JP2017170390A - Chemical feed control method and chemical feed control apparatus - Google Patents

Chemical feed control method and chemical feed control apparatus Download PDF

Info

Publication number
JP2017170390A
JP2017170390A JP2016061472A JP2016061472A JP2017170390A JP 2017170390 A JP2017170390 A JP 2017170390A JP 2016061472 A JP2016061472 A JP 2016061472A JP 2016061472 A JP2016061472 A JP 2016061472A JP 2017170390 A JP2017170390 A JP 2017170390A
Authority
JP
Japan
Prior art keywords
sensor value
value
chemical injection
predicted
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016061472A
Other languages
Japanese (ja)
Other versions
JP6699283B2 (en
Inventor
周子 進邦
Shuko Shinbo
周子 進邦
英之 小森
Hideyuki Komori
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016061472A priority Critical patent/JP6699283B2/en
Publication of JP2017170390A publication Critical patent/JP2017170390A/en
Application granted granted Critical
Publication of JP6699283B2 publication Critical patent/JP6699283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical feed control method and chemical feed control apparatus for realizing a suitable chemical feed amount in accordance with water quality change.SOLUTION: A chemical feed control method comprises: detecting water quality in feed water by a water quality sensor; determining a chemical feed concentration based on the detection result; and performing chemical feed to the feed water by a chemical feeder. In the method, sensor values from the water quality sensor are sampled at intervals of a first sampling period; a predicted sensor value is calculated by predicting a next sensor value from a present sensor value and a previous sensor value; if the predicted sensor value is less than a first prescribed value, the chemical feed concentration is set to a first chemical feed concentration; if the predicted sensor value is equal to or greater than a second prescribed value, the chemical feed concentration is set to a second chemical feed concentration; if the predicted sensor value is equal to or greater than the first prescribed value and less than the second prescribed value, the chemical feed concentration is set in accordance with the predicted sensor value; and then the chemical feed is performed.SELECTED DRAWING: Figure 1

Description

本発明は、ボイラ給水等の水系において薬剤の薬注量を制御する薬注制御方法及び薬注制御装置に関する。   The present invention relates to a chemical injection control method and chemical injection control device for controlling the chemical injection amount of a chemical in an aqueous system such as boiler feed water.

ボイラ給水系では、原水を軟化器で処理して硬度成分を除去した後、ボイラに給水するようにしている。この軟水器からの給水中の硬度成分濃度を硬度センサで測定し、測定結果に応じて給水にスケール防止剤等の薬剤を添加する(特許文献1)。   In the boiler water supply system, raw water is treated with a softener to remove hardness components, and then water is supplied to the boiler. The hardness component concentration in the water supply from the water softener is measured by a hardness sensor, and a chemical such as a scale inhibitor is added to the water supply according to the measurement result (Patent Document 1).

測定対象の流体流速や水温等の測定条件の変動が大きい場合、センサによる水質測定結果が安定しないため、ある期間における水質の平均値を元に薬注量を決めていた。しかし、このような薬注量の決定方法では、水質に薬品濃度を反映させるまでにタイムラグがあり、薬品濃度を常に一定以上に保っておく必要があるタイプの薬品をしている時に、薬品濃度の不足期間が生じやすかった。薬品濃度の不足期間が生じないように、水質変動幅を考慮して過剰に薬注することも考えられるが、水中で薬剤がゲル化するおそれがある。   When the measurement conditions such as the fluid flow velocity and the water temperature of the measurement object are large, the water quality measurement result by the sensor is not stable, so the chemical injection amount is determined based on the average value of the water quality in a certain period. However, in such a method for determining the amount of chemical injection, there is a time lag before the chemical concentration is reflected in the water quality, and the chemical concentration must be maintained when the chemical concentration must be kept above a certain level. The shortage period was likely to occur. In order to prevent a shortage period of chemical concentration, it is conceivable to add an excessive amount of medicine in consideration of the fluctuation range of water quality, but there is a possibility that the medicine gels in water.

特開2003−329208号公報JP 2003-329208 A

本発明は、水質変化に応じた適切な薬注量とすることができる薬注制御方法及び薬注制御装置を提供することを目的とする。   An object of this invention is to provide the chemical injection control method and chemical injection control apparatus which can be set as the appropriate chemical injection amount according to a water quality change.

本発明の薬注制御方法は、以下を要旨とする。   The summary of the chemical injection control method of the present invention is as follows.

[1] 水質センサで給水中の水質を検出し、検出結果に基づいて薬注濃度を決定し、薬注装置によって該給水に薬注する薬注制御方法において、前記水質センサによるセンサ値を第1サンプリング周期でサンプリングし、今回センサ値及び前回センサ値から次回のセンサ値を予測して予測センサ値を計算し、該予測センサ値が第1所定値未満の場合は薬注濃度を第1薬注濃度とし、該予測センサ値が第2所定値以上の場合は薬注濃度を第2薬注濃度とし、該予測センサ値が該第1所定値以上かつ該第2所定値未満の場合は該予測センサ値に応じた薬注濃度として、薬注することを特徴とする薬注制御方法。 [1] In a chemical injection control method in which a water quality sensor detects water quality in water supply, determines a chemical injection concentration based on the detection result, and uses the chemical injection device to inject water into the water supply, Sampling is performed at one sampling period, the next sensor value is predicted from the current sensor value and the previous sensor value, and the predicted sensor value is calculated. If the predicted sensor value is less than the first predetermined value, the drug injection concentration is set to the first medicine. When the predicted sensor value is equal to or higher than the second predetermined value, the chemical concentration is set as the second chemical concentration, and when the predicted sensor value is equal to or higher than the first predetermined value and lower than the second predetermined value, A chemical injection control method, wherein chemical injection is performed as a chemical injection concentration corresponding to a predicted sensor value.

[2] [1]において、今回センサ値が前回センサ値より大きい場合、今回センサ値と前回センサ値との差分を今回センサ値に加算して予測センサ値を算出することを特徴とする薬注制御方法。 [2] In [1], when the current sensor value is greater than the previous sensor value, the difference between the current sensor value and the previous sensor value is added to the current sensor value to calculate a predicted sensor value. Control method.

[3] [2]において、今回センサ値が前回センサ値より小さい場合、予測センサ値を今回センサ値と同じにすることを特徴とする薬注制御方法。 [3] A chemical injection control method according to [2], wherein when the current sensor value is smaller than the previous sensor value, the predicted sensor value is made the same as the current sensor value.

[4] [1]において、前記予測センサ値が前記第1所定値以上かつ前記第2所定値未満の場合、該予測センサ値に応じた薬注濃度を所定倍率した値又は所定量を付加した値に基づいて薬注することを特徴とする薬注制御方法。 [4] In [1], when the predicted sensor value is greater than or equal to the first predetermined value and less than the second predetermined value, a value obtained by multiplying a chemical injection concentration corresponding to the predicted sensor value by a predetermined magnification or a predetermined amount is added. A chemical injection control method characterized by performing chemical injection based on a value.

[5] [1]において、今回センサ値と前回センサ値との第1差分、及び前回センサ値と前々回センサ値との第2差分を求め、該第1差分が該第2差分以上の場合、該第1差分に、該第1差分と該第2差分との差分を加算した値を予測差分とし、該第1差分が該第2差分より小さい場合、該第1差分を予測差分とし、今回センサ値に該予測差分を加算して予測センサ値を算出することを特徴とする薬注制御方法。 [5] In [1], when a first difference between the current sensor value and the previous sensor value and a second difference between the previous sensor value and the previous sensor value are obtained, and the first difference is equal to or greater than the second difference, A value obtained by adding the difference between the first difference and the second difference to the first difference is set as a prediction difference. When the first difference is smaller than the second difference, the first difference is set as a prediction difference. A chemical injection control method, wherein a predicted sensor value is calculated by adding the predicted difference to a sensor value.

[6] [2]において、前記水質センサによるセンサ値を前記第1サンプリング周期より短い第2サンプリング周期でサンプリングし、該第1サンプリング周期での今回センサ値が前回センサ値より小さく、かつ該今回センサ値の直前で該第2サンプリング周期でのセンサ値が増加していた場合、増加分を該今回センサ値に加算して予測センサ値を算出し、該第1サンプリング周期での今回センサ値が前回センサ値より小さく、かつ該今回センサ値の直前で該第2サンプリング周期でのセンサ値が減少していた場合、予測センサ値を該今回センサ値と同じにすることを特徴とする薬注制御方法。 [6] In [2], the sensor value by the water quality sensor is sampled at a second sampling period shorter than the first sampling period, and the current sensor value at the first sampling period is smaller than the previous sensor value, and the current time If the sensor value in the second sampling period has increased immediately before the sensor value, the increase is added to the current sensor value to calculate a predicted sensor value, and the current sensor value in the first sampling period is calculated. When the sensor value in the second sampling period is smaller than the previous sensor value and immediately before the current sensor value, the predicted sensor value is made the same as the current sensor value. Method.

[7] [1]において、前記水質センサによるセンサ値を前記第1サンプリング周期より短い第2サンプリング周期でサンプリングし、該第1サンプリング周期で前回センサ値をサンプリングしてから今回センサ値をサンプリングする間における、該第2サンプリング周期でのセンサ値の最大値を予測センサ値とすることを特徴とする薬注制御方法。 [7] In [1], the sensor value from the water quality sensor is sampled at a second sampling period shorter than the first sampling period, the previous sensor value is sampled at the first sampling period, and the current sensor value is sampled. A chemical injection control method characterized in that the maximum sensor value in the second sampling period is set as a predicted sensor value.

[8] [1]乃至[7]のいずれかにおいて、蒸気復水処理用pH調整剤、ボイラ用pH調整剤、又は脱酸素剤を薬注することを特徴とする薬注制御方法。 [8] A chemical injection control method according to any one of [1] to [7], wherein a chemical pH adjusting agent for steam condensate treatment, a pH adjusting agent for boilers, or an oxygen scavenger is injected.

[9] 水質センサが検出した給水中の水質を取得し、検出結果に基づいて薬注濃度を決定し、該給水に薬注する薬注装置を制御する薬注制御装置であって、前記水質センサによるセンサ値を第1サンプリング周期でサンプリングし、今回センサ値及び前回センサ値から次回のセンサ値を予測して予測センサ値を計算し、該予測センサ値が第1所定値未満の場合は薬注濃度を第1薬注濃度とし、該予測センサ値が第2所定値以上の場合は薬注濃度を第2薬注濃度とし、該予測センサ値が該第1所定値以上かつ該第2所定値未満の場合は該予測センサ値に応じた薬注濃度として、前記薬注装置を制御することを特徴とする薬注制御装置。 [9] A chemical injection control device that acquires the water quality in the water supply detected by the water quality sensor, determines the chemical injection concentration based on the detection result, and controls the chemical injection device that injects the chemical into the water supply. The sensor value by the sensor is sampled at the first sampling period, the next sensor value is predicted from the current sensor value and the previous sensor value, the predicted sensor value is calculated, and if the predicted sensor value is less than the first predetermined value, The injection concentration is the first chemical injection concentration, and when the predicted sensor value is greater than or equal to a second predetermined value, the chemical injection concentration is the second chemical injection concentration, the predicted sensor value is greater than or equal to the first predetermined value and the second predetermined concentration. When it is less than the value, the chemical injection control device controls the chemical injection device as a chemical injection concentration corresponding to the predicted sensor value.

本発明によると、   According to the present invention,

本実施の形態に係る薬注制御システムのブロック図である。It is a block diagram of the chemical injection control system which concerns on this Embodiment. センサ値と必要薬注濃度との関係を示す検量線の一例を示すグラフである。It is a graph which shows an example of the calibration curve which shows the relationship between a sensor value and a required chemical injection density | concentration. 実施例1の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 1. FIG. 実施例2の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 2. FIG. 実施例3の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 3. 実施例4の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 4. 実施例5の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 5. 実施例6の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 6. 実施例7の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 7. 実施例8の薬注濃度変化を示すグラフである。It is a graph which shows the chemical injection density | concentration change of Example 8.

以下、図面を参照して実施の形態ついて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、水処理装置1からの給水を配管2を介して給水タンク3に導入し、給水タンク3からユースポイント4に供給する給水システムを示している。水処理装置1からの給水の水質を水質センサ5で検出すると共に、給水流量を流量計8で検出し、この検出値を制御装置6に入力し、検出値に応じて薬注ポンプ7を作動させて給水タンク3への薬注量を制御する。なお、薬注箇所は水質センサ5の給水サンプリング点より下流側であればよく、給水タンク3以外であってもよい。   FIG. 1 shows a water supply system in which water supplied from the water treatment device 1 is introduced into a water supply tank 3 via a pipe 2 and supplied to the use point 4 from the water supply tank 3. The water quality of the water supplied from the water treatment device 1 is detected by the water quality sensor 5, the flow rate of the water supply is detected by the flow meter 8, the detected value is input to the control device 6, and the chemical injection pump 7 is operated according to the detected value. To control the amount of chemicals injected into the water supply tank 3. In addition, the chemical injection location may be downstream from the water supply sampling point of the water quality sensor 5, and may be other than the water supply tank 3.

水質センサ5には、電気伝導率計、pH計、溶存酸素計、ORP(酸化還元電位)計、、硬度計、温度計等を用いることが、これに限定されない。薬注する薬品種類は特に限定されないが、蒸気復水処理用pH調整剤、ボイラ用pH調整剤、脱酸素剤など、給水中の薬品濃度を常に必要量以上に保つことが望ましいタイプの薬品が好適である。   The water quality sensor 5 is not limited to using an electrical conductivity meter, pH meter, dissolved oxygen meter, ORP (oxidation-reduction potential) meter, hardness meter, thermometer, or the like. There are no particular restrictions on the type of chemicals to be poured, but there are some types of chemicals where it is desirable to always maintain the chemical concentration in the feed water above the required level, such as steam condensate treatment pH adjusters, boiler pH adjusters, and oxygen scavengers. Is preferred.

例えば、最大流量10m/hの水系に3000g/h、ストローク比1:100の薬注ポンプ7を使用する場合には、設定可能な最小薬品濃度が3g/m、最大薬品濃度が300g/mとなる。 For example, when a chemical injection pump 7 having a maximum flow rate of 10 m 3 / h and a water injection system of 3000 g / h and a stroke ratio of 1: 100 is used, the minimum chemical concentration that can be set is 3 g / m 3 and the maximum chemical concentration is 300 g / h. the m 3.

水質センサ5による水質の測定頻度は、特に限定されず、30秒〜1日に1回であれば良く、好ましくは1〜30分に1回程度行う。   The measurement frequency of the water quality by the water quality sensor 5 is not particularly limited, and may be once every 30 seconds to 1 day, and preferably about once every 1 to 30 minutes.

例えば、図1に示す給水システムがボイラ給水システムである場合、水処理装置1には軟化器(軟水器)が用いられ、ユースポイント4はボイラ(小型還流ボイラ等)となる。軟化器1からの給水流量及び給水中の水質を配管2に設けた流量センサ8及び水質センサ5で5分に1回の頻度で検出し、この検出結果に基づいて薬注ポンプ7の吐出量を制御することにより、薬液の添加量を制御する。例えば、水質センサ5がpH計の場合、薬注ポンプ7はボイラ用pH調整剤の溶液を吐出し、水質センサ5が硬度センサの場合、薬注ポンプ7はスケール防止剤の溶液を吐出する。   For example, when the water supply system shown in FIG. 1 is a boiler water supply system, a softener (water softener) is used for the water treatment apparatus 1, and the use point 4 is a boiler (such as a small reflux boiler). The feed water flow rate from the softener 1 and the quality of the water in the feed water are detected at a frequency of once every 5 minutes by the flow sensor 8 and the water quality sensor 5 provided in the pipe 2, and the discharge amount of the chemical injection pump 7 is based on the detection result. By controlling, the amount of chemical solution added is controlled. For example, when the water quality sensor 5 is a pH meter, the chemical injection pump 7 discharges a solution of a boiler pH adjuster, and when the water quality sensor 5 is a hardness sensor, the chemical injection pump 7 discharges a solution of a scale inhibitor.

制御装置6は、水質センサ5による直近の複数のセンサ値から、次回測定されるセンサ値を予測し、予測センサ値から薬注濃度を求め、求めた薬注濃度と流量計8で検出した給水流量とから薬注量を算出し、薬注ポンプ7の薬注量を制御する。   The control device 6 predicts a sensor value to be measured next time from a plurality of latest sensor values by the water quality sensor 5, obtains a chemical injection concentration from the predicted sensor value, and supplies the detected chemical injection concentration and the water supply detected by the flow meter 8. The chemical injection amount is calculated from the flow rate, and the chemical injection amount of the chemical injection pump 7 is controlled.

例えば、制御装置6は、図2に示すような検量線に予測センサ値を代入し、薬注濃度を求める。図2に示す例では、センサ値SがSmin以下の場合、薬注濃度CをCminとし、センサ値SがSmax以上の場合は薬注濃度CをCmaxとする。センサ値SがSmin〜Smaxの範囲に含まれる場合は、最小薬注濃度Cminと最大薬注濃度Cmaxとの間を正比例させる。 For example, the control device 6 substitutes the predicted sensor value into a calibration curve as shown in FIG. In the example shown in FIG. 2, when the sensor value S is S min or less, the chemical injection concentration C is C min, and when the sensor value S is S max or more, the chemical injection concentration C is C max . When the sensor value S is included in the range of S min to S max , the minimum chemical injection concentration C min and the maximum chemical injection concentration C max are directly proportional.

以下に、予測センサ値及び薬注濃度の算出を含む複数の薬注制御方法(基本制御、第1〜第4応用制御)について説明する。   Hereinafter, a plurality of chemical injection control methods (basic control, first to fourth application control) including calculation of a predicted sensor value and chemical injection concentration will be described.

[基本制御]
水質センサ5による今回の測定(測定時刻T)でのセンサ値Sと、前回の測定(測定時刻Tn−1)でのセンサ値Sn−1を用いて、次回の測定(測定時刻Tn+1)での予測センサ値ESn+1を以下の式から算出する。
−Sn−1≧0の場合: 予測センサ値ESn+1=S+(S−Sn−1
−Sn−1<0の場合: 予測センサ値ESn+1=S
[Basic control]
Using a sensor value S n of the measurement of current by the water quality sensor 5 (measurement time T n), the sensor value S n-1 at the previous measurement (measurement time T n-1), the next measurement (measurement time The predicted sensor value ES n + 1 at T n + 1 ) is calculated from the following equation.
When S n −S n−1 ≧ 0: Predicted sensor value ES n + 1 = S n + (S n −S n−1 )
When S n −S n−1 <0: Predicted sensor value ES n + 1 = S n

すなわち、時刻Tn−1からTにかけてセンサ値が減少しているか又は変わらない場合、時刻Tn+1のセンサ値は時刻Tのセンサ値から変わらないと予測する。一方、センサ値が増加している場合は、時刻TからTn+1までの間において、時刻Tn−1からTまでの間と同じ増加率でセンサ値が増加すると予測する。 That is, if the time T sensor values from n-1 toward T n is unchanged or has decreased, the sensor value at time T n + 1 is expected to remain unchanged from the sensor value at time T n. On the other hand, if the sensor value increases, during the period from the time T n to T n + 1, the sensor value is expected to increase at the same increase rate as between time T n-1 to T n.

次回の測定(測定時刻Tn+1)での予測センサ値ESn+1を算出したら、今回の薬注濃度Cを以下の式から算出する。
ESn+1<Sminの場合: 薬注濃度C=Cmin
min≦ESn+1≦Smaxの場合: 薬注濃度C=Cmin+(ESn+1−Smin)×(Cmax−Cmin)/(Smax−Smin
ESn+1>Smaxの場合: 薬注濃度C=Cmax
When the predicted sensor value ES n + 1 at the next measurement (measurement time T n + 1 ) is calculated, the current chemical injection concentration C n is calculated from the following equation.
In the case of ES n + 1 <S min : Chemical injection concentration C n = C min
When S min ≦ ES n + 1 ≦ S max : Chemical injection concentration C n = C min + (ES n + 1 −S min ) × (C max −C min ) / (S max −S min )
When ES n + 1 > S max : Chemical injection concentration C n = C max

すなわち、予測センサ値がSmin未満の場合、薬注濃度Cを最小薬注濃度Cminとする。予測センサ値がSmin〜Smaxの範囲に含まれる場合は、最小薬注濃度Cminと最大薬注濃度Cmaxとの間を正比例させる。予測センサ値がSmaxより大きい場合、薬注濃度Cを最大薬注濃度Cmaxとする。 That is, the predicted sensor value is of less than S min, the dosing concentration C n minimize chemical feed concentration C min. When the predicted sensor value is included in the range of S min to S max , the minimum chemical injection concentration C min and the maximum chemical injection concentration C max are directly proportional. If the predicted sensor value is greater than S max, the dosing concentration C n and the maximum chemical feed concentration C max.

この基本制御では、センサ値が上昇傾向にある場合は、同じ上昇率で上昇すると予測して予測センサ値ESn+1を求める。一方、センサ値が下降傾向にある場合は、センサ値は変わらないと予測して予測センサ値ESn+1を求める。そのため、予測センサ値ESn+1は実際に次回測定される(測定時刻Tn+1での)センサ値Sn+1よりもやや大きい値になりやすくなり、給水中の薬品濃度を必要量以上に保ちやすくなる。 In this basic control, when the sensor value tends to increase, the predicted sensor value ES n + 1 is obtained by predicting that the sensor value will increase at the same increase rate. On the other hand, when the sensor value tends to decrease, the predicted sensor value ES n + 1 is obtained by predicting that the sensor value will not change. Therefore, the predicted sensor value ES n + 1 is likely to be slightly larger than the sensor value S n + 1 that is actually measured next time (at the measurement time T n + 1 ), and the chemical concentration in the water supply is easily maintained above the required amount.

[第1応用制御]
予測センサ値ESn+1の求め方は基本制御と同じである。薬注濃度Cを以下の式から算出する。
ESn+1<Sminの場合: 薬注濃度C=Cmin
min≦ESn+1≦SmaxかつS>Sn−1の場合: 薬注濃度C=Cmin+(ESn+1−Smin)×(Cmax−Cmin)/(Smax−Smin)+X1, X1は正の実数
min≦ESn+1≦SmaxかつS≦Sn−1の場合: 薬注濃度C=Cmin+(ESn+1−Smin)×(Cmax−Cmin)/(Smax−Smin
ESn+1>Smaxの場合: 薬注濃度C=Cmax
[First application control]
The method for obtaining the predicted sensor value ES n + 1 is the same as in the basic control. The chemical injection concentration C n is calculated from the following formula.
In the case of ES n + 1 <S min : Chemical injection concentration C n = C min
When S min ≦ ES n + 1 ≦ S max and S n > S n−1 : Chemical injection concentration C n = C min + (ES n + 1 −S min ) × (C max −C min ) / (S max −S min ) + X1, X1 are positive real numbers S min ≦ ES n + 1 ≦ S max and S n ≦ S n−1 : Chemical injection concentration C n = C min + (ES n + 1 −S min ) × (C max −C min ) / (S max −S min )
When ES n + 1 > S max : Chemical injection concentration C n = C max

この第1応用制御では、予測センサ値がSmin〜Smaxの範囲に含まれ、かつセンサ値が上昇傾向にある場合、最小薬注濃度Cmin〜最大薬注濃度Cmax間の正比例で求まる値に定数X1を加算することで、基本制御よりも薬注濃度Cを一定量底上げする。これにより、給水中の薬品濃度を必要量以上に保ちやすくなる。 In the first applied control, when the predicted sensor value is included in the range of S min to S max and the sensor value tends to increase, it is obtained in direct proportion between the minimum chemical injection concentration C min to the maximum chemical injection concentration C max. by adding a constant X1 to the value, a predetermined amount raised the dosing concentration C n than the basic control. Thereby, it becomes easy to keep the chemical concentration in the water supply more than necessary.

min≦ESn+1≦SmaxかつS>Sn−1の場合、以下の式のように、薬注濃度Cを一定倍率増加させてもよい。
薬注濃度C=Cmin+(ESn+1−Smin)×(Cmax−Cmin)×X2/(Smax−Smin), X2は1より大きい実数
In the case of S min ≦ ES n + 1 ≦ S max and S n > S n−1 , the chemical injection concentration C n may be increased by a certain factor as in the following equation.
Dosing concentration C n = C min + (ES n + 1 -S min) × (C max -C min) × X2 / (S max -S min), X2 is a real number larger than 1

[第2応用制御]
第2応用制御では、今回の測定(測定時刻T)でのセンサ値S、前回の測定(測定時刻Tn−1)でのセンサ値Sn−1に加えて、前々回の測定(測定時刻Tn−2)でのセンサ値Sn−2を用いて予測センサ値ESn+1を算出する。
[Second application control]
In a second application control, sensor value S n in the current measurement (measurement time T n), in addition to the sensor value S n-1 at the previous measurement (measurement time T n-1), measurement of the time before last (Measurement The predicted sensor value ES n + 1 is calculated using the sensor value Sn -2 at time Tn-2 ).

まず、センサ値Sn−2とセンサ値Sn−1との差分ΔS(n−2_n−1)、センサ値Sn−1とセンサ値Sとの差分ΔS(n−1_n)を演算する。
ΔS(n−2_n−1)=Sn−1−Sn−2
ΔS(n−1_n)=S−Sn−1
First, the sensor value S n-2 and the sensor value S n-1 difference between ΔS (n-2_n-1) , calculates a difference ΔS (n-1_n) between the sensor value S n-1 and the sensor value S n .
ΔS (n−2_n−1) = S n−1 −S n−2
ΔS (n−1_n) = S n −S n−1

差分ΔS(n−2_n−1)、ΔS(n−1_n)を用いて、予測センサ値ESn+1とセンサ値Sとの予測差分ΔS(n_n+1)を以下の式から算出する。
ΔS(n−1_n)−ΔS(n−2_n−1)≧0の場合: 予測差分ΔS(n_n+1)=ΔS(n−1_n)+(ΔS(n−1_n)−ΔS(n−2_n−1)
ΔS(n−1_n)−ΔS(n−2_n−1)<0の場合: 予測差分ΔS(n_n+1)=ΔS(n−1_n)
Difference ΔS (n-2_n-1) , using ΔS (n-1_n), calculates predicted sensor values ES n + 1 and the prediction difference [Delta] S between the sensor values S n to (n_n + 1) from the following equation.
When ΔS (n−1_n) −ΔS (n−2_n−1) ≧ 0: Prediction difference ΔS (n_n + 1) = ΔS (n−1_n) + (ΔS (n−1_n) −ΔS (n−2_n−1) )
If ΔS (n−1_n) −ΔS (n−2_n−1) <0: Prediction difference ΔS (n_n + 1) = ΔS (n−1_n)

予測差分ΔS(n_n+1)を用いて、予測センサ値ESn+1を以下の式から求める。なお、予測センサ値ESn+1から薬注濃度Cを算出する方法は基本制御と同じである。
予測差分ΔS(n_n+1)≧0の場合: 予測測センサ値ESn+1=S+予測差分ΔS(n_n+1)
予測差分ΔS(n_n+1)<0の場合: 予測測センサ値ESn+1=S
Using the prediction difference ΔS (n_n + 1) , the prediction sensor value ES n + 1 is obtained from the following equation. In addition, the method of calculating the chemical injection concentration C n from the predicted sensor value ES n + 1 is the same as the basic control.
When the prediction difference ΔS (n_n + 1) ≧ 0: Predicted sensor value ES n + 1 = S n + prediction difference ΔS (n_n + 1)
Prediction difference ΔS (n_n + 1) <0: Predicted sensor value ES n + 1 = S n

この第2応用制御では、センサ値の差分が増加傾向にある場合、時刻TからTn+1にかけてのセンサ値の差分も同様に増加すると予測する。一方、センサ値の差分が減少傾向にある場合、時刻TからTn+1にかけてのセンサ値の差分は、時刻Tn−1からTにかけてのセンサ値の差分と同じであると予測する。そのため、予測センサ値ESn+1は、実際に次回測定される(測定時刻Tn+1での)センサ値Sn+1よりもやや大きい値が算出されやすくなり、給水中の薬品濃度を必要量以上に保つことができる。 In the second applied control, when the difference in sensor value tends to increase, the difference in sensor value from time T n to T n + 1 is also predicted to increase in the same manner. On the other hand, if the difference between the sensor value tends to decrease, the difference of the sensor values from the time T n toward T n + 1 is predicted from the time T n-1 to be the same as the difference between the sensor value toward T n. Therefore, the predicted sensor value ES n + 1 is easily calculated to be slightly larger than the sensor value S n + 1 that is actually measured next time (at the measurement time T n + 1 ), and the chemical concentration in the water supply is kept above the required amount. Can do.

[第3応用制御]
時刻Tn−1から時刻Tの間でセンサ値を複数回サンプリングしてセンサ値Sn_mを求める。水質センサ5からセンサ値S、Sn−1等をサンプリングする第1サンプリング周期よりも、センサ値Sn_mをサンプリングする第2サンプリング周期の方が短い。センサ値Sがセンサ値Sn−1から減少していた場合でも、時刻Tn−1から時刻Tの間で複数回サンプリングした内で最も時刻Tに近いタイミングでサンプリングしたセンサ値Sn_m(last)がセンサ値Sn_m(last)−1から増加していた場合は、その傾き(増加分)を元に、予測センサ値ESn+1を算出する。
[Third application control]
The sensor value S n — m is obtained by sampling the sensor value a plurality of times from time T n−1 to time T n . Sensor values from the water sensor 5 S n, than the first sampling period for sampling the S n-1, etc., towards the second sampling period for sampling the sensor value S n_m is short. Sensor values S n even if was reduced from the sensor value S n-1, the time T n-1 from the time T sensor values sampled at multiple timings closest to time T n among sampled between n S When n_m (last) has increased from the sensor value Sn_m (last) -1 , the predicted sensor value ES n + 1 is calculated based on the slope (increase).

センサ値Sがセンサ値Sn−1から増加していた場合は、Sn_m(last)とSn_m(last)−1との大小関係に関係なく、基本制御と同様に予測センサ値ESn+1を算出する。具体的には、予測センサ値ESn+1を以下の式から算出する。予測センサ値ESn+1から薬注濃度Cを算出する方法は基本制御と同じである。
−Sn−1≧0の場合: 予測センサ値ESn+1=S+(S−Sn−1
−Sn−1<0かつSn_m(last)−Sn_m(last)−1≧0の場合: 予測センサ値ESn+1=S+(Sn_m(last)−Sn_m(last)−1
−Sn−1<0かつSn_m(last)−Sn_m(last)−1<0の場合: 予測センサ値ESn+1=S
When the sensor value S n has increased from the sensor value S n−1 , the predicted sensor value ES n + 1 is the same as in the basic control regardless of the magnitude relationship between S n_m (last) and S n_m (last) −1. Is calculated. Specifically, the predicted sensor value ES n + 1 is calculated from the following equation. The method for calculating the chemical injection concentration C n from the predicted sensor value ES n + 1 is the same as the basic control.
When S n −S n−1 ≧ 0: Predicted sensor value ES n + 1 = S n + (S n −S n−1 )
When S n −S n−1 <0 and Sn_m (last) −S n_m (last) −1 ≧ 0: Predicted sensor value ES n + 1 = S n + (S n_m (last) −S n_m (last) − 1 )
When S n −S n−1 <0 and S n_m (last) −S n_m (last) −1 <0: Predicted sensor value ES n + 1 = S n

この第3応用制御では、時刻Tn−1から時刻Tの間において短いサンプリング周期でセンサ値を細かくサンプリングし、センサ値Sがセンサ値Sn−1から減少していた場合でも、時刻Tに近いタイミングでセンサ値が増加していた場合は、センサ値が増加傾向にあるとみなし、予測センサ値ESn+1を求める。そのため、基本制御と比較して大きい予測センサ値ESn+1を算出する頻度が増し、給水中の薬品濃度を必要量以上に保ちやすくなる。 In the third applied control, even if the sensor value is sampled finely with a short sampling period between the time T n-1 and the time T n and the sensor value Sn is decreased from the sensor value Sn-1 , If the sensor value has increased at a timing close to T n , the sensor value is considered to be increasing and the predicted sensor value ES n + 1 is obtained. Therefore, the frequency of calculating the predicted sensor value ES n + 1 that is larger than that in the basic control is increased, and the chemical concentration in the water supply can be easily maintained above the necessary amount.

なお、第3応用制御において、一定期間内のセンサ値の平均値から、想定されるセンサ値の変動範囲を規定しておき、センサ値Sn_m(last)がこの変動範囲に収まっていない場合は、センサ値として採用しないというデータ処理を行ってもよい。 In the third applied control, when an expected fluctuation range of the sensor value is defined from the average value of the sensor values within a certain period, the sensor value Sn_m (last) is not within this fluctuation range. Data processing that is not adopted as the sensor value may be performed.

[第4応用制御]
第3応用制御と同様に、時刻Tn−1から時刻Tの間でセンサ値を複数回サンプリングしてセンサ値Sn_mを求め、複数のサンプリング値のうちの最大値Sn_m(max)を予測センサ値ESn+1とする。予測センサ値ESn+1から薬注濃度Cを算出する方法は基本制御と同じである。
予測センサ値ESn+1=Sn_m(max)
[Fourth application control]
Similarly to the third applied control, the sensor value is sampled a plurality of times from time T n−1 to time T n to obtain the sensor value S n_m, and the maximum value S n_m (max) among the plurality of sampling values is obtained. The predicted sensor value is ES n + 1 . The method for calculating the chemical injection concentration C n from the predicted sensor value ES n + 1 is the same as the basic control.
Predicted sensor value ES n + 1 = S n_m (max)

第4応用制御において、一定期間内のセンサ値の平均値から、想定されるセンサ値の変動範囲を規定しておき、この変動範囲に収まっていないセンサ値は採用しないというデータ処理を行ってもよい。   In the fourth applied control, even if data processing is performed in which an assumed sensor value fluctuation range is defined from an average value of sensor values within a certain period, and sensor values not within the fluctuation range are not adopted. Good.

[実施例1]
表1は、基本制御による制御例を示すものである。
[Example 1]
Table 1 shows an example of control by basic control.

Figure 2017170390
Figure 2017170390

表1では、時刻1:00〜2:10の70分間に5分毎にセンサで給水中の硬度成分濃度(センサ値S)を測定し、その結果に応じて次回のセンサ値(予測センサ値)を計算してスケール防止剤の薬注濃度を決定し、薬注している。給水中の硬度成分濃度は、増加後、ほぼ一定となっていた。   In Table 1, the hardness component concentration (sensor value S) in the water supply is measured by the sensor every 5 minutes for 70 minutes from time 1: 00 to 2:10, and the next sensor value (predicted sensor value) according to the result. ) Is calculated to determine the chemical concentration of the scale inhibitor. The hardness component concentration in the feed water was almost constant after the increase.

表1のセンサ値Sは、当該時刻のセンサの測定値であり、単位(%)は(センサ測定値/センサの測定範囲上限値)×100から算出される値である。例えば、0〜2000mS/mを測定する導電率計において200mS/mを示した場合には、(200/2000)×100=10%と表記される。なお、これらのセンサ値や単位は、採用する検出器の種類によって変わることは自明である。また、予測センサ値は、当該時刻のセンサ値及び過去のセンサ値を用いて計算されたものであり、例えば時刻1:05の予測センサ値は、時刻1:00のセンサ値及び時刻1:05のセンサ値を用いて、時刻1:10のセンサ値を予測したものである。   The sensor value S in Table 1 is the measured value of the sensor at the time, and the unit (%) is a value calculated from (sensor measured value / sensor measurement range upper limit value) × 100. For example, when a conductivity meter measuring 0 to 2000 mS / m indicates 200 mS / m, it is expressed as (200/2000) × 100 = 10%. It is obvious that these sensor values and units vary depending on the type of detector employed. The predicted sensor value is calculated using the sensor value at the time and the past sensor value. For example, the predicted sensor value at time 1:05 is the sensor value at time 1:00 and the time 1:05. Is used to predict the sensor value at time 1:10.

表1の必要薬注濃度(mg/L)は、図2の検量線を参照して、実際に次回測定されるセンサ値Sから求まる薬注濃度である。例えば、時刻1:05の必要薬注濃度は、時刻1:10のセンサ値Sを図2の検量線に適用して求められる。図2の検量線のSminは5%、最小薬注濃度Cminは10、Smaxは95%、最大薬注濃度Cmaxは300であった。 The required chemical injection concentration (mg / L) in Table 1 is the chemical injection concentration obtained from the sensor value S actually measured next time with reference to the calibration curve of FIG. For example, the required chemical injection concentration at time 1:05 is obtained by applying the sensor value S at time 1:10 to the calibration curve in FIG. The S min of the calibration curve in FIG. 2 was 5%, the minimum chemical injection concentration C min was 10, S max was 95%, and the maximum chemical injection concentration C max was 300.

表1の薬注濃度C(mg/L)は、図2の検量線を参照して、当該時刻の予測センサ値から求まる薬注濃度である。例えば、時刻1:05の薬注濃度Cは、時刻1:05の予測センサ値を図2の検量線に適用して求められる。 The chemical injection concentration C n (mg / L) in Table 1 is the chemical injection concentration obtained from the predicted sensor value at that time with reference to the calibration curve of FIG. For example, the chemical injection concentration C n at time 1:05 is obtained by applying the predicted sensor value at time 1:05 to the calibration curve in FIG.

表1の差分は、当該時刻のセンサ値と、前回測定のセンサ値との差分である。例えば、時刻1:05の差分は、時刻1:05のセンサ値と時刻1:00のセンサ値との差分である。   The difference in Table 1 is the difference between the sensor value at the time and the sensor value of the previous measurement. For example, the difference at time 1:05 is the difference between the sensor value at time 1:05 and the sensor value at time 1:00.

図3は、表1の必要薬注濃度及び薬注濃度Cの変遷を示すグラフである。 Figure 3 is a graph showing the transition of necessary chemical feed concentration in Table 1 and chemical feeding, chemical dosing concentration C n.

[実施例2]
基本制御による薬注制御対象の給水中の硬度成分濃度が増加した後に減少し、その後ほぼ一定となること以外は、実施例1と同様にして薬注制御を行った。制御結果を表2に示し、必要薬注濃度及び薬注濃度Cの変遷を図4に示す。
[Example 2]
The chemical injection control was performed in the same manner as in Example 1 except that the hardness component concentration in the feed water to be controlled by the basic control decreased after increasing and became substantially constant thereafter. The control result shown in Table 2, shows a transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n in FIG.

Figure 2017170390
Figure 2017170390

[実施例3]
基本制御による薬注制御対象の給水中の硬度成分濃度が減少後ほぼ一定となること以外は、実施例1と同様にして薬注制御を行った。制御結果を表3に示し、必要薬注濃度及び薬注濃度Cの変遷を図5に示す。
[Example 3]
The chemical injection control was performed in the same manner as in Example 1 except that the hardness component concentration in the feed water to be controlled by the basic control became substantially constant after the decrease. The control result shown in Table 3, Figure 5 shows the transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n.

Figure 2017170390
Figure 2017170390

[実施例4]
基本制御による薬注制御対象の給水中の硬度成分濃度が減少した後に増加し、その後ほぼ一定となること以外は、実施例1と同様にして薬注制御を行った。制御結果を表4に示し、必要薬注濃度及び薬注濃度Cの変遷を図6に示す。
[Example 4]
The chemical injection control was performed in the same manner as in Example 1 except that the hardness component concentration in the feed water to be controlled by the basic control increased after decreasing and became substantially constant thereafter. The control result shown in Table 4 shows the transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n in FIG. 6.

Figure 2017170390
Figure 2017170390

[実施例5]
硬度成分濃度が増加後、ほぼ一定となる給水に対し、第2応用制御による薬注制御を行った。制御結果を表5に示し、必要薬注濃度及び薬注濃度Cの変遷を図7に示す。表5の差分ΔS(n−1_n)は当該時刻のセンサ値と、前回測定のセンサ値との差分である。予測差分ΔS(n_n+1)は、当該時刻のセンサ値と予測センサ値との差分であり、予測差分ΔS(n_n+1)に当該時刻のセンサ値を加算したものが予測センサ値となる。
[Example 5]
The chemical injection control by the second applied control was performed on the water supply that became almost constant after the hardness component concentration increased. The control result is shown in Table 5 shows the transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n in FIG. The difference ΔS (n−1_n) in Table 5 is the difference between the sensor value at the time and the sensor value of the previous measurement. The prediction difference ΔS (n_n + 1) is the difference between the sensor value at the time and the prediction sensor value, and the prediction sensor value is obtained by adding the sensor value at the time to the prediction difference ΔS (n_n + 1) .

Figure 2017170390
Figure 2017170390

[実施例6]
第2応用制御による薬注制御対象の給水中の硬度成分濃度が増加した後に減少し、その後ほぼ一定となること以外は、実施例5と同様にして薬注制御を行った。制御結果を表6に示し、必要薬注濃度及び薬注濃度Cの変遷を図8に示す。
[Example 6]
The chemical injection control was performed in the same manner as in Example 5 except that the hardness component concentration in the water supply controlled by the second application control decreased after increasing and then became substantially constant. The control result shown in Table 6, Figure 8 shows the evolution of required chemical feed concentration and chemical feeding, chemical dosing concentration C n.

Figure 2017170390
Figure 2017170390

[実施例7]
第2応用制御による薬注制御対象の給水中の硬度成分濃度が減少後ほぼ一定となること以外は、実施例5と同様にして薬注制御を行った。制御結果を表7に示し、必要薬注濃度及び薬注濃度Cの変遷を図9に示す。
[Example 7]
The chemical injection control was performed in the same manner as in Example 5 except that the hardness component concentration in the feed water targeted for chemical injection control by the second applied control became substantially constant after the decrease. The control result shown in Table 7, shows the transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n in FIG.

Figure 2017170390
Figure 2017170390

[実施例8]
第2応用制御による薬注制御対象の給水中の硬度成分濃度が減少した後に増加し、その後ほぼ一定となること以外は、実施例5と同様にして薬注制御を行った。制御結果を表8に示し、必要薬注濃度及び薬注濃度Cの変遷を図10に示す。
[Example 8]
The chemical injection control was performed in the same manner as in Example 5 except that the hardness component concentration in the feed water to be controlled by the second applied control increased after decreasing and became substantially constant thereafter. The control result is shown in Table 8, Figure 10 shows the transition of necessary chemical feed concentration and chemical feeding, chemical dosing concentration C n.

Figure 2017170390
Figure 2017170390

実施例1〜8の薬注制御結果から、予測センサ値に基づく薬注濃度Cが、必要薬注濃度と同様に変化し、かつ必要量(必要薬注濃度)を下回ることが少ないことが確認された。 From the results of the chemical injection control in Examples 1 to 8, the chemical injection concentration C n based on the predicted sensor value changes in the same manner as the required chemical injection concentration and is less likely to fall below the required amount (necessary chemical injection concentration). confirmed.

上記実施の形態は、本発明の一例であり、本発明は上記以外の形態とされてもよい。   The above embodiment is an example of the present invention, and the present invention may be other than the above.

上記実施の形態では、センサ値Sと薬注濃度Cを正比例させる例について説明したが、反比例させてもよい。例えば、センサ値SがSmin以下の場合、薬注濃度Cを最大薬注濃度Cmaxとし、センサ値SがSmax以上の場合は薬注濃度Cを最小薬注濃度Cminとする。センサ値SがSmin〜Smaxの範囲に含まれる場合は、最大薬注濃度Cmaxと最小薬注濃度Cminとの間を反比例させる。また、基本制御、第1〜第4応用制御において、不等号の向きは反対になる。 In the above embodiment, the example in which the sensor value S and the chemical concentration C are directly proportional has been described. However, it may be inversely proportional. For example, when the sensor value S is equal to or less than S min , the chemical injection concentration C is set to the maximum chemical injection concentration C max, and when the sensor value S is equal to or higher than S max , the chemical injection concentration C is set to the minimum chemical injection concentration C min . When the sensor value S is included in the range of S min to S max , the maximum chemical injection concentration C max and the minimum chemical injection concentration C min are inversely proportional. Further, in the basic control and the first to fourth applied controls, the direction of the inequality sign is reversed.

1 水処理装置
3 タンク
4 ユースポイント
5 水質センサ
7 薬注ポンプ
8 流量計
1 Water Treatment Equipment 3 Tank 4 Use Point 5 Water Quality Sensor 7 Chemical Injection Pump 8 Flowmeter

Claims (9)

水質センサで給水中の水質を検出し、検出結果に基づいて薬注濃度を決定し、薬注装置によって該給水に薬注する薬注制御方法において、
前記水質センサによるセンサ値を第1サンプリング周期でサンプリングし、
今回センサ値及び前回センサ値から次回のセンサ値を予測して予測センサ値を計算し、
該予測センサ値が第1所定値未満の場合は薬注濃度を第1薬注濃度とし、該予測センサ値が第2所定値以上の場合は薬注濃度を第2薬注濃度とし、該予測センサ値が該第1所定値以上かつ該第2所定値未満の場合は該予測センサ値に応じた薬注濃度として、薬注することを特徴とする薬注制御方法。
In the chemical injection control method of detecting the water quality in the water supply with the water quality sensor, determining the chemical injection concentration based on the detection result, and injecting the water into the water supply by the chemical injection device,
Sampling the sensor value by the water quality sensor at the first sampling period,
Calculate the predicted sensor value by predicting the next sensor value from the current sensor value and the previous sensor value,
When the predicted sensor value is less than the first predetermined value, the chemical injection concentration is the first chemical injection concentration, and when the predicted sensor value is greater than or equal to the second predetermined value, the chemical injection concentration is the second chemical injection concentration. A chemical injection control method, wherein when a sensor value is not less than the first predetermined value and less than the second predetermined value, chemical injection is performed as a chemical injection concentration corresponding to the predicted sensor value.
請求項1において、今回センサ値が前回センサ値より大きい場合、今回センサ値と前回センサ値との差分を今回センサ値に加算して予測センサ値を算出することを特徴とする薬注制御方法。   2. The chemical injection control method according to claim 1, wherein when the current sensor value is larger than the previous sensor value, a predicted sensor value is calculated by adding a difference between the current sensor value and the previous sensor value to the current sensor value. 請求項2において、今回センサ値が前回センサ値より小さい場合、予測センサ値を今回センサ値と同じにすることを特徴とする薬注制御方法。   3. The chemical injection control method according to claim 2, wherein when the current sensor value is smaller than the previous sensor value, the predicted sensor value is made the same as the current sensor value. 請求項1において、前記予測センサ値が前記第1所定値以上かつ前記第2所定値未満の場合、該予測センサ値に応じた薬注濃度を所定倍率した値又は所定量を付加した値に基づいて薬注することを特徴とする薬注制御方法。   In Claim 1, when the predicted sensor value is not less than the first predetermined value and less than the second predetermined value, it is based on a value obtained by multiplying a chemical concentration according to the predicted sensor value by a predetermined magnification or a value added with a predetermined amount. A chemical injection control method characterized in that the chemical injection is performed. 請求項1において、今回センサ値と前回センサ値との第1差分、及び前回センサ値と前々回センサ値との第2差分を求め、
該第1差分が該第2差分以上の場合、該第1差分に、該第1差分と該第2差分との差分を加算した値を予測差分とし、
該第1差分が該第2差分より小さい場合、該第1差分を予測差分とし、
今回センサ値に該予測差分を加算して予測センサ値を算出することを特徴とする薬注制御方法。
In claim 1, the first difference between the current sensor value and the previous sensor value and the second difference between the previous sensor value and the previous sensor value are obtained,
When the first difference is equal to or greater than the second difference, a value obtained by adding the difference between the first difference and the second difference to the first difference is set as a prediction difference.
When the first difference is smaller than the second difference, the first difference is set as a prediction difference,
A chemical injection control method characterized in that the predicted sensor value is calculated by adding the predicted difference to the sensor value this time.
請求項2において、前記水質センサによるセンサ値を前記第1サンプリング周期より短い第2サンプリング周期でサンプリングし、
該第1サンプリング周期での今回センサ値が前回センサ値より小さく、かつ該今回センサ値の直前で該第2サンプリング周期でのセンサ値が増加していた場合、増加分を該今回センサ値に加算して予測センサ値を算出し、
該第1サンプリング周期での今回センサ値が前回センサ値より小さく、かつ該今回センサ値の直前で該第2サンプリング周期でのセンサ値が減少していた場合、予測センサ値を該今回センサ値と同じにすることを特徴とする薬注制御方法。
In Claim 2, the sensor value by the water quality sensor is sampled at a second sampling period shorter than the first sampling period,
If the current sensor value in the first sampling period is smaller than the previous sensor value and the sensor value in the second sampling period has increased immediately before the current sensor value, the increment is added to the current sensor value. To calculate the predicted sensor value,
When the current sensor value in the first sampling period is smaller than the previous sensor value and the sensor value in the second sampling period is decreasing immediately before the current sensor value, the predicted sensor value is set as the current sensor value. A chemical injection control method characterized by making the same.
請求項1において、前記水質センサによるセンサ値を前記第1サンプリング周期より短い第2サンプリング周期でサンプリングし、
該第1サンプリング周期で前回センサ値をサンプリングしてから今回センサ値をサンプリングする間における、該第2サンプリング周期でのセンサ値の最大値を予測センサ値とすることを特徴とする薬注制御方法。
In Claim 1, the sensor value by the water quality sensor is sampled at a second sampling period shorter than the first sampling period,
A chemical injection control method characterized in that a maximum value of sensor values in the second sampling period during the sampling of the current sensor value after the previous sensor value is sampled in the first sampling period is set as a predicted sensor value. .
請求項1乃至7のいずれか1項において、蒸気復水処理用pH調整剤、ボイラ用pH調整剤、又は脱酸素剤を薬注することを特徴とする薬注制御方法。   8. The chemical injection control method according to any one of claims 1 to 7, wherein a chemical pH adjusting agent for steam condensate treatment, a pH adjusting agent for boiler, or an oxygen scavenger is injected. 水質センサが検出した給水中の水質を取得し、検出結果に基づいて薬注濃度を決定し、該給水に薬注する薬注装置を制御する薬注制御装置であって、
前記水質センサによるセンサ値を第1サンプリング周期でサンプリングし、
今回センサ値及び前回センサ値から次回のセンサ値を予測して予測センサ値を計算し、
該予測センサ値が第1所定値未満の場合は薬注濃度を第1薬注濃度とし、該予測センサ値が第2所定値以上の場合は薬注濃度を第2薬注濃度とし、該予測センサ値が該第1所定値以上かつ該第2所定値未満の場合は該予測センサ値に応じた薬注濃度として、前記薬注装置を制御することを特徴とする薬注制御装置。
A chemical injection control device that acquires the water quality in the water supply detected by the water quality sensor, determines the chemical injection concentration based on the detection result, and controls the chemical injection device that injects the chemical into the water supply,
Sampling the sensor value by the water quality sensor at the first sampling period,
Calculate the predicted sensor value by predicting the next sensor value from the current sensor value and the previous sensor value,
When the predicted sensor value is less than the first predetermined value, the chemical injection concentration is the first chemical injection concentration, and when the predicted sensor value is greater than or equal to the second predetermined value, the chemical injection concentration is the second chemical injection concentration. When the sensor value is greater than or equal to the first predetermined value and less than the second predetermined value, the medicinal injection device is controlled as the medicinal concentration according to the predicted sensor value.
JP2016061472A 2016-03-25 2016-03-25 Chemical injection control method and chemical injection control device Expired - Fee Related JP6699283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061472A JP6699283B2 (en) 2016-03-25 2016-03-25 Chemical injection control method and chemical injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061472A JP6699283B2 (en) 2016-03-25 2016-03-25 Chemical injection control method and chemical injection control device

Publications (2)

Publication Number Publication Date
JP2017170390A true JP2017170390A (en) 2017-09-28
JP6699283B2 JP6699283B2 (en) 2020-05-27

Family

ID=59972556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061472A Expired - Fee Related JP6699283B2 (en) 2016-03-25 2016-03-25 Chemical injection control method and chemical injection control device

Country Status (1)

Country Link
JP (1) JP6699283B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157192A (en) * 1989-11-14 1991-07-05 Meidensha Corp Constant controller for residual chlorine of treated water
JPH06348873A (en) * 1993-06-02 1994-12-22 Hitachi Ltd Supporting system using neural network, plant operation supporting system utilizing the supporting system and automatic additional learning method for neural network
JP2010007992A (en) * 2008-06-27 2010-01-14 Jfe Steel Corp Sintering apparatus and sintering method
JP2011164487A (en) * 2010-02-12 2011-08-25 Oki Data Corp Image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157192A (en) * 1989-11-14 1991-07-05 Meidensha Corp Constant controller for residual chlorine of treated water
JPH06348873A (en) * 1993-06-02 1994-12-22 Hitachi Ltd Supporting system using neural network, plant operation supporting system utilizing the supporting system and automatic additional learning method for neural network
JP2010007992A (en) * 2008-06-27 2010-01-14 Jfe Steel Corp Sintering apparatus and sintering method
JP2011164487A (en) * 2010-02-12 2011-08-25 Oki Data Corp Image forming apparatus

Also Published As

Publication number Publication date
JP6699283B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US20180037471A1 (en) Wastewater treatment system
RU2012155283A (en) SYSTEM AND METHOD OF PASTERIZATION AT A LESS MEASURE OF ONE LIQUID
US6921193B2 (en) Chemical concentration control device for semiconductor processing apparatus
JP2017170390A (en) Chemical feed control method and chemical feed control apparatus
JP2010247063A (en) Method and apparatus for injection control of chemical for cooling water
JP4882632B2 (en) Method and apparatus for treating phosphoric acid-containing wastewater
JP5983310B2 (en) Boiler water quality management method and apparatus
JP5867527B2 (en) Boiler chemical injection control apparatus and method
JP2019098331A (en) Chemical injection control device, drug management device, water treatment system, chemical injection control method, and program
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
JP2021109139A (en) Information processing device, information processing method, and program
CN105700569B (en) Method for controlling a process variable
JP2007321174A (en) Method for controlling acid concentration in pickling process, apparatus therefor, and method for producing steel sheet using them
KR101767191B1 (en) Method for calculating optimal injection rate of corrosion inhibitor using by Langelier Index applied system for evaluating corrosion inhibition of raw water
KR20160104669A (en) Device and method for regulating the concentration of a treatment chemical inside a liquid bearing system
JP5987727B2 (en) Drug addition amount control method and drug addition amount control device
EP2887146A3 (en) Image forming apparatus and method for controlling image forming apparatus
JP2016055245A (en) Neutralization treatment method, and neutralization apparatus
JP7414473B2 (en) Sewage treatment system, sewage treatment method
JP6290691B2 (en) Method for determining the amount of pickling solution input
JP6655847B2 (en) How to control the amount of sludge returned and excess sludge from the final sedimentation basin
JP2017170358A (en) Chemicals feeding control method
Guseva et al. Medium pressure boiler water chemistry optimization using neutralizing amines mixture reagent AMINAT™ PK-2 at CEPP “Borovichi Refractories Plant” of JSC “BKO”
JP2008049222A (en) Purification system of storage of water institution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees