JP2017167111A - Method of detecting position of water leakage - Google Patents

Method of detecting position of water leakage Download PDF

Info

Publication number
JP2017167111A
JP2017167111A JP2016055429A JP2016055429A JP2017167111A JP 2017167111 A JP2017167111 A JP 2017167111A JP 2016055429 A JP2016055429 A JP 2016055429A JP 2016055429 A JP2016055429 A JP 2016055429A JP 2017167111 A JP2017167111 A JP 2017167111A
Authority
JP
Japan
Prior art keywords
electrode
direction linear
linear electrodes
water
shielding sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055429A
Other languages
Japanese (ja)
Other versions
JP6530339B2 (en
Inventor
秀樹 若林
Hideki Wakabayashi
秀樹 若林
間宮 尚
Takashi Mamiya
尚 間宮
小川 浩司
Koji Ogawa
浩司 小川
茂 伴野
Shigeru Tomono
茂 伴野
文男 坂田
Fumio Sakata
文男 坂田
山崎 宣悦
Nobuyoshi Yamazaki
宣悦 山崎
利光 高濱
Toshimitsu Takahama
利光 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Sakata Denki Co Ltd
Original Assignee
Kajima Corp
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Sakata Denki Co Ltd filed Critical Kajima Corp
Priority to JP2016055429A priority Critical patent/JP6530339B2/en
Publication of JP2017167111A publication Critical patent/JP2017167111A/en
Application granted granted Critical
Publication of JP6530339B2 publication Critical patent/JP6530339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of separately detecting, even when a water shielding sheet includes a plurality of water leakage portions, the water leakage portions.SOLUTION: The method includes an AC power source 15 and a current measuring circuit 16. A first electrode 11 is connected to one end side of the AC power source. One of a plurality of first-direction wire electrodes, which constitute a second wire electrode group, is selected and current measuring by the current measuring circuit is performed for all of the first-direction wire electrodes. When an increase in a current value of at least one of the first-direction wire electrodes is detected, one of the plurality of second-direction wire electrodes is selected and connected to another end side of the AC power source, and the current measurement by the current measuring circuit is performed for all of the second-direction wire electrodes. Then, on the basis of a result of the measurement by the current measuring circuit, a water leakage position of a water shielding sheet is determined.SELECTED DRAWING: Figure 1

Description

本発明は、合成樹脂または合成ゴムシート或はアスファルトなどの遮水シートを敷設して造成された管理型最終処分場における漏水発生位置検出方式に関する。   The present invention relates to a water leak occurrence position detection method in a management-type final disposal site constructed by laying a water shielding sheet such as a synthetic resin, a synthetic rubber sheet, or asphalt.

従来、造成した窪地に遮水シートを敷設して造られた人工的な管理型最終処分場においては、廃棄物の搬入後、地中において遮水シートに亀裂などの破損が生じて処分場内の廃水が漏水することは望ましくない。漏水が発生すると、漏水に汚染物質が含まれている場合には地下水汚染の原因となるおそれがあるため、管理型最終処分場では定期的に遮水シートの点検が行われている。遮水シートの点検作業の一つに漏水の発生及びその位置を電気的に検出する作業がある。この点検作業において、漏水の発生及び位置が検出された場合には処分場の該当場所を掘り起こし、遮水シートに対して適切な補修を行うようにしている。   Conventionally, in an artificially managed final disposal site constructed by laying a water shielding sheet in a created depression, after the waste is brought in, the water shielding sheet is damaged in the ground, such as cracks. It is not desirable for the wastewater to leak. If water leakage occurs, it may cause groundwater contamination if the water leakage contains pollutants, so water-proof sheets are regularly inspected at managed final disposal sites. One of the work of checking the water shielding sheet is to detect the occurrence of water leakage and its position electrically. In this inspection work, when the occurrence and position of water leakage are detected, the appropriate place in the disposal site is dug up and appropriate repairs are made to the water-impervious sheet.

このような遮水シートの漏水発生位置検出方法として、様々な方法が知られている。従来方法の第1の例は、漏水発生位置検出方式として特許文献1の図3に記載されており、図6を参照して説明する。   Various methods are known as a method for detecting a leakage occurrence position of such a water shielding sheet. The 1st example of the conventional method is described in FIG. 3 of patent document 1 as a water leak generation | occurrence | production position detection system, and is demonstrated with reference to FIG.

図6において、第1の例による漏水発生位置検出方式は、遮水シート100を敷設して造成された管理型最終処分場に適用される。本例では、遮水シート100の上側に複数(ここでは5本)の上側線状電極A1〜A5が平行に並べて配置され、遮水シート100の下側には複数の上側線状電極A1〜A5と交差するように複数(ここでは5本)の下側線状電極B1〜B5が平行に並べて配置されている。   In FIG. 6, the water leak occurrence position detection method according to the first example is applied to a management-type final disposal site constructed by laying a water shielding sheet 100. In this example, a plurality (here, five) of upper linear electrodes A1 to A5 are arranged in parallel on the upper side of the water shielding sheet 100, and a plurality of upper linear electrodes A1 to A1 are disposed on the lower side of the water shielding sheet 100. A plurality (here, five) of lower linear electrodes B1 to B5 are arranged in parallel so as to intersect with A5.

上側線状電極A1〜A5の一端側には上側電極切換器110が接続され、他端側は開放状態とされる。下側線状電極B1〜B5の一端側には下側電極切換器120が接続され、他端側は開放状態とされる。   The upper electrode switch 110 is connected to one end side of the upper linear electrodes A1 to A5, and the other end side is opened. The lower electrode switch 120 is connected to one end side of the lower linear electrodes B1 to B5, and the other end side is opened.

上側電極切換器110は、上側線状電極A1〜A5のうちの1本を選択して交流電源130の一端側に接続する。下側電極切換器120は、下側線状電極B1〜B5のうちの1本を選択して電流測定回路140を経由して交流電源130の他端側に接続する。   The upper electrode switch 110 selects one of the upper linear electrodes A1 to A5 and connects it to one end side of the AC power supply 130. The lower electrode switcher 120 selects one of the lower linear electrodes B <b> 1 to B <b> 5 and connects it to the other end side of the AC power supply 130 via the current measurement circuit 140.

交流電源130の一端側と電流測定回路140の出力には同期検波回路150を接続して出力を取り出す。   A synchronous detection circuit 150 is connected to one end of the AC power supply 130 and the output of the current measurement circuit 140 to extract the output.

第1の例による漏水発生位置検出方式においては、上側電極切換器110で選択した1本の上側線状電極(図6ではA3)と下側電極切換器120で選択した1本の下側線状電極(図6ではB4)との間に交流電源130による交流電圧を印加し、上下の電極間に流れる電流を電流測定回路140で測定する。この電流測定を、上側電極切換器110で選択する上側線状電極と下側電極切換器120で選択する下側線状電極を1本ずつ順次切換えながら行う。そして、電流測定回路140の出力に対し、同期検波回路150により印加電圧の位相で同期検波を行う。同期検波において、印加電圧と同じ位相の電流が上昇すれば、その時の上側線状電極と下側線状電極の組合せ交点付近に漏水発生ありと判定する。   In the water leak occurrence position detection method according to the first example, one upper linear electrode (A3 in FIG. 6) selected by the upper electrode switch 110 and one lower linear selected by the lower electrode switch 120. An AC voltage from the AC power source 130 is applied between the electrodes (B4 in FIG. 6), and the current flowing between the upper and lower electrodes is measured by the current measuring circuit 140. This current measurement is performed while sequentially switching the upper linear electrode selected by the upper electrode switching unit 110 and the lower linear electrode selected by the lower electrode switching unit 120 one by one. The synchronous detection circuit 150 performs synchronous detection on the output of the current measurement circuit 140 at the phase of the applied voltage. In the synchronous detection, if a current having the same phase as the applied voltage rises, it is determined that water leakage has occurred near the combination intersection of the upper linear electrode and the lower linear electrode at that time.

従来方法の第2の例は、漏水発生位置検出方式として特許文献1の図2に記載されており、図7を参照して説明する。   A second example of the conventional method is described in FIG. 2 of Patent Document 1 as a water leak occurrence position detection method, and will be described with reference to FIG.

図7において、第2の例による漏水発生位置検出方式は、遮水シート200を敷設して造成された管理型最終処分場に適用される。本例では、遮水シート200の上下どちらか一方の側に板あるいは棒状の第1の電極210を設置し、遮水シート200の上下の他方の側には、格子状の第2の線状電極群220を設置している。第2の線状電極群220は、複数(ここでは5本)の第1方向線状電極A1〜A5と複数(ここでは5本)の第2方向線状電極B1〜B5を格子状になるように配置すると共に、それらの交点部分には絶縁処理を施して成る。   In FIG. 7, the water leak occurrence position detection method according to the second example is applied to a managed final disposal site constructed by laying a water shielding sheet 200. In this example, a plate-like or rod-like first electrode 210 is installed on either the upper or lower side of the water-impervious sheet 200, and a grid-like second linear shape is provided on the other upper or lower side of the water-impervious sheet 200. An electrode group 220 is provided. The second linear electrode group 220 has a plurality of (here, five) first direction linear electrodes A1 to A5 and a plurality (here, five) of second direction linear electrodes B1 to B5 in a lattice shape. In addition, the intersection portions are subjected to insulation treatment.

第1の電極210は、交流電源230の一端側に接続される。第1方向線状電極A1〜A5及び第2方向線状電極B1〜B5の一端側には電極切換器240が接続され、他端側は開放状態とされる。   The first electrode 210 is connected to one end side of the AC power supply 230. The electrode switch 240 is connected to one end side of the first direction linear electrodes A1 to A5 and the second direction linear electrodes B1 to B5, and the other end side is opened.

電極切換器240は、本例では、複数の第1方向線状電極A1〜A5又は複数の第2方向線状電極B1〜B5のうちの1本を選択して電流測定回路250を経由して交流電源230の他端側に接続し、選択された1本以外の第1方向線状電極及び第2方向線状電極をすべて交流電源230の他端側に接続する機能を持つ。   In this example, the electrode switcher 240 selects one of the plurality of first direction linear electrodes A1 to A5 or the plurality of second direction linear electrodes B1 to B5, and passes through the current measurement circuit 250. The AC power supply 230 is connected to the other end side, and has a function of connecting all the selected first direction linear electrodes and second direction linear electrodes to the other end side of the AC power supply 230.

交流電源230の一端側と電流測定回路250の出力には同期検波回路260を接続して出力を取り出す。   A synchronous detection circuit 260 is connected to one end side of the AC power supply 230 and the output of the current measurement circuit 250 to extract the output.

第2の例による漏水発生位置検出方式においては、第1の電極210と格子状の第2の線状電極群220の間に交流電源230による交流電圧を印加し、電極切換器240で選択した1本の第1方向線状電極(図7ではA4)に流れる電流を電流測定回路250で測定する。この電流測定を、電極切換器240で第1方向線状電極A1〜A5を順次1本ずつ選択しながら行う。第1方向線状電極A1〜A5について電流測定が終了したら、電極切換器240で第2方向線状電極B1〜B5を順次1本ずつ選択しながら電流測定を行う。そして、電流測定回路250の出力に対し、同期検波回路260により印加電圧の位相で同期検波を行う。同期検波において、印加電圧と同じ位相の電流が上昇すれば、その時の第1方向線状電極と第2方向線状電極の組合せ交点付近に漏水発生ありと判定する。   In the water leak occurrence position detection method according to the second example, an AC voltage from an AC power source 230 is applied between the first electrode 210 and the grid-like second linear electrode group 220, and the electrode switch 240 is selected. The current measurement circuit 250 measures the current flowing through one first-direction linear electrode (A4 in FIG. 7). This current measurement is performed while the electrode switcher 240 sequentially selects the first direction linear electrodes A1 to A5 one by one. When the current measurement is completed for the first direction linear electrodes A1 to A5, the electrode switch 240 performs current measurement while sequentially selecting the second direction linear electrodes B1 to B5 one by one. Then, the synchronous detection circuit 260 performs synchronous detection on the output of the current measurement circuit 250 at the phase of the applied voltage. In the synchronous detection, if a current having the same phase as the applied voltage rises, it is determined that water leakage has occurred near the combination intersection of the first direction linear electrode and the second direction linear electrode at that time.

特開平11−248590号公報JP 11-248590 A

上記第1の例による漏水発生位置検出方式では、遮水シート上下の電極交点毎に電極交点全てについて測定を必要とするため、測定時間が長くなるという欠点があった。   In the water leak occurrence position detection method according to the first example, since measurement is required for all the electrode intersections at the upper and lower electrode intersections of the water shielding sheet, there is a disadvantage that the measurement time becomes long.

一方、上記第2の例による漏水発生位置検出方式では、遮水シートの漏水箇所のインピーダンスを通じて格子状の第2の線状電極群における1本の線状電極に生じる電流差を測定している。この漏水発生位置検出方式では、後述するように、遮水シートに複数の漏水を生じている場合、それらの漏水箇所を正確に分離して検出することができないという欠点があった。つまり、この漏水発生位置検出方式では、遮水シートに複数の漏水が発生している場合には、ゴーストが発生して漏水位置の候補が増加することから、他の測定手段を用いた測定結果を併用して複数の漏水位置を分離する作業を必要とする欠点があった。   On the other hand, in the water leak occurrence position detection method according to the second example, a current difference generated in one linear electrode in the grid-like second linear electrode group is measured through the impedance of the water leakage location of the water shielding sheet. . As will be described later, this water leak occurrence position detection method has a drawback in that when a plurality of water leaks occur in the water shielding sheet, these leak points cannot be accurately separated and detected. That is, in this water leak occurrence position detection method, when a plurality of water leaks occur in the water shielding sheet, a ghost occurs and the number of water leak positions increases, so the measurement results using other measurement means There is a disadvantage that requires a work to separate a plurality of water leakage positions by using the same.

本発明は、上記の欠点を解消すべくなされたものであり、遮水シートの複数箇所に漏水が発生しているような場合であっても、漏水箇所の分離のみならず破損の程度、つまり漏水の程度をも検出することができる漏水発生位置検出方式を提供することを目的とする。   The present invention has been made to solve the above-mentioned drawbacks, and even when water leakage has occurred at a plurality of locations on the water shielding sheet, not only the separation of the water leakage location but also the degree of breakage, An object of the present invention is to provide a water leak occurrence position detection method capable of detecting the degree of water leak.

本発明の態様によれば、遮水シートの上下の一方の側に設けられた少なくも一つの第1の電極と、互いに平行に第1の方向に延びるN本(Nは2以上の整数)の第1方向線状電極と、互いに平行に前記第1の方向に直交する第2の方向に延びるM本(Mは2以上の整数)の第2方向線状電極とを有し、前記第1方向線状電極と前記第2方向線状電極との交点を絶縁して前記遮水シートの上下の他方の側に配置してなる格子状の第2の線状電極群と、を用いて前記遮水シートにおける漏水発生位置を検出する漏水発生位置検出方式であって、前記第1の電極と前記第2の線状電極群の間に電圧を印加するための電源と、電流測定回路と、を用意し、前記電源の一端側に前記第1の電極を接続し、前記M本の第2方向線状電極をすべて開放した状態にて前記N本の第1方向線状電極のうちの1本を選択して前記電流測定回路を経由して前記電源の他端側に接続すると共に、選択されない前記第1方向線状電極を前記電源の他端側に接続して前記電流測定回路による電流測定を、すべての前記第1方向線状電極について行い、少なくとも1本の前記第1方向線状電極について電流値の増加が検出された場合には、前記少なくとも1本の第1方向線状電極を前記電流測定回路に接続した状態にて前記M本の第2方向線状電極のうちの少なくとも1本を選択して前記電源の他端側に接続すると共に、選択されない前記第2方向線状電極は開放として前記電流測定回路による電流測定を、すべての前記第2方向線状電極について行い、前記電流測定回路の測定結果に基づいて前記遮水シートの漏水発生位置を判定することを特徴とする漏水発生位置検出方式が提供される。   According to the aspect of the present invention, at least one first electrode provided on one of the upper and lower sides of the water shielding sheet and N pieces (N is an integer of 2 or more) extending in parallel to each other in the first direction. First direction linear electrodes and M (M is an integer of 2 or more) second direction linear electrodes extending in a second direction perpendicular to the first direction in parallel to each other, Using a grid-like second linear electrode group formed by insulating the intersection of the one-directional linear electrode and the second directional linear electrode and arranging them on the upper and lower other sides of the water shielding sheet. A water leakage occurrence position detection method for detecting a water leakage occurrence position in the water shielding sheet, a power source for applying a voltage between the first electrode and the second linear electrode group, a current measurement circuit, The first electrode is connected to one end of the power source, and all the M second direction linear electrodes are opened. And selecting one of the N first directional linear electrodes and connecting it to the other end of the power source via the current measuring circuit, and selecting the unselected first directional linear electrode The current measurement by the current measurement circuit connected to the other end of the power source is performed for all the first direction linear electrodes, and an increase in current value is detected for at least one of the first direction linear electrodes. If at least one first direction linear electrode is connected to the current measuring circuit, at least one of the M second direction linear electrodes is selected and the power supply The second direction linear electrodes that are not selected are connected to the other end side, and the current measurement by the current measurement circuit is performed for all the second direction linear electrodes, and based on the measurement result of the current measurement circuit. Leakage of the water shielding sheet Leak occurrence position detection method, characterized by determining the occurrence position is provided.

本発明によれば、遮水シートに複数の漏水が発生しているような場合であっても複数の漏水箇所を効果的に分離識別することが可能となることから、漏水発生位置を早期に正確に検出できる。また、遮水シートの上下いずれか一方に配置した格子状の線状電極群の電極交点全てについて測定を行う必要が無いことから、測定時間が短くなるという効果がある。   According to the present invention, it is possible to effectively separate and identify a plurality of water leak locations even when a plurality of water leaks occur in the water shielding sheet. It can be detected accurately. Moreover, since it is not necessary to measure all the electrode intersections of the grid-like linear electrode group arrange | positioned in any one of the upper and lower sides of a water shielding sheet, there exists an effect that measurement time becomes short.

本発明による漏水発生位置検出方式の第1の実施形態を説明するための図である。It is a figure for demonstrating 1st Embodiment of the water leak generation | occurrence | production position detection system by this invention. 第1の実施形態の漏水発生位置検出方式により複数箇所の漏水を検出する場合について説明するための図である。It is a figure for demonstrating the case where the water leak of several places is detected by the water leak generation | occurrence | production position detection system of 1st Embodiment. 本発明による漏水発生位置検出方式の第2の実施形態を説明するための図である。It is a figure for demonstrating 2nd Embodiment of the water leak generation | occurrence | production position detection system by this invention. 本発明による漏水発生位置検出方式の第3の実施形態を説明するための図である。It is a figure for demonstrating 3rd Embodiment of the water leak generation | occurrence | production position detection system by this invention. 図1に示された2つの電極切換器を単体で実現する場合の一例を示す図である。It is a figure which shows an example in the case of implement | achieving two electrode switchers shown by FIG. 1 alone. 従来の漏水発生位置検出方式の第1の例を説明するための図である。It is a figure for demonstrating the 1st example of the conventional water leak generation | occurrence | production position detection system. 従来の漏水発生位置検出方式の第2の例を説明するための図である。It is a figure for demonstrating the 2nd example of the conventional water leak generation | occurrence | production position detection system.

図1〜図5を参照して、本発明による漏水発生位置検出方式とこれに用いられる遮水シート検査装置をいくつかの実施形態について説明する。   With reference to FIGS. 1-5, several embodiment is demonstrated about the water leak generation | occurrence | production position detection system by this invention, and the water shielding sheet test | inspection apparatus used for this.

図1は本発明の第1の実施形態の構成を示す図である。本実施形態では、管理型最終処分場に敷設された遮水シート10の上側に板状あるいは棒状の第1の電極11を配置し、遮水シート10の下側には交点部分を絶縁処理した格子状の第2の線状電極群12を配置している。第2の線状電極群12は、互いに平行に第1の方向に延びるN(ここでは5)本の第1方向線状電極A1〜A5と、互いに平行に第1の方向に直交する第2の方向に延びるM(ここでは5)本の第2方向線状電極B1〜B5とを有する。第1の電極11と第2の線状電極群12の位置関係は逆、すなわち第1の電極11を遮水シート10の下側、第2の線状電極群12を遮水シート10の上側にそれぞれ配置しても良い。また、第1方向線状電極の本数Nと、第2方向線状電極の本数Mは、それぞれ2以上の整数であれば良く、N=Mが望ましいが、これに限定されない。   FIG. 1 is a diagram showing the configuration of the first exemplary embodiment of the present invention. In the present embodiment, a plate-like or rod-like first electrode 11 is arranged on the upper side of the water-impervious sheet 10 laid in the management-type final disposal site, and the intersection portion is insulated on the lower side of the water-impervious sheet 10. A grid-like second linear electrode group 12 is arranged. The second linear electrode group 12 includes N (here, five) first direction linear electrodes A1 to A5 extending in parallel to each other in the first direction, and a second orthogonal to the first direction in parallel with each other. M (here, 5) second direction linear electrodes B1 to B5 extending in the direction of. The positional relationship between the first electrode 11 and the second linear electrode group 12 is opposite, that is, the first electrode 11 is below the water shielding sheet 10 and the second linear electrode group 12 is above the water shielding sheet 10. May be arranged respectively. Further, the number N of the first direction linear electrodes and the number M of the second direction linear electrodes may be integers of 2 or more, and N = M is desirable, but is not limited thereto.

これらの第1の電極11及び第2の線状電極群12の設置は、通常、遮水シート10の敷設工事と共に行われる。第1の電極11及び第2の線状電極群12の一端側は絶縁ケーブルによりまとめて1箇所に導出し、後述する遮水シート検査装置との電気的接続が容易になるようにすることが望ましい。   The installation of the first electrode 11 and the second linear electrode group 12 is usually performed together with the construction work of the water shielding sheet 10. One end side of the first electrode 11 and the second linear electrode group 12 may be led together by an insulated cable to one place so that electrical connection with a water shielding sheet inspection apparatus to be described later can be facilitated. desirable.

本実施形態では、遮水シート検査装置は、第1電極切換器13、第2電極切換器14、交流電源15、及び電流測定回路16を備える。これらは、可搬型の筐体内に収容され、遮水シート10の点検作業に際して作業現場に搬入される。   In the present embodiment, the impermeable sheet inspection apparatus includes a first electrode switch 13, a second electrode switch 14, an AC power supply 15, and a current measurement circuit 16. These are accommodated in a portable housing, and are carried into the work site when the water shielding sheet 10 is inspected.

第1の電極11は、交流電源15の一端側に接続される。第1方向線状電極A1〜A5の一端側には第1電極切換器13が接続され、他端側は開放状態とされる。第2方向線状電極B1〜B5の一端側には第2電極切換器14が接続され、他端側は開放状態とされる。このため、遮水シート検査装置には、第1の電極11に接続するための1つの外部接続用端子と、第1電極切換器13を第1方向線状電極A1〜A5に接続するための5つの外部接続用端子と、第2電極切換器14を第2方向線状電極B1〜B5に接続するための5つの外部接続用端子と、を備えることが望ましい。   The first electrode 11 is connected to one end side of the AC power supply 15. The first electrode switch 13 is connected to one end side of the first directional linear electrodes A1 to A5, and the other end side is opened. The second electrode switching device 14 is connected to one end side of the second direction linear electrodes B1 to B5, and the other end side is opened. For this reason, in the impermeable sheet inspection apparatus, one external connection terminal for connecting to the first electrode 11 and the first electrode switching device 13 for connecting to the first directional linear electrodes A1 to A5. It is desirable to provide five external connection terminals and five external connection terminals for connecting the second electrode switch 14 to the second directional linear electrodes B1 to B5.

第1電極切換器13は第1方向線状電極A1〜A5の本数に対応する5個の切換器を有し、第1方向線状電極A1〜A5の一端側の一つを電流測定回路16経由で交流電源15の他端側に接続し、残りの第1方向線状電極A1〜A5の一端側をそのまま交流電源15の他端側に接続することができる切換機能を持つ。この切換機能により、選択された第1方向線状電極に流れる電流を電流測定回路16によって測定することができる。   The first electrode switch 13 has five switches corresponding to the number of the first direction linear electrodes A1 to A5, and one of the one end sides of the first direction linear electrodes A1 to A5 is connected to the current measuring circuit 16. It has a switching function capable of connecting to the other end side of the AC power supply 15 via the other end side of the remaining first direction linear electrodes A1 to A5 as it is. With this switching function, the current measurement circuit 16 can measure the current flowing through the selected first direction linear electrode.

第2電極切換器14は第2方向線状電極B1〜B5の本数に対応する5個の切換器を有し、第2方向線状電極B1〜B5の一端側のすべてを開放とするか、あるいは第2方向線状電極B1〜B5の一端側の一つを交流電源15の他端側に接続すると共に、残りの第2方向線状電極B1〜B5の一端側を開放とすることができる切換機能を持つ。換言すれば、後述するように、第2電極切換器14は、第1電極切換器13において第1方向線状電極A1〜A5の切換えを行いながら電流測定回路16により電流測定を行っている間は、第2方向線状電極B1〜B5の一端側のすべてを開放状態とする。図1は第1方向線状電極A3が電流測定回路16に接続され、第2方向線状電極B1〜B5がすべて開放されている状態を示している。   The second electrode switching device 14 has five switching devices corresponding to the number of the second direction linear electrodes B1 to B5, and opens one end side of each of the second direction linear electrodes B1 to B5. Alternatively, one end side of the second direction linear electrodes B1 to B5 can be connected to the other end side of the AC power supply 15, and one end side of the remaining second direction linear electrodes B1 to B5 can be opened. Has a switching function. In other words, as will be described later, the second electrode switching unit 14 performs the current measurement by the current measurement circuit 16 while switching the first directional linear electrodes A1 to A5 in the first electrode switching unit 13. Makes all the one end sides of the second direction linear electrodes B1 to B5 open. FIG. 1 shows a state in which the first direction linear electrode A3 is connected to the current measurement circuit 16, and the second direction linear electrodes B1 to B5 are all opened.

図1はまた、第1方向線状電極A3と第2方向線状電極B3の交点付近に遮水シート10の破損(孔)による漏水が生じていることを示している。   FIG. 1 also shows that water leakage due to breakage (holes) of the water shielding sheet 10 occurs near the intersection of the first direction linear electrode A3 and the second direction linear electrode B3.

以上のような構成において、第1電極切換器13により電流測定回路16に接続する第1方向線状電極を1本ずつ順に切換えてゆくと、第1の電極11からの電流は漏水箇所にもっとも近い第1方向線状電極A3に多く流れ込むことから、電流測定回路16の測定結果、つまり電流値の増加により、遮水シート10の破損による漏水が第1方向線状電極A3の近傍にあると判定できる。以上の検出動作を第1ステップの検出動作と呼ぶこととする。   In the configuration as described above, when the first directional linear electrodes connected to the current measuring circuit 16 are sequentially switched one by one by the first electrode switching device 13, the current from the first electrode 11 is most likely to flow into the water leakage location. Since a large amount of current flows into the first directional linear electrode A3, the measurement result of the current measuring circuit 16, that is, an increase in the current value, indicates that water leakage due to breakage of the water shielding sheet 10 is in the vicinity of the first directional linear electrode A3. Can be judged. The above detection operation is referred to as a first step detection operation.

次に、第1電極切換器13による電極切換えを、電流値の増加を示した第1方向線状電極A3に固定した状態で、第2電極切換器14により交流電源15の他端側に接続する第2方向線状電極を1本ずつ順に切換えながら第1方向線状電極A3に流れる電流値を電流測定回路16で測定する。以上の検出動作を第2ステップの検出動作と呼ぶこととする。   Next, the electrode switching by the first electrode switcher 13 is fixed to the first directional linear electrode A3 indicating an increase in the current value, and the second electrode switcher 14 is connected to the other end side of the AC power supply 15. The current measurement circuit 16 measures the value of the current flowing through the first direction linear electrode A3 while sequentially switching the second direction linear electrodes. The above detection operation is referred to as a second step detection operation.

第2ステップの検出動作においては、第1の電極11からの電流は、漏水箇所にもっとも近い第2方向線状電極B3にも多く流れ込むことから第1方向線状電極A3に流れ込む電流値は相対的に降下する現象が発生する。これにより遮水シート10の破損による漏水が第2方向線状電極B3の近傍にあると判定できる。   In the detection operation of the second step, a large amount of current from the first electrode 11 also flows into the second directional linear electrode B3 closest to the water leakage location, so the current value flowing into the first directional linear electrode A3 is relative. The phenomenon of falling down occurs. Thereby, it can be determined that the water leakage due to the breakage of the water shielding sheet 10 is in the vicinity of the second directional linear electrode B3.

以上の第1ステップの検出動作の判定結果と、第2ステップの検出動作の判定結果に基づいて、遮水シート10の損傷による漏水は第1方向線状電極A3と第2方向線状電極B3の交点付近に存在すると判定することができる。   Based on the determination result of the detection operation of the first step and the determination result of the detection operation of the second step, water leakage due to damage of the water shielding sheet 10 is caused by the first direction linear electrode A3 and the second direction linear electrode B3. It can be determined that it exists in the vicinity of the intersection.

なお、第1ステップの検出動作における電流値の増加量、第2ステップの検出動作における電流値の減少量を知ることで、漏水の程度を遮水シートの破損の程度(孔の大きさ)として把握することができる。   In addition, by knowing the amount of increase in the current value in the detection operation of the first step and the amount of decrease in the current value in the detection operation of the second step, the degree of water leakage is regarded as the degree of breakage of the water shielding sheet (hole size). I can grasp it.

ここで、図1では、図面の横方向を第1方向、図面の縦方向を第2方向と呼んでいるが、縦方向を第1方向、横方向を第2方向と呼んでも良い。言い換えれば、格子状の第2の線状電極群12は、第1方向と第2方向を入れ換えても同様の効果が得られる。すなわち、第1電極切換器13と電流測定回路16の組み合わせを第2方向線状電極B1〜B5に接続し、第2電極切換器14を第1方向線状電極A1〜A5に接続しても良い。このように接続を切換えたうえで、上記と同じ第1ステップの検出動作及び第2ステップの検出動作を行うことにより、漏水発生位置の検出精度を向上させることができる。特に、前述の外部接続用端子を備えた遮水シート検査装置を用いることにより、このような接続の切換えは、遮水シート検査装置の外部接続端子への接続を切換えるだけで容易に実現することができる。   Here, in FIG. 1, the horizontal direction of the drawing is referred to as a first direction and the vertical direction of the drawing is referred to as a second direction, but the vertical direction may be referred to as a first direction and the horizontal direction may be referred to as a second direction. In other words, the grid-like second linear electrode group 12 can obtain the same effect even if the first direction and the second direction are interchanged. That is, the combination of the first electrode switch 13 and the current measuring circuit 16 is connected to the second direction linear electrodes B1 to B5, and the second electrode switch 14 is connected to the first direction linear electrodes A1 to A5. good. After switching the connection in this manner, the detection accuracy of the water leakage occurrence position can be improved by performing the same first-step detection operation and second-step detection operation as described above. In particular, by using the water shielding sheet inspection apparatus provided with the aforementioned external connection terminals, such connection switching can be easily realized by simply switching the connection to the external connection terminals of the water shielding sheet inspection apparatus. Can do.

なお、本実施形態では電流測定回路16として交流電流計を用いるが、交流電源15に代えて直流電源を用いることができる。この場合、電流測定回路16には直流電流計を用いることは言うまでもない。前述したように、第1の電極11と格子状の第2の線状電極群12の配置については遮水シート10の上下関係はどちらの配置であっても同様の効果を示す。また、遮水シートは二重構造の場合もある。この場合には、二重構造の遮水シートの中間層に格子状の第2の線状電極群を配置し、上側遮水シートの上側と下側遮水シートの下側にそれぞれ第1の電極を配置することで、二重構造の遮水シートの上側遮水シートと下側遮水シートにおける漏水発生位置を検出することができる。   In the present embodiment, an AC ammeter is used as the current measuring circuit 16, but a DC power source can be used instead of the AC power source 15. In this case, it goes without saying that a DC ammeter is used for the current measuring circuit 16. As described above, the arrangement of the first electrode 11 and the grid-like second linear electrode group 12 shows the same effect regardless of the arrangement of the water shielding sheet 10 in any vertical relationship. Further, the water shielding sheet may have a double structure. In this case, the grid-like second linear electrode group is disposed in the intermediate layer of the double-layer water-proof sheet, and the first upper electrode and the lower water-block sheet are respectively provided on the upper side of the upper water-proof sheet. By arranging the electrodes, it is possible to detect the water leakage occurrence position in the upper water shielding sheet and the lower water shielding sheet of the double structure water shielding sheet.

図2は図1で説明した構成を用いて遮水シートに発生した複数箇所(ここでは2箇所)の漏水を検出する場合について説明するための図である。   FIG. 2 is a diagram for explaining a case where water leakage at a plurality of locations (here, 2 locations) generated in the water shielding sheet is detected using the configuration described in FIG. 1.

図2において、遮水シート10の上下の電極配置及び遮水シート検査装置は図1に示された構成と同様である。遮水シート10には2箇所の損傷(孔)による漏水が生じているものとする。この場合、図7で説明した漏水発生位置検出方式では、第1方向線状電極A2と第2方向線状電極B2の交点付近、第1方向線状電極A2と第2方向線状電極B4の交点付近、第1方向線状電極A5と第2方向線状電極B2の交点付近、及び第1方向線状電極A5と第2方向線状電極B4の交点付近に、合計4箇所の損傷による漏水が検出される結果となる。しかし、第1方向線状電極A2と第2方向線状電極B2の交点付近及び第1方向線状電極A5と第2方向線状電極B4の交点付近で検出される漏水は実際に漏水を生じている箇所ではなく、ゴーストと呼ばれる。   In FIG. 2, the upper and lower electrode arrangements of the water shielding sheet 10 and the water shielding sheet inspection apparatus are the same as those shown in FIG. It is assumed that water leakage due to damage (holes) at two places occurs in the water shielding sheet 10. In this case, in the water leak occurrence position detection method described with reference to FIG. 7, the first direction linear electrode A2 and the second direction linear electrode B4 are near the intersection of the first direction linear electrode A2 and the second direction linear electrode B2. Leakage due to damage at a total of four locations near the intersection, near the intersection between the first direction linear electrode A5 and the second direction linear electrode B2, and near the intersection between the first direction linear electrode A5 and the second direction linear electrode B4 Is detected. However, leakage detected near the intersection of the first direction linear electrode A2 and the second direction linear electrode B2 and near the intersection of the first direction linear electrode A5 and the second direction linear electrode B4 actually causes leakage. It's called a ghost, not a spot.

これに対し、本実施形態では、第1ステップの検出動作において第1方向線状電極A2と第1方向線状電極A5の近傍に漏水があるものと判定する。続く第2ステップの検出動作においては、第1電極切換器13により第1方向線状電極A2を電流測定回路16に接続を固定した状態で、第2電極切換器14によって第2方向線状電極B2を交流電源15の他端側に接続しても、電流測定回路16における電流値の降下は生じない。同様に、第1電極切換器13により第1方向線状電極A5を電流測定回路16に接続を固定した状態で、第2電極切換器14によって第2方向線状電極B4を交流電源15の他端側に接続しても、電流測定回路16における電流値の降下は生じない。   On the other hand, in this embodiment, it is determined that there is water leakage in the vicinity of the first direction linear electrode A2 and the first direction linear electrode A5 in the detection operation of the first step. In the subsequent detection operation of the second step, the first electrode switch 13 fixes the connection of the first direction linear electrode A2 to the current measuring circuit 16, and the second electrode switch 14 fixes the second direction linear electrode. Even if B2 is connected to the other end side of the AC power supply 15, the current value in the current measuring circuit 16 does not drop. Similarly, the second directional linear electrode B4 is connected to the AC power supply 15 by the second electrode switching device 14 in a state where the first directional linear electrode A5 is fixed to the current measuring circuit 16 by the first electrode switching device 13. Even if it is connected to the end side, the current value in the current measuring circuit 16 does not drop.

一方、第1電極切換器13により第1方向線状電極A2を電流測定回路16に接続を固定した状態で、第2電極切換器14によって第2方向線状電極B4を交流電源15の他端側に接続すると、第1の実施形態で説明した理由により、電流測定回路16における電流値の降下が生じる。同様に、第1電極切換器13により第1方向線状電極A5を電流測定回路16に接続を固定した状態で、第2電極切換器14によって第2方向線状電極B2を交流電源15の他端側に接続すると、電流測定回路16における電流値の降下が生じる。これにより、遮水シート10の損傷(孔)による漏水は第1方向線状電極A2と第2方向線状電極B4の交点付近及び第1方向線状電極A5と第2方向線状電極B2の交点付近の2箇所に存在すると判定することができる。   On the other hand, the second electrode 14 is connected to the other end of the AC power supply 15 by the second electrode switch 14 while the first electrode 13 is fixed to the current measuring circuit 16 by the first electrode switch 13. When connected to the side, a current value drop occurs in the current measurement circuit 16 for the reason described in the first embodiment. Similarly, the second directional linear electrode B2 is connected to the AC power supply 15 by the second electrode switching device 14 in a state where the first directional linear electrode A5 is fixed to the current measuring circuit 16 by the first electrode switching device 13. When connected to the end side, a current value drop in the current measuring circuit 16 occurs. As a result, water leakage due to damage (holes) in the water shielding sheet 10 is caused near the intersection of the first direction linear electrode A2 and the second direction linear electrode B4 and between the first direction linear electrode A5 and the second direction linear electrode B2. It can be determined that it exists in two places near the intersection.

図3は本発明の第2の実施形態の構成を示す図である。図3において、図1で説明した第1の実施形態と同じ構成要素には同じ参照番号を付し、同じ構成要素についての説明は省略する。本実施形態が第1の実施形態と異なる点は、交流電源15の一端側と電流測定回路16の出力に同期検波回路18を接続し、電流測定回路16の出力を交流電源15の位相で同期検波することで印加電圧に同期した電流値を測定する構成とした点にある。このような第2の実施形態によれば、遮水シート10の容量成分を流れる電流の影響を同期検波によって除去することができるという効果を奏する。   FIG. 3 is a diagram showing the configuration of the second exemplary embodiment of the present invention. In FIG. 3, the same components as those in the first embodiment described in FIG. 1 are denoted by the same reference numerals, and descriptions of the same components are omitted. This embodiment is different from the first embodiment in that a synchronous detection circuit 18 is connected to one end of the AC power supply 15 and the output of the current measurement circuit 16, and the output of the current measurement circuit 16 is synchronized with the phase of the AC power supply 15. This is in that the current value synchronized with the applied voltage is measured by detection. According to such 2nd Embodiment, there exists an effect that the influence of the electric current which flows through the capacitive component of the impermeable sheet 10 can be removed by synchronous detection.

図4は本発明の第3の実施形態の構成を示す図である。図4において、図3で説明した第2の実施形態と同じ構成要素には同じ参照番号を付し、同じ構成要素についての説明は省略する。本実施形態が第2の実施形態と異なる点は、遮水シート検査装置がさらに、第1電極切換器13と第2電極切換器14における5個の切換器の切換制御を実行する切換制御部19と、同期検波回路18の出力を処理して遮水シート10における漏水発生箇所の判定を行う処理部20と、処理部20の処理結果を表示する表示部21とを備える点にある。   FIG. 4 is a diagram showing the configuration of the third exemplary embodiment of the present invention. In FIG. 4, the same components as those of the second embodiment described in FIG. 3 are denoted by the same reference numerals, and the description of the same components is omitted. This embodiment is different from the second embodiment in that the impermeable sheet inspection apparatus further performs switching control of five switching units in the first electrode switching unit 13 and the second electrode switching unit 14. 19, the processing part 20 which processes the output of the synchronous detection circuit 18, and determines the location of the water leakage occurrence in the water shielding sheet 10, and the display part 21 which displays the processing result of the processing part 20.

切換制御部19は、第1電極切換器13と第2電極切換器14におけるあらかじめ定められた切換制御動作を実行するためのプログラムを記憶したメモリと、このメモリからプログラムを読み出して切換制御動作を実行するCPU(Central Processing Unit)とを含む。   The switching control unit 19 stores a program for executing a predetermined switching control operation in the first electrode switching unit 13 and the second electrode switching unit 14, and reads the program from this memory to perform the switching control operation. CPU (Central Processing Unit) to be executed.

第1電極切換器13と第2電極切換器14における切換制御動作に伴って同期検波回路18から出力される信号はディジタル信号に変換したうえで処理部20に送られる。処理部20はPC(Personal Computor)、特に可搬型のPCでも実現することができる。   A signal output from the synchronous detection circuit 18 in accordance with the switching control operation in the first electrode switch 13 and the second electrode switch 14 is converted into a digital signal and sent to the processing unit 20. The processing unit 20 can be realized by a PC (Personal Computer), particularly a portable PC.

図1と同様、第1方向線状電極A3と第2方向線状電極B3の交点近くに遮水シート10の損傷(孔)による漏水が発生していると仮定して説明する。   As in FIG. 1, description will be made assuming that water leakage due to damage (holes) of the water shielding sheet 10 occurs near the intersection of the first direction linear electrode A3 and the second direction linear electrode B3.

処理部20は、図1で説明した第1ステップの検出動作において同期検波回路18を通して得られる信号から、第1方向線状電極A3を通して得られる電流値が所定の第1の閾値を超えることを判定し、これを記憶する。   The processing unit 20 determines that the current value obtained through the first directional linear electrode A3 from the signal obtained through the synchronous detection circuit 18 in the detection operation of the first step described with reference to FIG. 1 exceeds a predetermined first threshold value. Determine and store this.

処理部20は次に、図1で説明した第2ステップの検出動作において同期検波回路18を通して得られる信号から、第2方向線状電極B3を通して得られる電流値が所定の第2の閾値を超えて降下することを判定し、これを記憶する。   Next, the processing unit 20 determines that the current value obtained through the second directional linear electrode B3 from the signal obtained through the synchronous detection circuit 18 in the detection operation of the second step described in FIG. 1 exceeds the predetermined second threshold value. It is determined to descend and memorized.

処理部20は続いて、上記記憶結果を基に、遮水シート10の損傷による漏水が第1方向線状電極A3と第2方向線状電極B3の交点付近に存在すると判定し、判定結果を表示部21に表示させる。表示部21では、遮水シート10における漏水発生位置を座標にて表示するが、それだけでなく、例えば格子状の第2の線状電極群12の平面図を表示したうえで、漏水発生位置を重ねて表示するようにしても良い。   Subsequently, the processing unit 20 determines that leakage due to damage of the water shielding sheet 10 exists near the intersection of the first direction linear electrode A3 and the second direction linear electrode B3 based on the stored result, and the determination result is It is displayed on the display unit 21. In the display unit 21, the water leakage occurrence position in the water shielding sheet 10 is displayed with coordinates, but not only that, for example, after displaying a plan view of the grid-like second linear electrode group 12, the water leakage occurrence position is displayed. It may be displayed in a superimposed manner.

なお、第1の実施形態において説明した様々な変更の形態は、第2、第3の実施形態にも適用されることは言うまでもない。   Needless to say, the various modifications described in the first embodiment are also applied to the second and third embodiments.

図5は第1〜第3の実施形態で用いた第1電極切換器13と第2電極切換器14を単体の電極切換器として実現した場合の構成の一例を示す。ここでは、説明を簡単にするために、第1方向線状電極がA1、A2、A3の3本であり、第2方向線状電極もB1、B2、B3の3本である場合について説明する。   FIG. 5 shows an example of a configuration when the first electrode switch 13 and the second electrode switch 14 used in the first to third embodiments are realized as a single electrode switch. Here, in order to simplify the description, a case will be described in which the first direction linear electrodes are three of A1, A2, and A3, and the second direction linear electrodes are three of B1, B2, and B3. .

図5において、電極切換器30は、3本(N=3)の第1方向線状電極A1〜A3と3本(M=3)の第2方向線状電極B1〜B3をそれぞれ、開放用端子31−1と接続用端子31−2の一方に接続する6(N+M=6)個の切換器31から成る第1段電極切換部と、6(N+M=6)個の接続用端子31−2をそれぞれ、電流測定回路16に接続された電流測定用端子32−1と交流電源15の他端側に接続された電源接続用端子32−2の一方に接続する6(N+M=6)個の切換器32から成る第2段電極切換部とを有している。ここで、第1段電極切換部の4番目〜6番目の切換器と、第2段電極切換部の4番目〜6番目の切換器の切換動作は、同時に切換えられることが望ましい。例えば第1段電極切換部の4番目〜6番目の切換器がそれぞれ開放用端子31−1側に切換えられると、第2段電極切換部の4番目〜6番目の切換器もそれぞれ電流測定用端子32−1に切換えられる。第1段電極切換部の4番目〜6番目の切換器がそれぞれ接続用端子31−2側に切換えられると、第2段電極切換部の4番目〜6番目の切換器もそれぞれ電源接続用端子32−2に切換えられる。これにより、例えば第1段電極切換部の5番目の切換器のみが接続用端子31−2側に切換えられると、これに対応する第2段電極切換部の5番目の切換器も電源接続用端子32−2に切換えられる。   In FIG. 5, the electrode switch 30 is for opening three (N = 3) first direction linear electrodes A1 to A3 and three (M = 3) second direction linear electrodes B1 to B3, respectively. A first-stage electrode switching unit composed of 6 (N + M = 6) switches 31 connected to one of the terminal 31-1 and the connection terminal 31-2 and 6 (N + M = 6) connection terminals 31- 6 (N + M = 6) 2 are connected to one of the current measurement terminal 32-1 connected to the current measurement circuit 16 and one of the power connection terminals 32-2 connected to the other end of the AC power supply 15, respectively. And a second-stage electrode switching unit including the switching unit 32. Here, it is desirable that the switching operations of the fourth to sixth switches of the first stage electrode switching unit and the fourth to sixth switches of the second stage electrode switching unit are switched simultaneously. For example, when the 4th to 6th switches of the first stage electrode switching unit are switched to the open terminal 31-1 side, the 4th to 6th switches of the second stage electrode switching unit are also for current measurement. It is switched to terminal 32-1. When the fourth to sixth switches of the first stage electrode switching unit are switched to the connection terminal 31-2 side, the fourth to sixth switches of the second stage electrode switching unit are also connected to the power supply terminals. It is switched to 32-2. Thus, for example, when only the fifth switch of the first stage electrode switching unit is switched to the connection terminal 31-2 side, the corresponding fifth switch of the second stage electrode switching unit is also used for power connection. It is switched to the terminal 32-2.

図1の第1の実施形態、つまり第1方向線状電極A3と第2方向線状電極B3の交点付近に遮水シート10の破損(孔)による漏水が生じていると仮定して説明すると、第1ステップの検出動作においては、第1段電極切換部の1番目〜3番目の切換器31は第1方向線状電極A1〜A3をすべて接続用端子31−2に接続し、4番目〜6番目の切換器31は第2方向線状電極B1〜B3をすべて開放用端子31−1に接続する。一方、第1ステップの検出動作において、第2段電極切換部の1番目〜3番目の切換器32は1個のみが第1方向線状電極A1〜A3の1本を、接続用端子31−2を介して電流測定用端子32−1に接続し、第1方向線状電極A1〜A3の残りを、接続用端子31−2を介して電源接続用端子32−2に接続する。このようにして第1方向線状電極A1〜A3を1本ずつ順に電流測定回路16に接続して電流値を測定する。その結果、図1で説明したように、第1方向線状電極A3において所定の第1の閾値を超える電流値が検出される。   The first embodiment of FIG. 1, that is, assuming that water leakage due to breakage (hole) of the water shielding sheet 10 occurs near the intersection of the first direction linear electrode A3 and the second direction linear electrode B3. In the detection operation of the first step, the first to third switches 31 of the first stage electrode switching unit connect all the first directional linear electrodes A1 to A3 to the connection terminal 31-2, and the fourth step The sixth switch 31 connects all the second direction linear electrodes B1 to B3 to the opening terminal 31-1. On the other hand, in the detection operation of the first step, only one of the first to third switches 32 of the second-stage electrode switching unit is connected to one of the first directional linear electrodes A1 to A3, and the connection terminal 31- 2 is connected to the current measuring terminal 32-1 and the remaining first direction linear electrodes A1 to A3 are connected to the power supply connecting terminal 32-2 via the connecting terminal 31-2. In this way, the first direction linear electrodes A1 to A3 are sequentially connected to the current measuring circuit 16 one by one to measure the current value. As a result, as described in FIG. 1, a current value exceeding a predetermined first threshold value is detected in the first directional linear electrode A3.

図1で説明したように、第2ステップの検出動作は、第1方向線状電極A1、A2を交流電源15の他端側に接続し、第1方向線状電極A3を電流測定回路16に接続した状態を維持したままで実行される。   As described with reference to FIG. 1, the detection operation of the second step is performed by connecting the first directional linear electrodes A1 and A2 to the other end of the AC power supply 15 and connecting the first directional linear electrode A3 to the current measuring circuit 16. It is executed while maintaining the connected state.

第2ステップの検出動作においては、第1段電極切換部の4番目〜6番目の切換器31の1個のみが切換えられて第2方向線状電極B1〜B3の1本を接続用端子31−2に接続し、第2方向線状電極B1〜B3の残りは開放用端子31−1に接続したままとされる。これと同時に、第1段電極切換部の上記1個に対応する第2段電極切換部の1個の切換器のみを切換えて電源接続用端子32−2に接続する。第2段電極切換部の上記1個以外の切換器は電流測定用端子32−1に接続されたままである。   In the detection operation of the second step, only one of the fourth to sixth switches 31 of the first stage electrode switching unit is switched, and one of the second directional linear electrodes B1 to B3 is connected to the connection terminal 31. -2 and the rest of the second direction linear electrodes B1 to B3 remain connected to the open terminal 31-1. At the same time, only one switch of the second stage electrode switching unit corresponding to the one of the first stage electrode switching units is switched and connected to the power connection terminal 32-2. The switches other than the one of the second-stage electrode switching unit remain connected to the current measurement terminal 32-1.

このようにして第2方向線状電極B1〜B3を1本ずつ順に交流電源15の他端側に接続し、その時の電流値を電流測定回路16で測定する。その結果、図1で説明したように、第2方向線状電極B3において所定の第2の閾値を超えて降下する電流値が検出される。   In this way, the second direction linear electrodes B1 to B3 are sequentially connected to the other end of the AC power supply 15 one by one, and the current value at that time is measured by the current measurement circuit 16. As a result, as described with reference to FIG. 1, a current value that falls below a predetermined second threshold value in the second directional linear electrode B3 is detected.

以上のような切換えも図4で説明した切換制御部19で実現することができることは言うまでもない。   It goes without saying that the switching as described above can also be realized by the switching control unit 19 described in FIG.

なお、この電極切換器30は、第1の実施形態において説明した、第1電極切換器13と電流測定回路16の組み合わせを第2方向線状電極B1〜B5に接続し、第2電極切換器14を第1方向線状電極A1〜A5に接続する切換えをも実現することができる。   In addition, this electrode switch 30 connects the combination of the 1st electrode switch 13 and the electric current measurement circuit 16 which were demonstrated in 1st Embodiment to 2nd direction linear electrode B1-B5, and is 2nd electrode switch Switching to connect 14 to the first direction linear electrodes A1 to A5 can also be realized.

(実施形態の効果)
以上の説明から明らかなように、本発明の実施形態によれば、遮水シートの上側(又は下側)に設けられた第1の電極と、第1の方向に延びる複数の第1方向線状電極と、前記第1の方向に直交する第2の方向に延びる複数の第2方向線状電極とを有し、前記第1方向線状電極と前記第2方向線状電極との交点を絶縁して前記遮水シートの下側(又は上側)に配置してなる格子状の第2の線状電極群と、を用いて前記遮水シートにおける漏水発生位置を検出する漏水発生位置検出方式が提供される。
(Effect of embodiment)
As is clear from the above description, according to the embodiment of the present invention, the first electrode provided on the upper side (or the lower side) of the water shielding sheet and a plurality of first direction lines extending in the first direction. And a plurality of second direction linear electrodes extending in a second direction orthogonal to the first direction, and an intersection of the first direction linear electrode and the second direction linear electrode A leakage occurrence position detection method for detecting a leakage occurrence position in the water shielding sheet using a grid-like second linear electrode group that is insulated and disposed on the lower side (or upper side) of the water shielding sheet. Is provided.

この漏水発生位置検出方式においては、前記第1の電極と前記第2の線状電極群の間に電圧を印加するための電源と、電流測定回路と、が用意され、前記電源の一端側に前記第1の電極を接続する。そして、前記複数の第2方向線状電極をすべて開放した状態にて前記複数の第1方向線状電極のうちの1本を選択して前記電流測定回路を経由して前記電源の他端側に接続すると共に、選択されない前記第1方向線状電極を前記電源の他端側に接続して前記電流測定回路による電流測定を、すべての前記第1方向線状電極について行う。続いて、少なくとも1本の前記第1方向線状電極について電流値の増加が検出された場合には、前記少なくとも1本の前記第1方向線状電極を前記電流測定回路に接続した状態にて前記複数の第2方向線状電極のうちの少なくとも1本を選択して前記電源の他端側に接続すると共に、選択されない前記第2方向線状電極は開放として前記電流測定回路による電流測定を、すべての前記第2方向線状電極について行い、前記電流測定回路の測定結果に基づいて前記遮水シートの漏水発生位置を判定する。   In this water leak occurrence position detection method, a power source for applying a voltage between the first electrode and the second linear electrode group and a current measurement circuit are prepared, and one end side of the power source is provided. The first electrode is connected. Then, one of the plurality of first direction linear electrodes is selected in a state where all the plurality of second direction linear electrodes are opened, and the other end side of the power source is passed through the current measurement circuit. In addition, the first direction linear electrode that is not selected is connected to the other end of the power source, and the current measurement by the current measurement circuit is performed for all the first direction linear electrodes. Subsequently, when an increase in current value is detected for at least one of the first direction linear electrodes, the at least one first direction linear electrode is connected to the current measuring circuit. At least one of the plurality of second direction linear electrodes is selected and connected to the other end of the power supply, and the second direction linear electrode not selected is opened and current measurement is performed by the current measurement circuit. This is performed for all the second directional linear electrodes, and the leakage occurrence position of the water shielding sheet is determined based on the measurement result of the current measuring circuit.

特に、前記複数の第1方向線状電極の電流値測定において電流値の増加を示した第1方向線状電極の電流を測定しながら前記複数の第2方向線状電極を1本ずつ順に電源の他端側に接続すると、漏水発生位置にもっとも近い第2方向線状電極を電源の他端側に接続した時に第1方向線状電極に流れる電流値は降下する。このような電流値増加特性と電流値降下特性とを併用することで、検出結果の信頼性向上を図ることができる。   In particular, the plurality of second directional linear electrodes are sequentially supplied one by one while measuring the current of the first directional linear electrode that showed an increase in the current value in the current value measurement of the plurality of first directional linear electrodes. When the second direction linear electrode closest to the water leakage occurrence position is connected to the other end side of the power source, the current value flowing through the first direction linear electrode drops. By using such a current value increase characteristic and a current value drop characteristic in combination, the reliability of the detection result can be improved.

加えて、上記検出動作を第1方向と第2方向とを入れ替えて同様に測定を行うことにより、精度の高い測定ができる。そして、遮水シートにおける複数の損傷(孔)による漏水を効果的に分離識別することが可能となることから漏水発生位置が早期に正確に検出でき、漏水による環境汚染の発生を最小限に抑えられる等得られる効果は大きい。   In addition, high accuracy measurement can be performed by measuring the detection operation in the same manner by exchanging the first direction and the second direction. And since it becomes possible to effectively separate and identify leaks due to multiple damages (holes) in the water shielding sheet, the location of the leak can be detected quickly and accurately, and the occurrence of environmental pollution due to leaks is minimized. The obtained effect is great.

以上、本発明を複数の実施形態に基づいて説明したが、本発明は上記実施形態に限定されるものではない。例えば、第1の電極を遮水シートの上側に設置する場合には、設置場所は固定ではなく、必要に応じて処分場の様々な場所に設置することができるようにしても良い。また、複数の第1の電極をそれぞれ遮水シートの上下両側において処分場の異なる場所に設置して切換器により一つを選択できるようにしても良い。   As mentioned above, although this invention was demonstrated based on several embodiment, this invention is not limited to the said embodiment. For example, when the first electrode is installed on the upper side of the water-impervious sheet, the installation location is not fixed and may be installed at various locations in the disposal site as necessary. Further, a plurality of first electrodes may be installed at different disposal sites on both the upper and lower sides of the water shielding sheet so that one can be selected by a switch.

本発明において使用される遮水シート検査装置は、図1で説明したような、遮水シートの上下の一方に第1の電極が配置され、遮水シートの上下の他方に格子状の第2の線状電極群を配置した構成を持つ処分場であれば、既設の処分場にも適用可能であることは言うまでもない。   In the water shielding sheet inspection apparatus used in the present invention, as described in FIG. 1, the first electrode is arranged on one of the upper and lower sides of the water shielding sheet, and the grid-like second on the other upper and lower sides of the water shielding sheet. It goes without saying that any disposal site having a configuration in which the linear electrode group is arranged can be applied to an existing disposal site.

A1〜A5 第1方向線状電極
B1〜B5 第2方向線状電極
10 遮水シート
11 第1の電極
12 格子状の第2の線状電極群
13 第1電極切換器
14 第2電極切換器
30 電極切換器
31、32 切換器
31−1 開放用端子
31−2 接続用端子
32−1 電流測定用端子
32−2 電源接続用端子
A1-A5 1st direction linear electrode B1-B5 2nd direction linear electrode 10 Water shielding sheet 11 1st electrode 12 Grid-like 2nd linear electrode group 13 1st electrode switcher 14 2nd electrode switcher 30 Electrode switch 31, 32 Switch 31-1 Open terminal 31-2 Connection terminal 32-1 Current measurement terminal 32-2 Power supply connection terminal

Claims (2)

遮水シートの上下の一方の側に設けられた少なくも一つの第1の電極と、
互いに平行に第1の方向に延びるN本(Nは2以上の整数)の第1方向線状電極と、互いに平行に前記第1の方向に直交する第2の方向に延びるM本(Mは2以上の整数)の第2方向線状電極とを有し、前記第1方向線状電極と前記第2方向線状電極との交点を絶縁して前記遮水シートの上下の他方の側に配置してなる格子状の第2の線状電極群と、を用いて前記遮水シートにおける漏水発生位置を検出する漏水発生位置検出方式であって、
前記第1の電極と前記第2の線状電極群の間に電圧を印加するための電源と、電流測定回路と、を用意し、
前記電源の一端側に前記第1の電極を接続し、
前記M本の第2方向線状電極をすべて開放した状態にて前記N本の第1方向線状電極のうちの1本を選択して前記電流測定回路を経由して前記電源の他端側に接続すると共に、選択されない前記第1方向線状電極を前記電源の他端側に接続して前記電流測定回路による電流測定を、すべての前記第1方向線状電極について行い、
少なくとも1本の前記第1方向線状電極について電流値の増加が検出された場合には、前記少なくとも1本の第1方向線状電極を前記電流測定回路に接続した状態にて前記M本の第2方向線状電極のうちの少なくとも1本を選択して前記電源の他端側に接続すると共に、選択されない前記第2方向線状電極は開放として前記電流測定回路による電流測定を、すべての前記第2方向線状電極について行い、前記電流測定回路の測定結果に基づいて前記遮水シートの漏水発生位置を判定することを特徴とする漏水発生位置検出方式。
At least one first electrode provided on one of the upper and lower sides of the water shielding sheet;
N (N is an integer of 2 or more) first-direction linear electrodes extending in parallel to each other in the first direction, and M (M is a line extending in a second direction perpendicular to the first direction in parallel to each other) 2 direction linear electrode), and insulates the intersection of the first direction linear electrode and the second direction linear electrode on the other upper and lower sides of the water shielding sheet. A grid-shaped second linear electrode group, and a water leakage occurrence position detection method for detecting a water leakage occurrence position in the water shielding sheet,
A power source for applying a voltage between the first electrode and the second linear electrode group, and a current measurement circuit;
Connecting the first electrode to one end of the power source;
With all the M second direction linear electrodes open, one of the N first direction linear electrodes is selected and the other end side of the power source is passed through the current measurement circuit. And connecting the non-selected first direction linear electrode to the other end of the power source, and performing current measurement by the current measurement circuit for all the first direction linear electrodes,
If an increase in current value is detected for at least one of the first directional linear electrodes, the M number of the first directional linear electrodes are connected to the current measuring circuit. At least one of the second directional linear electrodes is selected and connected to the other end of the power source, and the current measuring circuit is configured to measure all currents with the second directional linear electrodes not selected open. A water leakage occurrence position detection method characterized by performing the second direction linear electrode and determining a water leakage occurrence position of the water shielding sheet based on a measurement result of the current measurement circuit.
前記電流測定回路を経由して前記電源の他端側に接続する前記N本の第1方向線状電極を1本ずつ順次切換えながら前記電流測定回路による測定を行うことにより前記N本の第1方向線状電極のうちの少なくとも1本の近傍の漏水発生を電流値の増加によって判定し、
電流値の増加ありと判定された場合には、その時に前記電流測定回路に接続されていた前記第1方向線状電極の接続を固定した状態にて、前記電源の他端側に接続する前記M本の第2方向線状電極を1本ずつ順次切換えながら、前記電流測定回路による測定を行うことにより前記M本の第2方向線状電極のうちの少なくとも1本の近傍の漏水発生を電流値の減少により判定し、
前記N本の第1方向線状電極近傍の漏水発生の判定結果と、前記M本の第2方向線状電極近傍の漏水発生の判定結果に基づいて、前記遮水シートの漏水発生位置を1箇所以上について判定可能とすることを特徴とする請求項1に記載の漏水発生位置検出方式。
By performing the measurement by the current measurement circuit while sequentially switching the N first directional linear electrodes connected to the other end of the power source via the current measurement circuit, the N first first electrodes are measured. The occurrence of water leakage in the vicinity of at least one of the directional linear electrodes is determined by an increase in current value,
When it is determined that there is an increase in the current value, the connection of the first direction linear electrode connected to the current measurement circuit at that time is fixed, and the connection to the other end of the power source is performed. By sequentially measuring the M second direction linear electrodes one by one and performing the measurement by the current measuring circuit, it is possible to prevent the occurrence of water leakage in the vicinity of at least one of the M second direction linear electrodes. Judging by the decrease in value,
Based on the determination result of leakage occurrence in the vicinity of the N first directional linear electrodes and the determination result of leakage occurrence in the vicinity of the M second directional linear electrodes, the leakage occurrence position of the water shielding sheet is set to 1 The leak detection position detection method according to claim 1, wherein it is possible to determine more than a part.
JP2016055429A 2016-03-18 2016-03-18 Water leakage location detection method Active JP6530339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055429A JP6530339B2 (en) 2016-03-18 2016-03-18 Water leakage location detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055429A JP6530339B2 (en) 2016-03-18 2016-03-18 Water leakage location detection method

Publications (2)

Publication Number Publication Date
JP2017167111A true JP2017167111A (en) 2017-09-21
JP6530339B2 JP6530339B2 (en) 2019-06-12

Family

ID=59913227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055429A Active JP6530339B2 (en) 2016-03-18 2016-03-18 Water leakage location detection method

Country Status (1)

Country Link
JP (1) JP6530339B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269944A (en) * 2018-11-09 2019-01-25 同济大学 A kind of experimental rig and test method monitoring landfill percolate horizontal proliferation
CN109443669A (en) * 2018-09-30 2019-03-08 深圳市英威腾电源有限公司 A kind of leakage detection method and device
CN109839419A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of over-the-counter detection system and method for impervious barrier
CN110297037A (en) * 2018-03-23 2019-10-01 中国环境科学研究院 A kind of detection system and method for vertical seepage control layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248590A (en) * 1998-03-05 1999-09-17 Reideikku:Kk System for detecting water leaking position
JP2001099742A (en) * 1999-09-29 2001-04-13 Maeda Corp Water leakage detection system and method thereof
JP2002181654A (en) * 2000-12-18 2002-06-26 Reideikku:Kk Method for detecting position of water leakage occurrence
JP2004170333A (en) * 2002-11-22 2004-06-17 Maeda Corp Water leakage position detector
US20090044595A1 (en) * 2007-08-17 2009-02-19 Vokey David E Method and apparatus to detect and locate roof leaks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248590A (en) * 1998-03-05 1999-09-17 Reideikku:Kk System for detecting water leaking position
JP2001099742A (en) * 1999-09-29 2001-04-13 Maeda Corp Water leakage detection system and method thereof
JP2002181654A (en) * 2000-12-18 2002-06-26 Reideikku:Kk Method for detecting position of water leakage occurrence
JP2004170333A (en) * 2002-11-22 2004-06-17 Maeda Corp Water leakage position detector
US20090044595A1 (en) * 2007-08-17 2009-02-19 Vokey David E Method and apparatus to detect and locate roof leaks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839419A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of over-the-counter detection system and method for impervious barrier
CN110297037A (en) * 2018-03-23 2019-10-01 中国环境科学研究院 A kind of detection system and method for vertical seepage control layer
CN109839419B (en) * 2018-03-23 2020-05-22 中国环境科学研究院 Off-site detection system and method for impermeable layer
CN109443669A (en) * 2018-09-30 2019-03-08 深圳市英威腾电源有限公司 A kind of leakage detection method and device
CN109269944A (en) * 2018-11-09 2019-01-25 同济大学 A kind of experimental rig and test method monitoring landfill percolate horizontal proliferation

Also Published As

Publication number Publication date
JP6530339B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6530339B2 (en) Water leakage location detection method
JP4780416B2 (en) Solar cell array fault diagnosis method
US20120313652A1 (en) Method and Apparatus for Differential Voltage Grid-Based Moisture Monitoring of Structures
CN103529354A (en) Circuit testing method and circuit testing system
JP6481571B2 (en) Inspection apparatus and inspection method
JP2017106881A (en) Distributor and obstruction detection method
US10809145B2 (en) Sensor and system for monitoring integrity of a waterproofing system or membrane
JP3622172B2 (en) Water leak occurrence position detection method
JPH10332522A (en) Detection system for water leak occurrence position
CN105738734A (en) Coupling plate assembly used for electrostatic discharge test and electrostatic discharge test device
CN107656199A (en) With relay rapid detection apparatus directly perceived and its detection method in hand-held tunnel
JP2016103918A (en) Ground fault position detection device and ground fault position detection method
KR101551341B1 (en) Apparatus for checking of cable
JP5687515B2 (en) Wiring checker
CN209619464U (en) Test device for sacrificial anode drainage protection scope
CN207366704U (en) With relay rapid detection apparatus directly perceived in hand-held tunnel
JP2004053361A (en) System for detecting current
KR101336860B1 (en) Detecting apparatus for fault location of power line
JP2015001516A (en) Insulation level monitoring device
CN206382126U (en) A kind of electromagnetic vibrator isolating diode failure is made a round of visits device
Vokey A Method to Detect and Locate Roof Leaks Using Conductive Tapes
CN203808118U (en) Simple device for monitoring horizontal displacement
JP2012173024A (en) Wiring checker
JP2000258279A (en) Method for testing impervious sheet
CN220290299U (en) Auxiliary alarm device for cable bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190516

R150 Certificate of patent or registration of utility model

Ref document number: 6530339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250