JP2017165646A5 - - Google Patents

Download PDF

Info

Publication number
JP2017165646A5
JP2017165646A5 JP2017046201A JP2017046201A JP2017165646A5 JP 2017165646 A5 JP2017165646 A5 JP 2017165646A5 JP 2017046201 A JP2017046201 A JP 2017046201A JP 2017046201 A JP2017046201 A JP 2017046201A JP 2017165646 A5 JP2017165646 A5 JP 2017165646A5
Authority
JP
Japan
Prior art keywords
sintered body
oxide sintered
oxide
atomic ratio
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017046201A
Other languages
Japanese (ja)
Other versions
JP6389541B2 (en
JP2017165646A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017046201A priority Critical patent/JP6389541B2/en
Priority claimed from JP2017046201A external-priority patent/JP6389541B2/en
Publication of JP2017165646A publication Critical patent/JP2017165646A/en
Publication of JP2017165646A5 publication Critical patent/JP2017165646A5/ja
Application granted granted Critical
Publication of JP6389541B2 publication Critical patent/JP6389541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (43)

インジウム元素(In)、ガリウム元素(Ga)及び錫元素(Sn)を、下記式(1)〜(3)の原子比で含む酸化物焼結体であって、亜鉛元素(Zn)の含有量が100ppm以下であり、内部において、粒径2μm以上のガリウム酸化物の凝集部分の数が10個/8100μm 以下であり、酸化物半導体膜成膜用である酸化物焼結体
0.10≦In/(In+Ga+Sn)≦0.60 (1)
0.10≦Ga/(In+Ga+Sn)≦0.55 (2)
0.04≦Sn/(In+Ga+Sn)≦0.60 (3)
但し、前記酸化物焼結体が、下記式(X)、(Y)及び(Z)の原子比で含む場合を除く。
0.40<In/(In+Ga+Sn)≦0.60 (X)
0.10≦Ga/(In+Ga+Sn)<0.30 (Y)
0.20<Sn/(In+Ga+Sn)≦0.50 (Z)
An oxide sintered body containing an indium element (In), a gallium element (Ga), and a tin element (Sn) at an atomic ratio of the following formulas (1) to (3), and the content of the zinc element (Zn) Is an oxide sintered body for forming an oxide semiconductor film, in which the number of aggregated portions of gallium oxide having a particle diameter of 2 μm or more is 10/8100 μm 2 or less .
0.10 ≦ In / (In + Ga + Sn) ≦ 0.60 (1)
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55 (2)
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.60 (3)
However, the case where the oxide sintered body includes an atomic ratio of the following formulas (X), (Y), and (Z) is excluded.
0.40 <In / (In + Ga + Sn) ≦ 0.60 (X)
0.10 ≦ Ga / (In + Ga + Sn) <0.30 (Y)
0.20 <Sn / (In + Ga + Sn) ≦ 0.50 (Z)
前記In、Ga及びSnの原子比が下記式を満たす請求項1に記載の酸化物焼結体。  The oxide sintered body according to claim 1, wherein the atomic ratio of In, Ga, and Sn satisfies the following formula.
0.10≦In/(In+Ga+Sn)≦0.60  0.10 ≦ In / (In + Ga + Sn) ≦ 0.60
0.10≦Ga/(In+Ga+Sn)≦0.55  0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.04≦Sn/(In+Ga+Sn)≦0.20  0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.20
前記In、Ga及びSnの原子比が下記式を満たす請求項1に記載の酸化物焼結体。  The oxide sintered body according to claim 1, wherein the atomic ratio of In, Ga, and Sn satisfies the following formula.
0.10≦In/(In+Ga+Sn)≦0.60  0.10 ≦ In / (In + Ga + Sn) ≦ 0.60
0.30≦Ga/(In+Ga+Sn)≦0.55  0.30 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.20<Sn/(In+Ga+Sn)≦0.40  0.20 <Sn / (In + Ga + Sn) ≦ 0.40
前記In、Ga及びSnの原子比が下記式を満たす請求項1に記載の酸化物焼結体。  The oxide sintered body according to claim 1, wherein the atomic ratio of In, Ga, and Sn satisfies the following formula.
0.10≦In/(In+Ga+Sn)≦0.40  0.10 ≦ In / (In + Ga + Sn) ≦ 0.40
0.10≦Ga/(In+Ga+Sn)<0.30  0.10 ≦ Ga / (In + Ga + Sn) <0.30
0.04≦Sn/(In+Ga+Sn)≦0.60  0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.60
インジウム元素(In)、ガリウム元素(Ga)及び錫元素(Sn)を、下記式(1)〜(3)の原子比で含む酸化物焼結体であって、亜鉛元素(Zn)の含有量が100ppm以下であり、酸化物半導体膜成膜用である酸化物焼結体。  An oxide sintered body containing an indium element (In), a gallium element (Ga), and a tin element (Sn) at an atomic ratio of the following formulas (1) to (3), and the content of the zinc element (Zn) Is an oxide sintered body for forming an oxide semiconductor film.
0.10≦In/(In+Ga+Sn)≦0.60 (1)  0.10 ≦ In / (In + Ga + Sn) ≦ 0.60 (1)
0.10≦Ga/(In+Ga+Sn)≦0.55 (2)  0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55 (2)
0.04≦Sn/(In+Ga+Sn)≦0.20 (3)  0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.20 (3)
内部において、粒径2μm以上のガリウム酸化物の凝集部分の数が10個/8100μm  Inside, the number of aggregated portions of gallium oxide having a particle size of 2 μm or more is 10/8100 μm 2 以下である請求項5に記載の酸化物焼結体。The oxide sintered body according to claim 5, wherein: 前記In、Ga及びSnの原子比が下記式(5)を満たす請求項1,5及び6のいずれかに記載の酸化物焼結体
0.30≦Ga/(In+Ga+Sn)≦0.55 (5)
The oxide sintered body according to any one of claims 1 , 5, and 6, wherein an atomic ratio of the In, Ga, and Sn satisfies the following formula (5) .
0.30 ≦ Ga / (In + Ga + Sn) ≦ 0.55 (5)
前記In、Ga及びSnの原子比が下記式(7)を満たす請求項1,5及び6のいずれかに記載の酸化物焼結体
0.30≦In/(In+Ga+Sn)<0.60 (7)
The oxide sintered body according to any one of claims 1 , 5, and 6, wherein an atomic ratio of the In, Ga, and Sn satisfies the following formula (7) .
0.30 ≦ In / (In + Ga + Sn) <0.60 (7)
前記In、Ga及びSnの原子比が下記式(8)及び(9)を満たす請求項1,5及び6のいずれかに記載の酸化物焼結体。
0.04≦Sn/(In+Ga+Sn)≦0.15 (8)
0.30<Ga/(In+Ga+Sn)≦0.50 (9)
The oxide sintered body according to any one of claims 1 , 5, and 6, wherein an atomic ratio of the In, Ga, and Sn satisfies the following formulas (8) and (9).
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.15 (8)
0.30 <Ga / (In + Ga + Sn) ≦ 0.50 (9)
前記In、Ga及びSnの原子比が下記式(10)及び(11)を満たす請求項1,5及び6のいずれかに記載の酸化物焼結体。
0.04≦Sn/(In+Ga+Sn)≦0.11 (10)
0.32≦Ga/(In+Ga+Sn)≦0.48 (11)
The oxide sintered body according to any one of claims 1 , 5, and 6, wherein an atomic ratio of the In, Ga, and Sn satisfies the following formulas (10) and (11).
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.11 (10)
0.32 ≦ Ga / (In + Ga + Sn) ≦ 0.48 (11)
In、Ga及びSnの原子比が下記式を満たす請求項に記載の酸化物焼結体。
0.30≦In/(In+Ga+Sn)≦0.40
0.20≦Ga/(In+Ga+Sn)≦0.40
The oxide sintered body according to claim 8 , wherein an atomic ratio of In, Ga, and Sn satisfies the following formula.
0.30 ≦ In / (In + Ga + Sn) ≦ 0.40
0.20 ≦ Ga / (In + Ga + Sn) ≦ 0.40
相対密度が85%以上である請求項1〜11のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 11, having a relative density of 85% or more. 相対密度が92%以上である請求項1〜12のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 12, having a relative density of 92% or more. 相対密度が95%以上である請求項1〜13のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 13, having a relative density of 95% or more. 相対密度が97%以上である請求項1〜14のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 14, having a relative density of 97% or more. 比抵抗が700mΩcm以下である請求項1〜15のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 15, which has a specific resistance of 700 mΩcm or less. 比抵抗が100mΩcm以下である請求項1〜16のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 16, which has a specific resistance of 100 mΩcm or less. 比抵抗が50mΩcm以下である請求項1〜17のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 17, which has a specific resistance of 50 mΩcm or less. 比抵抗が20mΩcm以下である請求項1〜18のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 18, which has a specific resistance of 20 mΩcm or less. 酸化物焼結体をX線回析で分析すると、(1)30.0〜32.0°、(2)35.0〜37.0°、(3)51.0〜53.0°、(4)60.5〜63.0°の範囲にピークが存在する請求項1〜19のいずれかに記載の酸化物焼結体。 When the oxide sintered body is analyzed by X-ray diffraction, (1) 30.0 to 32.0 °, (2) 35.0 to 37.0 °, (3) 51.0 to 53.0 °, (4) The oxide sintered body according to any one of claims 1 to 19 , wherein a peak exists in a range of 60.5 to 63.0 °. 前記金属酸化物焼結体を構成する金属酸化物に対する、In酸化物、Ga酸化物、及びSn酸化物の含有率が、95重量%以上100重量%以下である、請求項1〜20のいずれかに記載の酸化物焼結体。 The content rate of In oxide, Ga oxide, and Sn oxide with respect to the metal oxide which comprises the said metal oxide sintered compact is 95 weight% or more and 100 weight% or less, Any of Claims 1-20 An oxide sintered body according to any one of the above. Ga3−xIn5+xSn16(式中、Xは0〜1である。)で表される結晶構造の化合物を含む請求項1〜20のいずれかに記載の酸化物焼結体。 Ga 3-x In 5 + x Sn 2 O 16 ( wherein, X is 0-1.) The oxide sintered body according to any of claims 1 to 20 comprising a compound of the crystal structure represented by. 前記Ga3−xIn5+xSn16で表される結晶構造の化合物が、GaInSn16又はGa2.4In5.6Sn16である、請求項22に記載の酸化物焼結体。 The compound having a crystal structure represented by Ga 3-x In 5 + x Sn 2 O 16 is Ga 2 In 6 Sn 2 O 16 or Ga 2.4 In 5.6 Sn 2 O 16. Oxide sintered body. 前記Ga3−xIn5+xSn16(式中、Xは0〜1である。)で表される結晶構造の化合物を、主成分、又は第二成分とする、請求項22に記載の酸化物焼結体。 The compound having a crystal structure represented by the Ga 3-x In 5 + x Sn 2 O 16 (wherein X is 0 to 1) as a main component or a second component. Oxide sintered body. 前記Ga3−xIn5+xSn16(式中、Xは0〜1である。)で表される結晶構造の化合物を、主成分とする、請求項22に記載の酸化物焼結体。 The oxide sintered body according to claim 22, comprising a compound having a crystal structure represented by Ga 3−x In 5 + x Sn 2 O 16 (wherein X is 0 to 1) as a main component. . X線回析によって得られたピークのうち、主成分とは最大ピーク強度が最も高いものであり、第二成分とは最大ピーク強度が主成分の次に高いものである請求項24に記載の酸化物焼結体。   25. The peak obtained by X-ray diffraction has the highest peak intensity as the main component, and the second component has the second highest peak intensity after the main component. Oxide sintered body. 請求項1〜26いずれかに記載の酸化物焼結体を用いたスパッタリングターゲット。   A sputtering target using the oxide sintered body according to claim 1. 下記(a)〜(e)の工程を含む請求項27のスパッタリングターゲットの製造方法。
(a)原料化合物粉末を混合して混合物を調製する工程
(b)前記混合物を成形して平均厚み5.5mm以上の成形体を調製する工程
(c)前記成形体を1280℃以上1520℃以下で2時間以上96時間以下焼結する工程
(d)工程(c)で得た焼結体の表面を0.3mm以上研削する工程
(e)焼結体をバッキングプレートにボンディングする工程
The manufacturing method of the sputtering target of Claim 27 including the process of following (a)-(e).
(A) A step of preparing a mixture by mixing raw material compound powders (b) A step of forming the mixture to prepare a molded body having an average thickness of 5.5 mm or more (c) 1280 ° C to 1520 ° C of the molded body (D) A step of grinding the surface of the sintered body obtained in step (c) by 0.3 mm or more (e) A step of bonding the sintered body to a backing plate
インジウム元素(In)、ガリウム元素(Ga)及び錫元素(Sn)を、下記式(1)〜(3)の原子比で含み、亜鉛元素(Zn)の含有量が100ppm以下である酸化物半導体膜を含む薄膜トランジスタであって、移動度が3cm /Vs以上である薄膜トランジスタ
0.10≦In/(In+Ga+Sn)≦0.60 (1)
0.10≦Ga/(In+Ga+Sn)≦0.55 (2)
0.0001<Sn/(In+Ga+Sn)≦0.60 (3)
An oxide semiconductor containing indium element (In), gallium element (Ga), and tin element (Sn) in an atomic ratio of the following formulas (1) to (3), and the content of zinc element (Zn) is 100 ppm or less A thin film transistor including a film and having a mobility of 3 cm 2 / Vs or more .
0.10 ≦ In / (In + Ga + Sn) ≦ 0.60 (1)
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55 (2)
0.0001 <Sn / (In + Ga + Sn) ≦ 0.60 (3)
前記酸化物半導体膜の電子キャリア密度が10The oxide semiconductor film has an electron carrier density of 10 1414 cmcm −3-3 以上1010 or more 1919 cmcm −3-3 以下である、Is
請求項29に記載の薄膜トランジスタ。30. The thin film transistor according to claim 29.
前記酸化物半導体膜の前記In、Ga及びSnの原子比が下記式(8)及び(9)を満たす請求項29に記載の薄膜トランジスタ
0.03≦Sn/(In+Ga+Sn)≦0.15 (8)
0.30<Ga/(In+Ga+Sn)≦0.50 (9)
30. The thin film transistor according to claim 29, wherein an atomic ratio of In, Ga, and Sn in the oxide semiconductor film satisfies the following formulas (8) and (9).
0.03 ≦ Sn / (In + Ga + Sn) ≦ 0.15 (8)
0.30 <Ga / (In + Ga + Sn) ≦ 0.50 (9)
前記酸化物半導体膜の前記In、Ga及びSnの原子比が下記式(10)及び(11)を満たす請求項29に記載の薄膜トランジスタ
0.04≦Sn/(In+Ga+Sn)≦0.11 (10)
0.32≦Ga/(In+Ga+Sn)≦0.48 (11)
30. The thin film transistor according to claim 29, wherein an atomic ratio of In, Ga, and Sn in the oxide semiconductor film satisfies the following formulas (10) and (11).
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.11 (10)
0.32 ≦ Ga / (In + Ga + Sn) ≦ 0.48 (11)
前記酸化物半導体膜の前記In、Ga及びSnの原子比が下記式を満たす請求項29に記載の薄膜トランジスタ
0.10≦In/(In+Ga+Sn)≦0.60
0.10≦Ga/(In+Ga+Sn)≦0.55
0.04≦Sn/(In+Ga+Sn)≦0.30
30. The thin film transistor according to claim 29, wherein an atomic ratio of In, Ga, and Sn in the oxide semiconductor film satisfies the following formula.
0.10 ≦ In / (In + Ga + Sn) ≦ 0.60
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.30
前記酸化物半導体膜の前記In、Ga及びSnの原子比が下記式を満たす請求項29に記載の薄膜トランジスタ
0.40≦In/(In+Ga+Sn)≦0.60
0.10≦Ga/(In+Ga+Sn)≦0.55
0.30≦Sn/(In+Ga+Sn)≦0.60
30. The thin film transistor according to claim 29, wherein an atomic ratio of In, Ga, and Sn in the oxide semiconductor film satisfies the following formula.
0.40 ≦ In / (In + Ga + Sn) ≦ 0.60
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.30 ≦ Sn / (In + Ga + Sn) ≦ 0.60
前記酸化物半導体膜が非晶質膜であり、前記非晶質中に微結晶を含む請求項29に記載の薄膜トランジスタ30. The thin film transistor according to claim 29, wherein the oxide semiconductor film is an amorphous film and includes microcrystals in the amorphous film . 前記酸化物半導体膜のリン酸系ウェットエッチング速度が5nm/分以下である請求項29に記載の薄膜トランジスタ30. The thin film transistor according to claim 29, wherein a phosphoric acid-based wet etching rate of the oxide semiconductor film is 5 nm / min or less. 前記酸化物半導体膜の修酸系ウェットエッチングが速度20nm/分以上であり、リン酸系ウェットエッチング速度が5nm/分以下であり、前記In、Ga及びSnの原子比が下記式を満たす請求項29に記載の薄膜トランジスタ
0.10≦In/(In+Ga+Sn)≦0.60
0.10≦Ga/(In+Ga+Sn)≦0.55
0.04≦Sn/(In+Ga+Sn)≦0.30
The oxalic acid-based wet etching of the oxide semiconductor film is at a rate of 20 nm / min or more, the phosphoric acid-based wet etching rate is at most 5 nm / min, and the atomic ratio of In, Ga, and Sn satisfies the following formula: 30. The thin film transistor according to 29.
0.10 ≦ In / (In + Ga + Sn) ≦ 0.60
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.04 ≦ Sn / (In + Ga + Sn) ≦ 0.30
前記酸化物半導体膜の修酸系ウェットエッチングが速度20nm/分以上であり、リン酸系ウェットエッチング速度が5nm/分以下であり、前記In、Ga及びSnの原子比が下記式を満たす請求項29に記載の薄膜トランジスタ
0.40≦In/(In+Ga+Sn)≦0.60
0.10≦Ga/(In+Ga+Sn)≦0.55
0.30≦Sn/(In+Ga+Sn)≦0.60
The oxalic acid-based wet etching of the oxide semiconductor film is at a rate of 20 nm / min or more, the phosphoric acid-based wet etching rate is at most 5 nm / min, and the atomic ratio of In, Ga, and Sn satisfies the following formula: 30. The thin film transistor according to 29.
0.40 ≦ In / (In + Ga + Sn) ≦ 0.60
0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55
0.30 ≦ Sn / (In + Ga + Sn) ≦ 0.60
前記酸化物半導体膜のX線光電子分光法(XPS)で測定したSn平均価数は、+3.0以上、+4.0以下である、請求項29〜38のいずれかに記載の薄膜トランジスタThe thin film transistor according to any one of claims 29 to 38 , wherein an Sn average valence measured by X-ray photoelectron spectroscopy (XPS) of the oxide semiconductor film is +3.0 or more and +4.0 or less. 移動度が6cm/Vs以上である請求項29に記載の薄膜トランジスタ。 30. The thin film transistor according to claim 29 , wherein the mobility is 6 cm 2 / Vs or higher. 移動度が10cm/Vs以上である請求項29に記載の薄膜トランジスタ。 30. The thin film transistor according to claim 29 , wherein the mobility is 10 cm 2 / Vs or higher. 請求項29〜41のいずれかに記載の薄膜トランジスタを用いた半導体素子。 The semiconductor element using the thin-film transistor in any one of Claims 29-41 . 請求項42に記載の半導体素子を備えるディスプレイ。 A display comprising the semiconductor device according to claim 42 .
JP2017046201A 2017-03-10 2017-03-10 In-Ga-Sn-based oxide sintered body, target, oxide semiconductor film, and semiconductor element Active JP6389541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017046201A JP6389541B2 (en) 2017-03-10 2017-03-10 In-Ga-Sn-based oxide sintered body, target, oxide semiconductor film, and semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046201A JP6389541B2 (en) 2017-03-10 2017-03-10 In-Ga-Sn-based oxide sintered body, target, oxide semiconductor film, and semiconductor element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015202851A Division JP6141381B2 (en) 2015-10-14 2015-10-14 Manufacturing method of sputtering target

Publications (3)

Publication Number Publication Date
JP2017165646A JP2017165646A (en) 2017-09-21
JP2017165646A5 true JP2017165646A5 (en) 2017-11-02
JP6389541B2 JP6389541B2 (en) 2018-09-12

Family

ID=59912874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046201A Active JP6389541B2 (en) 2017-03-10 2017-03-10 In-Ga-Sn-based oxide sintered body, target, oxide semiconductor film, and semiconductor element

Country Status (1)

Country Link
JP (1) JP6389541B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098151B2 (en) * 2005-10-31 2012-12-12 凸版印刷株式会社 Thin film transistor manufacturing method
JP5244331B2 (en) * 2007-03-26 2013-07-24 出光興産株式会社 Amorphous oxide semiconductor thin film, manufacturing method thereof, thin film transistor manufacturing method, field effect transistor, light emitting device, display device, and sputtering target
JP5522889B2 (en) * 2007-05-11 2014-06-18 出光興産株式会社 In-Ga-Zn-Sn-based oxide sintered body and target for physical film formation

Similar Documents

Publication Publication Date Title
Koo et al. Low temperature solution-processed InZnO thin-film transistors
Navas et al. Self-assembly and photoluminescence of molybdenum oxide nanoparticles
Kang et al. Effect of pH on the characteristics of nanocrystalline ZnS thin films prepared by CBD method in acidic medium
Chen et al. Synthesis and Characterization of Cu (In x B1− x) Se2 Nanocrystals for Low-Cost Thin Film Photovoltaics
Agawane et al. Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers
JP2015017027A5 (en)
Yang et al. Low resistance ohmic contacts to amorphous IGZO thin films by hydrogen plasma treatment
Saha et al. Extremely stable, high performance Gd and Li alloyed ZnO thin film transistor by spray pyrolysis
Chybczyńska et al. Synthesis and properties of bismuth ferrite multiferroic flowers
Hoffmann et al. Molecular precursor derived and solution processed indium–zinc oxide as a semiconductor in a field-effect transistor device. Towards an improved understanding of semiconductor film composition
Yang et al. Investigation of tungsten doped tin oxide thin film transistors
Wang et al. Study on field-emission characteristics of electrodeposited Co-doped ZnO thin films
Suo et al. Effects of oxygen/argon pressure ratio on the structural and optical properties of Mn-doped ZnO thin films prepared by magnetron pulsed co-sputtering
Güney et al. The effect of Zn doping on CdO thin films grown by SILAR method at room temperature
Baek et al. Comparative study of antimony doping effects on the performance of solution-processed ZIO and ZTO field-effect transistors
Mandal et al. Investigation on the optical and electrical performance of aluminium doped gallium oxide thin films
JP2017165646A5 (en)
Gao et al. Influence of annealing temperatures on solution-processed AlInZnO thin film transistors
JP2013001590A (en) Conductive oxide, method of manufacturing the same and oxide semiconductor film
JP2014056945A (en) Amorphous oxide thin film, method for producing the same, and thin-film transistor using the same
Dar et al. Pulsed laser deposited nickel doped zinc oxide thin Films: Structural and optical investigations
JP2013001919A (en) In2O3-ZnO-BASED SPUTTERING TARGET AND OXIDE CONDUCTIVE FILM
Wang et al. The structure and stability of molybdenum ditelluride thin films
Yang et al. Amorphous nickel incorporated tin oxide thin film transistors
JP6257585B2 (en) Formulations containing ammoniacal hydroxozinc compounds