
2.前記複数本の繊維系心線全体の重心位置と前記複数本の金属系心線全体の重心位置との距離は、前記ベルト本体の全幅の40%以下であることを特徴とする前記1記載の工業用ベルト。
3.前記繊維系心線と前記金属系心線との本数の比率は、繊維系心線:金属系心線=0.75:1〜1:0.75であることを特徴とする前記1又は2記載の工業用ベルト。
4.前記繊維系心線と前記金属系心線とは、前記ベルト本体の幅方向の中心を基準にして対称に配置されていることを特徴とする前記1〜3の何れかに記載の工業用ベルト。
5.前記複数本の繊維系心線と前記複数本の金属系心線のうち、前記ベルト本体の両側最外縁に配置される心線は、前記金属系心線であることを特徴とする前記1〜4の何れかに記載の工業用ベルト。
6.前記ベルト本体に複数の歯部が設けられた歯付きベルトであることを特徴とする前記1〜5の何れかに記載の工業用ベルト。
1. An industrial belt characterized in that a plurality of fiber core wires and a plurality of metal core wires are arranged inside the belt body so as to be mixed in the width direction of the belt body.
2. 2. The distance between the center of gravity of the entire plurality of fiber cores and the center of gravity of the plurality of metal cores is 40% or less of the total width of the belt body. Industrial belt.
3. 1 or 2 above, wherein the ratio of the number of the fiber-based core wires to the metal-based core wires is: fiber-based core wire: metal-based core wire = 0.75: 1 to 1: 0.75. The industrial belt described.
4). The industrial belt according to any one of 1 to 3, wherein the fiber-based core wire and the metal-based core wire are disposed symmetrically with respect to a center in the width direction of the belt body. .
5. Of the plurality of fiber cores and the plurality of metal cores, the core disposed at the outermost edges on both sides of the belt body is the metal core. 4. The industrial belt according to any one of 4 above.
6). 6. The industrial belt according to any one of 1 to 5, wherein the belt is a toothed belt having a plurality of teeth provided on the belt body.

本発明によれば、心線の初期伸びの抑制と耐屈曲性の向上とを両立できる工業用ベルトを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the industrial belt which can make the suppression of the initial stage elongation of a core wire and the improvement of a bending resistance compatible can be provided.

本発明に係る工業用ベルトの一実施形態を示す部分断面図The fragmentary sectional view which shows one Embodiment of the industrial belt which concerns on this invention 図1中の(ii)−(ii)線に沿う断面図Sectional drawing which follows the (ii)-(ii) line | wire in FIG. 本発明に係る工業用ベルトにおける心線の他の配置態様によって重心位置を説明する図1中の(ii)−(ii)線に沿う断面図Sectional drawing which follows the (ii)-(ii) line in FIG. 1 explaining a gravity center position by the other arrangement | positioning aspect of the core wire in the industrial belt which concerns on this invention 心線の概略構成を示す拡大断面図Enlarged sectional view showing the schematic configuration of the core wire (a)(b)は本発明に係る工業用ベルトにおける心線の他の配置態様を示す図1中の(ii)−(ii)線に沿う断面図(A) (b) is sectional drawing which follows the (ii)-(ii) line in FIG. 1 which shows the other arrangement | positioning aspect of the core wire in the industrial belt which concerns on this invention 初期伸びによる張力低下確認試験の試験方法を説明する図Diagram explaining the test method of the tension drop confirmation test due to initial elongation 初期伸びによる張力低下確認試験における試験時間と張力との関係を示すグラフGraph showing the relationship between test time and tension in the tension drop confirmation test due to initial elongation 折り曲げ試験の試験方法を説明する図Diagram explaining the test method of the bending test 破断試験における折り曲げ径と破断強度との関係を示すグラフGraph showing the relationship between bending diameter and breaking strength in the breaking test

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る工業用ベルトの部分断面図、図2は、図1中の(ii)−(ii)線に沿う断面図である。また、図3は、本発明に係る工業用ベルトにおける心線の他の配置態様によって重心位置を説明する図1中の(ii)−(ii)線に沿う断面図である。   FIG. 1 is a partial cross-sectional view of an industrial belt according to the present invention, and FIG. 2 is a cross-sectional view taken along line (ii)-(ii) in FIG. 3 is a cross-sectional view taken along line (ii)-(ii) in FIG. 1 for explaining the position of the center of gravity according to another arrangement of the core wire in the industrial belt according to the present invention.

本実施形態に示す工業用ベルト1は、ベルト本体2の下面に複数の歯部3が設けられた歯付きベルトであり、全体が例えばポリウレタン等のゴム状弾性材によって形成されている。   The industrial belt 1 shown in the present embodiment is a toothed belt in which a plurality of tooth portions 3 are provided on the lower surface of a belt main body 2, and the whole is formed of a rubber-like elastic material such as polyurethane.

ベルト本体2の内部には、該ベルト本体2の長さ方向(図1中の左右方向)に沿って延びる複数本の心線4が、ベルト本体2の幅方向(図2の左右方向)に間隔をおいて設けられている。図1中の符号5は心線押え溝である。心線押え溝5は、工業用ベルト1の製造時に、心線4をベルト本体2内の所定位置に支持するための成形型の突部が転写されたものである。心線4は、この心線押え溝5の部位において露出している。   Inside the belt main body 2, a plurality of core wires 4 extending along the length direction of the belt main body 2 (left-right direction in FIG. 1) are arranged in the width direction of the belt main body 2 (left-right direction in FIG. 2). It is provided at intervals. Reference numeral 5 in FIG. 1 denotes a core wire pressing groove. The core wire pressing groove 5 is formed by transferring a projection of a molding die for supporting the core wire 4 at a predetermined position in the belt body 2 when the industrial belt 1 is manufactured. The core wire 4 is exposed at the portion of the core wire pressing groove 5.

心線4は、複数本の繊維系心線41と複数本の金属系心線42とからなり、これらがベルト本体2の幅方向に混在するように配置されている。ここで「幅方向に混在する」とは、ベルト本体2の幅方向について、繊維系心線41と金属系心線42とが偏りなく配置されていることを意味している。例えば、繊維系心線41と金属系心線42との全体本数が互いに等しく、これら繊維系心線41及び金属系心線42が同本数おきに交互に配置されている状態は、偏りなく配置されていると言える。   The core wire 4 is composed of a plurality of fiber core wires 41 and a plurality of metal core wires 42, which are arranged so as to be mixed in the width direction of the belt body 2. Here, “mixed in the width direction” means that the fiber-based core wire 41 and the metal-based core wire 42 are arranged without deviation in the width direction of the belt body 2. For example, the total number of the fiber cores 41 and the metal cores 42 is equal to each other, and the state in which the fiber cores 41 and the metal cores 42 are alternately arranged every the same number is arranged without deviation. It can be said that.

また、繊維系心線41と金属系心線42との全体本数が異なっていてもよく、例えば、2本の繊維系心線41と3本の金属系心線42とが交互に配置されている状態も、偏りなく配置されていると言える。さらに、1本の繊維系心線41と4本の金属系心線42とが交互に配置されている状態も、偏りなく配置されていると言え、本発明の目的を達成することができる状態である。このように、1本以上の繊維系心線41と1本以上の金属系心線42とを交互に配置する場合においては、隣接する繊維系心線41と金属系心線42との本数の差を3本以下とすることが好ましく、2本以下とすることがより好ましい。   Further, the total number of the fiber cores 41 and the metal cores 42 may be different. For example, the two fiber cores 41 and the three metal cores 42 are alternately arranged. It can be said that it is arranged evenly. Furthermore, it can be said that the state in which the one fiber core 41 and the four metal cores 42 are alternately arranged is also arranged without any bias, and can achieve the object of the present invention. It is. Thus, in the case where one or more fiber cores 41 and one or more metal cores 42 are alternately arranged, the number of adjacent fiber cores 41 and metal cores 42 is The difference is preferably 3 or less, more preferably 2 or less.

さらに、図3に示すように、複数本の繊維系心線41全体の重心位置Gaと複数本の金属系心線42全体の重心位置Gbとの距離Lが、0に近いほど好ましい。この距離Lは、ベルト本体2の全幅Wの40%以下とすることが好ましい。このような状態は、繊維系心線41及び金属系心線42の本数や太さに依らず、これら繊維系心線41及び金属系心線42の偏りは小さく、本発明の目的を達成することができる状態である。   Furthermore, as shown in FIG. 3, it is preferable that the distance L between the center of gravity Ga of the plurality of fiber cores 41 and the center of gravity Gb of the plurality of metal cores 42 is closer to zero. This distance L is preferably 40% or less of the entire width W of the belt body 2. In such a state, regardless of the number and thickness of the fiber core 41 and the metal core 42, the deviation of the fiber core 41 and the metal core 42 is small and the object of the present invention is achieved. It is a state that can be.

ベルト本体2の内部に配置される繊維系心線41と金属系心線42とは、図2に示すように、幅方向に段差なく並設されるものに限らず、図示しないが、幅方向に段違いに(千鳥状に)配列されるものとしてもよい。   The fiber-based core wire 41 and the metal-based core wire 42 arranged inside the belt main body 2 are not limited to those arranged side by side in the width direction as shown in FIG. It may be arranged in a staggered manner (in a staggered manner).

繊維系心線41を構成する素線としては、ガラス繊維(グラスファイバー)、アラミド繊維、炭素繊維、ポリエステル繊維等の化学繊維からなる非金属の線が使用される。   As a strand which comprises the fiber type core wire 41, the nonmetallic wire which consists of chemical fibers, such as glass fiber (glass fiber), an aramid fiber, carbon fiber, and a polyester fiber, is used.

金属系心線42を構成する素線としては、スチールやステンレス等の線が使用される。   As the strands constituting the metallic core wire 42, a wire such as steel or stainless steel is used.

図4は、心線の概略構成を示す拡大断面図である。
繊維系心線41及び金属系心線42は、図4に概略構成を示すように、何れも複数本の素線40が撚られることによって構成される。素線40は、上記の化学繊維や金属からなる線40aを複数本束ねることによって構成される。
FIG. 4 is an enlarged sectional view showing a schematic configuration of the core wire.
The fiber-based core wire 41 and the metal-based core wire 42 are each formed by twisting a plurality of strands 40 as shown in a schematic configuration in FIG. The strand 40 is configured by bundling a plurality of wires 40a made of the above-described chemical fibers or metals.

一般に、心線4の初期伸びを抑えるためには、これら素線40の径を小さくして隣接する素線40、40間の間隙Xを小さくすることが効果的である。この観点からは、金属系心線42よりも、繊維系心線41の方が、素線40の径を小さくでき且つ素線40、40間を密にできるため適している。しかし、繊維系心線41は金属系心線42に比べて折り曲げ強度が低いことから、繊維系心線41だけでは、ベルトの耐屈曲性が低下する可能性がある。特に、本実施形態に示す工業用ベルト1のように心線押え溝5を有する場合、心線押え溝5の部位は厚みが薄くてベルト剛性が低い上に、心線が露出するため、ベルトが心線押え溝5の部位で局所的に屈曲し易く、心線が屈曲疲労を起こす可能性がある。   In general, in order to suppress the initial elongation of the core wire 4, it is effective to reduce the gap X between the adjacent strands 40 and 40 by reducing the diameter of the strands 40. From this point of view, the fiber-based core wire 41 is more suitable than the metal-based core wire 42 because the diameter of the strand 40 can be reduced and the strands 40, 40 can be denser. However, since the fiber core 41 has a lower bending strength than the metal core 42, the fiber core 41 alone may reduce the bending resistance of the belt. In particular, in the case of having the cord holding groove 5 as in the industrial belt 1 shown in the present embodiment, the portion of the cord holding groove 5 is thin and the belt rigidity is low, and the cord is exposed. However, it is easy to bend locally at the portion of the core wire pressing groove 5, and the core wire may cause bending fatigue.

しかし、本発明によれば、ベルト本体2の内部に繊維系心線41と金属系心線42の両方を配置しているため、初期伸びの抑制と耐屈曲性の両性能を発揮することができ、繊維系心線41を使用した工業用ベルト1の耐屈曲性の低下を抑制することができる。   However, according to the present invention, since both the fiber-based core wire 41 and the metal-based core wire 42 are arranged inside the belt body 2, it is possible to exhibit both the performance of suppressing initial elongation and bending resistance. It is possible to suppress a decrease in the bending resistance of the industrial belt 1 using the fiber core 41.

すなわち、初期伸びについては、初期伸びが起きにくい繊維系心線41が支配的に働き、工業用ベルト1全体の初期伸びの発生を抑制する。一方、耐屈曲性については、高い曲げ剛性及び耐屈曲性能を有する金属系心線42が支配的に働き、ベルトに局所的な屈曲が発生した場合でも、金属系心線42が繊維系心線41の過度の屈曲を抑制するようにサポートし、工業用ベルト1の耐屈曲性の低下を抑える。繊維系心線41と金属系心線42は、ベルト本体2の幅方向に混在するように配置されているため、初期伸び抑制及び耐屈曲性の向上とを工業用ベルト1の全体で両立させることができる。   That is, with respect to the initial elongation, the fiber core wire 41 that hardly causes the initial elongation works dominantly and suppresses the occurrence of the initial elongation of the entire industrial belt 1. On the other hand, regarding the bending resistance, the metal core 42 having high bending rigidity and bending resistance works dominantly, and the metal core 42 is the fiber core even when the belt is locally bent. It supports so that the excessive bending of 41 may be suppressed, and the fall of the bending resistance of the industrial belt 1 is suppressed. Since the fiber-based core wire 41 and the metal-based core wire 42 are arranged so as to be mixed in the width direction of the belt main body 2, it is possible to achieve both the suppression of initial elongation and the improvement of bending resistance in the entire industrial belt 1. be able to.

しかも、この工業用ベルト1は、心線4として繊維系心線41と金属系心線42とを混在させて使用するだけでよいため、従来のベルト製造工程を何ら変更する必要はなく、製造工程数が増加することはない。   In addition, since the industrial belt 1 only needs to be used by mixing the fiber core 41 and the metal core 42 as the core 4, there is no need to change the conventional belt manufacturing process. The number of processes does not increase.

本発明において、ベルト本体2の内部に並設される繊維系心線41と金属系心線42の本数の比率は、繊維系心線:金属系心線=0.75:1〜1:0.75の条件を満たすことが好ましい。この場合、ベルト本体2の全体で見た場合、何れかの心線の本数が極端に偏ることがないため、後述する実施例と同等の効果を類推でき、初期伸び抑制及び耐屈曲性の向上を工業用ベルト1の全体で両立させる上記効果を発揮することができる。なお、繊維系心線:金属系心線=0.5:1〜2:1の条件を満たすことによっても、後述する実施例には劣るものの、初期伸び抑制及び耐屈曲性の向上を工業用ベルト1の全体で両立させる上記効果を発揮することができる。   In the present invention, the ratio of the number of fiber cores 41 and metal cores 42 arranged in parallel in the belt body 2 is as follows: fiber core: metal core = 0.75: 1 to 1: 0. It is preferable that the condition of .75 is satisfied. In this case, when viewed as a whole of the belt main body 2, the number of cores does not extremely deviate, so that the same effects as those of the embodiments described later can be analogized, and the initial elongation is suppressed and the bending resistance is improved. The above-described effect can be exerted to make the entire industrial belt 1 compatible. In addition, although it is inferior to the Example mentioned later also by satisfy | filling the conditions of a fiber type | system | group core wire: metal type | system | group core wire = 0.5: 1-2: 1, although it is inferior to the Example mentioned later, an initial elongation suppression and the improvement of a bending resistance are industrial. The above-described effects that can be achieved by the entire belt 1 can be exhibited.

図2に示す例では、ベルト本体2の内部に7本の繊維系心線41と8本の金属系心線42からなる15本の心線4(繊維系心線:金属系心線=0.875:1)を混在させて並設している。中央に3本の繊維系心線41が配置され、その両側にそれぞれ2本ずつの繊維系心線41と金属系心線42が交互となるように配列され、全体としてベルト本体2の幅方向に繊維系心線41と金属系心線42とが偏りなく配置されている。しかし、繊維系心線41と金属系心線42の配置態様は何らこれに限定されない。   In the example shown in FIG. 2, 15 core wires 4 (fiber core wires: metal core wires = 0) including seven fiber core wires 41 and eight metal core wires 42 inside the belt body 2. .875: 1) are mixed and arranged side by side. Three fiber cores 41 are arranged in the center, and two fiber cores 41 and metal cores 42 are alternately arranged on both sides thereof, and the width direction of the belt body 2 as a whole. The fiber-based core wire 41 and the metal-based core wire 42 are arranged without deviation. However, the arrangement of the fiber core 41 and the metal core 42 is not limited to this.

例えば図5(a)に示すように、図2の配置態様における繊維系心線41と金属系心線42とを入れ替えたものとすることもできる。   For example, as shown to Fig.5 (a), the fiber type core wire 41 and the metal type core wire 42 in the arrangement | positioning aspect of FIG. 2 can also be replaced.

また、図5(b)に示すように、繊維系心線41と金属系心線42とをそれぞれ8本ずつの同数(繊維系心線:金属系心線=1:1)とすることもできる。図5(b)では、ベルト本体2の幅方向の両端部に1本ずつの金属系心線42を配置させると共に、その間に繊維系心線41と金属系心線42を2本ずつ交互に配置させている。   Further, as shown in FIG. 5B, the number of fiber cores 41 and the number of metal cores 42 may be the same number of 8 (fiber core: metal core = 1: 1). it can. In FIG. 5 (b), one metal core 42 is disposed at each end of the belt body 2 in the width direction, and two fiber cores 41 and two metal cores 42 are alternately disposed therebetween. It is arranged.

図5(a)(b)に示す態様においても、繊維系心線41と金属系心線42とはベルト本体2の幅方向に混在するように並設されるので、図2の態様と同様の効果を得ることができる。   5 (a) and 5 (b), the fiber-based core wire 41 and the metal-based core wire 42 are arranged side by side so as to be mixed in the width direction of the belt main body 2, and therefore, similar to the embodiment of FIG. The effect of can be obtained.

上記何れの配置態様も、繊維系心線41と金属系心線42はベルト本体2の幅方向の中心を基準にして左右対称となるように配置されており、本発明において好ましい態様である。繊維系心線41と金属系心線42とでは、ベルト走行時の片寄りや自転性等の特性が異なるため、左右対称に配置することで、走行時のベルトの片寄りを効果的に防止できる。   In any of the above arrangement modes, the fiber-based core wire 41 and the metal-based core wire 42 are disposed so as to be symmetric with respect to the center of the belt body 2 in the width direction, which is a preferable embodiment in the present invention. Since the fiber core 41 and the metal core 42 have different characteristics such as the deviation and rotation of the belt, the belts are effectively arranged to prevent the deviation of the belt when traveling. it can.

ところで、ベルト走行時に幅方向の両端部がプーリのフランジ部やガイドレール等に干渉することでせり上がりが発生すると、両端部に局部的に屈曲させる力が働く。このようなベルト走行時のプーリのフランジ部やガイドレール等との干渉が懸念される場合には、図2、図5(b)に示すように、複数本の心線4のうち、ベルト本体2の両側最外縁に配置される心線4を、金属系心線42とすることが好ましい。金属系心線42は、繊維系心線41に比べて曲げ剛性が高く、局部的な折り曲げに強いため、せり上がり時に作用する屈曲力に対する耐久性を向上させることができる。   By the way, when the belt is running and the both end portions in the width direction interfere with the flange portion of the pulley, the guide rail, and the like, a lifting force is generated at both end portions. If there is concern about interference with the pulley flange, guide rail, etc. during belt travel, as shown in FIG. 2 and FIG. 2 is preferably a metal core 42. The metal-based core wire 42 has higher bending rigidity than the fiber-based core wire 41 and is resistant to local bending, so that durability against bending force acting at the time of rising can be improved.

以上の実施形態は、ベルト本体2の内部に合計15本又は16本の心線4を配置させたものを例示したが、心線4の合計本数は何ら限定されず、各心線41、42の径、ベルト本体2の幅寸法等に応じて適宜増減することができる。   In the above embodiment, a total of 15 or 16 cores 4 are arranged inside the belt body 2, but the total number of the cores 4 is not limited at all, and the cores 41 and 42 are not limited. It can be appropriately increased or decreased depending on the diameter of the belt, the width of the belt body 2, and the like.

また、より広幅の工業用ベルトとする場合は、例えば図2、図5(a)(b)に示した構成の工業用ベルト1を幅方向に複数個接合するようにしてもよい。   Moreover, when using it as a wider industrial belt, you may make it join the industrial belt 1 of the structure shown, for example in FIG. 2, FIG. 5 (a) (b) in the width direction.

以上の実施形態は、歯部3を有する歯付きベルトを例に挙げて説明したが、本発明は歯部の有無にかかわらず、ベルト本体内部に心線を有する動力伝達用途や搬送用途の工業用ベルトに広く適用できる。   The above embodiment has been described by taking a toothed belt having the tooth portion 3 as an example. However, the present invention is an industry for power transmission use and conveyance use having a core wire inside the belt body regardless of the presence or absence of the tooth portion. Widely applicable to industrial belts.

以下、本発明の効果を実施例によって例証する。   Hereinafter, the effect of the present invention will be illustrated by examples.

(実施例1)
ポリウレタン製の有端状の歯付きベルト(幅:25mm)のベルト本体内部に、繊維系心線として7本のグラスファイバー心線と、金属系心線として8本のスチール心線とを、図2と同様の配置態様で配置した。
Example 1
Inside the belt body of an end toothed belt made of polyurethane (width: 25 mm), there are 7 glass fiber cores as the fiber core and 8 steel cores as the metal core. 2 was arranged in the same manner as in 2.

グラスファイバー心線は、直径7μmのグラスファイバーを200本束ねたものをベースとし、それを3本に束ね、さらにそれを11セット撚り合わせることによって形成した。   The glass fiber core was formed by bundling 200 glass fibers having a diameter of 7 μm as a base, bundling them into three, and twisting 11 sets thereof.

スチール心線は、直径0.1mmのスチールコードを7本束ねて素線とし、この素線を7本撚り合わせることによって形成した。   The steel core wire was formed by bundling seven steel cords having a diameter of 0.1 mm into strands, and twisting the seven strands.

この実施例においては、7本の繊維系心線全体の重心位置Gaと8本の金属系心線全体の重心位置Gbとの距離Lは、ベルト本体の全幅Wの40%以下となっている。   In this embodiment, the distance L between the center of gravity Ga of the seven fiber cores and the center of gravity Gb of the eight metal cores is 40% or less of the entire width W of the belt body. .

(実施例2)
8本のグラスファイバー心線と7本のスチール心線とを、図5(a)と同様の配置態様で配置した以外は実施例1と同一とした。
(Example 2)
Example 8 was the same as Example 1 except that 8 glass fiber core wires and 7 steel core wires were arranged in the same arrangement manner as in FIG.

この実施例においては、8本の繊維系心線全体の重心位置Gaと7本の金属系心線全体の重心位置Gbとの距離Lは、ベルト本体の全幅Wの40%以下となっている。 In this embodiment, the distance L between the center of gravity Ga of the eight fiber cores and the center of gravity Gb of the seven metal cores is 40% or less of the entire width W of the belt body. .

(比較例1)
15本の心線を全てグラスファイバー心線とした以外は、実施例1と同一とした。
(Comparative Example 1)
Example 15 was the same as Example 1 except that all 15 cores were glass fiber cores.

(比較例2)
15本の心線を全てスチール心線とした以外は、実施例1と同一とした。
(Comparative Example 2)
Example 15 was the same as Example 1 except that all 15 cores were steel cores.

<初期伸びによる張力低下確認試験>
図6に示す2軸試験機のプーリ間(軸間距離:900mm)に歯付きベルトを架け渡して端部同士をクランプで接合した。静止状態のまま初張力として500Nの張力をかけた後、所定時間経過毎に張力を測定した。その結果を図7に示す。
<Tension drop confirmation test due to initial elongation>
A toothed belt was bridged between pulleys (distance between axes: 900 mm) of the biaxial testing machine shown in FIG. After applying a tension of 500 N as an initial tension in a stationary state, the tension was measured every predetermined time. The result is shown in FIG.

また、初期伸びが収束したと想定される168時間経過後の張力と、そのときの初張力に対する張力保持率を求めた。その結果を表1に示す。

Figure 2017172641
In addition, the tension after 168 hours when the initial elongation was assumed to have converged and the tension retention with respect to the initial tension at that time were obtained. The results are shown in Table 1.
Figure 2017172641

<耐屈曲性試験>
1.折り曲げ試験
実施例1、2及び比較例1、2の各歯付きベルトについてそれぞれ10個ずつの試料を作製した。各試料を、直径(折り曲げ径):16mm、20mm、30mm、40mmの丸棒に図8に示すように巻き付け、そのまま10sec保持した後、解放した。
<Bend resistance test>
1. Bending test Ten samples of each of the toothed belts of Examples 1 and 2 and Comparative Examples 1 and 2 were prepared. Each sample was wound around a round bar having a diameter (bending diameter) of 16 mm, 20 mm, 30 mm, and 40 mm as shown in FIG. 8, held as it was for 10 seconds, and then released.

解放後の各試料について、心線押え溝から内部の心線を目視観察することにより損傷(心線折れ)の有無を評価した。10個の試料中に1箇所でも心線の損傷が認められた場合は「×」、全く損傷が認められない場合は「○」とした。その結果を表2に示す。

Figure 2017172641
About each sample after release, the presence or absence of damage (core wire breakage) was evaluated by visually observing the internal wire from the core wire pressing groove. In 10 samples, “X” was indicated when the core wire was damaged even at one location, and “◯” was indicated when no damage was observed. The results are shown in Table 2.
Figure 2017172641

2.破断試験
各試料を丸棒に巻き付けて折り曲げ試験を実施する前(折り曲げ無し)の各試料と、折り曲げ試験を実施した解放後の各試料について、引張り試験機(TENSION UTA-50KN)を用いて、引張速度:50mm/minで引張り試験を行い、試料が破断したときの強度をそれぞれ測定し、10個の試料の平均値を求めた。その結果を図9に示す。
2. Breaking test Each sample before the bending test was performed by winding each sample on a round bar (without bending) and each sample after the bending test was released using a tensile tester (TENSION UTA-50KN) Tensile speed: A tensile test was performed at 50 mm / min, and the strength when the sample broke was measured, and the average value of 10 samples was obtained. The result is shown in FIG.

以上の通り、実施例1、2共に、スチール心線のみを使用する比較例2に比べて初期伸びが大幅に改善し、グラスファイバー心線のみを使用する比較例1と比べて全く遜色のない程度の初期伸び抑制効果が得られた。   As described above, both Examples 1 and 2 have significantly improved initial elongation as compared with Comparative Example 2 using only a steel core, and are completely comparable to Comparative Example 1 using only a glass fiber core. A degree of initial elongation suppression effect was obtained.

また、折り曲げ試験でも、実施例1、2共に、スチール心線のみを使用する比較例2と同様に心線の損傷は認められず、破断強度はグラスファイバー心線のみを使用する比較例1に比べて大幅に向上した。   Also in the bending test, both Examples 1 and 2 showed no damage to the core wire as in Comparative Example 2 in which only the steel core wire was used, and the breaking strength was the same as in Comparative Example 1 in which only the glass fiber core wire was used. Compared to a significant improvement.

上記実施例において、グラスファイバー心線を、カーボン繊維からなる繊維系心線、アラミド繊維からなる繊維系心線に代えても、耐屈曲性効果が得られた。   In the above examples, even when the glass fiber core wire was replaced with a fiber core wire made of carbon fiber or a fiber core wire made of aramid fiber, a bending resistance effect was obtained.

従って、本発明によれば、心線の初期伸びの抑制と耐屈曲性の向上とを両立させることができた。   Therefore, according to the present invention, it was possible to achieve both suppression of the initial elongation of the core wire and improvement of the bending resistance.

1:工業用ベルト
2:ベルト本体
3:歯部
4:心線
40:素線
40a:線
41:繊維系心線
42:金属系心線
5:心線押え溝
X:間隙
1: Industrial belt 2: Belt body 3: Tooth part 4: Core 40: Wire 40a: Wire 41: Fiber core 42: Metal core 5: Core press groove X: Gap

Claims (6)

ベルト本体の内部に、複数本の繊維系心線と複数本の金属系心線とが、前記ベルト本体の幅方向に混在するように配置されていることを特徴とする工業用ベルト。   An industrial belt characterized in that a plurality of fiber core wires and a plurality of metal core wires are arranged inside the belt body so as to be mixed in the width direction of the belt body. 前記複数本の繊維系心線全体の重心位置と前記複数本の金属系心線全体の重心位置との距離は、前記ベルト本体の全幅の40%以下であることを特徴とする請求項1記載の工業用ベルト。   2. The distance between the center of gravity of the entire plurality of fiber cores and the center of gravity of the plurality of metal cores is 40% or less of the total width of the belt body. Industrial belt. 前記繊維系心線と前記金属系心線との本数の比率は、繊維系心線:金属系心線=0.75:1〜1:0.75であることを特徴とする請求項1又は2記載の工業用ベルト。   The ratio of the number of the said fiber type | system | group core wire and the said metal type | system | group core wire is a fiber type | system | group core wire: metal type | system | group core wire = 0.75: 1-1: 0.75, It is characterized by the above-mentioned. 2. The industrial belt according to 2. 前記繊維系心線と前記金属系心線とは、前記ベルト本体の幅方向の中心を基準にして対称に配置されていることを特徴とする請求項1〜3の何れかに記載の工業用ベルト。   The industrial fiber according to any one of claims 1 to 3, wherein the fiber-based core wire and the metal-based core wire are disposed symmetrically with respect to a center in the width direction of the belt body. belt. 前記複数本の繊維系心線と前記複数本の金属系心線のうち、前記ベルト本体の両側最外縁に配置される心線は、前記金属系心線であることを特徴とする請求項1〜4の何れかに記載の工業用ベルト。   2. The core wire disposed at the outermost edge on both sides of the belt body among the plurality of fiber core wires and the plurality of metal core wires is the metal core wire. The industrial belt in any one of -4. 前記ベルト本体に複数の歯部が設けられた歯付きベルトであることを特徴とする請求項1〜5の何れかに記載の工業用ベルト。   The industrial belt according to any one of claims 1 to 5, wherein the belt body is a toothed belt having a plurality of tooth portions provided on the belt body.
JP2016057374A 2016-03-22 2016-03-22 Industrial belt Active JP6697297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057374A JP6697297B2 (en) 2016-03-22 2016-03-22 Industrial belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057374A JP6697297B2 (en) 2016-03-22 2016-03-22 Industrial belt

Publications (2)

Publication Number Publication Date
JP2017172641A true JP2017172641A (en) 2017-09-28
JP6697297B2 JP6697297B2 (en) 2020-05-20

Family

ID=59971898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057374A Active JP6697297B2 (en) 2016-03-22 2016-03-22 Industrial belt

Country Status (1)

Country Link
JP (1) JP6697297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3753869A1 (en) * 2019-06-21 2020-12-23 Heimbach GmbH Conveyor belt, use, method and conveyor or cardboard blank stacking device
JP2021028256A (en) * 2019-08-09 2021-02-25 バンドー化学株式会社 Toothed belt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221549A (en) * 1975-08-11 1977-02-18 Yunitsuta Kk Power transmission belt
JPS5377948A (en) * 1976-12-21 1978-07-10 Mitsubishi Motors Corp Teethed rubber belt
JPH09217794A (en) * 1996-02-13 1997-08-19 Mitsuboshi Belting Ltd Flat belt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221549A (en) * 1975-08-11 1977-02-18 Yunitsuta Kk Power transmission belt
JPS5377948A (en) * 1976-12-21 1978-07-10 Mitsubishi Motors Corp Teethed rubber belt
JPH09217794A (en) * 1996-02-13 1997-08-19 Mitsuboshi Belting Ltd Flat belt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3753869A1 (en) * 2019-06-21 2020-12-23 Heimbach GmbH Conveyor belt, use, method and conveyor or cardboard blank stacking device
JP2021028256A (en) * 2019-08-09 2021-02-25 バンドー化学株式会社 Toothed belt
JP7442928B2 (en) 2019-08-09 2024-03-05 バンドー化学株式会社 toothed belt

Also Published As

Publication number Publication date
JP6697297B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US9731938B2 (en) Coated rope or belt for elevator systems
US8176719B2 (en) Reinforcing cord and rubber product using the same
KR101433985B1 (en) Single lay steel cord for elastomer reinforcement
JPH07150491A (en) Hoist cable
JP6063768B2 (en) Steel cord and elastic crawler using the same
JP6697297B2 (en) Industrial belt
JP2018076625A (en) High strength wire rope
JP2009292630A (en) Hoisting rope for elevator, and manufacturing method thereof
US4166355A (en) Cable and method and device for producing same
JP2014507349A (en) Elevator system belt
KR20090079791A (en) Silent chain
KR20090079797A (en) Silent chain
JP4034629B2 (en) Hybrid rope
JP2013032190A (en) Hoisting rope for elevator
JP2021500491A (en) Steel cord for elastomer reinforcement
CN105887525A (en) Steel wire rope with carbon fiber core
JP5322262B2 (en) Steel cord and steel cord group composed of this steel cord
JP3979777B2 (en) Endless wire rope
JP2014169507A (en) Steel wire for reinforcing rubber article and rubber article including the same
KR100908362B1 (en) A manufacturing method for a rope with double skin
KR20230044028A (en) Elevator rope and its manufacturing method
WO2018199043A1 (en) Toothed belt
CN115402905A (en) Balance chain for elevator
JP5890746B2 (en) Steel cord for elastic crawler
US20170057575A1 (en) Crawler

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6697297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150