JP2007321174A - Method for controlling acid concentration in pickling process, apparatus therefor, and method for producing steel sheet using them - Google Patents

Method for controlling acid concentration in pickling process, apparatus therefor, and method for producing steel sheet using them Download PDF

Info

Publication number
JP2007321174A
JP2007321174A JP2006149802A JP2006149802A JP2007321174A JP 2007321174 A JP2007321174 A JP 2007321174A JP 2006149802 A JP2006149802 A JP 2006149802A JP 2006149802 A JP2006149802 A JP 2006149802A JP 2007321174 A JP2007321174 A JP 2007321174A
Authority
JP
Japan
Prior art keywords
acid
pickling
amount
tank
acid concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006149802A
Other languages
Japanese (ja)
Other versions
JP5050410B2 (en
Inventor
Kazuya Asano
一哉 浅野
Takashi Motomura
隆 本邑
Kazuhiro Yahiro
和広 八尋
Naoto Egawa
直人 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006149802A priority Critical patent/JP5050410B2/en
Publication of JP2007321174A publication Critical patent/JP2007321174A/en
Application granted granted Critical
Publication of JP5050410B2 publication Critical patent/JP5050410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which reduces a fluctuation of an acid concentration in a pickling tank caused by various factors, stabilizes a surface quality of a pickled metal sheet, and consequently enhances the production efficiency by increasing the pickling speed. <P>SOLUTION: A pickling facility for removing a scale of an oxide on the surface of a metallic sheet (2) by continuously passing the metallic sheet through pickling tanks (4A, 4B, 4C) for making the metallic sheet react with the acid solution therein. The method for controlling the acid concentration in the pickling tanks to a desired value comprises the steps of: determining an estimated value of the acid concentration in the pickling tank (S1), by using a dynamic model (30) which shows a balance among the inflow of the acid flowing into the pickling tank, the outflow of the acid flowing out of the pickling tank and the consumption of the acid due to a chemical reaction of the oxide scale and the acid solution; estimating the disturbance which causes the fluctuation of the acid concentration in the pickling tank from the difference between the estimated value of the acid concentration and the measured value of the acid concentration in the acid solution in the pickling tank (S2); determining an amount of the acid to be charged into the pickling tank, which is necessary for offsetting the influence of the estimated disturbance (S3); and controlling the amount of the acid to be charged according to the estimated amount (S4). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸洗プロセスの酸濃度制御方法・装置、及びこれらを用いた鋼板製造方法に係り、特に、鋼板の酸洗プロセスに用いるのに好適な、酸液を反応させる酸洗槽に金属板を連続的に通過させることによって金属板の表面の酸化物スケールを除去する酸洗設備において、前記酸洗槽内の酸濃度を所望の値に制御することが可能な、酸洗プロセスの酸濃度制御方法・装置、及びこれらを用いた鋼板製造方法に関する。   The present invention relates to an acid concentration control method and apparatus for a pickling process, and a steel plate manufacturing method using the same, and more particularly, to a pickling tank for reacting an acid solution suitable for use in a pickling process of a steel plate. In pickling equipment that removes oxide scale on the surface of a metal plate by continuously passing the plate, the acid concentration in the pickling tank can be controlled to a desired value. The present invention relates to a concentration control method / apparatus and a steel plate manufacturing method using these.

酸洗プロセスは、鋼板などの金属板表面の酸化物スケールを塩酸、硫酸などの酸液と反応させることにより除去するプロセスである。以下、鋼板を例にとって説明すると、一般的には、酸液を満たした槽に鋼板を浸漬しながら通過させるディップ酸洗、槽内で酸液を噴流状態で吹き付けながら通過させる噴流酸洗等が知られている。いずれの場合でも、酸洗槽を直列に複数個配置し、上流側(プロセスの入側)から順次通過させるようにするのが一般的である。   The pickling process is a process of removing oxide scale on the surface of a metal plate such as a steel plate by reacting with an acid solution such as hydrochloric acid or sulfuric acid. Hereinafter, a steel plate will be described as an example.Generally, dip pickling that allows the steel plate to pass while immersed in a tank filled with an acid solution, jet pickling that allows the acid solution to pass while sprayed in a jet state in the tank, and the like. Are known. In any case, it is general that a plurality of pickling tanks are arranged in series so that they are sequentially passed from the upstream side (the entry side of the process).

ディップ酸洗では、酸液は最下流側の槽に投入され、上流の槽には下流側の槽からオーバーフローさせることにより酸液を供給している。   In the dip pickling, the acid solution is supplied to the most downstream tank, and the acid solution is supplied to the upstream tank by overflowing from the downstream tank.

又、噴流酸洗では、酸液は最下流側の槽、および中間の槽に投入され、下流側の槽から上流側の槽にポンプを介して酸液を供給している。   In the jet pickling, the acid solution is introduced into the most downstream tank and the intermediate tank, and the acid solution is supplied from the downstream tank to the upstream tank via a pump.

いずれの場合にも、最上流側の槽で使用された酸液は回収され、処理されて再使用される。   In either case, the acid solution used in the uppermost stream tank is recovered, processed, and reused.

酸洗の効率は、酸洗槽内の酸濃度の影響を強く受けるため、酸洗後の鋼板の表面品質を安定に保つためには酸洗槽内の酸濃度を一定に制御することが必要になる。そのため、酸洗槽内の酸液の濃度を測定し、それに基づいて酸洗槽への酸の投入量を操作することが行われている。   Since the efficiency of pickling is strongly influenced by the acid concentration in the pickling tank, it is necessary to control the acid concentration in the pickling tank to be constant in order to keep the surface quality of the steel plate after pickling stable. become. Therefore, the concentration of the acid solution in the pickling tank is measured, and the amount of acid input to the pickling tank is manipulated based on the measured concentration.

酸洗槽内で鋼板の酸化物スケールとの化学反応によって消費される酸の消費量は、鋼板の種類、酸化物スケールの密度と性状、鋼板の幅、酸洗槽を通過する鋼板の速度、酸洗槽内の酸濃度と温度などによって大きな影響を受ける。操業条件が変更されるとこれらが変化し、酸の消費速度が変化するため、それに見合った量の酸を酸槽内に投入しないと酸濃度が変化してしまう。   The consumption of acid consumed by chemical reaction with the oxide scale of the steel sheet in the pickling tank is the type of steel sheet, the density and properties of the oxide scale, the width of the steel sheet, the speed of the steel sheet passing through the pickling tank, It is greatly affected by the acid concentration and temperature in the pickling tank. When the operating conditions are changed, these change and the acid consumption rate changes. Therefore, the acid concentration changes unless an appropriate amount of acid is put into the acid tank.

ところが、酸槽内の酸液量は、単位時間当たりの酸の投入量(酸の流量又は酸投入量とも称する)に比べて非常に大きいため、酸の投入量の操作を行ってから酸濃度が変化するまでには数時間を要するため、酸濃度変動を検出してから操作を行うのでは遅れが大きく、操業条件変化に伴う酸濃度変動には対応できないという問題がある。   However, the amount of acid in the acid tank is much larger than the amount of acid input per unit time (also referred to as acid flow rate or acid input amount). Since it takes several hours to change, there is a problem that if the operation is performed after the change in the acid concentration is detected, there will be a large delay, and it will not be possible to cope with the change in the acid concentration accompanying the change in operating conditions.

酸の投入量が不足すると酸濃度が低下し、十分な酸洗が行えないためにスケールが鋼板表面に残存して欠陥が生じる。又、酸の投入量が過剰であると、過度に酸洗が進行して鋼板表面に変色が生じ、やはり欠陥となる。又、酸が無駄に使用され、原単位が悪化してしまう。   If the amount of acid input is insufficient, the acid concentration decreases and sufficient pickling cannot be performed, so that the scale remains on the surface of the steel sheet, resulting in defects. On the other hand, if the amount of acid added is excessive, pickling proceeds excessively and discoloration occurs on the surface of the steel sheet, resulting in defects. Further, the acid is wasted and the basic unit is deteriorated.

このような問題に対して、いくつかの方法が開示されているが、その多くは酸洗の効率に及ぼす要因を特定し、それらが酸消費量に与える影響を予測してフィードフォワード的に酸の投入量を操作するものである。   Several methods have been disclosed for such a problem, but many of them specify factors affecting the efficiency of pickling, predict the impact on acid consumption, and feedforwardly evaluate the acidity. It controls the input amount.

例えば、特許文献1では、運転状態変化が酸槽内の酸濃度変化に与える影響をモデル式で予測し、それを相殺するように酸液の流量を操作する方法が開示されている。   For example, Patent Document 1 discloses a method of predicting the influence of a change in operating state on a change in acid concentration in an acid tank using a model formula and operating the flow rate of the acid solution so as to cancel it.

又、特許文献2では、鋼板のスケール厚、板幅、搬送速度を用いて酸投入量と2槽以上への酸投入分配率を求めて酸の投入量を操作する方法が開示されている。   Patent Document 2 discloses a method of operating an acid input amount by obtaining an acid input amount and an acid input distribution ratio to two or more tanks using a scale thickness, a plate width, and a conveying speed of a steel plate.

又、特許文献3では、鋼板の板厚、材質および熱延条件を関数として噴流酸洗における酸吐出量および酸液温度を操作する方法が開示されている。   Further, Patent Document 3 discloses a method of manipulating the acid discharge amount and the acid solution temperature in jet pickling as a function of the plate thickness, material and hot rolling conditions of a steel plate.

又、特許文献4では、鋼板の板厚、板幅、スケール量に関する状態量と、酸洗槽に供給される酸濃度、供給量、液温、板速度などから酸槽内の脱スケーリング率を求め、それに基づいて運転状態を決定する方法が開示されている。   Further, in Patent Document 4, the descaling rate in the acid bath is determined from the state amount relating to the plate thickness, plate width, and scale amount of the steel plate, the acid concentration supplied to the pickling tank, the supply amount, the liquid temperature, the plate speed, and the like. A method for determining and determining an operation state based on the determination is disclosed.

特開昭60-135587号公報Japanese Patent Application Laid-Open No. 60-135587 特開2003-13268号公報JP 2003-13268 A 特開平1-254313号公報JP-A-1-254313 特開平10-306391号公報Japanese Patent Laid-Open No. 10-306391

しかしながら、これらの文献で開示されている方法は、いずれも酸洗槽内における酸洗効率、あるいは酸の消費量に及ぼす要因を特定し、それらの影響に応じて酸の投入量を操作するものであるから、その影響が高精度に求められていないと酸の投入量の操作が不足したり、過剰になったりするという問題がある。   However, all of the methods disclosed in these documents specify factors affecting the pickling efficiency in the pickling tank or the amount of acid consumption, and manipulate the amount of acid input according to the influence of those factors. Therefore, there is a problem that if the influence is not required with high accuracy, the operation of the amount of acid input is insufficient or excessive.

又、各上記文献において考慮されていない要因によって生じる酸濃度変動に対しては効果がない。例えば、スケールの性状のような測定が困難な状態量に対しては、その影響をあらかじめ見積もって酸の投入量を操作することは困難である。   In addition, there is no effect on acid concentration fluctuations caused by factors not considered in each of the above documents. For example, for a state quantity that is difficult to measure, such as scale properties, it is difficult to estimate the effect in advance and manipulate the amount of acid input.

更に、鋼板は上流側の槽から下流側の槽へと順次搬送されるから、上流側の槽における酸洗処理の進行状況は下流側の酸洗に影響を与える。例えば、上流側で十分酸洗が行われると、下流側で除去すべき酸化物スケールの量が少なくなるから、下流側の槽における酸消費量は少なくなる。   Furthermore, since the steel plates are sequentially conveyed from the upstream tank to the downstream tank, the progress of the pickling process in the upstream tank affects the downstream pickling. For example, if sufficient pickling is performed on the upstream side, the amount of oxide scale to be removed on the downstream side is reduced, so that the amount of acid consumed in the downstream tank is reduced.

又、酸液は最下流の槽から順次上流側の槽へ供給されるから、下流側の槽の酸濃度が上流側の槽の酸濃度に影響する。   Further, since the acid solution is sequentially supplied from the most downstream tank to the upstream tank, the acid concentration in the downstream tank affects the acid concentration in the upstream tank.

従来の方法では、このような槽間の影響を考慮していないため、各槽に適正な酸投入を行うことはできなかった。   In the conventional method, since the influence between such tanks is not taken into consideration, it was not possible to perform appropriate acid injection into each tank.

このような従来技術の問題点は、酸洗効率あるいは酸消費量の変動に与える要因を限定し、その影響を予測して酸の投入量を操作するという考え方そのものに存在する。即ち、酸洗効率あるいは酸消費量の変動に与える要因は、引用した文献で挙げられているものの他にも存在し、それらの影響を正確に見積もることは極めて困難である。又、鋼板による酸液の下流側の槽への持ち出しや、前述の槽間の影響などについては、従来技術では対処できない。   Such a problem of the prior art exists in the idea itself that the factors affecting the fluctuations in pickling efficiency or acid consumption are limited, and the influence is predicted to manipulate the input amount of acid. In other words, there are factors other than those cited in the cited literature, and it is extremely difficult to accurately estimate the influences on the pickling efficiency or acid consumption fluctuation. Further, the conventional technology cannot deal with the acid solution brought out by the steel plate to the downstream tank or the influence between the tanks described above.

本発明は、前記課題を解決するためになされたものであり、さまざまな要因による酸洗槽内の酸濃度変動を低減し、酸洗後の鋼板の表面品質を安定に保ち、ひいては酸洗速度アップにより生産効率を向上させる技術を提供することを課題とする。   The present invention has been made in order to solve the above-mentioned problems, reduces fluctuations in the acid concentration in the pickling tank due to various factors, keeps the surface quality of the steel sheet after pickling stable, and thus pickling speed. It is an object to provide a technology for improving production efficiency by improving production.

本発明は、酸液を反応させる酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備において、前記酸洗槽内の酸濃度を所望の値に制御するにあたり、前記酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記酸洗槽内の酸濃度推定値を求め、該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を推定し、該推定した外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め、該投入量にしたがって酸の投入量を操作することで、前記課題を解決したものである。   The present invention provides a pickling facility for removing oxide scale on the surface of the metal plate by continuously passing the metal plate through a pickling bath in which the acid solution is reacted. The amount of acid flowing into the pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution From the difference between the acid concentration estimated value and the acid concentration measured value of the acid solution in the pickling tank, the acid concentration estimated value in the pickling tank is obtained by a dynamic model representing the balance between The amount of acid input to the pickling tank required to offset the influence of the estimated disturbance is determined, and the amount of acid input is manipulated according to the amount of input. This solves the above-mentioned problem.

又、本発明は、酸液を反応させる酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備における前記酸洗槽内の酸濃度を所望の値に制御する酸洗プロセスの酸濃度制御装置において、前記酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記酸洗槽内の酸濃度推定値を求める手段と、該手段で求められた酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を推定する手段と、該推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求める手段と、該手段で求められた投入量にしたがって酸の投入量を操作する手段と、を具備することで、前記課題を解決したものである。   The present invention also provides an acid concentration in the pickling tank in the pickling equipment for removing oxide scale on the surface of the metal plate by continuously passing the metal plate through a pickling tank in which the acid solution is reacted. In the acid concentration control device of the pickling process controlled to a desired value, the amount of acid flowing into the pickling tank, the amount of acid flowing out from the pickling tank, the chemistry of oxide scale and acid solution By means of a dynamic model representing the balance of the consumption of acid consumed by the reaction, means for obtaining an acid concentration estimated value in the pickling tank, an acid concentration estimated value obtained by the means and the acid washing tank From the difference from the acid concentration measurement value of the acid solution, a means for estimating a disturbance that causes fluctuations in the acid concentration in the pickling tank, and a method to the pickling tank that is necessary to offset the influence of the estimated disturbance Means for determining the amount of acid input, and input determined by the means According By and means for operating the input amount of acid, and is obtained by solving the above problems.

又、本発明は、酸液を反応させる酸洗槽を直列に複数配置し、該複数の酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備において、前記酸洗槽内の酸濃度を所望の値に制御するにあたり、前記各酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記各酸洗槽内の酸濃度推定値を求め、該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を酸洗槽ごとに推定し、該酸洗槽ごとに推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め、該投入量にしたがって各酸洗槽への酸の投入量を操作することで、前記課題を解決したものである。   Further, the present invention removes the oxide scale on the surface of the metal plate by arranging a plurality of pickling baths for reacting the acid solution in series and continuously passing the metal plates through the plurality of pickling baths. In pickling equipment, in order to control the acid concentration in the pickling tank to a desired value, the amount of acid flowing into each pickling tank, the amount of acid flowing out from the pickling tank, and the oxidation A dynamic model representing the balance between the product scale and the amount of acid consumed by the chemical reaction of the acid solution is used to obtain an estimated acid concentration value in each of the pickling tanks. In order to estimate the disturbance that causes the acid concentration fluctuation in the pickling tank for each pickling tank from the difference from the acid concentration measurement value of the pickling tank, and to offset the influence of the disturbance estimated for each pickling tank The amount of acid input to the pickling tank required for the By operating the input amount of acid to it is obtained by solving the above problems.

又、本発明は、酸液を反応させる酸洗槽を直列に複数配置し、該複数の酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備における前記酸洗槽内の酸濃度を所望の値に制御する酸洗プロセスの酸濃度制御装置において、前記各酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記各酸洗槽内の酸濃度推定値を求める手段と、該手段で求められた該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を酸洗槽ごとに推定する手段と、該酸洗槽ごとに推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求める手段と、該手段で求められた投入量にしたがって各酸洗槽への酸の投入量を操作する手段と、を具備することで、前記課題を解決したものである。   Further, the present invention removes the oxide scale on the surface of the metal plate by arranging a plurality of pickling baths for reacting the acid solution in series and continuously passing the metal plates through the plurality of pickling baths. In the acid concentration control device of the pickling process for controlling the acid concentration in the pickling tank in the pickling equipment to a desired value, the amount of acid flowing into each of the pickling tanks and the acid pickling tank flows out of the pickling tank Means for obtaining an estimated acid concentration value in each of the pickling tanks by means of a dynamic model representing the balance between the acid effluent amount and the acid consumption consumed by the chemical reaction between the oxide scale and the acid solution; Means for estimating, for each pickling tank, a disturbance that causes fluctuations in the acid concentration in the pickling tank from the difference between the acid concentration estimated value obtained in step 1 and the acid concentration measured value of the acid solution in the pickling tank. Necessary to offset the effects of disturbance estimated for each pickling tank Means for determining the amount of acid input to the pickling tank, and means for manipulating the amount of acid input to each pickling tank according to the input amount determined by the means. It has been solved.

又、本発明は、酸洗設備による酸洗プロセスを有する鋼板の製造方法であって、該酸洗設備において前記酸濃度制御方法を用いることを特徴とする鋼板の製造方法を提供するものである。   The present invention also provides a method of manufacturing a steel sheet having a pickling process by a pickling facility, wherein the acid concentration control method is used in the pickling facility. .

本発明者は、従来技術である要因の限定とその影響の予測という方法を採らず、さまざまな要因による酸濃度変動への影響を一括して外乱として扱い、それを推定して相殺するように酸の投入量を操作するという新規な方法を着想した。   The present inventor does not adopt the conventional method of limiting the factor and predicting the influence thereof, but treats the influence on the fluctuation of the acid concentration due to various factors as a disturbance collectively, and estimates and cancels it. A new method of manipulating the amount of acid input was conceived.

又、この外乱を推定する方法として、酸洗槽における酸の流入、流出、消費のバランスを表すダイナミックなモデルを用いて酸洗槽内の酸濃度を推定し、該推定値と酸濃度測定値の差から推定するという新規な方法を着想した。   Also, as a method of estimating this disturbance, the acid concentration in the pickling tank is estimated using a dynamic model representing the balance of inflow, outflow and consumption of the acid in the pickling tank, and the estimated value and the measured acid concentration value Invented a new method of estimating from the difference between the two.

これらの着想に基づく本発明によれば、酸洗槽内の酸濃度変動をもたらす要因を一括して外乱とみなし、その外乱を酸洗槽内の酸濃度バランスを表すダイナミックモデルによって得られる酸洗槽内の酸濃度推定値と酸濃度測定値との差から推定し、その影響を相殺するように酸洗槽への酸の投入量を求め、この投入量にしたがって酸の投入量を操作するようにしている。そのため、いかなる要因で酸濃度が変動する場合でも、その要因により酸濃度が大きく変動する前に迅速な酸投入量変更操作が可能になり、酸濃度変動を低減することができる。   According to the present invention based on these ideas, the factors causing the acid concentration fluctuation in the pickling tank are collectively regarded as disturbances, and the disturbances are pickled by a dynamic model representing the acid concentration balance in the pickling tank. Estimate from the difference between the acid concentration estimated value in the tank and the acid concentration measured value, determine the amount of acid input to the pickling tank so as to offset the effect, and manipulate the acid input amount according to this input amount I am doing so. Therefore, even if the acid concentration varies due to any factor, it is possible to quickly change the amount of acid input before the acid concentration largely fluctuates due to the factor, and the acid concentration variation can be reduced.

又、必要な測定項目は酸洗槽内の酸濃度だけであり、酸濃度変動をもたらす要因を個別に測定する必要がないので、スケールの厚み、酸液の温度などを測定する装置は不要であり装置のコストやそれらの保守の負荷を抑えることができるという効果も有する。   In addition, the only necessary measurement item is the acid concentration in the pickling tank, and it is not necessary to individually measure the factors that cause acid concentration fluctuations, so there is no need for a device that measures the thickness of the scale, the temperature of the acid solution, etc. There is also an effect that the cost of existing devices and the maintenance load thereof can be suppressed.

特に、各酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケール及び酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、各酸洗槽内の酸濃度推定値を求め、この求めた酸濃度推定値と酸洗槽内の酸液の酸濃度測定値との差から、酸洗槽内の酸濃度変動をもたらす外乱を酸洗槽ごとに推定し、酸洗槽ごとに推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め、この求めた投入量にしたがって各酸洗槽への酸の投入量を操作するようにした場合は、酸液を反応させる酸洗槽を直列に複数配置し、これら複数の酸洗槽に金属板を連続的に通過させることによって金属板の表面の酸化物スケールを除去する酸洗設備においても簡便かつ十分な制御精度が得られ、実プロセスの制御系における調整も容易にできる。   In particular, it represents the balance between the amount of acid flowing into each pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution. Using the dynamic model, the estimated acid concentration in each pickling tank is obtained, and the fluctuation of the acid concentration in the pickling tank is determined from the difference between the obtained acid concentration estimated value and the acid concentration measured value of the acid solution in the pickling tank. For each pickling tank, determine the amount of acid input to the pickling tank necessary to offset the influence of the disturbance estimated for each pickling tank, and according to this determined input amount When the amount of acid input to each pickling tank is controlled, a plurality of pickling tanks for reacting the acid solution are arranged in series, and a metal plate is continuously passed through these pickling tanks. Simple and sufficient in pickling equipment that removes oxide scale on the surface of the metal plate Control accuracy is obtained, adjustment can be easily in the control system of the actual process.

本発明の実施形態について、図1に示されるフローチャートに基づいて説明する。   An embodiment of the present invention will be described based on a flowchart shown in FIG.

本発明では、酸液を反応させる槽に鋼板などの金属板を連続的に通過させることによって金属板の表面の酸化物スケールを除去する酸洗設備において、酸洗槽内の酸濃度を所望の値に制御するにあたり、まず、前記酸洗槽に流入する酸の流入量、酸洗槽から流出する酸の流出量および酸化物スケールとの化学反応によって消費される酸の消費量のバランスを表すダイナミックモデルによって酸洗槽内の酸濃度推定値を求めている(ステップS1)。   In the present invention, in a pickling facility that removes oxide scale on the surface of a metal plate by continuously passing a metal plate such as a steel plate through a bath in which the acid solution is reacted, the acid concentration in the pickling bath is set to a desired value. In controlling to the value, first, it represents the balance of the amount of acid flowing into the pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by chemical reaction with the oxide scale. An acid concentration estimated value in the pickling tank is obtained by a dynamic model (step S1).

このダイナミックモデルの役割は、酸洗槽内の酸濃度に影響を与える外乱がないと仮定したときに酸濃度がとるべき値を推定値として出力するものであり、言わば規範モデルである。   The role of the dynamic model is to output the value that the acid concentration should take as an estimated value when it is assumed that there is no disturbance that affects the acid concentration in the pickling tank, which is a standard model.

実際の酸洗プロセスでは、酸化物スケールの密度と性状、金属板の幅、酸洗槽を通過する金属板の速度、酸液の温度、下流側の槽からの酸液の流入と上流側の槽への流出、上流側の槽における酸洗効率、金属板による酸液の持ち出しなど、さまざまな原因によって酸濃度が変化する。   In the actual pickling process, the density and properties of the oxide scale, the width of the metal plate, the speed of the metal plate passing through the pickling tank, the temperature of the acid solution, the inflow of the acid solution from the downstream bath and the upstream side The acid concentration changes due to various causes, such as outflow to the tank, pickling efficiency in the upstream tank, and removal of the acid solution from the metal plate.

しかし、本発明では、それらを一括して外乱としてとらえ、酸洗槽内の酸濃度の実績と規範モデルによる推定値との乖離は外乱によって生じたものと考える。   However, in the present invention, these are collectively regarded as disturbances, and it is considered that the deviation between the actual acid concentration in the pickling tank and the estimated value based on the norm model is caused by the disturbances.

次々と酸洗槽内の酸濃度測定値と規範モデルによる推定値との差異から外乱を推定し(ステップS2)、この推定した外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め(ステップS3)、この投入量にしたがって酸の投入量を操作し(ステップS4)、酸濃度を制御する。   The disturbance is estimated from the difference between the acid concentration measurement value in the pickling tank and the estimated value based on the reference model one after another (step S2), and the acid to the pickling tank necessary to offset the influence of the estimated disturbance is estimated. (Step S3), the acid input amount is manipulated according to the input amount (step S4), and the acid concentration is controlled.

このような方法又は装置で外乱を相殺することによって外乱の影響による酸濃度変動が顕在化する前にその影響を打ち消すことができる。この効果により、酸濃度に影響を及ぼすいかなる外乱に対しても、その影響を強力に抑制することができる。   By canceling the disturbance with such a method or apparatus, the influence of the disturbance can be canceled before the acid concentration fluctuation due to the influence of the disturbance becomes apparent. With this effect, any disturbance that affects the acid concentration can be strongly suppressed.

ここで、酸洗槽内の酸濃度測定値と規範モデルによる推定値との差異から外乱を推定するには、ダイナミックモデルの逆モデルに酸濃度測定値と推定値の差異を入力することによる方法が望ましい。   Here, in order to estimate the disturbance from the difference between the acid concentration measured value in the pickling tank and the estimated value based on the reference model, a method by inputting the difference between the acid concentration measured value and the estimated value in the inverse model of the dynamic model Is desirable.

この酸洗槽内の酸濃度バランスを表すダイナミックモデルは、時間領域では微分方程式あるいは差分方程式、周波数領域では連続時間系あるいは離散時間系の伝達関数として表すことができる。   The dynamic model representing the acid concentration balance in the pickling tank can be expressed as a differential equation or difference equation in the time domain, and as a transfer function of a continuous time system or a discrete time system in the frequency domain.

ダイナミックモデルの逆モデルを求めるには伝達関数を用いるのが好適であり、伝達関数の逆数を取るだけで容易に求めることができる。   In order to obtain the inverse model of the dynamic model, it is preferable to use a transfer function, which can be easily obtained by simply taking the inverse of the transfer function.

ただし、この伝達関数は一次遅れ系であるため、逆数を取っただけでは純粋な微分項が現れて実現不能となる。これを防ぐには、逆モデルに低域通過フィルタを直列に接続し、それらの積がプロパー(分子の次数が分母の次数以下であること)な伝達関数にするのが望ましい。   However, since this transfer function is a first-order lag system, a pure differential term appears only by taking the reciprocal number and cannot be realized. To prevent this, it is desirable to connect low-pass filters in series to the inverse model, and to make the product of them a proper transfer function (the numerator order being equal to or less than the denominator order).

以下、図面を参照して、本発明に係る実施例について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

本実施例を適用した酸洗プロセスは、図2に示される如く、金属板である鋼板2を酸洗する酸洗槽4A、4B、4Cと、これらの酸洗槽に酸液を供給する循環タンク6A、6B、6Cと、循環タンクに投入する酸液を蓄える給酸タンク8と、余剰となった酸液を貯蔵する廃酸貯蔵タンク10と、酸の投入量を決定する酸濃度制御装置12と、上記槽やタンク間で酸液を送り出すポンプ14A、14B、14C、15A、15B、15C、16と、送り出す量を調整するバルブ18A、18B、18C、20B、20Cとを有している。酸洗槽は上流側から第1槽4A、第2槽4B、第3槽4Cとする。   As shown in FIG. 2, the pickling process to which this embodiment is applied is a pickling tank 4A, 4B, 4C for pickling the steel plate 2 as a metal plate, and a circulation for supplying an acid solution to these pickling tanks. Tanks 6A, 6B, 6C, an acid supply tank 8 for storing acid solution to be fed into the circulation tank, a waste acid storage tank 10 for storing surplus acid solution, and an acid concentration control device for determining the amount of acid to be charged 12, pumps 14A, 14B, 14C, 15A, 15B, 15C, 16 for sending out the acid solution between the tanks and tanks, and valves 18A, 18B, 18C, 20B, 20C for adjusting the amount to be sent out. . The pickling tank is the first tank 4A, the second tank 4B, and the third tank 4C from the upstream side.

これら酸洗槽には、循環タンク6A、6B、6Cから酸液を送るポンプ付きのソース22A、22B、22Cと、酸洗に使用された酸液を循環タンクに戻すドレイン24A、24B、24Cと、槽内の酸濃度を計る酸濃度計26A、26B、26Cとが設置され、図示しないが酸洗槽内には、鋼板表面に酸液を吹き付ける噴流管が備えられている。   These pickling tanks include sources 22A, 22B, 22C with pumps for sending the acid solution from the circulation tanks 6A, 6B, 6C, and drains 24A, 24B, 24C for returning the acid solution used for the pickling to the circulation tank. The acid concentration meters 26A, 26B, and 26C for measuring the acid concentration in the tank are installed. Although not shown, the pickling tank is provided with a jet tube that sprays the acid solution onto the surface of the steel sheet.

ポンプには、循環タンクから酸液を送り出すポンプ14A、14B、14Cと、循環タンクで余剰となった酸液を隣接の循環タンクや廃液貯蔵タンクに送り出すポンプ15A、15B、15Cと、供給タンクから循環タンクに新たな酸液を供給する新たな酸液の供給ポンプ(酸液供給ポンプとも称する)16がある。   The pumps include pumps 14A, 14B, and 14C that send acid solution from the circulation tank, pumps 15A, 15B, and 15C that send excess acid solution to the adjacent circulation tank and waste solution storage tank, and supply tanks. There is a new acid solution supply pump (also referred to as an acid solution supply pump) 16 for supplying a new acid solution to the circulation tank.

バルブには、隣接の循環タンク6A、6Bへの余剰な酸液を調整するバルブ18B、18Cと、廃酸貯蔵タンク10への余剰な酸液を調整するバルブ18Aと、供給タンク8からの酸液を調整するバルブ(酸液供給調整バルブとも称する)20B、20Cとがある。   The valves include valves 18B and 18C that adjust excess acid solution to the adjacent circulation tanks 6A and 6B, valves 18A that adjust excess acid solution to the waste acid storage tank 10, and acids from the supply tank 8. There are valves for adjusting the liquid (also referred to as acid liquid supply adjusting valves) 20B and 20C.

酸濃度制御装置12は、濃度計26A、26B、26Cから濃度データを入力する結線と、バルブへ出力する結線を有している。   The acid concentration control device 12 has a connection for inputting concentration data from the concentration meters 26A, 26B, and 26C and a connection for outputting to the valve.

各酸洗槽4A、4B、4Cは、酸液を供給する循環タンク6A、6B、6Cとポンプ14A、14B、14Cを介して接続されている。   Each pickling tank 4A, 4B, 4C is connected to circulation tanks 6A, 6B, 6C for supplying an acid solution via pumps 14A, 14B, 14C.

本実施例を適用した酸洗プロセスは、鋼板2を3つの酸洗槽4A、4B、4Cに順次通板し、噴流酸洗を行うものである。   In the pickling process to which this embodiment is applied, the steel plate 2 is sequentially passed through three pickling tanks 4A, 4B, and 4C, and jet pickling is performed.

循環タンク6A、6B、6C内の酸液は、ポンプ14A、14B、14Cによって酸洗槽内の噴流管から鋼板表面に吹き付けられ、鋼板表面のスケールを溶解除去する。各酸洗槽内の酸液は、それぞれに接続された循環タンク6A、6B、6Cに戻され、再使用される。   The acid solution in the circulation tanks 6A, 6B, and 6C is sprayed from the jet pipe in the pickling tank to the steel plate surface by the pumps 14A, 14B, and 14C, and the scale on the steel plate surface is dissolved and removed. The acid solution in each pickling tank is returned to the circulation tanks 6A, 6B, and 6C connected thereto and reused.

酸洗槽内の酸濃度制御は、給酸タンク8内の酸液をポンプ16、バルブ20B、20Cを介して第2槽と第3槽の循環タンク6B、6Cに投入することによって行われる。   The acid concentration control in the pickling tank is performed by charging the acid solution in the acid supply tank 8 into the circulation tanks 6B and 6C of the second tank and the third tank via the pump 16 and valves 20B and 20C.

又、循環タンク内の液面レベルを制御するため、第3槽の循環タンク6Cで余剰となった酸液は、ポンプ15C、バルブ18Cを介して第2槽の循環タンク6Bへ、第2槽の循環タンク6Bで余剰となった酸液は、ポンプ15B、バルブ18Bを介して第1槽の循環タンク6Aへ、第1槽の循環タンク6Aで余剰となった酸液は、ポンプ15A、バルブ18Aを介して廃酸貯蔵タンク10へ送られる。   Further, in order to control the liquid level in the circulation tank, the surplus acid solution in the circulation tank 6C of the third tank is transferred to the circulation tank 6B of the second tank via the pump 15C and the valve 18C. The surplus acid solution in the circulation tank 6B passes through the pump 15B and the valve 18B to the first tank circulation tank 6A, and the surplus acid solution in the first tank circulation tank 6A passes through the pump 15A and valve. It is sent to the waste acid storage tank 10 via 18A.

これにより、各循環タンク内の液面レベルは一定に保たれる。廃酸貯蔵タンク10の酸液は化学処理を行って再使用される。   Thereby, the liquid level in each circulation tank is kept constant. The acid solution in the waste acid storage tank 10 is subjected to chemical treatment and reused.

各酸洗槽内の酸濃度は、酸濃度計26A、26B、26Cによって一定の周期で測定され、その測定値と酸濃度設定値に基づいて酸濃度制御装置12の制御アルゴリズムにしたがって酸の投入量が決定され、バルブ20A、20Cの開度操作によって第2槽4Bと第3槽4Cの循環タンク6B、6Cへの酸の投入量が調整される。これにより、各酸洗槽の酸濃度制御が自動的に行われる。本実施例では、各酸洗槽の酸濃度制御アルゴリズムに本発明を適用したものである。   The acid concentration in each pickling tub is measured at regular intervals by the acid concentration meters 26A, 26B, and 26C, and the acid is charged according to the control algorithm of the acid concentration controller 12 based on the measured value and the acid concentration setting value. The amount of acid is determined, and the amount of acid charged into the circulation tanks 6B and 6C of the second tank 4B and the third tank 4C is adjusted by opening the valves 20A and 20C. Thereby, the acid concentration control of each pickling tank is automatically performed. In this embodiment, the present invention is applied to an acid concentration control algorithm for each pickling tank.

次に、酸洗槽における酸濃度バランスを表すダイナミックモデルについて説明する。   Next, a dynamic model representing the acid concentration balance in the pickling tank will be described.

酸洗槽内の酸濃度は、酸洗槽に投入される酸液に含まれる酸の量(投入量)、下流側の酸洗槽から流入する酸液に含まれる酸の量(流入量)、上流側の酸洗槽に流出する酸液に含まれる酸の量(流出量)、及び酸化物スケールとの化学反応によって消費される酸の消費量のバランスによって変動する。この関係は、各酸洗槽について、各々、以下の3つの微分方程式(1)〜(3)で表すことができる。   The acid concentration in the pickling basin is the amount of acid contained in the pickling basin (injection amount) and the amount of acid contained in the pickling basin from the downstream pickling basin (inflow amount). It varies depending on the balance between the amount of acid contained in the acid solution flowing out to the upstream pickling tank (outflow amount) and the amount of acid consumed by the chemical reaction with the oxide scale. This relationship can be expressed by the following three differential equations (1) to (3) for each pickling tank.

Figure 2007321174
Figure 2007321174

Figure 2007321174
Figure 2007321174

Figure 2007321174
Figure 2007321174

ここで、モデル中に用いた変数は、次の通りである。   Here, the variables used in the model are as follows.

:第2槽への酸投入実績量(m/h)
:第3槽への酸投入実績量(m/h)
:第1槽の酸濃度予測値(%)
:第2槽の酸濃度予測値(%)
:第3槽の酸濃度予測値(%)
:第1槽への外乱推定値(m/h)
:第2槽への外乱推定値(m/h)
:第3槽への外乱推定値(m/h)
u 2 : Actual amount of acid input to the second tank (m 3 / h)
u 3 : Actual amount of acid input to the third tank (m 3 / h)
C 1 : Estimated value of acid concentration in the first tank (%)
C 2 : Prediction value of acid concentration in the second tank (%)
C 3 : Prediction value of acid concentration in the third tank (%)
d 1 : disturbance estimated value to the first tank (m 3 / h)
d 2 : Estimated disturbance value to the second tank (m 3 / h)
d 3 : estimated disturbance value to the third tank (m 3 / h)

又、モデル中に用いたパラメータは、次の通りである。   The parameters used in the model are as follows.

:第1槽の酸液量(m
:第2槽の酸液量(m
:第3槽の酸液量(m
:第1槽における反応定数とスケール量の積(m/h)
:第2槽における反応定数とスケール量の積(m/h)
:第3槽における反応定数とスケール量の積(m/h)
V 1 : Amount of acid solution in the first tank (m 3 )
V 2 : Acid amount of the second tank (m 3 )
V 3 : Amount of acid solution in the third tank (m 3 )
k 1 S 1 : product of reaction constant and scale amount in the first tank (m 3 / h)
k 2 S 2 : product of reaction constant and scale amount in the second tank (m 3 / h)
k 3 S 3 : product of reaction constant and scale amount in the third tank (m 3 / h)

モデル式(1)(2)(3)の左辺は、各槽の酸濃度の微分量であり、右辺は酸液の流出入や化学反応による酸の量の変動を表す。   The left side of the model formulas (1), (2), and (3) is the differential amount of the acid concentration in each tank, and the right side represents the variation in the amount of acid due to the inflow and outflow of the acid solution and chemical reaction.

例えば、(3)式の右辺第1項は、第3槽4Cに投入される酸液によって単位時間に酸槽内に持ち込まれる量を表しており、これを酸液の量で除すことによって酸投入による酸濃度変動成分となる。   For example, the first term on the right side of the expression (3) represents the amount brought into the acid tank per unit time by the acid solution put into the third tank 4C, and this is divided by the amount of the acid solution. It becomes an acid concentration fluctuation component by acid input.

又、酸槽内の酸液の量は一定に保たれているので、投入された酸液量と等しい量の酸液が第2槽4Bに流出するから、第3槽4Cの酸濃度と酸投入量の積だけ酸が失われる。(3)式の第2項はこれを表している。   Further, since the amount of the acid solution in the acid tank is kept constant, an amount of acid solution equal to the amount of the charged acid solution flows out to the second tank 4B, so that the acid concentration and acid in the third tank 4C Acid is lost by the product of the input. The second term of the equation (3) represents this.

又、同じく第3項は、酸と鋼板のスケールとの化学反応によって失われる酸の消費量を表している。単位時間に失われる酸の消費量は、化学反応の速さに比例し、それは酸濃度とスケール量の積で表すことができる。   Similarly, the third term represents the amount of acid consumed lost by the chemical reaction between the acid and the scale of the steel sheet. The consumption of acid lost per unit time is proportional to the rate of chemical reaction, which can be expressed as the product of acid concentration and scale amount.

ここで、d、 d、 dは、鋼板の種類、酸化物スケールの密度と性状、鋼板の幅、酸洗槽を通過する鋼板の速度、酸洗槽内の酸濃度と温度などによる酸濃度変動を表す外乱項であり、これらの外乱が何に起因するのかを区別することなく、一括して扱うことが本発明の特徴である。 Here, d 1 , d 2 , and d 3 depend on the type of steel sheet, the density and properties of the oxide scale, the width of the steel sheet, the speed of the steel sheet passing through the pickling tank, the acid concentration and temperature in the pickling tank, and the like. It is a disturbance term representing acid concentration fluctuations, and it is a feature of the present invention that they are collectively handled without distinguishing what causes these disturbances.

次に、外乱推定について説明する。   Next, disturbance estimation will be described.

上記の式(1)〜(3)の右辺には、酸濃度と酸投入量が積の形で含まれており、非線形微分方程式になっているが、本発明では、外乱を推定するのにダイナミックモデルの逆モデルを用いるので、線形化されたモデルを用いた方が簡便である。   The right side of the above formulas (1) to (3) includes the acid concentration and the acid input in the form of a product, which is a nonlinear differential equation. In the present invention, the disturbance is estimated. Since the inverse model of the dynamic model is used, it is easier to use a linearized model.

そこで、(1)〜(3)式を定常状態の周りで線形化し、ラプラス変換を施して伝達関数として表す。図3に、酸濃度バランスを表すダイナミックモデル30として、第1槽のダイナミックモデル32、第2槽のダイナミックモデル34、及び、第3槽のダイナミックモデル36、並びに、外乱推定フィルタ40として、第2槽のダイナミックモデル逆モデルにローパスフィルタを付加したもの42及び第3槽のダイナミックモデル逆モデルにローパスフィルタを付加したもの44を示す。   Therefore, the equations (1) to (3) are linearized around the steady state, and Laplace transform is performed to express them as a transfer function. In FIG. 3, the dynamic model 30 representing the acid concentration balance includes the first tank dynamic model 32, the second tank dynamic model 34, the third tank dynamic model 36, and the disturbance estimation filter 40 as the second tank dynamic model 30. 42 shows a tank dynamic model inverse model added with a low-pass filter 42 and a tank 3 dynamic model inverse model added with a low-pass filter 44.

外乱推定d2e又はd3eは、ダイナミックモデル30による酸濃度推定値C又はCと、酸濃度測定値C2_actual又はC3_actualとの差に逆モデルとローパスフィルタの積42又は44をそれぞれ乗じることで求められる。この原理を以下に説明する。 The disturbance estimation d 2e or d 3e multiplies the difference between the acid concentration estimated value C 2 or C 3 by the dynamic model 30 and the acid concentration measured value C 2_actual or C 3_actual by the product 42 or 44 of the inverse model and the low-pass filter, respectively. Is required. This principle will be described below.

操作量(この場合は酸投入量)をx、制御量(この場合は酸濃度)をy、操作量から制御量への伝達関数をPとする。操作量には、外乱dが加わるものとする。この関係は(4)式のようになる。   The manipulated variable (in this case, the amount of acid input) is x, the controlled variable (in this case, the acid concentration) is y, and the transfer function from the manipulated variable to the controlled variable is P. It is assumed that a disturbance d is added to the operation amount. This relationship is as shown in equation (4).

y=P(x+d) ・・・(4)        y = P (x + d) (4)

モデルが正確であるとすると、モデルの出力yは、次式のようになる。 Assuming that the model is accurate, the output y e of the model is as follows:

=Px ・・・(5) y e = Px (5)

この(5)式から(4)式を辺々引いて逆モデル1/Pを乗じることにより、次式が得られる。   By subtracting the equation (4) from this equation (5) and multiplying by the inverse model 1 / P, the following equation is obtained.

d=(y−y)/P ・・・(6) d = (y−y e ) / P (6)

しかし、多くの場合、伝達関数はプロパー(分子の次数が分母の次数以下であること)であるため、その逆モデルは分子の次数が分母の次数よりも大きくなり、実現不能となる。   However, in many cases, since the transfer function is proper (the numerator order is equal to or less than the denominator order), the inverse model becomes unrealizable because the numerator order is larger than the denominator order.

そこで、(7)式のようにローパスフィルタFを用いてF/Pがプロパーになるようにする。   Therefore, F / P becomes proper by using a low-pass filter F as shown in equation (7).

=F(y−y)/P=Fd・・・(7) d e = F (y-y e) / P = Fd ··· (7)

ここで、(7)式の左辺のdは、外乱dの推定値であり、外乱dにローパスフィルタFを作用させて観測したものと等価である。 Here, the left side of d e of equation (7), an estimate of the disturbance d, is equivalent to that observed by the action of low pass filter F to the disturbance d.

本発明の場合、各槽のダイナミックモデルPは、一次の微分方程式(1)〜(3)式を線形化したモデルであるから、それを伝達関数で表せば図3に示されるように一次遅れ系となる。即ち、第3槽のモデルの場合、次式となる。   In the case of the present invention, the dynamic model P of each tank is a model obtained by linearizing the first-order differential equations (1) to (3). Therefore, if expressed by a transfer function, the first-order lag as shown in FIG. Become a system. That is, in the case of the third tank model, the following equation is obtained.

Figure 2007321174
Figure 2007321174

ここで、f、g、hは、(3)式から得られるパラメータである。 Here, f 3 , g 3 , and h 3 are parameters obtained from the equation (3).

そこで、一次のローパスフィルタをFとして用い、それを逆モデル1/Pに乗じることにより、F/Pがプロパーになるようにする。時定数をQとすれば、次式となる。 Therefore, a first-order low-pass filter is used as F and multiplied by the inverse model 1 / P so that F / P becomes proper. If the constant and Q 3 when, the following equation.

Figure 2007321174
Figure 2007321174

この(9)式と(8)式とから、外乱推定フィルタF/Pは、次式となる。   From the equations (9) and (8), the disturbance estimation filter F / P becomes the following equation.

Figure 2007321174
Figure 2007321174

したがって、x=u、y=Cとすれば、(5)式と(8)式とから、次の(11)式が得られる。 Therefore, if x = u 3 and y e = C 3 , the following expression (11) is obtained from the expressions (5) and (8).

Figure 2007321174
Figure 2007321174

同様に、(7)式と(9)式とから、次の(12)式が得られる。   Similarly, the following equation (12) is obtained from the equations (7) and (9).

Figure 2007321174
Figure 2007321174

よって、(11)式と(12)式より外乱推定値d3eが求められる。 Therefore, the estimated disturbance value d 3e is obtained from the equations (11) and (12).

ここで、C3_actualは第3槽4Cの酸濃度実績値である。 Here, C 3_actual is the actual acid concentration value of the third tank 4C.

次に、外乱推定値d3eに基づいて酸投入量推奨値uを次の(13)式で求める。 Next, a recommended acid input amount u 3 is obtained by the following equation (13) based on the estimated disturbance value d 3e .

=−d3e ・・・(13) u 3 = −d 3e (13)

このとき、(7)式から
=−Fd ・・・(14)
であるから、(4)式から
3_actual=P(u+d)=P(1−F)d・・・(15)
となり、外乱dから制御量Cへの影響が1−F倍されたことになる。1−Fは、低周波数域ではほぼ0になり、外乱dの影響は制御量yに表れないことになる。
At this time, from the equation (7), u 3 = −Fd 3 (14)
Therefore, from the equation (4), C 3_actual = P (u 3 + d 3 ) = P (1−F) d 3 (15)
Thus, the influence of the disturbance d 3 on the control amount C 3 is multiplied by 1-F. 1-F is almost 0 in the low frequency range, and the influence of the disturbance d does not appear in the control amount y.

次に、本実施例についてシミュレーションを行い、手動制御による方法と比較を行った。   Next, a simulation was performed on this example, and a comparison with a method by manual control was performed.

図4に、手動制御による酸投入量実績と、そのときの酸濃度実績値を示す。酸濃度変動に対応して第3槽4C、第2槽4Bへの酸の投入量が操作されているが、酸濃度実績には±2%程度の変動が見られる。なお、酸濃度の目標値は、図4中において太い破線で示されている。   FIG. 4 shows the actual amount of acid input by manual control and the actual acid concentration value at that time. The amount of acid input to the third tank 4C and the second tank 4B is manipulated corresponding to the acid concentration fluctuation, but a fluctuation of about ± 2% is seen in the acid concentration results. The target value of the acid concentration is indicated by a thick broken line in FIG.

図5に、本発明による外乱推定値を示し、図6に、本発明による酸投入量推奨値と、それを適用した場合の酸濃度をモデルで予測した値を図4の手動制御の場合と重ねて示す。   FIG. 5 shows the estimated disturbance value according to the present invention, and FIG. 6 shows the recommended value of the acid input amount according to the present invention and the value predicted by the model of the acid concentration when it is applied in the case of the manual control in FIG. Shown again.

なお、手動制御の場合の実績値は図6中において太い破線で示されている。又、(9)式の時定数Qを1[hour]とし、手動制御による酸投入量と比較するため、(13)式で求めた酸投入量推奨値uを1[m/hour]の単位で離散化した。 The actual value in the case of manual control is indicated by a thick broken line in FIG. In addition, the time constant Q 3 in the equation (9) is set to 1 [hour], and the acid input recommended value u obtained by the equation (13) is set to 1 [m 3 / hour] for comparison with the acid input amount by manual control. Discretized in units of.

本発明を適用した場合には、酸の投入量操作が外乱推定値に基づいてきめ細かくなされており、その結果として酸濃度変動が±1%程度に低減されていることがこれら図5及び図6より分かる。   In the case where the present invention is applied, the acid input amount operation is finely made based on the estimated disturbance value, and as a result, the fluctuation of the acid concentration is reduced to about ± 1%. I understand more.

なお、本実施例では、第2槽4Bの酸投入量は第2槽4Bへの外乱推定値に基づいて決定されているが、第3槽4Cへの酸投入量が操作された場合、それによる第2槽4Bの酸濃度への影響が考えられる。しかし、その影響は、第3槽4Cへの酸濃度変動を介するものであるため、第2槽4Bへの酸投入による変化に比べてほとんど無視できる。   In this embodiment, the acid input amount of the second tank 4B is determined based on the estimated disturbance value to the second tank 4B, but if the acid input amount to the third tank 4C is operated, The influence on the acid concentration of the second tank 4B due to can be considered. However, since the influence is due to the acid concentration fluctuation to the third tank 4C, it can be almost ignored as compared with the change caused by the acid input to the second tank 4B.

そのため、本実施例では、外乱を槽ごとに推定し、酸の投入量を槽ごとに求めるという方法を採った。この方法は、簡便かつ十分な制御精度が得られ、実プロセスの制御系における調整も容易であるので、非常に実用的である。   Therefore, in this example, a method was adopted in which the disturbance was estimated for each tank and the amount of acid input was determined for each tank. This method is very practical because a simple and sufficient control accuracy is obtained and adjustment in the control system of the actual process is easy.

又、本実施例を適用する金属板は、鋼板に限られたものではなく、銅、アルミなどの金属でも構わない。   Moreover, the metal plate to which the present embodiment is applied is not limited to a steel plate, and may be a metal such as copper or aluminum.

又、上述のような酸濃度制御方法や装置を鋼板の製造方法や装置に用いることにより、さまざまな要因による酸洗槽内の酸濃度変動を低減し、酸洗後の鋼板の表面品質を安定に保ち、ひいては酸洗速度アップにより生産効率を向上させる鋼板の製造方法を提供することができる。   In addition, by using the acid concentration control method and apparatus as described above for the steel sheet manufacturing method and apparatus, the acid concentration fluctuation in the pickling tank due to various factors is reduced, and the surface quality of the steel sheet after pickling is stabilized. Therefore, it is possible to provide a method for producing a steel sheet that improves production efficiency by increasing the pickling speed.

本発明に係る手順を示すフローチャートThe flowchart which shows the procedure which concerns on this invention 実施例を適用した酸洗プロセスの構成を模式的に示す説明図Explanatory drawing which shows typically the structure of the pickling process which applied the Example 本発明に基づく酸濃度バランスを表すダイナミックモデル及び外乱推定フィルタを示すブロック線図Block diagram showing dynamic model and disturbance estimation filter representing acid concentration balance according to the present invention 手動制御による酸投入量及び酸濃度の実績値を示す線図Diagram showing actual values of acid input and acid concentration by manual control 本実施例に基づく外乱推定値を示す線図Diagram showing estimated disturbance value based on this embodiment 本実施例に基づく酸投入量及び、それに基づいて操作を行ったときの酸濃度の予測値と、手動制御よる酸投入量及び酸濃度の実績値との比較を示す線図The diagram which shows the comparison of the acid input amount based on a present Example, the predicted value of the acid concentration when operating based on it, and the actual value of the acid input amount and acid concentration by manual control

符号の説明Explanation of symbols

2…鋼板
4A、4B、4C…酸洗槽
6A、6B、6C…循環タンク
8…給酸タンク
10…廃酸貯蔵タンク
12…酸濃度制御装置
16…酸液供給ポンプ
20B、20C…酸液供給調整バルブ
26A、26B、26C…酸濃度計
DESCRIPTION OF SYMBOLS 2 ... Steel plate 4A, 4B, 4C ... Pickling tank 6A, 6B, 6C ... Circulation tank 8 ... Acid feed tank 10 ... Waste acid storage tank 12 ... Acid concentration control device 16 ... Acid solution supply pump 20B, 20C ... Acid solution supply Adjustment valve 26A, 26B, 26C ... acid concentration meter

Claims (5)

酸液を反応させる酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備において、前記酸洗槽内の酸濃度を所望の値に制御するにあたり、
前記酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記酸洗槽内の酸濃度推定値を求め、
該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を推定し、
該推定した外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め、
該投入量にしたがって酸の投入量を操作することを特徴とする酸洗プロセスの酸濃度制御方法。
In a pickling facility that removes oxide scale on the surface of the metal plate by continuously passing the metal plate through a pickling bath that reacts with the acid solution, the acid concentration in the pickling bath is controlled to a desired value. In doing
A dynamic model representing the balance between the amount of acid flowing into the pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution By obtaining the acid concentration estimated value in the pickling tank,
From the difference between the acid concentration estimation value and the acid concentration measurement value of the acid solution in the pickling tank, estimate the disturbance that causes the acid concentration fluctuation in the pickling tank,
Obtain the amount of acid input to the pickling tank necessary to offset the influence of the estimated disturbance,
An acid concentration control method for a pickling process, characterized in that the amount of acid input is manipulated according to the amount of input.
酸液を反応させる酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備における前記酸洗槽内の酸濃度を所望の値に制御する酸洗プロセスの酸濃度制御装置において、
前記酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記酸洗槽内の酸濃度推定値を求める手段と、
該手段で求められた酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を推定する手段と、
該推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求める手段と、
該手段で求められた投入量にしたがって酸の投入量を操作する手段と、
を具備することを特徴とする酸洗プロセスの酸濃度制御装置。
The acid concentration in the pickling tank is controlled to a desired value in the pickling equipment for removing the oxide scale on the surface of the metal plate by continuously passing the metal plate through the pickling tank in which the acid solution is reacted. In the acid concentration control device of the pickling process,
A dynamic model representing the balance between the amount of acid flowing into the pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution Means for obtaining an estimated acid concentration value in the pickling tank;
Means for estimating the disturbance that causes the acid concentration fluctuation in the pickling tank from the difference between the acid concentration estimated value obtained by the means and the acid concentration measurement value of the acid solution in the pickling tank;
Means for determining the amount of acid input to the pickling tank necessary to offset the influence of the estimated disturbance;
Means for manipulating the acid charge according to the charge determined by the means;
An acid concentration control apparatus for a pickling process, comprising:
酸液を反応させる酸洗槽を直列に複数配置し、該複数の酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備において、前記酸洗槽内の酸濃度を所望の値に制御するにあたり、
前記各酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記各酸洗槽内の酸濃度推定値を求め、
該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を酸洗槽ごとに推定し、
該酸洗槽ごとに推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求め、
該投入量にしたがって各酸洗槽への酸の投入量を操作することを特徴とする酸洗プロセスの酸濃度制御方法。
A plurality of pickling tanks for reacting the acid solution in series, in the pickling equipment to remove the oxide scale on the surface of the metal plate by continuously passing the metal plate through the plurality of pickling tanks, In controlling the acid concentration in the pickling tank to a desired value,
Dynamic representing the balance between the amount of acid flowing into each pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution By the model, the acid concentration estimated value in each pickling tank is obtained,
From the difference between the acid concentration estimated value and the acid concentration measurement value of the acid solution in the pickling tank, a disturbance causing the acid concentration fluctuation in the pickling tank is estimated for each pickling tank,
Find the amount of acid input to the pickling tank necessary to offset the influence of disturbance estimated for each pickling tank,
An acid concentration control method for a pickling process, characterized in that the amount of acid fed into each pickling tank is manipulated according to the amount fed.
酸液を反応させる酸洗槽を直列に複数配置し、該複数の酸洗槽に金属板を連続的に通過させることによって前記金属板の表面の酸化物スケールを除去する酸洗設備における前記酸洗槽内の酸濃度を所望の値に制御する酸洗プロセスの酸濃度制御装置において、
前記各酸洗槽に流入する酸の流入量と、前記酸洗槽から流出する酸の流出量と、酸化物スケールと酸液の化学反応によって消費される酸の消費量とのバランスを表すダイナミックモデルによって、前記各酸洗槽内の酸濃度推定値を求める手段と、
該手段で求められた該酸濃度推定値と当該酸洗槽内の酸液の酸濃度測定値との差から、当該酸洗槽内の酸濃度変動をもたらす外乱を酸洗槽ごとに推定する手段と、
該酸洗槽ごとに推定された外乱の影響を相殺するために必要な当該酸洗槽への酸の投入量を求める手段と、
該手段で求められた投入量にしたがって各酸洗槽への酸の投入量を操作する手段と、
を具備することを特徴とする酸洗プロセスの酸濃度制御装置。
A plurality of pickling tanks for reacting the acid solution in series, and the acid in the pickling equipment for removing oxide scale on the surface of the metal plate by continuously passing the metal plate through the plurality of pickling tanks In the acid concentration control device of the pickling process for controlling the acid concentration in the washing tank to a desired value,
Dynamic representing the balance between the amount of acid flowing into each pickling tank, the amount of acid flowing out from the pickling tank, and the amount of acid consumed by the chemical reaction between the oxide scale and the acid solution Means for obtaining an estimated acid concentration value in each pickling tank according to the model;
From the difference between the acid concentration estimated value obtained by the means and the acid concentration measurement value of the acid solution in the pickling tank, the disturbance that causes the acid concentration fluctuation in the pickling tank is estimated for each pickling tank. Means,
Means for determining the amount of acid input to the pickling tank necessary to offset the influence of disturbance estimated for each pickling tank;
Means for operating the amount of acid input to each pickling tank according to the amount of input determined by the means;
An acid concentration control apparatus for a pickling process, comprising:
酸洗設備による酸洗プロセスを有する鋼板の製造方法であって、
該酸洗設備において請求項1又は3に記載の酸濃度制御方法を用いることを特徴とする鋼板の製造方法。
A method for producing a steel sheet having a pickling process by a pickling facility,
A method for producing a steel sheet, wherein the acid concentration control method according to claim 1 or 3 is used in the pickling equipment.
JP2006149802A 2006-05-30 2006-05-30 Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them Expired - Fee Related JP5050410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149802A JP5050410B2 (en) 2006-05-30 2006-05-30 Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149802A JP5050410B2 (en) 2006-05-30 2006-05-30 Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them

Publications (2)

Publication Number Publication Date
JP2007321174A true JP2007321174A (en) 2007-12-13
JP5050410B2 JP5050410B2 (en) 2012-10-17

Family

ID=38854249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149802A Expired - Fee Related JP5050410B2 (en) 2006-05-30 2006-05-30 Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them

Country Status (1)

Country Link
JP (1) JP5050410B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061433A (en) * 2010-09-16 2012-03-29 Toshiba Corp Seawater desalination apparatus and chemical injection apparatus
CN102929303A (en) * 2011-08-12 2013-02-13 宝山钢铁股份有限公司 Method and device for controlling concentration of acid for acid washing in production process of cold-rolled strip steel
WO2014082189A1 (en) * 2012-11-30 2014-06-05 宝山钢铁股份有限公司 Method and apparatus for controlling acid concentration for pickling in cold rolling
JP2016060962A (en) * 2014-09-22 2016-04-25 Jfeスチール株式会社 Acid concentration controlling method, acid concentration controlling device and producing method for metal plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215990A (en) * 1988-02-24 1989-08-29 Sumitomo Metal Ind Ltd Method for controlling acid concentration of pickling tank and circulation tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215990A (en) * 1988-02-24 1989-08-29 Sumitomo Metal Ind Ltd Method for controlling acid concentration of pickling tank and circulation tank

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061433A (en) * 2010-09-16 2012-03-29 Toshiba Corp Seawater desalination apparatus and chemical injection apparatus
CN102399035A (en) * 2010-09-16 2012-04-04 株式会社东芝 Seawater desalination apparatus and medicine injection apparatus
US8702978B2 (en) 2010-09-16 2014-04-22 Kabushiki Kaisha Toshiba Seawater desalination apparatus and chemical injection apparatus
CN102929303A (en) * 2011-08-12 2013-02-13 宝山钢铁股份有限公司 Method and device for controlling concentration of acid for acid washing in production process of cold-rolled strip steel
WO2014082189A1 (en) * 2012-11-30 2014-06-05 宝山钢铁股份有限公司 Method and apparatus for controlling acid concentration for pickling in cold rolling
KR20150080601A (en) * 2012-11-30 2015-07-09 바오샨 아이론 앤 스틸 유한공사 Method and apparatus for controlling acid concentration for pickling in cold rolling
JP2016506302A (en) * 2012-11-30 2016-03-03 宝山鋼鉄股▲分▼有限公司 Acid concentration control method and apparatus for pickling in cold rolling
KR101722405B1 (en) * 2012-11-30 2017-04-04 바오샨 아이론 앤 스틸 유한공사 Method and apparatus for controlling acid concentration for pickling in cold rolling
US10274975B2 (en) 2012-11-30 2019-04-30 Baoshan Iron & Steel Co., Ltd. Method and apparatus for controlling acid concentration for pickling in cold rolling
JP2016060962A (en) * 2014-09-22 2016-04-25 Jfeスチール株式会社 Acid concentration controlling method, acid concentration controlling device and producing method for metal plate

Also Published As

Publication number Publication date
JP5050410B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP3726770B2 (en) Continuous pickling method and continuous pickling apparatus
US6396280B1 (en) Method and apparatus for measurement and automatic control of acid concentration
JP5050410B2 (en) Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them
JP6063058B2 (en) Acid concentration control method and apparatus for pickling in cold rolling
KR101294945B1 (en) Method for continuously removing scale material
JP3356112B2 (en) Automatic acid concentration control device and automatic acid concentration control method
Kolås et al. A nonlinear model based control strategy for the aluminium electrolysis process
JP6098553B2 (en) Rejuvenated phosphorus amount prediction device, recovered phosphorus amount prediction method, and converter dephosphorization control method
JP6098601B2 (en) Acid concentration control method, acid concentration control device, and metal plate manufacturing method
JP3591366B2 (en) Continuous pickling method and continuous pickling apparatus
JP6290691B2 (en) Method for determining the amount of pickling solution input
JP7431041B2 (en) Information processing device, information processing method and program
KR101518640B1 (en) Method for determining input flow of fresh acid in pickling process
JP3368868B2 (en) Conductivity meter and acid concentration continuous measurement device
CN102929303B (en) Method and device for controlling concentration of acid for acid washing in production process of cold-rolled strip steel
US6235178B1 (en) Method and device for coating a metal strip
KR20150073255A (en) Acid rinsing facility and in which acidity control method
JPH0754175A (en) Method for controlling acid concentration of pickling equipment for steel strip
JP2007113039A (en) Catenary control method of pickling equipment
JPH09125270A (en) Method for controlling acid concentration in steel sheet pickling process
JPH01215990A (en) Method for controlling acid concentration of pickling tank and circulation tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees