JP2017166886A - High-frequency power density distribution measuring method - Google Patents

High-frequency power density distribution measuring method Download PDF

Info

Publication number
JP2017166886A
JP2017166886A JP2016050666A JP2016050666A JP2017166886A JP 2017166886 A JP2017166886 A JP 2017166886A JP 2016050666 A JP2016050666 A JP 2016050666A JP 2016050666 A JP2016050666 A JP 2016050666A JP 2017166886 A JP2017166886 A JP 2017166886A
Authority
JP
Japan
Prior art keywords
waveguide
dielectric plate
frequency power
power density
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016050666A
Other languages
Japanese (ja)
Inventor
慎一 平内
Shinichi Hirauchi
慎一 平内
賢治 横倉
Kenji Yokokura
賢治 横倉
伸一 森山
Shinichi Moriyama
伸一 森山
公裕 伊尾木
Kimihiro Ioki
公裕 伊尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA CO Ltd
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
TOYAMA CO Ltd
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA CO Ltd, National Institutes for Quantum and Radiological Science and Technology filed Critical TOYAMA CO Ltd
Priority to JP2016050666A priority Critical patent/JP2017166886A/en
Publication of JP2017166886A publication Critical patent/JP2017166886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of easily measuring the distribution of high-frequency power density in a transmission channel.SOLUTION: In a system for propagating a high-frequency wave using a waveguide, a clearance into which a dielectric plate movable into or out of the waveguide is inserted, and the waveguide includes an observation window, and a temperature distribution measuring instrument for observing the temperature distribution in the dielectric plate disposed outside the waveguide via the observation window. When the high-frequency power distribution in the waveguide is measured, the dielectric plate is inserted into the waveguide through the clearance, the dielectric plate is moved to a prescribed position outside the waveguide after a lapse of a certain time, and the temperature distribution in the dielectric plate is measured by the temperature distribution measuring instrument via the observation window.SELECTED DRAWING: Figure 2

Description

本発明は導波管を用いた高周波加熱装置において使用される方法であって、詳細には、導波管中を伝搬する高周波の電力密度分布を測定する高周波電力密度分布測定方法に関するものである。   The present invention relates to a method used in a high-frequency heating apparatus using a waveguide, and more particularly to a high-frequency power density distribution measuring method for measuring a high-frequency power density distribution propagating in a waveguide. .

本発明の高周波電力密度分布測定方法は、大型の高周波加熱装置における伝送路の高周波伝搬効率を向上させるために欠かせないものであり、本書において一例として説明する核融合装置だけでなく、例えば高品質セラミック焼結などの一般産業分野においても有用な方法である。   The high-frequency power density distribution measuring method of the present invention is indispensable for improving the high-frequency propagation efficiency of the transmission path in a large-sized high-frequency heating apparatus. For example, the high-frequency power density distribution measuring method is not limited to the fusion apparatus described as an example in this document. It is also a useful method in general industrial fields such as quality ceramic sintering.

一般に大型の高周波加熱装置は、高周波(RF)を発振する発振源であるジャイロトロンと、発生した高周波電力を加熱対象部まで伝送する伝送路を構成する導波管を備えている。このような加熱装置においては、従来、導波管中を伝搬する高周波の電力を測定する方法として、(1)特許文献1に示されているような、主伝送路の導波管に設けた隙間に誘電体を挿入し、その誘電体の温度上昇値を温度計で測定する、高周波電力測定装置を用いる方法、(2)非特許文献1に示されているような、主伝送路の高周波の方向を変化させて、ダミーロード内に導かれた高周波を熱に変えて、冷却水の温度上昇値を測定する、高周波電力測定装置を用いる方法などが知られている。   In general, a large-sized high-frequency heating device includes a gyrotron that is an oscillation source that oscillates a high frequency (RF), and a waveguide that forms a transmission path that transmits the generated high-frequency power to a portion to be heated. In such a heating apparatus, conventionally, as a method for measuring high-frequency power propagating in a waveguide, (1) as shown in Patent Document 1, it is provided in a waveguide of a main transmission path. A method using a high-frequency power measuring device in which a dielectric is inserted into the gap and the temperature rise value of the dielectric is measured with a thermometer; (2) the high frequency of the main transmission path as shown in Non-Patent Document 1; A method using a high-frequency power measuring device is known in which the direction of the above is changed, the high frequency guided into the dummy load is changed to heat, and the temperature rise value of the cooling water is measured.

特開2006-132960号公報Japanese Unexamined Patent Publication No. 2006-132960

Lawrence Ives et al., Design and Operation of a 2-MW CW RF Load for Gyrotrons, IEEE Transactions on Electron Devices, Vol.61, No. 6, June 2014.Lawrence Ives et al., Design and Operation of a 2-MW CW RF Load for Gyrotrons, IEEE Transactions on Electron Devices, Vol. 61, No. 6, June 2014.

高周波加熱装置においては、ジャイロトン等で発生させた高周波電力を、伝送路での電力損失を極力抑えて、如何に効率的に加熱対象部まで伝送するかが、非常に重要な課題である。このためには、伝搬する高周波の電力密度分布を最適化することが重要で、より好ましくは、伝送路の要所要所において、例えば両端部付近において伝送効率が最適となる電力密度分布を持たせることが重要である。   In a high-frequency heating device, how to efficiently transmit high-frequency power generated by a gyroton or the like to a heating target portion while minimizing power loss in the transmission path is a very important issue. For this purpose, it is important to optimize the power density distribution of the propagating high frequency. More preferably, the power density distribution that optimizes the transmission efficiency is provided near the required ends of the transmission path, for example, near both ends. This is very important.

したがって、本発明の目的は、高周波の主伝送路を変更せず、しかも、高周波加熱装置の運転を妨げることなく、真空を維持したまま、比較的短時間に、伝送路内の高周波電力密度の分布を測定することができる方法を提供することにある。   Therefore, the object of the present invention is to change the high-frequency power density in the transmission line in a relatively short time without changing the main transmission line of the high-frequency wave and maintaining the vacuum without disturbing the operation of the high-frequency heating device. It is to provide a method by which the distribution can be measured.

本発明の一つの観点によれば、高周波電力密度分布測定方法は、導波管を用いて高周波を伝搬させるシステムにおいて、前記導波管の内外に移動可能な誘電体板が挿入可能な隙間を設けると共に、前記導波管に観測用窓と該観測用窓を介して前記導波管外にある前記誘電体板の温度分布を観測する温度分布測定器を設け、前記導波管内の高周波電力分布の測定時に前記誘電体板を前記隙間を介して前記導波管内に挿入し、一定時間経過後に前記誘電体板を前記導波管外の所定位置に移動させ、前記誘電体板が高周波電力による誘電損失によって発熱されることによって得られる前記誘電体板の温度分布を、前記観測用窓を通して前記温度分布測定器によって測定するようになっている。   According to one aspect of the present invention, a high frequency power density distribution measuring method includes a gap in which a movable dielectric plate can be inserted into and out of a waveguide in a system that propagates high frequency using a waveguide. And providing a temperature distribution measuring device for observing a temperature distribution of the dielectric plate outside the waveguide through the observation window and the observation window, the high-frequency power in the waveguide. When the distribution is measured, the dielectric plate is inserted into the waveguide through the gap, and after a predetermined time has passed, the dielectric plate is moved to a predetermined position outside the waveguide. The temperature distribution of the dielectric plate obtained by generating heat due to the dielectric loss due to is measured by the temperature distribution measuring instrument through the observation window.

好適には、上述の方法において、誘電体板を、導波管内から導波管外の所定位置への移動は重力において行われ、観測に適した所定位置において停止させられる。   Preferably, in the above-described method, the movement of the dielectric plate from the inside of the waveguide to the predetermined position outside the waveguide is performed by gravity and stopped at the predetermined position suitable for observation.

従来の方法では、導波管よって伝送される高周波の電力を測定することは可能であっても、導波管の内部の高周波の電力密度分布を測定することは困難であった。本発明の測定方法によれば、導波管の内部の高周波の電力密度分布を、導波管の経路の任意の位置において、その位置における高周波電力密度分布を、高周波の主伝送路を変更せず、しかも、高周波加熱装置の運転を妨げることなく、真空を維持したまま、比較的短時間に、伝送路内の高周波電力密度の分布を測定することができる。   In the conventional method, although it is possible to measure the high frequency power transmitted by the waveguide, it is difficult to measure the high frequency power density distribution inside the waveguide. According to the measurement method of the present invention, the high-frequency power density distribution inside the waveguide can be changed at any position in the waveguide path by changing the high-frequency main transmission path. Moreover, the distribution of the high frequency power density in the transmission line can be measured in a relatively short time while maintaining the vacuum without interfering with the operation of the high frequency heating apparatus.

本発明に係る高周波電力密度分布測定方法を実施するための装置の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the apparatus for enforcing the high frequency electric power density distribution measuring method which concerns on this invention. 本発明に係る高周波電力密度分布測定方法を実施するための装置の他の例を示す縦断面図。The longitudinal cross-sectional view which shows the other example of the apparatus for enforcing the high frequency electric power density distribution measuring method which concerns on this invention. 図2の高周波電力密度分布測定装置において、誘電体板を導波管外に移動した状態を示した図。The figure which showed the state which moved the dielectric plate out of the waveguide in the high frequency electric power density distribution measuring apparatus of FIG. 図3に示された高周波電力密度分布測定装置の鳥瞰図。FIG. 4 is a bird's-eye view of the high-frequency power density distribution measuring apparatus shown in FIG. 3. 導波管内部の高周波の電力密度分布の測定例を示す図Figure showing a measurement example of high-frequency power density distribution inside the waveguide

図1乃至図4を参照しながら、本発明の実施例について詳述する。図1は本発明の方法を適用した、高周波電力分布測定装置の一例を示す縦断面図を示したものである。図1においては、誘電体板3が導波管1における隙間2に挿入されている。高周波電流が流れたとき、誘電体板3が高周波電力による誘電損失によって発熱される。その時の誘電体板の温度分布が、観測用窓4を通して赤外カメラなどの温度分布測定器5により測定されるようになっている。そして、温度分布の時間変化(温度上昇)から、導波管中を伝搬する高周波の電力密度分布が算出される。   The embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a longitudinal sectional view showing an example of a high-frequency power distribution measuring apparatus to which the method of the present invention is applied. In FIG. 1, a dielectric plate 3 is inserted in the gap 2 in the waveguide 1. When a high frequency current flows, the dielectric plate 3 generates heat due to dielectric loss due to the high frequency power. The temperature distribution of the dielectric plate at that time is measured by a temperature distribution measuring device 5 such as an infrared camera through the observation window 4. Then, a high-frequency power density distribution propagating in the waveguide is calculated from the time change (temperature rise) of the temperature distribution.

赤外カメラ例えば赤外線サーモグラフィー装置を用いると、誘電体ディスク表面の温度分布の時間変化が測定できる。この装置は、ビデオの画面上に温度を色で表示する測定方法に加え、画面上の座標と時刻に対する温度をデータとして出力する機能がある。このデータをパソコンに取り込んでグラフ化すれば、温度分布の時間変化(温度上昇)が得られる。   When an infrared camera, for example, an infrared thermography device is used, the time change of the temperature distribution on the surface of the dielectric disk can be measured. This apparatus has a function of outputting temperature on coordinates and time as data in addition to a measuring method for displaying temperature in color on a video screen. If this data is taken into a personal computer and graphed, the time distribution of temperature distribution (temperature rise) can be obtained.

なお、ディスク表面の初期温度は均一(一様)であるが、高周波が透過するとその電力密度分布にほぼ比例した発熱が起こり、温度分布が生じる。したがって、高周波透過直後の温度分布から初期温度を差し引いたもの(温度上昇)の分布データは、そのまま電力密度分布(の相対値)を表す。   The initial temperature of the disk surface is uniform (uniform), but when a high frequency is transmitted, heat is generated in proportion to the power density distribution, resulting in a temperature distribution. Accordingly, distribution data obtained by subtracting the initial temperature from the temperature distribution immediately after high-frequency transmission (temperature increase) directly represents the power density distribution (relative value thereof).

ここで、図1の高周波電力密度分布測定装置の各部の構造と機能について説明する。誘電体板3は導波管1を伝送する高周波電力を透過させ、高周波による誘電損失による発熱を検出ために使用され、その材質が窒化硅素で、厚さが0.98mmほどの鏡面加工板である。   Here, the structure and function of each part of the high-frequency power density distribution measuring apparatus of FIG. 1 will be described. The dielectric plate 3 is a mirror-finished plate that transmits high-frequency power transmitted through the waveguide 1 and is used to detect heat generation due to dielectric loss due to high-frequency. The material is silicon nitride and the thickness is about 0.98 mm. .

誘電体板3の材料としては、高周波電力の大きさ、周波数に応じて、誘電正接の異なった誘電体を使用した。図1の装置では、110GHz、1MW級、短パルスでの高周波電力密度測定を前提として設計を行った。誘電体損失は、周波数と材料の誘電正接に比例するため、110GHzのような高い周波数になるほど誘電正接が低い材料が高周波電力の透過に適している。しかし、本装置で必要とする材料は高周波電力が低損失で透過して、さらに発熱した誘電体板3の温度変化はできるだけ遅いことが望まれる。したがって、この例では誘電体板3の材料として、誘電正接:1.4×10-4、熱伝導率:59W/mK、比誘電率:d7.9である窒化硅素を使用した。   As the material of the dielectric plate 3, dielectric materials having different dielectric loss tangents were used according to the magnitude and frequency of the high frequency power. The device shown in FIG. 1 was designed on the assumption of high-frequency power density measurement at 110 GHz, 1 MW class, and short pulses. Since the dielectric loss is proportional to the frequency and the dielectric loss tangent of the material, a material having a lower dielectric loss tangent is suitable for high-frequency power transmission as the frequency becomes higher, such as 110 GHz. However, it is desired that the material required for this apparatus transmits high-frequency power with a low loss and the temperature change of the dielectric plate 3 that generates heat is as slow as possible. Therefore, in this example, silicon nitride having a dielectric loss tangent: 1.4 × 10 −4, thermal conductivity: 59 W / mK, and relative dielectric constant: d7.9 was used as the material of the dielectric plate 3.

誘電体板3の厚さは、
t = n・λL / 2 (t:厚さ n:整数)
λLは誘電体中での波長で真空中の波長をλ0とすると
λL = 1 / √ε・λ0 (ε:誘電体の誘電率)
窒化硅素の誘電率ε=7.9、周波数f=110GHzとして
λL / 2 = 0.48 (mm)
The thickness of the dielectric plate 3 is
t = n · λL / 2 (t: thickness n: integer)
λL is the wavelength in the dielectric, and the wavelength in vacuum is λ0. λL = 1 / √ε · λ0 (ε: dielectric constant of the dielectric)
The dielectric constant of silicon nitride ε = 7.9, frequency f = 110GHz λL / 2 = 0.48 (mm)

従って、誘電体板3の厚さtは、n=2では0.97mm、n=3では1.45mmの厚さとなる。厚さが異なると誘電体板で反射波が生じるため、製作精度は±0.01mmとした。実施例ではn=2で0.97mm±0.01mmで製作した。   Therefore, the thickness t of the dielectric plate 3 is 0.97 mm when n = 2 and 1.45 mm when n = 3. Since the reflected wave is generated on the dielectric plate when the thickness is different, the manufacturing accuracy was set to ± 0.01 mm. In the example, n = 2 and 0.97 mm ± 0.01 mm.

誘電体板支持構造物8は、断熱材料(PEEK材)により誘電板を一点支持する構造を持ち、誘電体板の交換を行っても同一位置に固定可能であり、精度の良い温度計測を実現できる。観測用窓4は、温度分布測定用窓は、赤外カメラ等の透過波長領域に合わせ光学コートを施したゲルマニウム真空窓である。ゲートバルブ6(図2)は、非測定時の長時間運転に高周波電力を測定機構部へ漏れ出させないためのものである。また、スリット付き変換フランジ7には、ゲートバルブのシート面への高周波電力もさらに軽減するためにスリットを付けた変換フランジが設けられ、フランジ自体も水冷却構造にしている。   The dielectric plate support structure 8 has a structure in which the dielectric plate is supported at one point by a heat insulating material (PEEK material), and can be fixed at the same position even if the dielectric plate is replaced, thereby realizing accurate temperature measurement. it can. The observation window 4 is a germanium vacuum window in which the temperature distribution measurement window is optically coated in accordance with the transmission wavelength region of an infrared camera or the like. The gate valve 6 (FIG. 2) is for preventing high-frequency power from leaking to the measurement mechanism section during long-time operation during non-measurement. Moreover, the conversion flange 7 with a slit is provided with a conversion flange with a slit in order to further reduce high-frequency power to the seat surface of the gate valve, and the flange itself has a water cooling structure.

次に、この装置の動作について説明する。高周波電力密度測定装置は、導波管1間の約2mmの隙間に約1mmの誘電体板3を挿入して高周波電力をその誘電体板3に短時間(0.2秒程度)透過させる。高周波電力を透過した誘電体板は発熱するが、電力密度がより高い部分がより高温になるため、電力密度分布を反映した温度分布になる。高周波を停止させた後、停止タイミングで発生させる電気信号(高周波電力停止信号)をトリガーにして、高速(0.5秒以下)でディスクを移動(自由落下を含む)させ、温度分布観測(計測)用の窓の位置にて停止させる。観測用窓を通して誘電体板の温度分布(の時間変化)を赤外線サーモグラフィー(赤外カメラ)にて測定する。温度分布測定が終了した後は、長時間の高周波電力を伝送するときの漏れ高周波による測定機構部の損傷を防ぐために、金属製の閉止板(真空用ゲートバルブ)を閉とし、漏れ高周波を遮断する。   Next, the operation of this apparatus will be described. The high-frequency power density measuring apparatus inserts a dielectric plate 3 of about 1 mm into a gap of about 2 mm between the waveguides 1 and transmits high-frequency power through the dielectric plate 3 for a short time (about 0.2 seconds). The dielectric plate that transmits the high-frequency power generates heat, but the portion with the higher power density has a higher temperature, so the temperature distribution reflects the power density distribution. After stopping the high frequency, the electrical signal (high frequency power stop signal) generated at the stop timing is used as a trigger to move the disk at high speed (less than 0.5 seconds) (including free fall) for temperature distribution observation (measurement) Stop at the window position. The temperature distribution (time change) of the dielectric plate is measured with an infrared thermography (infrared camera) through the observation window. After the temperature distribution measurement is completed, the metal closure plate (vacuum gate valve) is closed to prevent leakage high frequency in order to prevent damage to the measurement mechanism due to high frequency leakage when transmitting long-term high-frequency power. To do.

一方、図2と図3は、本発明の測定方法を実施するための高周波電力分布測定装置の他の例の縦断面図を示したものである。図2は誘電体板3が導波管1における隙間2に挿入された状態の高周波電力密度分布測定装置の縦断面図を示すものである。この状態で、導波管中を伝搬する高周波が誘電体板3を通過するときに、高周波の電力密度分布に対応して誘電体の誘電損失よる発熱によって誘電体板3中の各部の温度が上昇する。図3は図2と同じ構成例であるが、誘電体板3が導波管1における隙間2から導波管の外に移動された状態の高周波電力密度分布測定装置の縦断面図を示すものである。   On the other hand, FIG. 2 and FIG. 3 show the longitudinal cross-sectional view of the other example of the high frequency electric power distribution measuring apparatus for enforcing the measuring method of this invention. FIG. 2 is a longitudinal sectional view of the high-frequency power density distribution measuring apparatus in a state where the dielectric plate 3 is inserted into the gap 2 in the waveguide 1. In this state, when the high-frequency wave propagating through the waveguide passes through the dielectric plate 3, the temperature of each part in the dielectric plate 3 is caused by heat generated by the dielectric loss of the dielectric corresponding to the high-frequency power density distribution. To rise. FIG. 3 shows the same configuration example as FIG. 2, but shows a longitudinal sectional view of the high-frequency power density distribution measuring apparatus in which the dielectric plate 3 is moved out of the waveguide from the gap 2 in the waveguide 1. It is.

図2の状態で高周波により温度上昇した誘電体板3は極めて短時間のうちに、導波管の隙間の位置から移動させられて、図3に示すように、導波管の外で停止させる。なお、導波管の隙間は2mm程度のギャップ幅が適切と考えられており、洩れる高周波の量は小さく抑えられる。この時、図3に示されているように、移動の後、停止した誘電体板3の位置の正面に、観測用窓4を設けておくことにより、誘電体板3中の温度分布を容易に測定することができる。観測用窓4のすぐ外に設置した赤外カメラなどの温度分布測定器5を使用し、誘電体板の温度分布が、観測用窓4を通して測定される。   The dielectric plate 3 whose temperature has risen due to the high frequency in the state of FIG. 2 is moved from the position of the gap of the waveguide in a very short time and stopped outside the waveguide as shown in FIG. . Note that a gap width of about 2 mm is considered appropriate for the gap between the waveguides, and the amount of leaking high frequency can be kept small. At this time, as shown in FIG. 3, by providing an observation window 4 in front of the position of the stopped dielectric plate 3 after the movement, the temperature distribution in the dielectric plate 3 can be facilitated. Can be measured. A temperature distribution measuring device 5 such as an infrared camera installed just outside the observation window 4 is used, and the temperature distribution of the dielectric plate is measured through the observation window 4.

この例では、既に述べたように、短時間に誘電体板3を導波管1の隙間から移動させ、停止させることが不可欠である。こうすることにより、温度分布から精度よく電流密度分布を算出できる。移動方法としては、例えば、次のような方法で行う。導波管の隙間に誘電体板3と誘電体板支持構造物8(1Kg)をモータ駆動にて挿入し、エアシリンダで駆動されるストッパーで固定する。高周波電力を誘電体板に透過させた後、高周波電力停止信号を用いてストッパーを外し、自由落下させ、キャッチャー機構で誘電体板を温度分布測定位置に固定する。   In this example, as already described, it is indispensable that the dielectric plate 3 is moved from the gap of the waveguide 1 and stopped in a short time. By doing so, the current density distribution can be accurately calculated from the temperature distribution. As a moving method, for example, the following method is used. The dielectric plate 3 and the dielectric plate support structure 8 (1 Kg) are inserted into the gap between the waveguides by a motor drive and fixed by a stopper driven by an air cylinder. After the high frequency power is transmitted through the dielectric plate, the stopper is removed using the high frequency power stop signal, the free fall is performed, and the dielectric plate is fixed to the temperature distribution measurement position by the catcher mechanism.

図2と図3で示した例では、既に明らかになったように、図1の例と異なり、導波管1に直接観測用の窓を設ける必要が無いこと、従って、高周波の伝搬に与える影響を小さく抑えることができること、また、観測用の窓が誘電体板3の正面に位置することにより、精度の高い温度測定が、誘電体板3の全範囲において、実施することが可能となる。   In the example shown in FIG. 2 and FIG. 3, unlike the example of FIG. 1, it is not necessary to provide a direct observation window in the waveguide 1, and thus it is applied to high-frequency propagation. Since the influence can be suppressed to a small extent and the observation window is located in front of the dielectric plate 3, high-precision temperature measurement can be performed in the entire range of the dielectric plate 3. .

なお、これらの測定は真空を保持したまま実施されるので、時間を無駄にすることなく、効率よく実施することが可能である。また、図3に示す状態で、高周波の主伝送路を変更せず、高周波加熱装置の運転を行うことが可能である。さらに、観測用窓4と導波管1の間にスリットつき変換フランジ7を設けることにより、導波管の隙間から洩れた高周波がそれ以上広がっていくのを最小限にするとともに、冷却をすることにより、過熱などの問題が発生しないようにすることができる。   In addition, since these measurements are performed while maintaining the vacuum, it is possible to efficiently perform the measurement without wasting time. In addition, in the state shown in FIG. 3, it is possible to operate the high-frequency heating device without changing the high-frequency main transmission path. Furthermore, by providing a conversion flange 7 with a slit between the observation window 4 and the waveguide 1, it is possible to minimize further spreading of the high frequency leaked from the gap between the waveguides and to cool the waveguide. Thus, problems such as overheating can be prevented.

また、図3の状態で、導波管1と観測用窓4との間に設けたゲートバルブ6を閉じることにより、導波管の隙間から洩れる高周波を遮断することが可能となる。ここで、本装置による測定は短時間(0.5秒程度もしくはそれ以下)で行うことができる。   Further, in the state of FIG. 3, by closing the gate valve 6 provided between the waveguide 1 and the observation window 4, it is possible to block high frequency leaking from the gap between the waveguides. Here, the measurement by this apparatus can be performed in a short time (about 0.5 seconds or less).

一方、非測定時に導波管を伝送すべき高周波のパルス幅(持続時間)は 長時間(例えば、100‐1000秒)になるため、スリットからの漏れ電力が小さくても時間積分されたエネルギー量 が大きくなり、ゲートバルブを用いない場合は、誘電体や支持構造物が過熱する恐れがある。こうしたことから、ゲートバルブ6を閉じることにより、導波管の隙間2からの洩れ高周波を遮断し、誘電体や支持構造物の過熱を防ぐことが重要である。   On the other hand, since the high-frequency pulse width (duration) that should be transmitted through the waveguide during non-measurement is long (eg, 100-1000 seconds), the amount of energy integrated over time even if the leakage power from the slit is small When the gate valve is not used, the dielectric and the support structure may be overheated. For this reason, it is important to close the gate valve 6 so as to block leakage high frequency from the gap 2 of the waveguide and prevent overheating of the dielectric and the support structure.

既に述べたように、図2及び図3の構成例では、誘電体板3を短時間に移動し、かつ、停止させることになるが、その駆動力の例として、圧空などの動力を用いることができる。また、駆動力として重力を用いることもできる。一例として、誘電体板を重力を使って0.2-0.3m落下させ、停止させたとすると、0.2-0.3秒程度の時間で移動できることになる。この時、誘電体板3と構造的に一体化されている誘電体板支持構造物8とが、一緒に落下し、誘電体支持構造物8の下部を真空チャンバー9の内部に設けられた構造体を用いて停止させる構造をとることが可能である。図4に実際製作された構造の鳥瞰図を参考図として示した。   As already described, in the configuration examples of FIGS. 2 and 3, the dielectric plate 3 is moved and stopped in a short time. As an example of the driving force, power such as compressed air is used. Can do. Moreover, gravity can also be used as a driving force. As an example, if the dielectric plate is dropped by 0.2-0.3m using gravity and stopped, it can move in about 0.2-0.3 seconds. At this time, the dielectric plate support structure 8 that is structurally integrated with the dielectric plate 3 falls together, and the lower portion of the dielectric support structure 8 is provided inside the vacuum chamber 9. It is possible to take a structure to stop using the body. Figure 4 shows a bird's-eye view of the actually manufactured structure as a reference diagram.

本発明の方法は、比較的小型の測定装置において実施でき、導波管数体が平行に接近して設置されている場合においても、各々の導波管にそれぞれ設置することも可能である。
導波管内の高周波の電力密度分布は最適分布から大幅にずれる場合が起こり得る。図5の(A)と(B)に導波管内部の高周波の電力密度分布の例を示した。図5(A)のように最適分布から大幅にずれた状況では、効率良い、高周波の伝送・高周波加熱に支障をきたすことになる。こうした状況を防ぎ、状況を改善するためには、まず、高周波の電力密度分布が最適分布にあるかどうか、ずれているとすればどの程度どのようにずれているか、把握する必要がある。こうした目的を実現するため、本発明の測定装置は有効であり、また不可欠である。
The method of the present invention can be implemented in a relatively small measuring apparatus, and can be installed in each waveguide even when the number of waveguides is installed close to each other in parallel.
The high frequency power density distribution in the waveguide can deviate significantly from the optimal distribution. FIGS. 5A and 5B show examples of high-frequency power density distribution inside the waveguide. In the situation where it deviates significantly from the optimum distribution as shown in FIG. 5A, efficient transmission of high frequency and high frequency heating are hindered. In order to prevent such a situation and improve the situation, it is first necessary to grasp whether or not the high-frequency power density distribution is in the optimum distribution, and if so, how much the deviation is. In order to realize such an object, the measuring apparatus of the present invention is effective and indispensable.

Claims (3)

導波管を用いて高周波を伝搬させるシステムにおいて、前記導波管の内外に移動可能な誘電体板が挿入可能な隙間を設けると共に、前記導波管に観測用窓と該観測用窓を介して前記導波管外にある前記誘電体板の温度分布を観測する温度分布測定器を設け、前記導波管内の高周波電力分布の測定時に前記誘電体板を前記隙間を介して前記導波管内に挿入し、一定時間経過後に前記誘電体板を前記導波管外の所定位置に移動させ、前記誘電体板が高周波電力による誘電損失によって発熱されることによって得られる前記誘電体板の温度分布を、前記観測用窓を通して前記温度分布測定器によって測定することを特徴とする高周波電力密度分布測定方法。   In a system for propagating high frequency using a waveguide, a gap is provided in which a movable dielectric plate can be inserted into and out of the waveguide, and an observation window and the observation window are provided in the waveguide. Provided with a temperature distribution measuring device for observing the temperature distribution of the dielectric plate outside the waveguide, and when measuring the high frequency power distribution in the waveguide, the dielectric plate is inserted into the waveguide through the gap. Temperature distribution of the dielectric plate obtained by moving the dielectric plate to a predetermined position outside the waveguide after a predetermined time has passed, and generating heat by dielectric loss due to high frequency power. Is measured by the temperature distribution measuring instrument through the observation window. 請求項1に記載の測定方法において、前記誘電体板を、前記導波管内から前記導波管外の所定位置に重力で落下させた後停止させることを特徴とする高周波電力密度分布測定方法。   The high frequency power density distribution measuring method according to claim 1, wherein the dielectric plate is dropped after being dropped by gravity from the inside of the waveguide to a predetermined position outside the waveguide. 請求項1又は2に記載の測定方法において、前記誘電体板をモータ駆動によって前記導波管内に挿入し、導波管内に一定時間固定することを特徴とする高周波電力密度分布測定方法。   3. The measurement method according to claim 1, wherein the dielectric plate is inserted into the waveguide by driving a motor and fixed in the waveguide for a predetermined time.
JP2016050666A 2016-03-15 2016-03-15 High-frequency power density distribution measuring method Pending JP2017166886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050666A JP2017166886A (en) 2016-03-15 2016-03-15 High-frequency power density distribution measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050666A JP2017166886A (en) 2016-03-15 2016-03-15 High-frequency power density distribution measuring method

Publications (1)

Publication Number Publication Date
JP2017166886A true JP2017166886A (en) 2017-09-21

Family

ID=59908749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050666A Pending JP2017166886A (en) 2016-03-15 2016-03-15 High-frequency power density distribution measuring method

Country Status (1)

Country Link
JP (1) JP2017166886A (en)

Similar Documents

Publication Publication Date Title
Pert et al. Temperature measurements during microwave processing: the significance of thermocouple effects
KR102324723B1 (en) Temperature control apparatus, temperature control method and program
Croquesel et al. Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder
JP2017166886A (en) High-frequency power density distribution measuring method
EP1998136B1 (en) Furnace width measuring instrument and push-out ram provided with it
Marinel et al. Tuning, impedance matching, and temperature regulation during high‐temperature microwave sintering of ceramics
RU2539124C1 (en) Device to measure parameters of dielectrics at heating
JP4853940B2 (en) High frequency power measuring device in high frequency heating device
KR102138266B1 (en) Mie open resonator method for reliable permittivity measurement of loss-less ceramics in microwave frequency at high temperature
CN208781092U (en) A kind of temperature controlling box and femtosecond frequency comb of grading control
JP2013007665A (en) Temperature measuring device, substrate processing device and temperature measuring method
Shu et al. Surface temperature measurement of EAST divertor between 20 and 200° C using the emissivity model prior
JP2011181689A (en) Annealing device, annealing method and thin film substrate manufacturing system
Ogura et al. Realization of Ru–C eutectic point for evaluation of W–Re and IrRh/Ir thermocouples
JP7040671B1 (en) Semiconductor laser inspection equipment and semiconductor laser inspection method
JP2007309750A (en) Blackbody furnace
Oikawa et al. A compact high-emissivity variable-temperature blackbody furnace with carbon-nanotube coated bottom
RU2813651C1 (en) Method for determining dielectric properties of destructive materials when heated
Horikoshi et al. Engineering of microwave heating
TWI843100B (en) Integrated laser and microwave annealing system and annealing method
JP5812609B2 (en) Heating device
RU2782991C1 (en) Device and method for contactless determination of at least one property of metal product
Nikawa et al. Dynamic measurement of permittivity and permeability using ferrite loaded cavity
Ogura et al. Comparison of Co–C Eutectic-Point Cells for Thermocouple Calibration Between SP and NMIJ
Ongrai et al. Multi-mini-eutectic fixed-point cell for type c thermocouple self-calibration