JP2017166334A - Operation method in starting gas turbine, and exhaust gas passage device of gas turbine - Google Patents

Operation method in starting gas turbine, and exhaust gas passage device of gas turbine Download PDF

Info

Publication number
JP2017166334A
JP2017166334A JP2016049783A JP2016049783A JP2017166334A JP 2017166334 A JP2017166334 A JP 2017166334A JP 2016049783 A JP2016049783 A JP 2016049783A JP 2016049783 A JP2016049783 A JP 2016049783A JP 2017166334 A JP2017166334 A JP 2017166334A
Authority
JP
Japan
Prior art keywords
gas turbine
path
exhaust gas
gas
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049783A
Other languages
Japanese (ja)
Other versions
JP6547960B2 (en
Inventor
荻野 哲
Satoru Ogino
哲 荻野
智敬 久保
Tomohiro Kubo
智敬 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016049783A priority Critical patent/JP6547960B2/en
Publication of JP2017166334A publication Critical patent/JP2017166334A/en
Application granted granted Critical
Publication of JP6547960B2 publication Critical patent/JP6547960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of solving a problem on scattering of dust and various flakes which may generate in starting a turbine, in advance.SOLUTION: In an operation method in starting a gas turbine, and an exhaust gas passage device applying the operation method in starting the gas turbine, an exhaust gas passage of the gas turbine is branched into a main passage and a bypass passage capable of switching a flow channel through a flow channel switching damper in the operation in starting the gas turbine, and the exhaust gas is guided into the bypass passage to remove dust in the exhaust gas by a filter-type dust collector during the operation in starting the gas turbine.SELECTED DRAWING: Figure 1

Description

本発明は、ガスタービン起動時の運転方法およびその運転時に適用して有用なガスタービンの排気ガス経路装置に関する。   The present invention relates to an operation method at the time of starting a gas turbine and an exhaust gas path device for a gas turbine that is useful when applied during the operation.

一般に、火力発電所などでは、燃料を燃焼させて発生した高温高圧の燃焼ガスを用いてガスタービンを回転させ、その回転力を利用する発電機により電力を発生させている。この場合、そのタービンには直接、燃焼ガス等を導入しているが、これらの燃料ガスや燃焼用空気等については、タービンの入側においてフィルター等を用いて清浄化するのが普通である。即ち、ガスタービンの場合、従来、その上流側(入側)の燃料ガス等は清浄化処理してから導入されているのである。その結果、ガスタービンの下流側、即ち、出側である排気系燃焼ガス中の粉じんは比較的少ないものになっている。従って、燃焼ガスによりタービンを回転させた後は、通常、そのまま排気することができ、排気ガスの再処理は行なわないか、脱硝設備を配設する程度に止めるのが普通である。   In general, in a thermal power plant or the like, a gas turbine is rotated using high-temperature and high-pressure combustion gas generated by burning fuel, and electric power is generated by a generator that uses the rotational force. In this case, combustion gas or the like is directly introduced into the turbine, but these fuel gas, combustion air, and the like are usually cleaned by using a filter or the like on the inlet side of the turbine. That is, in the case of a gas turbine, conventionally, the upstream side (incoming side) fuel gas or the like is introduced after being cleaned. As a result, the amount of dust in the exhaust system combustion gas which is the downstream side of the gas turbine, that is, the outlet side, is relatively small. Therefore, after the turbine is rotated by the combustion gas, the exhaust gas can usually be exhausted as it is, and the exhaust gas is usually not reprocessed or stopped to the extent that a denitration facility is provided.

また、その他の従来技術としては、ガスタービンの下流側に排熱回収ボイラを配設し、この排熱回収ボイラにより高温の蒸気を発生させて蒸気タービンで熱回収するコンバインドサイクル発電、さらにはタービンの上流側にサイクロンやガス精製装置を配置した石炭ガス化複合発電システムなどもある(特許文献1)。   As another conventional technique, a combined cycle power generation in which an exhaust heat recovery boiler is disposed downstream of the gas turbine, high temperature steam is generated by the exhaust heat recovery boiler, and heat recovery is performed by the steam turbine. There is also a coal gasification combined power generation system in which a cyclone and a gas purification device are arranged on the upstream side (Patent Document 1).

さらに、特許文献2に開示されているガスタービンでは、該タービンの上流側(入側)に除塵用フィルタを配設して粉じんを含まない空気を圧縮機に送ることとしている。   Furthermore, in the gas turbine disclosed in Patent Document 2, a dust removal filter is disposed on the upstream side (entrance side) of the turbine so that air containing no dust is sent to the compressor.

特開2011−214562号公報JP 2011-214562 A 特開2011−140880号公報JP 2011-140880 A

前述したように、特許文献1、2などに開示されている従来のガスタービンの場合は、燃焼ガスの圧力、顕熱を回収した後、一般にはそのまま排気ガスとして煙突等を介して大気放散するのが普通である。   As described above, in the case of the conventional gas turbines disclosed in Patent Documents 1 and 2 and the like, after the pressure and sensible heat of the combustion gas are recovered, the exhaust gas is generally directly discharged into the atmosphere as an exhaust gas through a chimney or the like. Is normal.

ところで、既存のガスタービンは、燃焼用空気をタービンの入側においてフィルタで予め除塵してから使用するため、燃料燃焼後の排気ガス中には粉じんはほとんど含まれていないと考えられている。しかし、この状態は、ガスタービンを安定的に運転しているときのことであり、それ故にこの場合、排気ガスをそのまま放散しても何の問題もないと言える。しかしながら、ガスタービンというのは、検査や設備補修等のために運転を停止することがある。このようなタイミングでは、燃焼ガス(排気ガス)が流通する経路内に空気が流入し、かつ温度変化や水分の流入によって、鉄さびなどを発生させることがある。   By the way, the existing gas turbine is used after the combustion air is previously dust-removed by a filter on the inlet side of the turbine, so that it is considered that the exhaust gas after fuel combustion contains almost no dust. However, this state is when the gas turbine is stably operated. Therefore, in this case, it can be said that there is no problem even if the exhaust gas is diffused as it is. However, the operation of a gas turbine may be stopped for inspection or equipment repair. At such timing, air flows into the passage through which the combustion gas (exhaust gas) flows, and iron rust or the like may be generated due to temperature change or inflow of moisture.

その他、特に石炭ガス化ガス、高炉ガス等の製鉄所副生ガス、重油等の硫黄分を含む燃料を使用するコンバインドサイクル発電などでは、ガスタービンの直後にある排熱回収ボイラでは、燃料中に含まれる硫黄が酸化されてSOxが生成するため、これが燃焼ガス中の水分と反応して硫酸を生成し、この硫酸がボイラチューブと反応して該ボイラチューブ内表面に硫酸鉄を生じさせることがある。   In addition, especially in combined cycle power generation using coal-containing gas such as coal gasification gas and blast furnace gas, and fuel containing sulfur content such as heavy oil, in the exhaust heat recovery boiler immediately after the gas turbine, Since the contained sulfur is oxidized to produce SOx, it reacts with moisture in the combustion gas to produce sulfuric acid, which reacts with the boiler tube to produce iron sulfate on the inner surface of the boiler tube. is there.

さらには、ガスタービンの運転に当たっては、排気ガス中に含まれるNOxを低減させるために、脱硝用アンモニアを使用することがあり、この場合、この脱硝用アンモニアとSOxとの反応により硫酸アンモニウム(NHSOが発生し、これが排熱回収用ボイラのボイラチューブ内表面に付着し、堆積することが避けられない。 Furthermore, when operating the gas turbine, denitration ammonia may be used to reduce NOx contained in the exhaust gas. In this case, ammonium sulfate (NH 4) is produced by the reaction between the denitration ammonia and SOx. ) 2 SO 4 is generated, and it is inevitable that this will adhere to and accumulate on the inner surface of the boiler tube of the exhaust heat recovery boiler.

このように、燃料中に硫黄分を含み、かつ排熱回収設備を有するガスタービンでは、排熱回収設備の使用により、ボイラチューブの内表面に、硫酸鉄や硫酸アンモニウムといった生成物が不可避に生成付着し成長していると考えられている。   In this way, in a gas turbine that contains sulfur in the fuel and has an exhaust heat recovery facility, products such as iron sulfate and ammonium sulfate are inevitably generated and adhered to the inner surface of the boiler tube by using the exhaust heat recovery facility. It is thought to be growing.

この点、ガスタービンを定常状態で運転しているときは、上述したようなボイラチューブ表面で反応した硫黄酸化生成物は該ボイラーチューブの表面に付着した状態にあり、それ故にこうした生成物が、燃焼ガスに同伴されて煙突から排出されるようなことはない。しかし、前述したように、設備の検査や補修といった設備停止をする場合には、ボイラチューブの温度が低下する。そのため、このときにボイラチューブの熱収縮等によって、付着していた鉄錆びや硫酸鉄、硫酸アンモニウムといった生成物が剥離してフレークとなってしまうことがある。そして、こうした場合において、その後、設備(ガスタービン)を起動しようとすると、このような鉄さびや硫酸鉄、硫酸アンモニウムが剥離してフレーク状となったものが排気ガス中に混入し、これが煙突から飛散するおそれがあった。このような鉄さびや硫酸鉄、硫酸アンモニウムは、粉じんとして放散されてしまうため、環境上、好ましくない事態を招くおそれがあった。   In this regard, when the gas turbine is operating in a steady state, the sulfur oxidation product reacted on the boiler tube surface as described above is in a state of being attached to the surface of the boiler tube. There will be no exhaust from the chimney with the combustion gas. However, as described above, when the facility is stopped such as inspection or repair of the facility, the temperature of the boiler tube is lowered. Therefore, products such as iron rust, iron sulfate, and ammonium sulfate that have adhered may peel off due to heat shrinkage of the boiler tube at this time, resulting in flakes. In such a case, after that, when the equipment (gas turbine) is started up, the iron rust, iron sulfate, and ammonium sulfate are peeled off and flakes are mixed into the exhaust gas, which is scattered from the chimney. There was a risk. Since such iron rust, iron sulfate, and ammonium sulfate are diffused as dust, there is a risk of causing an undesirable situation in the environment.

一方、このような問題は、通常の設備運転時には生じないため、上述したような問題は設備の起動運転時のみに、注意をする必要がある。従って、従来は、タービンの起動時に煙突から排出される粉じんができるだけ飛散しないように、気象条件の良いときにのみ起動するといった対応を取ったり、定期的なボイラー内部の洗浄をすることが多かったのである。   On the other hand, since such a problem does not occur at the time of normal facility operation, it is necessary to pay attention to the above-described problem only at the time of facility start-up operation. Therefore, conventionally, in order to prevent dust discharged from the chimney from being scattered as much as possible when the turbine is started, it is often necessary to start up only when the weather conditions are good, or regularly clean the inside of the boiler. It is.

本発明は、このようなタービンを起動させるときに生じるおそれのある粉じんや各種フレークの飛散の問題を未然に解消することのできる技術の提供を目的とする。   An object of the present invention is to provide a technique that can solve the problem of dust and various flakes that may occur when starting such a turbine.

発明者らは、従来技術が抱えている前述した課題を克服できると共に、前記目的の実現に向けて鋭意、検討を重ねた結果、下記のような構成を特徴とする本発明を開発するに到った。   The inventors have overcome the above-mentioned problems of the prior art, and, as a result of earnestly and intensively studying the achievement of the object, have developed the present invention characterized by the following configuration. It was.

即ち、本発明は、燃料ガスを燃焼させて駆動力を得るガスタービン起動時の運転に当たり、このガスタービンの排気ガス経路を、流路切替用ダンパーを介して流路の切替えが可能なメイン経路とバイパス経路とに分岐させ、ガスタービン起動時の運転中は、排気ガスを上記バイパス経路中に導いて当該経路中に配設したフィルター式集塵機にて該排気ガスの除塵を行なうことを特徴とするガスタービン起動時の運転方法である。   That is, according to the present invention, when the gas turbine is started to obtain driving force by burning the fuel gas, the exhaust gas path of the gas turbine can be switched to the main path through the path switching damper. Branching into a bypass path, and during operation when starting the gas turbine, exhaust gas is guided into the bypass path, and the exhaust gas is removed by a filter dust collector disposed in the path. It is the operation method at the time of starting the gas turbine.

また、本発明は、前記ガスタービン起動時の運転方法に使用するものとして、燃料ガスを燃焼させて駆動力を得るガスタービンの排気ガス経路装置において、該排気ガス経路を、流路切替用ダンパーを使って流路の切替えが可能なメイン経路とバイパス経路とに分岐させると共に、そのバイパス経路中には起動時運転用フィルター式集塵機を配設したことを特徴とするガスタービンの排気ガス経路装置を提案する。   The present invention also provides an exhaust gas path device for a gas turbine that obtains a driving force by burning fuel gas as an operation method at the time of starting the gas turbine. An exhaust gas path device for a gas turbine characterized in that a filter type dust collector for start-up operation is disposed in the bypass path, and the main path and the bypass path are switchable using Propose.

なお、本発明においては、
(1)ガスタービン起動時の運転は、起動開始後6時間経過するまでには終了させること、
(2)ガスタービン起動時の運転は、少なくともバイパス経路出側における排気ガス中の粉じん濃度が0.1g/m(Normal)以下、望ましくは0.05g/m(Normal)以下になったときに終了すること、
(3)前記排気ガス経路の少なくとも前記バイパス経路の出側においては、粉じん濃度を測定すること、
(4)ガスタービンの起動時の運転が終了した後、排気ガスを前記流路切替用ダンパーを使って、メイン経路に導くこと、
(5)前記フィルター式集塵機は、集塵率(比色法)が60%以上、および/または濾過通過粒子の大きさを50μm以下にできるものを用いること、
(6)前記排気ガス経路の少なくともバイパス経路の出側に粉じん濃度計を配設したこと、
を採用することが、より好ましい解決手段になり得るものと考えられる。
In the present invention,
(1) The operation at the time of starting up the gas turbine should be terminated by 6 hours after the start of starting,
(2) operation when starting the gas turbine, the dust concentration in the exhaust gas in at least the bypass passage outlet side 0.1 g / m 3 (Normal) or less, preferably became 0.05 g / m 3 (Normal) or less Sometimes ending,
(3) measuring the dust concentration at least on the outlet side of the bypass path of the exhaust gas path;
(4) After the operation at the time of starting the gas turbine is completed, the exhaust gas is guided to the main path using the flow path switching damper.
(5) The filter-type dust collector should have a dust collection rate (colorimetric method) of 60% or more and / or a filter-passing particle size of 50 μm or less,
(6) A dust concentration meter is disposed at least on the outlet side of the bypass path of the exhaust gas path,
It is considered that adopting the above can be a more preferable solution.

前述した構成に係る本発明によれば、ガスタービン、例えば、排熱回収設備を有するガスタービンを運転する際に、とりわけ起動時に発生することが予想される排気ガス中に含まれる粉じん(フレーク状粉じんを含む)を排気ガス経路のうちのとくに起動時に使うバイパス経路中に配設したフィルター式集塵機により除去(除塵)することで、有害な粉じんが大気中へ放散するのを未然に防ぐことができる。さらに、起動運転を終えて通常(安定)運転時になったときには、排気ガスをフィルター式集塵装置を通すことなく放散できるようになるために、不要な圧力損失を回避して有効なエネルギー回収を行なうことができるという効果があり、発電効率の向上を図ることができる。   According to the present invention having the above-described configuration, when operating a gas turbine, for example, a gas turbine having an exhaust heat recovery facility, dust contained in exhaust gas that is expected to be generated at the start-up (flaky state) By removing the dust (including dust) with a filter-type dust collector installed in the exhaust gas path, especially the bypass path used at startup, it is possible to prevent harmful dust from being released into the atmosphere. it can. Furthermore, when the start-up operation is completed and normal (stable) operation is reached, exhaust gas can be dissipated without passing through a filter type dust collector, so that effective pressure recovery can be achieved by avoiding unnecessary pressure loss. There is an effect that it can be performed, and power generation efficiency can be improved.

本発明の一実施形態を説明するための設備フローの略線図である。It is an approximate line figure of the equipment flow for explaining one embodiment of the present invention. 本発明の他の実施形態を説明するための設備フローの略線図である。It is an approximate line figure of the equipment flow for explaining other embodiments of the present invention.

図1は、本発明に用いて好適なタービン、とくに高炉ガスのような製鉄所副生ガスを燃料ガスとして発電を行なうガスタービン設備の例を示す。この図において、図示の1はガスタービン、2は外部から取り込んだ空気を圧縮する圧縮器、3は圧縮した空気を燃料ガスと混合して燃焼させることにより、高温・高圧のガスを得る燃焼器であり、得られたその高温・高圧のガスにて、前記ガスタービン1を回転させ、その回転軸と主として同軸上に取付けられる図示しない発電機を起動させて発電する構成のものが一般的である。   FIG. 1 shows an example of a turbine suitable for use in the present invention, in particular, a gas turbine facility that generates electric power using a by-product gas such as a blast furnace gas as a fuel gas. In this figure, 1 is a gas turbine, 2 is a compressor that compresses air taken in from the outside, and 3 is a combustor that obtains high-temperature and high-pressure gas by mixing the compressed air with fuel gas and burning it. In general, the gas turbine 1 is rotated with the obtained high-temperature and high-pressure gas, and a generator (not shown) mounted coaxially with the rotating shaft is started to generate power. is there.

なお、図1に示す例は、前記タービン1の下流側(排気出側)に、排気ガスの顕熱を回収するための排熱回収ボイラ4を配置し、この排熱回収ボイラ4にて発生する蒸気にて駆動させる蒸気タービン5を配置すると共に、この蒸気タービン5を介して、発電機を起動させて発電する例である。なお、図示の6は復水器である。   In the example shown in FIG. 1, an exhaust heat recovery boiler 4 for recovering sensible heat of exhaust gas is disposed downstream of the turbine 1 (exhaust output side), and is generated in the exhaust heat recovery boiler 4. This is an example in which a steam turbine 5 driven by steam is disposed, and a generator is activated via the steam turbine 5 to generate power. In addition, 6 of illustration is a condenser.

前記タービン設備において、本発明では、前記ガスタービン1の下流側には直接的にまたは、排熱回収ボイラ4などを介して間接的に、即ち排気ガス経路7を次のように構成配置し、特に、ガスタービン起動時の運転に備えるようにした。   In the turbine equipment, in the present invention, the exhaust gas path 7 is configured and arranged directly on the downstream side of the gas turbine 1 or indirectly through the exhaust heat recovery boiler 4 or the like, that is, as follows. In particular, it was prepared for operation when the gas turbine was started.

具体的には、前記排気ガス経路7中に、流路切替用ダンパー8を配設すると共に、その延在位置を、通常運転時に利用するメイン経路7aと起動時運転に利用するバイパス経路7bとに分岐し、該バイパス経路7bをガスタービンの起動運転時の所定の時間だけ使用するようにしたものである。   Specifically, a flow path switching damper 8 is disposed in the exhaust gas path 7, and the extended position thereof is a main path 7 a used during normal operation and a bypass path 7 b used for start-up operation. The bypass path 7b is used only for a predetermined time during the start-up operation of the gas turbine.

そして、本発明では、ガスタービンの起動時運転に使用するために、前記バイパス経路7b中にフィルター式集塵機9を配設している。そのフィルター式集塵機8としては、排気ガス温度(通常100〜150℃)を考慮した既知の耐熱エヤフィルタ(濾材として金網で支持されたガラス綿を利用した箱状のもの)などの1〜複数個を積層ないし所要の間隔をおいて列設して用いることが好ましい。   In the present invention, a filter type dust collector 9 is disposed in the bypass path 7b in order to use the gas turbine for starting operation. As the filter type dust collector 8, one or more such as a known heat-resistant air filter (a box shape using glass cotton supported by a metal mesh as a filter medium) considering exhaust gas temperature (usually 100 to 150 ° C.) is used. It is preferable to use them by stacking them or arranging them at a required interval.

このようなフィルター式集塵機9を用いることで、特に、ガスタービンの起動時に観察されることが多い、いわゆる該ガスタービン1や排熱回収ボイラ4の出側における高温排気ガス中に含まれる粉じん(媒塵)、あるいは前述したボイラーチューブ内表面に生成した硫酸鉄片や付着硫酸の剥離片等からなるフレイク(flake)を除去することができ、排気ガスをそのまま放散することがあっても、排気ガス中の粉じん等を環境上、全く問題にならない程度にまで低下させることができるようになる。   By using such a filter type dust collector 9, the dust contained in the high-temperature exhaust gas at the outlet side of the so-called gas turbine 1 or exhaust heat recovery boiler 4, which is often observed especially at the start of the gas turbine ( Flakes made of iron sulfate pieces generated on the inner surface of the boiler tube or the peeled pieces of adhering sulfuric acid, etc., can be removed. The dust inside can be reduced to an extent that does not cause any problems in the environment.

このような要請に応えられる前記フィルター式集塵機9の性能としては、例えば、前記フレイクを可視粒径以下のものとするために、集塵率がJIS9908に定める比色法での平均捕集率が60%以上、および/または濾過通過粒子の大きさが50μm以下となる性能のものになるように、耐熱エヤフィルタの設置個数を調整することが好ましい(ただし、平均捕集率が60%以上の耐熱エヤフィルタであれば、1基でも入側粉じんの99.9mass%までの除去は可能である)。それは、上記の集塵率、濾過通過粒子であれば環境上の問題を克服できるからである。   As the performance of the filter type dust collector 9 that can meet such a demand, for example, in order to make the flakes have a visible particle size or less, the average collection rate in the colorimetric method defined in JIS 9908 is the dust collection rate. It is preferable to adjust the number of heat-resistant air filters installed so that the size is 60% or more and / or the size of the filtration-passed particles is 50 μm or less (however, the heat-resistance with an average collection rate of 60% or more) If it is an air filter, removal of up to 99.9 mass% of the incoming dust is possible. This is because the above-mentioned dust collection rate and filtered particles can overcome environmental problems.

本発明において、ガスタービン起動時の運転は、起動開始後4〜5時間程度、少なくとも6時間を経過するまでには終了することが好ましい。その理由は、実機において排熱回収ボイラ4内部を水洗した場合、水洗後の該ボイラ4内部の水分が起動時の排気ガスによって乾燥し、少なくとも起動後6時間を経過すると、新たな粉じんの発生はなくなるからである。   In the present invention, the operation at the time of starting the gas turbine is preferably finished by at least 6 to 5 hours after the start of starting. The reason for this is that when the inside of the exhaust heat recovery boiler 4 is washed with water in the actual machine, the moisture inside the boiler 4 after washing is dried by the exhaust gas at the start, and at least 6 hours after the start, new dust is generated. Because there will be no more.

また、ガスタービン起動時の運転は、少なくともバイパス経路7bの出側における排気ガス中の粉じん濃度が0.1g/m(Normal)以下、望ましくは0.05g/m(Normal)以下になったときに終了することが望ましい。その理由は、実機において、0.05g/m(Normal)以下まで低下した場合は、それ以降の粉じんの再上昇が見受けられなくなるからである。このレベルは、以下で説明するような(実施例で想定する)150MW級のガスタービンにおいては、1kg/分程度の粉じん飛散量に相当するものである。1分間に1kgの粉じんがボイラーから剥離、飛散する状況は非定常状態と想定され、望ましくは、粉じん濃度がこれ以下のレベルになったことを確認してから、経路の切り替を行なうことが望ましい。 Also, the operation of the startup gas turbine, at least dust concentration 0.1 g / m 3 in the exhaust gas at the outlet side of the bypass passage 7b (Normal) or less, preferably equal to or less than 0.05g / m 3 (Normal) It is desirable to end when. The reason for this is that in the actual machine, when it is reduced to 0.05 g / m 3 (Normal) or less, the subsequent increase in dust is not observed. This level corresponds to a dust scattering amount of about 1 kg / min in a 150 MW class gas turbine (assumed in the embodiment) described below. The situation where 1 kg of dust is separated from the boiler per minute and scattered is assumed to be an unsteady state, and it is desirable to switch the route after confirming that the dust concentration is below this level. .

なお、前記フィルター式集塵機9については、一定量まで粉じんを捕捉すると交換が必要となる。そのため、前記耐熱エヤフィルターは、その数を多くして、集塵面積を大きくした方が、フィルターの寿命を永くすることができ、交換周期は長くなる。一方、フィルタ個数を多くすると初期投資が嵩むため、最適個数の選定が必要となる。該耐熱エヤフィルタは、設備起動時の数時間(例えば、5時間程度)しか使用せず、使用後は待機(不使用)となるため、起動回数が多いガスタービンは該フィルタの個数を多くし、起動回数が少ないガスタービンでは該フィルタの個数を少なくすることが好ましい。一般に、年間10回程度の起動停止回数をもつガスタービンの場合であれば、年間50時間耐熱エヤのフィルタ使用となるため、おおむねガスタービンの定期メンテナンススパンである2年間の使用時間である、100時間以上のフィルタ容量となるように選定すればよい。このようなフィルタ個数は発電所のメンテナンス、運転コストに比べて、十分合理的な建設コストとなる。   In addition, about the said filter type dust collector 9, if dust is captured to a fixed quantity, replacement | exchange will be needed. Therefore, increasing the number of heat-resistant air filters and increasing the dust collection area can prolong the life of the filter and increase the replacement period. On the other hand, since the initial investment increases when the number of filters is increased, it is necessary to select the optimum number. The heat-resistant air filter is used only for a few hours (for example, about 5 hours) at the time of starting the equipment, and is in a standby state (not used) after use. Therefore, a gas turbine having a large number of start-ups increases the number of the filters, It is preferable to reduce the number of filters in a gas turbine with a small number of startups. In general, in the case of a gas turbine having the number of start / stop operations of about 10 times a year, since a heat-resistant air filter is used for 50 hours per year, it is generally used for 2 years, which is a regular maintenance span of the gas turbine. What is necessary is just to select so that it may become filter capacity more than time. Such a number of filters is a sufficiently reasonable construction cost compared to the power plant maintenance and operation costs.

図2は、本発明に適合する例の1つである石炭ガス化複合発電システム(IGCC設備)を示すものである。この例においては、ガスタービン1では、ガス精製装置つきの石炭ガス化炉12から発生した高圧の石炭ガス化燃料ガスを、空気圧縮機2で圧縮した空気を用いて燃焼器3で燃焼させる一方、高温の排気ガスの顕熱を用いて、排熱回収ボイラ4で発生させた蒸気を用いて蒸気タービン5で発電用エネルギーを回収している。   FIG. 2 shows an integrated coal gasification combined power generation system (IGCC facility) which is one of the examples suitable for the present invention. In this example, in the gas turbine 1, while the high-pressure coal gasification fuel gas generated from the coal gasification furnace 12 with the gas purifier is burned in the combustor 3 using the air compressed by the air compressor 2, Power generation energy is recovered by the steam turbine 5 using steam generated by the exhaust heat recovery boiler 4 using the sensible heat of the high-temperature exhaust gas.

そして、この設備を用いたガスタービン設備の起動運転に当たっては、排熱回収ボイラ4内等で生成した粉じんやフレークを流出させないようにするために、排気ガス経路7内に設置した流路切替用ダンパー8を切替え(この場合、閉止し)、バイパス経路7bのフィルター式集塵機9に排気ガスを流して、一定時間(5時間)除塵を行なった。そして、下記のように充分な除塵が行われ、粉じん発生が少なくなった段階(5時間経過後)で、前記流動切替用ダンパー8を開放して、排気ガスのバイパス運用を終え、メイン経路7aに切替えを行なった。   In starting operation of the gas turbine equipment using this equipment, in order to prevent the dust and flakes generated in the exhaust heat recovery boiler 4 and the like from flowing out, the flow path switching installed in the exhaust gas passage 7 is used. The damper 8 was switched (in this case, closed), exhaust gas was passed through the filter type dust collector 9 in the bypass path 7b, and dust was removed for a fixed time (5 hours). Then, when sufficient dust removal is performed as described below and dust generation is reduced (after 5 hours), the flow switching damper 8 is opened, exhaust gas bypass operation is completed, and the main path 7a Was switched to.

即ち、図示例に係るガスタービン設備(発電出力:150MW)において、排気ガス量:100万m/h(Normal)、排気ガス温度(排熱回収ボイラ4の出口温度):130℃、起動時の流路切替用ダンパ8入側での粉じん濃度:1mg/m(Normal)の条件下での起動時運転を実施した。そして、バイパス経路7b中に設置したフィルタ集塵機は進和テック製の250℃耐熱のフィルタ(集塵率は比色法での平均捕集率で60%のもの)を200基並列に設置(1段)した。この条件の下で、5時間の起動運転を行なった後では、排気ガス経路の出口(煙突10)側での粉じん濃度は、0.01mg/m(Normal)以下の実質的に粉じんを含まないガスを排気することができた。 That is, in the gas turbine facility (power generation output: 150 MW) according to the illustrated example, the exhaust gas amount: 1 million m 3 / h (Normal), the exhaust gas temperature (the outlet temperature of the exhaust heat recovery boiler 4): 130 ° C., at the time of startup The start-up operation was performed under the condition of the dust concentration on the inlet side of the flow path switching damper 8 of 1 mg / m 3 (Normal). The filter dust collector installed in the bypass path 7b is installed in parallel with 200 Shinwa Tech heat-resistant 250 ° C heat-resistant filters (the dust collection rate is 60% in terms of the average collection rate by the colorimetric method). Step). Under this condition, after 5 hours of start-up operation, the concentration of dust on the outlet (chimney 10) side of the exhaust gas path substantially contains 0.01 mg / m 3 (Normal) or less. No gas could be exhausted.

本発明に係るガスタービンの起動時運転の方法やガスタービンの排気ガス経路装置は、実施例における各種のガスタービン設備の他、一軸、二軸の各種タービンにおける出側の排気ガス中に主として粉じんやフレークを含むような場合の総てのタービン設備に応用できる。   The gas turbine start-up operation method and the gas turbine exhaust gas path apparatus according to the present invention mainly include dust in the exhaust gas on the outlet side in various uniaxial and biaxial turbines in addition to various gas turbine equipment in the embodiments. It can be applied to all turbine equipments that contain flakes and flakes.

1 ガスタービン
2 圧縮器
3 燃焼器
4 排熱回収ボイラ
5 蒸気タービン
7 排気ガス経路
7a メイン経路
7b バイパス経路
8 流路切替用ダンパ
9 フィルタ式集塵機
10 煙突
11、11´ 粉じん濃度計
12 石炭ガス化炉
G 発電機
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Combustor 4 Exhaust heat recovery boiler 5 Steam turbine 7 Exhaust gas path 7a Main path 7b Bypass path 8 Channel switching damper 9 Filter dust collector 10 Chimney 11, 11 'Dust concentration meter 12 Coal gasification Furnace G Generator

Claims (8)

燃料ガスを燃焼させて駆動力を得るガスタービン起動時の運転に当たり、このガスタービンの排気ガス経路を、流路切替用ダンパーを介して流路の切替えが可能なメイン経路とバイパス経路とに分岐させ、ガスタービン起動時の運転中は、排気ガスを上記バイパス経路中に導いて当該経路中に配設したフィルター式集塵機にて該排気ガスの除塵を行なうことを特徴とするガスタービン起動時の運転方法。   When starting a gas turbine that obtains driving force by burning fuel gas, the exhaust gas path of this gas turbine is branched into a main path and a bypass path that can switch the flow path via a flow path switching damper During the operation at the time of starting the gas turbine, the exhaust gas is guided into the bypass path, and the exhaust gas is removed by a filter type dust collector disposed in the path. how to drive. ガスタービン起動時の運転は、起動開始後6時間経過するまでには終了させることを特徴とする請求項1に記載のガスタービン起動時の運転方法。   The operation method at the time of gas turbine start-up according to claim 1, wherein the operation at the time of gas turbine start-up is terminated by 6 hours after the start of start-up. ガスタービン起動時の運転は、少なくともバイパス経路出側における排気ガス中の粉じんの濃度が0.1g/m(Normal)以下になったときに終了することを特徴とする請求項1または2に記載のガスタービン起動時の運転方法。 The operation at the time of starting the gas turbine is terminated when the concentration of dust in the exhaust gas at least on the outlet side of the bypass path becomes 0.1 g / m 3 (Normal) or less. The operation method at the time of gas turbine starting of description. 前記排気ガス経路の少なくとも前記バイパス経路の出側においては、粉じん濃度を測定することを特徴とする請求項1〜3のいずれか1に記載のガスタービン起動時の運転方法。   The method for operating a gas turbine according to any one of claims 1 to 3, wherein the dust concentration is measured at least on the outlet side of the bypass path of the exhaust gas path. ガスタービンの起動時の除塵を目的とした運転が終了した後、排気ガスを前記流路切替用ダンパーを使って、メイン経路に導くことを特徴とする請求項1〜4のいずれか1に記載のガスタービン起動時の運転方法。   5. The exhaust gas is guided to a main path by using the flow path switching damper after the operation for dust removal at the time of starting the gas turbine is completed. Operation method at the time of gas turbine startup. 燃料ガスを燃焼させて駆動力を得るガスタービンの排気ガス経路装置において、該排気ガス経路を、流路切替用ダンパーを使って流路の切替えが可能なメイン経路とバイパス経路とに分岐させると共に、そのバイパス経路中に起動時運転用フィルター式集塵機を配設したことを特徴とするガスタービンの排気ガス経路装置。   In an exhaust gas path device of a gas turbine that obtains driving force by burning fuel gas, the exhaust gas path is branched into a main path and a bypass path that can be switched using a flow path switching damper. An exhaust gas path device for a gas turbine, characterized in that a filter type dust collector for starting operation is disposed in the bypass path. 前記フィルター式集塵機は、集塵率(比色法)が60%以上、および/または濾過通過粒子の大きさを50μm以下にできるものを用いることを特徴とする請求項6に記載のガスタービンの排気ガス経路装置。   7. The gas turbine according to claim 6, wherein the filter type dust collector uses a dust collection rate (colorimetric method) of 60% or more and / or a size of filtration-passed particles of 50 μm or less. Exhaust gas path device. 前記排気ガス経路の少なくとも前記バイパス経路の出側には、粉じん濃度計を配設したことを特徴とする請求項6または7に記載のガスタービンの排気ガス経路装置。   The exhaust gas path device for a gas turbine according to claim 6 or 7, wherein a dust concentration meter is disposed at least on the outlet side of the bypass path of the exhaust gas path.
JP2016049783A 2016-03-14 2016-03-14 Operating method when starting gas turbine and exhaust gas path device for gas turbine Active JP6547960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049783A JP6547960B2 (en) 2016-03-14 2016-03-14 Operating method when starting gas turbine and exhaust gas path device for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049783A JP6547960B2 (en) 2016-03-14 2016-03-14 Operating method when starting gas turbine and exhaust gas path device for gas turbine

Publications (2)

Publication Number Publication Date
JP2017166334A true JP2017166334A (en) 2017-09-21
JP6547960B2 JP6547960B2 (en) 2019-07-24

Family

ID=59910112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049783A Active JP6547960B2 (en) 2016-03-14 2016-03-14 Operating method when starting gas turbine and exhaust gas path device for gas turbine

Country Status (1)

Country Link
JP (1) JP6547960B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661740U (en) * 1979-10-13 1981-05-25
JPH0441937U (en) * 1990-07-23 1992-04-09
JPH05273112A (en) * 1992-03-24 1993-10-22 Aichi Steel Works Ltd Precision maintaining method for dust concentration measuring sensor and device
JPH06229529A (en) * 1993-02-02 1994-08-16 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JPH11294188A (en) * 1998-04-07 1999-10-26 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JP2006250493A (en) * 2005-03-14 2006-09-21 Babcock Hitachi Kk Soot and dust trapping device for exhaust heat recovery boiler
JP2008082661A (en) * 2006-09-28 2008-04-10 Ricoh Elemex Corp Air cleaner management system and air cleaner
JP2008174578A (en) * 2007-01-16 2008-07-31 Nippon Steel Engineering Co Ltd Method for hydropyrolysis of coal
JP2011202637A (en) * 2010-03-26 2011-10-13 Yanmar Co Ltd Device and method for removing particulate matter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661740U (en) * 1979-10-13 1981-05-25
JPH0441937U (en) * 1990-07-23 1992-04-09
JPH05273112A (en) * 1992-03-24 1993-10-22 Aichi Steel Works Ltd Precision maintaining method for dust concentration measuring sensor and device
JPH06229529A (en) * 1993-02-02 1994-08-16 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JPH11294188A (en) * 1998-04-07 1999-10-26 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JP2006250493A (en) * 2005-03-14 2006-09-21 Babcock Hitachi Kk Soot and dust trapping device for exhaust heat recovery boiler
JP2008082661A (en) * 2006-09-28 2008-04-10 Ricoh Elemex Corp Air cleaner management system and air cleaner
JP2008174578A (en) * 2007-01-16 2008-07-31 Nippon Steel Engineering Co Ltd Method for hydropyrolysis of coal
JP2011202637A (en) * 2010-03-26 2011-10-13 Yanmar Co Ltd Device and method for removing particulate matter

Also Published As

Publication number Publication date
JP6547960B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5886058B2 (en) Energy recovery in syngas applications
CN101899329B (en) Systems and methods for treating a stream comprising an undesirable emission gas
JP4436068B2 (en) Coal gasification plant, coal gasification method, coal gasification power plant, and expansion facility for coal gasification plant
CN101539371B (en) First flue gas dust removal and waste heat recovery system for electric stove
US20070137169A1 (en) Integrated coal gasification combined cycle plant
US8752384B2 (en) Carbon dioxide capture interface and power generation facility
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP2015068345A (en) Method of exhaust gas treatment for gas turbine system and exhaust gas treatment assembly
KR20120134613A (en) Iron oxide dust collector of heat recovery steam generator
CN105003324B (en) Exhaust after treatment system and method for exhaust aftertreatment
CN102703628A (en) Use method for circulating comprehensive utilization device for blast furnace gas
CN201176445Y (en) Converter coal gas high-temperature exhaust dust device with bag
CN101539370B (en) First flue gas dust-removal and waste heat recovery system for electric stove without water cooling flue gas path
JP2006250081A (en) Combustion furnace combined power generation system
JP6547960B2 (en) Operating method when starting gas turbine and exhaust gas path device for gas turbine
JP5501029B2 (en) Chemical loop reaction system and power generation system using the same
JP2012140951A (en) Gas turbine system and process
CN203625414U (en) Dry cloth-bag dust removal device for carbon steel converter capable of recovering waste heat in whole process
JP6667867B2 (en) Boiler equipment and its operation method
US10378763B2 (en) Method and apparatus to facilitate heating feedwater in a power generation system
RU73334U1 (en) COGENERATION GAS-GENERATING INSTALLATION ON SOLID FUEL
JP2002241770A (en) Plant for gasifying coal and generating electric power, and apparatus for backward washing filter
KR101529823B1 (en) Integrated gasification combined cycle system
JP5704604B2 (en) Coal gasification power generation facility
CN103374641A (en) Converter gas cloth-bag dust-removing purification method based on energy recycling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190611

R150 Certificate of patent or registration of utility model

Ref document number: 6547960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250