JPH10332522A - Detection system for water leak occurrence position - Google Patents

Detection system for water leak occurrence position

Info

Publication number
JPH10332522A
JPH10332522A JP9147891A JP14789197A JPH10332522A JP H10332522 A JPH10332522 A JP H10332522A JP 9147891 A JP9147891 A JP 9147891A JP 14789197 A JP14789197 A JP 14789197A JP H10332522 A JPH10332522 A JP H10332522A
Authority
JP
Japan
Prior art keywords
water
linear electrodes
circuit
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9147891A
Other languages
Japanese (ja)
Other versions
JP3463187B2 (en
Inventor
Shinichi Endo
真一 遠藤
Nobuyoshi Yamazaki
宣悦 山崎
Fumio Sakata
文男 坂田
Takeshi Arai
健 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Sakata Denki Co Ltd
Original Assignee
Maeda Corp
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp, Sakata Denki Co Ltd filed Critical Maeda Corp
Priority to JP14789197A priority Critical patent/JP3463187B2/en
Priority to KR10-1998-0021192A priority patent/KR100486814B1/en
Publication of JPH10332522A publication Critical patent/JPH10332522A/en
Application granted granted Critical
Publication of JP3463187B2 publication Critical patent/JP3463187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the water leak occurrence position detection system which can precisely detect respective breakage places even if a water shield film is broken at those places. SOLUTION: One linear electrode on one side of the water shield film 10 is selected and connected to one side of an AC power source 11 and another linear electrode is selected on the other side, but other linear electrodes except the linear electrode on one side are all connected to the other side of the AC power source 11. Currents flows between the one linear electrode connected to one side of the AC power source 11 and all other linear electrodes, but a current detector 13 measures the current of only one linear electrode selected on the other side. Consequently, the current is measured while limited to nearby the intersection of the one linear electrode on one side connected to the one side of the AC power source 11 and the one linear electrode on the other side where the current measurement is taken.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂または合
成ゴムシート或はアスファルトなどの遮水膜を敷設して
造成された管理型終末処分場における漏水発生位置検出
方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a position where a water leak has occurred in a controlled final disposal site constructed by laying a waterproof film such as a synthetic resin or synthetic rubber sheet or asphalt.

【0002】[0002]

【従来の技術】従来、遮水膜を用いた人工的な管理型終
末処理場においては、遮水膜に亀裂などの破損が生じて
処分場内の汚染液が漏水することがある。漏水が発生す
ると地下水汚染や公害問題が発生するため、定期的に遮
水膜の点検を行い、遮水膜に破損が生じていれば漏水箇
所を検出して適当な補修を行う必要がある。
2. Description of the Related Art Conventionally, in an artificially controlled terminal treatment plant using a water impermeable film, the water impermeable film may be damaged such as cracks, and contaminated liquid in the disposal site may leak. If water leakage occurs, groundwater pollution and pollution problems will occur. Therefore, it is necessary to inspect the water barrier film periodically and, if the water barrier film is damaged, detect the water leak location and perform appropriate repairs.

【0003】このような遮水膜の漏水発生位置を検出す
るために、次のような検出方式が採用されている。この
検出方式では、遮水膜の下側に所定の間隔で複数の線状
電極を平行に敷設し、遮水膜の上側には下側電極と交差
する方向で所定の間隔で複数の線状電極を平行に敷設し
た電極配置構成を用いる。このような電極配置構成にお
いて、遮水膜上下の線状電極を各々1本選択して上下の
線状電極間に交流電源による通電を行い、上下の線状電
極間に流れる電流を検出して、印加電圧の位相に同期し
た信号で位相検波を行う。そして、上下の線状電極の各
々の交点に於ける位相検波回路の出力電圧の比較から漏
水発生位置を検出する。
[0003] In order to detect the location of such a water-impervious film leak, the following detection method is employed. In this detection method, a plurality of linear electrodes are laid in parallel at a predetermined interval below the water-impermeable film, and a plurality of linear electrodes are arranged above the water-impermeable film at a predetermined interval in a direction intersecting the lower electrode. An electrode arrangement in which electrodes are laid in parallel is used. In such an electrode arrangement configuration, one of the upper and lower linear electrodes is selected from the water impermeable film, and an AC power supply is applied between the upper and lower linear electrodes to detect a current flowing between the upper and lower linear electrodes. , Phase detection is performed using a signal synchronized with the phase of the applied voltage. Then, the position where the water leak has occurred is detected by comparing the output voltages of the phase detection circuits at the intersections of the upper and lower linear electrodes.

【0004】以下に、この漏水発生位置検出方式の一例
を、図8を参照して説明する。この例においては、遮水
膜10の上側には線状電極A1〜A5が、遮水膜81の
下側には線状電極A1〜A5と交差する方向に線状電極
B1〜B5がそれぞれ配置されている。交流電源81の
出力は電力増幅回路82で電力増幅される。電力増幅さ
れた出力は電流検出回路83を通して、上側の線状電極
A1〜A5の1本を選択する第1の電極セレクタ84を
介して遮水膜10の上側の線状電極A1〜A5の内の1
本に印加される。電力増幅回路82にはまた、第2の電
極セレクタ85を介して下側の線状電極B1〜B5の内
の選択された1本の線状電極が接続される。
[0004] An example of the water leakage occurrence position detection method will be described below with reference to FIG. In this example, the linear electrodes A1 to A5 are arranged above the water shielding film 10 and the linear electrodes B1 to B5 are arranged below the water shielding film 81 in a direction crossing the linear electrodes A1 to A5, respectively. Have been. The output of the AC power supply 81 is power-amplified by the power amplifier circuit 82. The power-amplified output is passed through a current detection circuit 83, through a first electrode selector 84 that selects one of the upper linear electrodes A1 to A5, from among the upper linear electrodes A1 to A5 of the water barrier film 10. Of 1
Applied to the book. The selected one of the lower linear electrodes B <b> 1 to B <b> 5 is connected to the power amplifier circuit 82 via the second electrode selector 85.

【0005】このような構成によれば、上側の線状電極
A1〜A5の選択された1本と下側の線状電極B1〜B
5の選択された1本とが電流検出回路83を介して交流
電源81に接続される。位相検波回路86は、交流電源
81の印加電圧に同期した位相で電流検出回路83の位
相検波を行う。この位相検波出力はA/Dコンバータ8
7でディジタル信号に変換され、パソコンのようなコン
ピュータ88に与えられる。
According to such a configuration, a selected one of the upper linear electrodes A1 to A5 and the lower linear electrodes B1 to B5 are selected.
The selected one of the five is connected to an AC power supply 81 via a current detection circuit 83. The phase detection circuit 86 performs phase detection of the current detection circuit 83 with a phase synchronized with the applied voltage of the AC power supply 81. This phase detection output is supplied to the A / D converter 8
The digital signal is converted into a digital signal at 7 and supplied to a computer 88 such as a personal computer.

【0006】このような構成において、遮水膜10に破
損が無い場合、遮水膜10の上下において選択された線
状電極間に流れる電流は遮水膜10の容量成分を流れる
電流となるため、電流の絶対値は小さい値となり、且つ
交流電源81の印加電圧の位相に対しては進み位相とな
る。一方、遮水膜10に破損が生じると、破損箇所の上
下において選択された線状電極間には電流が流れ易い。
このことから、遮水膜10の上下の線状電極の組合せ交
点が破損箇所に近い場合には電流の絶対値は大きくな
り、且つ印加電圧の位相に近づく傾向を示す。このこと
から、上下の線状電極のそれぞれの交点について電流を
測定することにより遮水膜10の破損箇所を検出するこ
とが可能となる。
In such a configuration, if there is no breakage in the water barrier film 10, the current flowing between the linear electrodes selected above and below the water barrier film 10 becomes the current flowing through the capacitance component of the water barrier film 10. , The absolute value of the current becomes a small value, and becomes a leading phase with respect to the phase of the applied voltage of the AC power supply 81. On the other hand, when the water barrier film 10 is damaged, a current easily flows between the linear electrodes selected above and below the damaged portion.
From this, when the combined intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the damaged point, the absolute value of the current tends to increase and approach the phase of the applied voltage. From this, it is possible to detect a broken portion of the water barrier film 10 by measuring the current at each intersection of the upper and lower linear electrodes.

【0007】従来の検出方式の電流測定には位相検波回
路86が用いられており、交流電源81の印加電圧に同
期した位相で電流検出回路83の出力に対する位相検波
が行われ交流電源81の同相成分を抽出している。
[0007] A phase detection circuit 86 is used for current measurement in the conventional detection method, and phase detection is performed on the output of the current detection circuit 83 at a phase synchronized with the applied voltage of the AC power supply 81, and the in-phase of the AC power supply 81 is detected. The components are extracted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら,上記従
来の漏水発生位置検出方式では、遮水膜10に複数の破
損が生じた場合には、第1の破損箇所の測定結果は第2
の破損箇所による影響を受ける。また、第2の破損箇所
も第1の破損箇所の影響を受ける。このため、遮水膜1
0に複数の破損が生じた場合には、破損箇所を特定する
精度が低下するという欠点がある。
However, in the above-described conventional water leakage occurrence position detection method, when a plurality of breaks occur in the water barrier film 10, the measurement result of the first break point is the second break point.
Affected by the damaged part. Further, the second damaged part is also affected by the first damaged part. Therefore, the water barrier film 1
In the case where a plurality of breaks occur in the zero, there is a disadvantage that the accuracy of specifying the broken portion is reduced.

【0009】特に、上下各2本の隣接した線状電極で構
成される四角形を1単位の測定範囲とすれば、隣接した
測定範囲に破損が生じた場合や接近した測定範囲に破損
が生じた場合に精度が低下するという欠点がある。
In particular, if a square formed by two upper and lower adjacent linear electrodes is defined as one unit of measurement range, the adjacent measurement range may be damaged or the adjacent measurement range may be damaged. In this case, there is a disadvantage that accuracy is reduced.

【0010】そこで、本発明の課題は、遮水膜に複数の
破損が生じた場合でもそれぞれの破損箇所を精度良く検
出できる漏水発生位置検出方式を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a water leakage occurrence position detecting method capable of detecting each damaged portion with high accuracy even when a plurality of damages occur in the water barrier film.

【0011】[0011]

【課題を解決するための手段】本発明によれば、遮水膜
を敷設して造成された管理型終末処理場において、前記
遮水膜の上側に平行に所定の間隔で並べられた複数の線
状電極と、該遮水膜の下側に平行に前記上側の線状電極
と交差するように所定の間隔で並べられた複数の線状電
極と、交流電源と、前記上側の複数の線状電極の1本を
選択すると共に、前記下側の複数の線状電極の1本を選
択し、選択した上側または下側の線状電極の一方のみを
交流電源の一方に接続し、他の線状電極はすべて交流電
源の他方に接続するための選択接続手段と、交流電源の
一方に接続された線状電極と、反対側において選択され
た1本の線状電極との間に遮水膜を介して流れる電流を
検出するための電流検出回路と、この電流検出回路の出
力を受けて検波を行う検波手段を含み、遮水膜の上側及
び下側の複数の線状電極を順次選択して遮水膜の破損に
よる漏水発生位置に近い線状電極の組合せになった際に
前記検波手段の出力が他の電極組合せの値よりも上昇ま
たは下降することから漏水発生位置を検出する処理回路
とを備えたことを特徴とする漏水発生位置検出方式が提
供される。
According to the present invention, in a controlled type final treatment plant constructed by laying a water-impervious film, a plurality of water-absorbent films are arranged at predetermined intervals in parallel above the water-impervious film. A linear electrode, a plurality of linear electrodes arranged at predetermined intervals so as to intersect the upper linear electrode in parallel with the lower side of the water blocking film, an AC power supply, and the upper plurality of lines. While selecting one of the linear electrodes, selecting one of the lower plurality of linear electrodes, connecting only one of the selected upper or lower linear electrodes to one of the AC power supplies, All the linear electrodes are selectively connected means for connecting to the other of the AC power supply, and a water impervious between a linear electrode connected to one of the AC power supply and one selected linear electrode on the opposite side. A current detection circuit for detecting a current flowing through the film, and receiving an output of the current detection circuit to perform detection. A plurality of linear electrodes on the upper side and the lower side of the impermeable film are sequentially selected, and when a combination of linear electrodes close to the water leakage occurrence position due to breakage of the impermeable film is formed, And a processing circuit for detecting a water leak occurrence position based on the output rising or falling below the value of another electrode combination.

【0012】本発明によればまた、遮水膜を敷設して造
成された管理型終末処理場において、前記遮水膜の上側
に平行に所定の間隔で並べられた複数の線状電極と、該
遮水膜の下側に平行に前記上側の線状電極と交差するよ
うに所定の間隔で並べられた複数の線状電極と、交流電
源と、前記上側の複数の線状電極の互いに隣接する3本
を選択すると共に、前記下側の複数の線状電極の互いに
隣接する3本を選択し、選択した上側の3本または下側
の3本のうち一方の側の中心の線状電極のみを交流電源
の一方に接続し、他の線状電極はすべて交流電源の他方
に接続するための選択接続手段と、交流電源の一方に接
続された中心の線状電極と、反対側において選択された
3本の線状電極のうちの中心の線状電極との間に遮水膜
を介して流れる電流を検出するための電流検出回路と、
この電流検出回路の出力を受けて検波を行う検波手段を
含み、遮水膜の上側及び下側の複数の線状電極を順次選
択して遮水膜の破損による漏水発生位置に近い線状電極
の組合せになった際に前記検波手段の出力が他の電極組
合せの値よりも上昇または下降することから漏水発生位
置を検出する処理回路とを備えたことを特徴とする漏水
発生位置検出方式が提供される。
[0012] According to the present invention, a plurality of linear electrodes arranged at predetermined intervals in parallel on the upper side of the water-impervious film in a managed type final treatment plant constructed by laying a water-impervious film; A plurality of linear electrodes arranged at a predetermined interval so as to intersect the upper linear electrodes in parallel with the lower side of the water-impervious film, an AC power supply, and a plurality of upper linear electrodes adjacent to each other; And selecting three adjacent ones of the lower plurality of linear electrodes, and selecting one of the selected upper three or lower three linear electrodes at the center of one side. Only one connecting means is connected to one side of the AC power source, and all other linear electrodes are connected to the other side of the AC power source.Selective connecting means, the center linear electrode connected to one side of the AC power source, and the other side are selected. Of the three linear electrodes that have flowed through the impermeable membrane between them and the central linear electrode. A current detection circuit for detecting,
A detecting means for receiving the output of the current detecting circuit to perform detection, sequentially selecting a plurality of linear electrodes on the upper and lower sides of the water-impervious film, and detecting a linear electrode close to a position where water leakage occurs due to breakage of the water-impervious film; And a processing circuit for detecting a water leak occurrence position because the output of the detection means rises or falls below the value of the other electrode combination when the combination of the water leak occurrence position is detected. Provided.

【0013】なお、上記のいずれの発明においても、前
記検波手段は、前記交流電源の印加電圧を基準として前
記電流検出回路の出力の位相検波を行うもので実現され
ても良い。
In any of the above inventions, the detection means may be realized by performing phase detection of the output of the current detection circuit with reference to the applied voltage of the AC power supply.

【0014】また、前記処理回路は、前記電流検出回路
の出力を受けて前記交流電源の印加電圧と同じ位相で位
相検波を行う第1の位相検波回路と、前記電流検出回路
の出力を受けて前記交流電源の印加電圧より90度の進
み位相で位相検波を行う第2の位相検波回路と、前記第
1の位相検波回路の出力値を前記第2の位相検波回路の
出力値で割算を行う割算回路とを含み、前記遮水膜の上
側及び下側の線状電極を順次選択して遮水膜の破損によ
る漏水発生位置に近い線状電極の組合せになった際に前
記割算回路の出力が他の線状電極組合せの値よりも上昇
または下降することから漏水発生位置を検出するように
しても良い。
Further, the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply, and receives the output of the current detection circuit. A second phase detection circuit that performs phase detection with a phase leading by 90 degrees from the applied voltage of the AC power supply, and dividing the output value of the first phase detection circuit by the output value of the second phase detection circuit. And a division circuit for performing the division, when the linear electrodes on the upper side and the lower side of the water-impervious film are sequentially selected and a combination of linear electrodes close to the position where water leakage occurs due to breakage of the water-impervious film, The leak occurrence position may be detected based on the output of the circuit rising or falling below the value of another linear electrode combination.

【0015】更に、前記処理回路は、前記電流検出回路
の出力を受けて前記交流電源の印加電圧と同じ位相で位
相検波を行う第1の位相検波回路と、前記電流検出回路
の出力を受けて前記交流電源の印加電圧より90度の進
み位相で位相検波を行う第2の位相検波回路と、前記第
1の位相検波回路の出力を受けて前記第1の位相検波回
路の出力を自乗する自乗回路と、前記自乗回路の出力値
を前記第2の位相検波回路の出力値で割算を行う割算回
路とを含み、前記遮水膜の上側及び下側の線状電極を順
次選択して遮水膜の破損による漏水発生位置に近い線状
電極の組合せになった際に前記割算回路の出力が他の線
状電極組合せの値よりも上昇または下降することから漏
水発生位置を検出するようにしても良い。
Further, the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply, and receives the output of the current detection circuit. A second phase detection circuit that performs phase detection with a phase lead of 90 degrees from the applied voltage of the AC power supply, and a square that receives the output of the first phase detection circuit and squares the output of the first phase detection circuit Circuit, including a division circuit that divides the output value of the square circuit by the output value of the second phase detection circuit, sequentially selects the upper and lower linear electrodes of the impermeable film. When the combination of linear electrodes close to the position where a water leak occurs due to breakage of the water blocking film, the output of the division circuit rises or falls below the value of the other linear electrode combination, so that the position where a water leak occurs is detected. You may do it.

【0016】[0016]

【作用】上記の検出方式においては、遮水膜の片側の線
状電極の1本が選択されて交流電源の一方に接続され、
他の線状電極はすべて交流電源の他方に接続される構成
となる。その結果、交流電源の一方に接続された片側の
1本の線状電極と他のすべての線状電極との間に電流が
流れるが、電流測定は遮水膜を介して反対側において選
択された1本の線状電極に対してだけ行われる構成とな
る。このことから、従来方式で用いられていた検出方式
とは異なり、交流電源の一方に接続された片側の線状電
極と電流測定が行われる反対側の線状電極との交点付近
に限定された電流測定が行われることから、遮水膜の破
損を検出する精度を向上させることが可能となる。
In the above detection method, one of the linear electrodes on one side of the water-blocking film is selected and connected to one of the AC power supplies.
All other linear electrodes are configured to be connected to the other of the AC power supplies. As a result, a current flows between one linear electrode on one side connected to one of the AC power supplies and all the other linear electrodes, but the current measurement is selected on the opposite side via the water barrier film. This is a configuration performed only for one linear electrode. For this reason, unlike the detection method used in the conventional method, it was limited to the vicinity of the intersection of the linear electrode on one side connected to one side of the AC power supply and the linear electrode on the opposite side where the current measurement was performed. Since the current measurement is performed, it is possible to improve the accuracy of detecting breakage of the water barrier film.

【0017】[0017]

【発明の実施の形態】次に、本発明による漏水発生位置
検出方式の第1の実施の形態について図面を参照して説
明する。図1は本発明の第1の実施の形態の構成を示す
ブロック図である。従来と同様、遮水膜10の上側には
線状電極A1〜A5が、遮水膜10の下側には線状電極
A1〜A5と交差する方向に線状電極B1〜B5がそれ
ぞれ配置されている場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of a water leakage occurrence position detecting method according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention. As in the prior art, the linear electrodes A1 to A5 are arranged above the water-blocking film 10, and the linear electrodes B1 to B5 are arranged below the water-blocking film 10 in a direction crossing the linear electrodes A1 to A5, respectively. Will be described.

【0018】本形態においては、第1の電極セレクタ1
4として、線状電極A1〜A5のうちの1本(図1では
線状電極A3)を選択すると残りの線状電極はすべて共
通に接続する機能を持つ電極セレクタを用いている。第
2の電極セレクタ15も同様である。
In this embodiment, the first electrode selector 1
As 4, when one of the linear electrodes A <b> 1 to A <b> 5 (the linear electrode A <b> 3 in FIG. 1) is selected, an electrode selector having a function of connecting all the other linear electrodes in common is used. The same applies to the second electrode selector 15.

【0019】2相交流電源11の出力は電力増幅回路1
2で電力増幅される。2相交流電源11と上側の線状電
極A1〜A5及び下側の線状電極B1〜B5との間は、
第1、第2の電極セレクタ14、15により、次のよう
に接続される。図6をも参照して、上側の線状電極にお
いては、交流電源の一方に第1の電極セレクタ14で選
択された1本の線状電極A3が接続され、残りの線状電
極A1、A2、A4、A5はすべて交流電源の他方に接
続される。下側の線状電極においては、第2の電極セレ
クタ15で選択された1本の線状電極B3が電流検出回
路13を介して交流電源の他方に接続され、残りの線状
電極B1、B2、B4、B5はすべて交流電源の他方に
直接接続される。
The output of the two-phase AC power supply 11 is
The power is amplified at 2. Between the two-phase AC power supply 11 and the upper linear electrodes A1 to A5 and the lower linear electrodes B1 to B5,
The first and second electrode selectors 14 and 15 are connected as follows. Referring also to FIG. 6, in the upper linear electrode, one linear electrode A3 selected by the first electrode selector 14 is connected to one of the AC power supplies, and the remaining linear electrodes A1 and A2 are connected. , A4, A5 are all connected to the other of the AC power supplies. In the lower linear electrode, one linear electrode B3 selected by the second electrode selector 15 is connected to the other of the AC power supplies via the current detection circuit 13, and the other linear electrodes B1, B2 , B4, B5 are all connected directly to the other of the AC power supplies.

【0020】その結果、上側の線状電極A3と残りのす
べての線状電極との間に電流が流れるが、電流検出回路
13では上側の線状電極A3と下側において選択された
線状電極B3との間に流れる電流のみが検出される。
As a result, a current flows between the upper linear electrode A3 and all the remaining linear electrodes. In the current detecting circuit 13, the upper linear electrode A3 and the lower linear electrode A3 are selected. Only the current flowing between B3 is detected.

【0021】次に、電流検出回路13の検出結果を処理
する処理回路について説明する。本形態では、処理回路
は第1、第2の位相検波回路16、17、自乗回路1
8、割算回路19、A/Dコンバータ20、パソコン等
によるコンピュータ21を含む。
Next, a processing circuit for processing the detection result of the current detection circuit 13 will be described. In the present embodiment, the processing circuits are the first and second phase detection circuits 16 and 17, the square circuit 1
8, a division circuit 19, an A / D converter 20, and a computer 21 such as a personal computer.

【0022】電流測定では、第1の位相検波回路16に
より2相交流電源11の位相に同期した第1の位相検波
が行われ、第2の位相検波回路17により2相交流電源
11の位相より90度進み位相に同期した第2の位相検
波が行われる。割算回路19は、第1の位相検波回路1
6の出力を受けて自乗演算を行う自乗回路18の出力と
第2の位相検波回路17の出力とを受けて、自乗回路1
8の出力を第2の位相検波回路17の出力で割算する。
割算回路19の算出結果は、A/Dコンバータ20でデ
ィジタル信号に変換されてコンピュータ21に与えられ
る。なお、このような処理回路は、特願平8−9502
4号に示されているので、動作原理の説明は省略する。
In the current measurement, the first phase detection circuit 16 performs first phase detection synchronized with the phase of the two-phase AC power supply 11, and the second phase detection circuit 17 detects the phase from the two-phase AC power supply 11. A second phase detection synchronized with the phase advanced by 90 degrees is performed. The division circuit 19 includes the first phase detection circuit 1
6, the output of the squaring circuit 18 for performing the square operation and the output of the second phase detection circuit 17
8 is divided by the output of the second phase detection circuit 17.
The calculation result of the division circuit 19 is converted into a digital signal by an A / D converter 20 and supplied to a computer 21. Note that such a processing circuit is disclosed in Japanese Patent Application No. Hei.
Since it is shown in No. 4, description of the operation principle is omitted.

【0023】遮水膜10に破損が無い場合、遮水膜10
の上下の線状電極間に流れる電流は遮水膜10の容量成
分を流れる電流となるため、電流の絶対値は小さい値と
なり、且つ2相交流電源11の印加電圧の位相に対して
は進み位相となる。一方、遮水膜10に破損が生じる
と、破損箇所は電流が流れ易いことから、遮水膜10の
上下の線状電極の組合わせ交点が破損箇所に近い場合に
は電流の絶対値は大きくなり、且つ2相交流電源11の
印加電圧の位相に対する進み位相が印加電圧に近付く傾
向を示す。このことから、第1、第2の位相検波回路1
6、17と自乗回路18と割算回路19とを用い、選択
された上下の線状電極のそれぞれの交点について電流を
測定することにより、電流の値と位相変化の両方から遮
水膜10の破損箇所を精度良く検出することが可能とな
る。
If there is no breakage in the water barrier film 10, the water barrier film 10
Since the current flowing between the upper and lower linear electrodes becomes a current flowing through the capacitance component of the water barrier film 10, the absolute value of the current becomes a small value and advances with respect to the phase of the applied voltage of the two-phase AC power supply 11. Phase. On the other hand, when the water-blocking film 10 is damaged, the current easily flows in the damaged portion. Therefore, when the combined intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the damaged portion, the absolute value of the current is large. And the leading phase with respect to the phase of the applied voltage of the two-phase AC power supply 11 tends to approach the applied voltage. From this, the first and second phase detection circuits 1
6, 17 and the square circuit 18 and the division circuit 19, the current is measured at each of the intersections of the selected upper and lower linear electrodes. It is possible to accurately detect a damaged portion.

【0024】なお、線状電極の選択方法は遮水膜10の
上下の線状電極を逆、すなわち図1で言えば線状電極A
3の電流を電流検出回路13で検出するようにしても同
様の測定精度が得られることは言うまでも無いことであ
る。
The method for selecting the linear electrodes is to reverse the linear electrodes above and below the water-blocking film 10, that is, the linear electrodes A in FIG.
Needless to say, the same measurement accuracy can be obtained even when the current 3 is detected by the current detection circuit 13.

【0025】図2は本発明の第2の実施の形態の構成を
示すブロック図である。図1と同じ部分には同一番号を
付しており、この実施の形態においても、遮水膜10の
上側には線状電極A1〜A5が、遮水膜10の下側には
線状電極A1〜A5と交差する方向に線状電極B1〜B
5が配置されている。
FIG. 2 is a block diagram showing the configuration of the second embodiment of the present invention. 1 are denoted by the same reference numerals. Also in this embodiment, the linear electrodes A1 to A5 are provided above the water-blocking film 10, and the linear electrodes are provided below the water-blocking film 10. Linear electrodes B1 to B5 in directions intersecting A1 to A5
5 are arranged.

【0026】本形態においては、第1の電極セレクタ2
4として、線状電極A1〜A5のうちの隣接し合う3本
(図2では線状電極A2〜A4)を選択すると共に、選
択された3本のうちの中心の線状電極(図2では線状電
極A3)を選択し、残りの線状電極A2、A4はすべて
共通に接続する機能を持つ電極セレクタを用いている。
第2の電極セレクタ25も同様であり、隣接し合う3本
(図2では線状電極B2〜B4)を選択すると共に、選
択された3本のうちの中心の線状電極(図2では線状電
極B3)を選択し、残りの線状電極B2、B4はすべて
共通に接続する。
In this embodiment, the first electrode selector 2
As 4, three adjacent linear electrodes A <b> 1 to A <b> 5 (linear electrodes A <b> 2 to A <b> 4 in FIG. 2) are selected, and a central linear electrode among the selected three electrodes (FIG. The linear electrode A3) is selected, and the remaining linear electrodes A2 and A4 all use an electrode selector having a function of commonly connecting.
The same applies to the second electrode selector 25, which selects three adjacent electrodes (linear electrodes B2 to B4 in FIG. 2) and selects a central linear electrode (line in FIG. 2) among the three selected electrodes. The linear electrode B3) is selected, and the remaining linear electrodes B2 and B4 are all connected in common.

【0027】交流電源22の出力は電力増幅回路23で
電力増幅される。交流電源22と上側の線状電極A1〜
A5及び下側の線状電極B1〜B5との間は、第1、第
2の電極セレクタ24、25により、次のように接続さ
れる。上側の線状電極においては、交流電源の一方に第
1の電極セレクタ24で選択された3本のうちの中心の
線状電極A3が接続され、残りの線状電極A2、A4は
すべて交流電源の他方に接続される。下側の線状電極に
おいては、第2の電極セレクタ25で選択された3本の
うちの中心の線状電極B3が電流検出回路13を介して
交流電源の他方に接続され、残りの線状電極B2、B4
はすべて交流電源の他方に直接接続される。
The output of the AC power supply 22 is power-amplified by a power amplifier circuit 23. AC power supply 22 and upper linear electrodes A1 to
The first and second electrode selectors 24 and 25 connect between A5 and the lower linear electrodes B1 to B5 as follows. In the upper linear electrode, one of the AC power supplies is connected to the central linear electrode A3 of the three selected by the first electrode selector 24, and the remaining linear electrodes A2 and A4 are all connected to the AC power supply. Connected to the other of In the lower linear electrode, the central linear electrode B3 of the three selected by the second electrode selector 25 is connected to the other of the AC power supply via the current detection circuit 13, and the remaining linear electrode Electrodes B2, B4
Are all connected directly to the other side of the AC power supply.

【0028】その結果、上側の線状電極A3と線状電極
A2、A4、及びB2、B3、B4との間に電流が流れ
るが、電流検出回路23では上側の線状電極A3と下側
において選択された中心の線状電極B3との間に流れる
電流のみが検出される。
As a result, a current flows between the upper linear electrode A3 and the linear electrodes A2, A4, and B2, B3, B4. In the current detection circuit 23, the current flows between the upper linear electrode A3 and the lower side. Only the current flowing between the selected central linear electrode B3 is detected.

【0029】電流検出回路26の検出結果を処理する処
理回路は、検波回路27、A/Dコンバータ20、コン
ピュータ21を含む。
A processing circuit for processing the detection result of the current detection circuit 26 includes a detection circuit 27, an A / D converter 20, and a computer 21.

【0030】遮水膜10に破損が無い場合、遮水膜10
の上下の線状電極間に流れる電流は遮水膜10の容量成
分を流れる電流となるため電流の絶対値は小さい値とな
り、且つ交流電源22の印加電圧の位相に対しては進み
位相となる。一方、遮水膜10に破損が生じると破損箇
所は電流が流れ易いことから、遮水膜10の上下の線状
電極の組合せ交点が破損箇所に近い場合には電流の絶対
値は大きくなり、且つ交流電源22の印加電圧の位相に
対する進み位相が印加電圧に近づく傾向を示す。このこ
とにより、上下の線状電極のそれぞれの交点について電
流を測定することにより、電流の絶対値を示す検波回路
27の出力から遮水膜10の破損箇所を精度良く検出す
ることが可能となる。
If there is no breakage in the water barrier film 10, the water barrier film 10
Since the current flowing between the upper and lower linear electrodes becomes a current flowing through the capacitance component of the water barrier film 10, the absolute value of the current becomes a small value, and the phase is advanced with respect to the phase of the applied voltage of the AC power supply 22. . On the other hand, if a break occurs in the water-blocking film 10, the current easily flows through the broken portion, so when the intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the broken portion, the absolute value of the current increases, In addition, the leading phase with respect to the phase of the applied voltage of the AC power supply 22 tends to approach the applied voltage. Thus, by measuring the current at each of the intersections of the upper and lower linear electrodes, it is possible to accurately detect the damaged portion of the water barrier film 10 from the output of the detection circuit 27 indicating the absolute value of the current. .

【0031】なお、図2の処理回路は、図1の実施の形
態における処理回路として利用することもできる。
The processing circuit shown in FIG. 2 can be used as the processing circuit in the embodiment shown in FIG.

【0032】図3は本発明の第3の実施の形態の構成を
示すブロック図である。この実施の形態は、第2の実施
の形態とは、処理回路が位相検波回路28において異な
り、以下はすべて同じである。したがって、処理回路の
動作についてのみ説明する。本形態においては、位相検
波回路28により交流電源22の位相に同期した位相検
波が行われる。
FIG. 3 is a block diagram showing the configuration of the third embodiment of the present invention. This embodiment is different from the second embodiment in the processing circuit in the phase detection circuit 28, and the following is all the same. Therefore, only the operation of the processing circuit will be described. In this embodiment, phase detection synchronized with the phase of the AC power supply 22 is performed by the phase detection circuit 28.

【0033】遮水膜10に破損が無い場合、遮水膜10
の上下の線状電極間に流れる電流は遮水膜10の容量成
分を流れる電流となるため、電流の絶対値は小さい値と
なり、且つ交流電源22の印加電圧の位相に対しては進
み位相となる。一方、遮水膜10に破損が生じると破損
箇所は電流が流れ易いことから、遮水膜10の上下の線
状電極の組合せ交点が破損箇所に近い場合には電流の絶
対値は大きくなり、且つ交流電源22の印加電圧の位相
に対する進み位相が印加電圧に近づく傾向を示す。この
ように、位相検波回路28を用い、上下の線状電極のそ
れぞれの交点について電流を測定することにより、交流
電源22と同相成分の電流から遮水膜10の破損箇所を
精度良く検出することが可能となる。
If there is no breakage in the water barrier film 10, the water barrier film 10
Since the current flowing between the upper and lower linear electrodes becomes a current flowing through the capacitance component of the water barrier film 10, the absolute value of the current becomes a small value, and the phase of the applied voltage of the Become. On the other hand, if a break occurs in the water-blocking film 10, the current easily flows through the broken portion, so when the intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the broken portion, the absolute value of the current increases, In addition, the leading phase with respect to the phase of the applied voltage of the AC power supply 22 tends to approach the applied voltage. As described above, by measuring the current at each intersection of the upper and lower linear electrodes using the phase detection circuit 28, it is possible to accurately detect the damaged portion of the water barrier film 10 from the current having the same phase component as the AC power supply 22. Becomes possible.

【0034】この図3の処理回路も、図1の実施の形態
における処理回路として利用することができる。
The processing circuit of FIG. 3 can also be used as the processing circuit in the embodiment of FIG.

【0035】図4は本発明の第4の実施の形態の構成を
示すブロック図である。この実施の形態は、第2の実施
の形態における処理回路に代えて第1の実施の形態の処
理回路の主要部を用いている。したがって、図1、図2
と同じ部分には同一番号を付している。本形態における
処理回路は、第1、第2の位相検波回路16、17、割
算回路30、A/Dコンバータ20、及びコンピュータ
21を含む。
FIG. 4 is a block diagram showing the configuration of the fourth embodiment of the present invention. This embodiment uses a main part of the processing circuit of the first embodiment instead of the processing circuit of the second embodiment. Therefore, FIGS. 1 and 2
The same parts as in FIG. The processing circuit according to the present embodiment includes first and second phase detection circuits 16 and 17, a division circuit 30, an A / D converter 20, and a computer 21.

【0036】処理回路においては、第1の位相検波回路
16により2相交流電源11の位相に同期した第1の位
相検波と、第2の位相検波回路17により2相交流電源
11の位相より90度進み位相に同期した第2の位相検
波とが行われている。第1の位相検波回路16の出力と
第2の位相検波回路17の出力を受けて、割算回路29
は第1の位相検波回路16の出力値を第2の位相検波回
路17の出力値で割算する。
In the processing circuit, the first phase detection circuit 16 performs first phase detection synchronized with the phase of the two-phase AC power supply 11, and the second phase detection circuit 17 calculates the phase of the two-phase AC power supply 90 by 90%. Second phase detection synchronized with the leading phase is performed. Receiving the output of the first phase detection circuit 16 and the output of the second phase detection circuit 17, the division circuit 29
Divides the output value of the first phase detection circuit 16 by the output value of the second phase detection circuit 17.

【0037】遮水膜10に破損が無い場合、遮水膜10
の上下の線状電極間に流れる電流は遮水膜10の容量成
分を流れる電流となるため、電流の絶対値は小さい値と
なり、且つ2相交流電源11の印加電圧の位相に対して
は進み位相となる。一方、遮水膜10に破損が生じると
破損箇所は電流が流れ易いことから、遮水膜10の上下
の線状電極の組合せ交点が破損箇所に近い場合には電流
の絶対値は大きくなり、且つ2相交流電源11の印加電
圧の位相に対する進み位相が印加電圧に近づく傾向を示
す。このため、第1、第2の位相検波回路16、17と
割算回路29とを用い、上下の線状電極のそれぞれの交
点について電流位相成分の比率を測定することにより、
電流の値と位相変化の両方から遮水膜10の破損箇所を
精度良く検出することが可能となる。
If there is no breakage in the water barrier film 10, the water barrier film 10
Since the current flowing between the upper and lower linear electrodes becomes a current flowing through the capacitance component of the water barrier film 10, the absolute value of the current becomes a small value and advances with respect to the phase of the applied voltage of the two-phase AC power supply 11. Phase. On the other hand, if a break occurs in the water-blocking film 10, the current easily flows through the broken portion, so when the intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the broken portion, the absolute value of the current increases, In addition, the leading phase with respect to the phase of the applied voltage of the two-phase AC power supply 11 tends to approach the applied voltage. For this reason, by using the first and second phase detection circuits 16 and 17 and the division circuit 29 and measuring the ratio of the current phase component at each intersection of the upper and lower linear electrodes,
It is possible to accurately detect a damaged portion of the water barrier film 10 from both the current value and the phase change.

【0038】この処理回路も、第1の実施の形態におけ
る処理回路に代えて用いることができる。
This processing circuit can be used in place of the processing circuit in the first embodiment.

【0039】図5は、本発明の第5の実施の形態の構成
を示すブロック図である。この実施の形態は、第2の実
施の形態における処理回路に代えて第1の実施の形態の
処理回路を用いている。したがって、図1、図2と同じ
部分には同一番号を付している。
FIG. 5 is a block diagram showing the configuration of the fifth embodiment of the present invention. This embodiment uses the processing circuit of the first embodiment instead of the processing circuit of the second embodiment. Therefore, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

【0040】この処理回路では、図1において説明した
ように、第1の位相検波回路16により2相交流電源1
1の位相に同期した第1の位相検波と、第2の位相検波
回路17により2相交流電源11の位相より90度進み
位相に同期した第2の位相検波とが行われる。割算回路
19は、第1の位相検波回路16の出力を受けて自乗演
算を行う自乗回路18の出力と第2の位相検波回路17
の出力とを受け、自乗回路18の出力値を第2の位相検
波回路17の出力値で割算する。
In this processing circuit, as explained in FIG. 1, the two-phase AC power
The first phase detection synchronized with the first phase and the second phase detection synchronized with the phase advanced by 90 degrees from the phase of the two-phase AC power supply 11 by the second phase detection circuit 17 are performed. The division circuit 19 receives the output of the first phase detection circuit 16 and performs the square operation on the output of the square circuit 18 and the second phase detection circuit 17.
, The output value of the squaring circuit 18 is divided by the output value of the second phase detection circuit 17.

【0041】遮水膜10に破損が無い場合、遮水膜10
の上下の線状電極間に流れる電流は遮水膜10の容量成
分を流れる電流となるため、電流の絶対値は小さい値と
なり、且つ2相交流電源11の印加電圧の位相に対して
は進み位相となる。一方、遮水膜10に破損が生じると
破損箇所は電流が流れ易いことから、遮水膜10の上下
の線状電極の組合せ交点が破損箇所に近い場合には電流
の絶対値は大きくなり、且つ2相交流電源11の印加電
圧の位相に対する進み位相が印加電圧に近づく傾向を示
す。このため、第1、第2の位相検波回路16、17と
自乗回路18と割算回路19を用い、上下の線状電極の
それぞれの交点について電流を測定することにより、電
流の値と位相変化の両方から遮水膜10の破損箇所を精
度良く検出することが可能となる。
If there is no breakage in the water barrier film 10, the water barrier film 10
Since the current flowing between the upper and lower linear electrodes becomes a current flowing through the capacitance component of the water barrier film 10, the absolute value of the current becomes a small value and advances with respect to the phase of the applied voltage of the two-phase AC power supply 11. Phase. On the other hand, if a break occurs in the water-blocking film 10, the current easily flows through the broken portion, so when the intersection of the upper and lower linear electrodes of the water-blocking film 10 is close to the broken portion, the absolute value of the current increases, In addition, the leading phase with respect to the phase of the applied voltage of the two-phase AC power supply 11 tends to approach the applied voltage. Therefore, by measuring the current at each intersection of the upper and lower linear electrodes using the first and second phase detection circuits 16 and 17, the squaring circuit 18 and the division circuit 19, the current value and the phase change are measured. It is possible to accurately detect a damaged portion of the water barrier film 10 from both.

【0042】図6は、本発明の第1〜第5の実施の形態
に共通する電流経路を示した図である。遮水膜10の上
側には廃棄物があり、遮水膜10の上側において選択さ
れた1本の線状電極と他の線状電極との間に印加された
電圧により、処分場を流れる電流は廃棄物を介して流れ
る電流と遮水膜10を介して流れる電流との合成電流と
なる。
FIG. 6 is a diagram showing a current path common to the first to fifth embodiments of the present invention. There is waste on the upper side of the water-impervious membrane 10, and the electric current flowing through the disposal site by the voltage applied between one linear electrode and the other linear electrode selected on the upper side of the water-impervious membrane 10. Is a combined current of the current flowing through the waste and the current flowing through the water barrier film 10.

【0043】遮水膜10に破損が無い場合には廃棄物を
流れる電流は存在するが、遮水膜10を流れる電流は遮
水膜10の容量成分を介して流れるため、相対的にかな
り小さな電流となる。電流測定では遮水膜10の下側に
おいて選択された1本の線状電極を流れる電流が測定さ
れるため、遮水膜10の破損が無ければ測定結果にはき
わめて微小な電流が検出されることになる。
When there is no breakage in the water barrier film 10, there is a current flowing through the waste, but the current flowing through the water barrier film 10 flows through the capacitance component of the water barrier film 10, so that it is relatively small. It becomes a current. In the current measurement, a current flowing through one selected linear electrode below the water-impervious film 10 is measured. Therefore, if the water-impervious film 10 is not damaged, a very small current is detected in the measurement result. Will be.

【0044】図7は処理回路として、図1あるいは図5
あるいは図4に示された処理回路を用いた場合の測定結
果の一例を示す図である。遮水膜10に2箇所の破損が
ある場合でも、それぞれの破損箇所において電流値の増
加傾向が示されており、遮水膜における2箇所の破損が
明確に分離されて示されている。
FIG. 7 shows the processing circuit of FIG. 1 or FIG.
FIG. 5 is a diagram illustrating an example of a measurement result when the processing circuit illustrated in FIG. 4 is used. Even when there are two breaks in the water barrier film 10, the current values tend to increase at each of the break locations, and the two breaks in the water barrier film are clearly separated.

【0045】[0045]

【発明の効果】以上の説明から明らかなように、本発明
においては、管理型終末処理場の遮水膜の上下で交差す
る複数の線状電極を設置し、遮水膜の上側の線状電極を
選択して交流電源の一方に接続し、この線状電極の少な
くとも両側の線状電極と遮水膜の下側の少なくとも3本
の線状電極を交流電源の他方に接続し、遮水膜の下側に
おける少なくとも3本の線状電極の中心電極を流れる電
流成分を測定することにより、遮水膜を流れる電流経路
は遮水膜の上側の交流電源の一方に接続した線状電極を
中心にその両側の線状電極の幅に限定され、遮水膜の下
側についても電流測定は交流電源の他方に接続した線状
電極のうち選択された1本の線状電極を中心にその両側
の線状電極の幅に限定されることから、測定領域が限定
されることで複数の破損による相互の影響を除去するこ
とが可能となる。
As is clear from the above description, in the present invention, a plurality of linear electrodes intersecting above and below the water-impervious film in the controlled type wastewater treatment plant are installed, and An electrode is selected and connected to one of the AC power sources, and at least three linear electrodes on both sides of the linear electrode and at least three linear electrodes below the water-impermeable film are connected to the other of the AC power source, By measuring the current component flowing through the center electrode of at least three linear electrodes below the membrane, the current path flowing through the water-blocking membrane is connected to one of the AC power sources above the water-blocking membrane. The center is limited to the width of the linear electrodes on both sides, and the current measurement is also performed on the lower side of the impermeable film centering on one linear electrode selected from the linear electrodes connected to the other of the AC power supply. Because the width is limited to the width of the linear electrodes on both sides, multiple It is possible to eliminate the mutual impact of the damage.

【0046】さらに、本発明では遮水膜の近傍に測定用
の線状電極を設置することから、処分場内で処理される
廃棄物の種類による電気的特性の違いや埋設の深さが検
出精度に影響しないという効果もある。
Further, in the present invention, since the linear electrode for measurement is installed near the water-impermeable film, the difference in electrical characteristics depending on the type of waste to be treated in the disposal site and the depth of the burial are determined by the detection accuracy. There is also an effect that does not affect.

【0047】したがって、本発明による漏水位置検出方
式は、経済的に得られる効果が大きいだけでなく、早期
に漏水発生位置を検出でき、環境破壊を最小限に抑えら
れる等得られる効果は大きい。
Therefore, the method of detecting a water leak position according to the present invention not only has a great effect economically, but also has a great effect that a water leak occurrence position can be detected at an early stage and environmental destruction can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第2の実施の形態の構成を示す図であ
る。
FIG. 2 is a diagram illustrating a configuration of a second exemplary embodiment of the present invention.

【図3】本発明の第3の実施の形態の構成を示す図であ
る。
FIG. 3 is a diagram illustrating a configuration of a third exemplary embodiment of the present invention.

【図4】本発明の第4の実施の形態の構成を示す図であ
る。
FIG. 4 is a diagram illustrating a configuration of a fourth exemplary embodiment of the present invention.

【図5】本発明の第5の実施の形態の構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of a fifth embodiment of the present invention.

【図6】図1〜図5の実施の形態に共通する電流経路を
説明するための図である。
FIG. 6 is a diagram for explaining a current path common to the embodiments of FIGS. 1 to 5;

【図7】本発明による処理回路における測定結果の一例
を示した図である。
FIG. 7 is a diagram showing an example of a measurement result in the processing circuit according to the present invention.

【図8】従来の漏水発生位置検出方式の一例を示す構成
図である。
FIG. 8 is a configuration diagram showing an example of a conventional water leakage occurrence position detection method.

【符号の説明】[Explanation of symbols]

11 2相交流電源 12 電力増幅回路 13 電流検出回路 14 第1の電極セレクタ 15 第2の電極セレクタ 16 第1の位相検波回路 17 第2の位相検波回路 18 自乗回路 19、29 割算回路 20 A/Dコンバータ 21 コンピュータ Reference Signs List 11 two-phase AC power supply 12 power amplifier circuit 13 current detection circuit 14 first electrode selector 15 second electrode selector 16 first phase detection circuit 17 second phase detection circuit 18 square circuit 19, 29 division circuit 20 A / D converter 21 Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 健 埼玉県志木市館2丁目3番5号507 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ken Arai 2-3-5 No. 507, Shiki-shi, Saitama 507

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 遮水膜を敷設して造成された管理型終末
処理場において、 前記遮水膜の上側に平行に所定の間隔で並べられた複数
の線状電極と、 該遮水膜の下側に平行に前記上側の線状電極と交差する
ように所定の間隔で並べられた複数の線状電極と、 交流電源と、 前記上側の複数の線状電極の1本を選択すると共に、前
記下側の複数の線状電極の1本を選択し、選択した上側
または下側の線状電極の一方のみを交流電源の一方に接
続し、他の線状電極はすべて交流電源の他方に接続する
ための選択接続手段と、 交流電源の一方に接続された線状電極と、反対側におい
て選択された1本の線状電極との間に遮水膜を介して流
れる電流を検出するための電流検出回路と、 この電流検出回路の出力を受けて検波を行う検波手段を
含み、遮水膜の上側及び下側の複数の線状電極を順次選
択して遮水膜の破損による漏水発生位置に近い線状電極
の組合せになった際に前記検波手段の出力が他の電極組
合せの値よりも上昇または下降することから漏水発生位
置を検出する処理回路とを備えたことを特徴とする漏水
発生位置検出方式。
In a controlled type final treatment plant constructed by laying a water-blocking film, a plurality of linear electrodes arranged at predetermined intervals in parallel above the water-blocking film; A plurality of linear electrodes arranged at predetermined intervals so as to intersect the upper linear electrodes in parallel with the lower side, an AC power source, and selecting one of the upper linear electrodes; One of the plurality of lower linear electrodes is selected, and only one of the selected upper or lower linear electrodes is connected to one of the AC power supplies, and all other linear electrodes are connected to the other of the AC power supplies. Selective connection means for connecting, a linear electrode connected to one side of an AC power supply, and a linear electrode selected on the opposite side for detecting a current flowing through a water-blocking film. And a detecting means for receiving the output of the current detecting circuit and detecting the current. When a plurality of upper and lower linear electrodes are sequentially selected and a combination of linear electrodes close to the position where water leakage occurs due to breakage of the water barrier film, the output of the detection means is higher than the values of other electrode combinations. And a processing circuit for detecting a water leak occurrence position from rising or falling.
【請求項2】 請求項1記載の漏水発生位置検出方式に
おいて、前記検波手段は、前記交流電源の印加電圧を基
準として前記電流検出回路の出力の位相検波を行うもの
であることを特徴とする漏水発生位置検出方式。
2. The water leakage occurrence position detection method according to claim 1, wherein said detection means performs phase detection of an output of said current detection circuit with reference to an applied voltage of said AC power supply. Water leak position detection method.
【請求項3】 請求項1記載の漏水発生位置検出方式に
おいて、前記処理回路は、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧と同じ位相で位相検波を行う第1の位相検波回路と、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧より90度の進み位相で位相検波を行う第2の位相検
波回路と、 前記第1の位相検波回路の出力値を前記第2の位相検波
回路の出力値で割算を行う割算回路とを含み、 前記遮水膜の上側及び下側の線状電極を順次選択して遮
水膜の破損による漏水発生位置に近い線状電極の組合せ
になった際に前記割算回路の出力が他の線状電極組合せ
の値よりも上昇または下降することから漏水発生位置を
検出することを特徴とする漏水発生位置検出方式。
3. The method according to claim 1, wherein the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply. A second phase detection circuit that receives an output of the current detection circuit and performs phase detection with a phase lead of 90 degrees from an applied voltage of the AC power supply; and outputs the output value of the first phase detection circuit to the second phase detection circuit. A dividing circuit that performs division by an output value of the phase detection circuit of (2), and sequentially selects upper and lower linear electrodes of the water-impervious film and a line closer to a water leakage occurrence position due to breakage of the water-impervious film. A water leakage occurrence position detection method wherein the output of the division circuit rises or falls below the value of another linear electrode combination when a combination of linear electrodes is formed.
【請求項4】 請求項1記載の漏水発生位置検出方式に
おいて、前記処理回路は、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧と同じ位相で位相検波を行う第1の位相検波回路と、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧より90度の進み位相で位相検波を行う第2の位相検
波回路と、 前記第1の位相検波回路の出力を受けて前記第1の位相
検波回路の出力を自乗する自乗回路と、 前記自乗回路の出力値を前記第2の位相検波回路の出力
値で割算を行う割算回路とを含み、 前記遮水膜の上側及び下側の線状電極を順次選択して遮
水膜の破損による漏水発生位置に近い線状電極の組合せ
になった際に前記割算回路の出力が他の線状電極組合せ
の値よりも上昇または下降することから漏水発生位置を
検出することを特徴とする漏水発生位置検出方式。
4. The method according to claim 1, wherein the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply. A second phase detection circuit that receives an output of the current detection circuit and performs phase detection with a phase leading by 90 degrees from an applied voltage of the AC power supply; and receives an output of the first phase detection circuit, A squaring circuit for squaring the output of the first phase detection circuit, and a division circuit for dividing the output value of the squaring circuit by the output value of the second phase detection circuit, When the linear electrodes on the lower side are sequentially selected and a combination of linear electrodes close to the position where water leakage occurs due to breakage of the water barrier film, the output of the division circuit is higher than the values of other linear electrode combinations. Detecting the location of water leak occurrence from rising or falling Leak occurrence position detection method according to claim.
【請求項5】 遮水膜を敷設して造成された管理型終末
処理場において、 前記遮水膜の上側に平行に所定の間隔で並べられた複数
の線状電極と、 該遮水膜の下側に平行に前記上側の線状電極と交差する
ように所定の間隔で並べられた複数の線状電極と、 交流電源と、 前記上側の複数の線状電極の互いに隣接する3本を選択
すると共に、前記下側の複数の線状電極の互いに隣接す
る3本を選択し、選択した上側の3本または下側の3本
のうち一方の側の中心の線状電極のみを交流電源の一方
に接続し、他の線状電極はすべて交流電源の他方に接続
するための選択接続手段と、 交流電源の一方に接続された中心の線状電極と、反対側
において選択された3本の線状電極のうちの中心の線状
電極との間に遮水膜を介して流れる電流を検出するため
の電流検出回路と、 この電流検出回路の出力を受けて検波を行う検波手段を
含み、遮水膜の上側及び下側の複数の線状電極を順次選
択して遮水膜の破損による漏水発生位置に近い線状電極
の組合せになった際に前記検波手段の出力が他の電極組
合せの値よりも上昇または下降することから漏水発生位
置を検出する処理回路とを備えたことを特徴とする漏水
発生位置検出方式。
5. In a controlled type final treatment plant constructed by laying a water-impervious film, a plurality of linear electrodes arranged at predetermined intervals in parallel above the water-impervious film; A plurality of linear electrodes arranged at predetermined intervals so as to intersect the upper linear electrodes in parallel to the lower side, an AC power source, and three adjacent linear electrodes of the upper linear electrodes are selected. At the same time, three adjacent ones of the plurality of lower linear electrodes are selected, and only the central linear electrode on one side of the selected upper three or lower three electrodes is connected to the AC power source. Selective connection means for connecting to one side and all other linear electrodes to the other side of the AC power supply, a central linear electrode connected to one side of the AC power supply, and three selected on the opposite side To detect the current flowing through the impermeable film between the center of the linear electrodes and the linear electrode A current detection circuit, and a detection means for receiving the output of the current detection circuit to perform detection, and sequentially selecting a plurality of linear electrodes on the upper and lower sides of the water-impervious film, and detecting a water leakage occurrence position due to breakage of the water-impervious film. And a processing circuit for detecting a leak occurrence position because the output of the detection means rises or falls below the value of the other electrode combination when the combination of the linear electrodes becomes close to Occurrence position detection method.
【請求項6】 請求項5記載の漏水発生位置検出方式に
おいて、前記検波手段は、前記交流電源の印加電圧を基
準として前記電流検出回路の出力の位相検波を行うもの
であることを特徴とする漏水発生位置検出方式。
6. The water leakage occurrence position detection system according to claim 5, wherein said detection means performs phase detection of an output of said current detection circuit with reference to an applied voltage of said AC power supply. Water leak position detection method.
【請求項7】 請求項5記載の漏水発生位置検出方式に
おいて、前記処理回路は、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧と同じ位相で位相検波を行う第1の位相検波回路と、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧より90度の進み位相で位相検波を行う第2の位相検
波回路と、 前記第1の位相検波回路の出力値を前記第2の位相検波
回路の出力値で割算を行う割算回路とを含み、 前記遮水膜の上側及び下側の線状電極を順次選択して遮
水膜の破損による漏水発生位置に近い線状電極の組合せ
になった際に前記割算回路の出力が他の線状電極組合せ
の値よりも上昇または下降することから漏水発生位置を
検出することを特徴とする漏水発生位置検出方式。
7. The water leakage occurrence position detection method according to claim 5, wherein the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply. A second phase detection circuit that receives an output of the current detection circuit and performs phase detection with a phase lead of 90 degrees from an applied voltage of the AC power supply; and outputs the output value of the first phase detection circuit to the second phase detection circuit. A dividing circuit that performs division by an output value of the phase detection circuit of (2), and sequentially selects upper and lower linear electrodes of the water-impervious film and a line closer to a water leakage occurrence position due to breakage of the water-impervious film. A water leakage occurrence position detection method wherein the output of the division circuit rises or falls below the value of another linear electrode combination when a combination of linear electrodes is formed.
【請求項8】 請求項5記載の漏水発生位置検出方式に
おいて、前記処理回路は、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧と同じ位相で位相検波を行う第1の位相検波回路と、 前記電流検出回路の出力を受けて前記交流電源の印加電
圧より90度の進み位相で位相検波を行う第2の位相検
波回路と、 前記第1の位相検波回路の出力を受けて前記第1の位相
検波回路の出力を自乗する自乗回路と、 前記自乗回路の出力値を前記第2の位相検波回路の出力
値で割算を行う割算回路とを含み、 前記遮水膜の上側及び下側の線状電極を順次選択して遮
水膜の破損による漏水発生位置に近い線状電極の組合せ
になった際に前記割算回路の出力が他の線状電極組合せ
の値よりも上昇または下降することから漏水発生位置を
検出することを特徴とする漏水発生位置検出方式。
8. The method according to claim 5, wherein the processing circuit receives the output of the current detection circuit and performs phase detection at the same phase as the applied voltage of the AC power supply. A second phase detection circuit that receives an output of the current detection circuit and performs phase detection with a phase leading by 90 degrees from an applied voltage of the AC power supply; and receives an output of the first phase detection circuit, A squaring circuit for squaring the output of the first phase detection circuit, and a division circuit for dividing the output value of the squaring circuit by the output value of the second phase detection circuit, When the linear electrodes on the lower side are sequentially selected and a combination of linear electrodes close to the position where water leakage occurs due to breakage of the water barrier film, the output of the division circuit is higher than the values of other linear electrode combinations. Detecting the location of water leak occurrence from rising or falling Leak occurrence position detection method according to claim.
JP14789197A 1997-06-05 1997-06-05 Water leak location detection method Expired - Lifetime JP3463187B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14789197A JP3463187B2 (en) 1997-06-05 1997-06-05 Water leak location detection method
KR10-1998-0021192A KR100486814B1 (en) 1997-06-05 1998-06-03 Leakage Detection System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14789197A JP3463187B2 (en) 1997-06-05 1997-06-05 Water leak location detection method

Publications (2)

Publication Number Publication Date
JPH10332522A true JPH10332522A (en) 1998-12-18
JP3463187B2 JP3463187B2 (en) 2003-11-05

Family

ID=15440523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14789197A Expired - Lifetime JP3463187B2 (en) 1997-06-05 1997-06-05 Water leak location detection method

Country Status (2)

Country Link
JP (1) JP3463187B2 (en)
KR (1) KR100486814B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019306A (en) * 2000-09-05 2002-03-12 박호군 A System for the Detection of Leachate Leakage at Landfill
JP2002310845A (en) * 2001-04-12 2002-10-23 Tobishima Corp Water leakage detection system for water impervious sheet
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886487B1 (en) * 2008-11-25 2009-03-10 오정준 Food and drink-garbage take away-equipment of kitchen tool
JP5746659B2 (en) * 2012-04-12 2015-07-08 坂田電機株式会社 Impervious sheet inspection device
KR101313966B1 (en) * 2013-03-15 2013-10-01 경북대학교 산학협력단 A breakdown sensing system of liner film connection
KR101432453B1 (en) * 2013-12-12 2014-08-21 주식회사 이제이텍 Leak detection device using a diagnostic procedure
CN104111151B (en) * 2014-06-27 2017-10-13 中国环境科学研究院 Seepage of seepage-proof layer detection method
KR102109681B1 (en) 2018-11-09 2020-05-12 주식회사 국민조명 LED Light having Slim-type Diffuser Mounting Structure
KR102337511B1 (en) 2019-05-20 2022-01-13 이수현 Plane Lighting Device having Elastically Assembling Structure for Preventing Movement of Diffuser
KR102178755B1 (en) 2019-05-24 2020-11-13 이수현 Plane Lighting Device having Main Frame Structure Assembled by Corner Connecting Bracket
KR20210007109A (en) 2019-07-10 2021-01-20 주식회사 국민조명 LED surface lighting device having a screw-less assembly structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019306A (en) * 2000-09-05 2002-03-12 박호군 A System for the Detection of Leachate Leakage at Landfill
JP2002310845A (en) * 2001-04-12 2002-10-23 Tobishima Corp Water leakage detection system for water impervious sheet
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP4654293B2 (en) * 2005-04-28 2011-03-16 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor

Also Published As

Publication number Publication date
KR100486814B1 (en) 2005-08-10
KR19990006769A (en) 1999-01-25
JP3463187B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JPH10332522A (en) Detection system for water leak occurrence position
KR101116164B1 (en) Device for inspecting conductive pattern
DE69904824D1 (en) CURRENT SENSOR AND RELATED CURRENT MEASURING DEVICE
CN103941141A (en) Leak current detection circuit, method and device and direct-current high-voltage system
JP6530339B2 (en) Water leakage location detection method
JPH11248590A (en) System for detecting water leaking position
CN110231539B (en) Single-pole ground fault detection system for true bipolar direct current transmission and distribution line
JP2660955B2 (en) Water leak detection device
JP2004170333A (en) Water leakage position detector
JP2715254B2 (en) Water leak location detection method
JPH09280992A (en) Detecting system for leakage occurrence position
JPH0915080A (en) Water leak position detector
JPH11248589A (en) System for detecting water leaking position
JP4159201B2 (en) Water leak detection system
JP2001099742A (en) Water leakage detection system and method thereof
JPH04136732A (en) Detecting system of position of occurrence of water leakage
JP3710657B2 (en) Leak detection system
JPH0774768B2 (en) Leakage occurrence position detection method
JP2001099740A (en) Water-leaking position detection system
JP3668958B2 (en) Impermeable sheet inspection method
JP2001050851A (en) Method and apparatus for detecting broken portion of water barrier sheet in waste disposal field
DE50212178D1 (en) Plausibility check of voltage transformers in substations
JPH07119662B2 (en) Leakage occurrence position detection method
JP2004333222A (en) Water leakage location detector
JP2007178252A (en) Water leakage outbreak position-detecting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030716

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term