JP2017164709A - Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article - Google Patents

Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article Download PDF

Info

Publication number
JP2017164709A
JP2017164709A JP2016053943A JP2016053943A JP2017164709A JP 2017164709 A JP2017164709 A JP 2017164709A JP 2016053943 A JP2016053943 A JP 2016053943A JP 2016053943 A JP2016053943 A JP 2016053943A JP 2017164709 A JP2017164709 A JP 2017164709A
Authority
JP
Japan
Prior art keywords
deteriorated
charcoal
activated carbon
water
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016053943A
Other languages
Japanese (ja)
Inventor
矢出 乃大
Norihiro Yaide
乃大 矢出
弘明 仲田
Hiroaki Nakata
弘明 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016053943A priority Critical patent/JP2017164709A/en
Publication of JP2017164709A publication Critical patent/JP2017164709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a degraded carbon improved article using degraded carbon and an application method therefor.SOLUTION: A degraded carbon 9, which is used in a water treatment of a purification plant or the like, is contacted with a storage solution 15 and stored at an impregnation or wet state at a storage temperature capable of maintaining nitrification activity. Since nitrification bacteria adhere to the degraded carbon improved article 9a after storage, a nitrification reaction is initiated in short time. Therefore the degraded carbon improved article 9 can be used widely as an agent for removing inoculum of the nitrification bacteria or ammonia nitrogen in places needs for removal of ammonia nitrogen such as the purification plant or feeding of fish and shellfish.SELECTED DRAWING: Figure 1

Description

本発明は、浄水場の高度浄水処理や、アンモニア性窒素除去が望まれる魚介類飼育場、養殖場、水族館、家庭用水槽に利用可能な劣化炭改良品の製造と、その使用方法に関する。   TECHNICAL FIELD The present invention relates to the production of a deteriorated charcoal product that can be used for advanced water purification treatment at a water purification plant and seafood breeding farms, aquaculture farms, aquariums, and domestic water tanks where ammonia nitrogen removal is desired, and a method for using the same.

近年、製造事業所、水族館、養殖場などの用水処理、上水道用の水処理には活性炭が広く使用されており、特に、微生物が付着した活性炭(生物活性炭)はアンモニアや有機物の分解に利用されている。   In recent years, activated carbon has been widely used for water treatment in manufacturing establishments, aquariums, farms, etc., and water treatment for waterworks. In particular, activated carbon (biological activated carbon) with microorganisms attached is used to decompose ammonia and organic matter. ing.

生物活性炭による処理、オゾン処理などのいずれか1以上を、凝集沈殿やろ過等を使用する通常の浄水処理に組み合わせた浄水処理は高度浄水処理と呼ばれ、都市圏の浄水場などで近年利用されている。   Water purification treatment that combines one or more of treatment with biological activated carbon, ozone treatment, etc. with normal water treatment using coagulation sedimentation or filtration is called advanced water purification treatment, and it has been used in water purification plants in urban areas in recent years. ing.

図4(a)は生物活性炭を組み込んだ高度浄水処理の一例であり、図4(a)に示すように、トリハロメタン前駆物質やカビ臭原因物質を酸化分解する目的でオゾン処理(オゾン分解)を組み込んでもいいが、オゾン処理は必ずしも必須ではない。   Fig. 4 (a) is an example of advanced water purification treatment incorporating biological activated carbon. As shown in Fig. 4 (a), ozone treatment (ozone decomposition) is performed for the purpose of oxidizing and decomposing trihalomethane precursors and mold odor-causing substances. Although it may be incorporated, ozone treatment is not always necessary.

オゾン処理を導入する場合導入しない場合、いずれ場合でも、活性炭処理前段での塩素処理を避けることで、活性炭に意図的に微生物を付着させることが可能であり、このように微生物を付着させた活性炭が生物活性炭となる。   When ozone treatment is introduced When not introduced, in any case, it is possible to intentionally attach microorganisms to activated carbon by avoiding chlorination before the activated carbon treatment, and activated carbon with microorganisms attached in this way Becomes biological activated carbon.

図4(b)、図4(c)は生物活性炭による処理を具体的に示すフローである。図4(b)では、活性炭で形成された充填層が生物膜として水処理に使用され、図4(c)では流動状態の活性炭で原水の水処理を行い、水処理後の原水(以下、処理水とも称する)と活性炭とを膜で分離する。   FIG. 4B and FIG. 4C are flowcharts specifically showing treatment with biological activated carbon. In FIG. 4 (b), a packed bed formed of activated carbon is used for water treatment as a biofilm. In FIG. 4 (c), raw water is treated with activated carbon in a fluidized state, and raw water after water treatment (hereinafter, (Also called treated water) and activated carbon are separated by a membrane.

原水には硝化細菌などの微生物が存在しており、原水を活性炭90に接触させて微生物を付着させる(図5(a))。例えば、生物膜ろ過槽に活性炭90を充填させ、この充填層に原水を通水して活性炭90に接触させ、微生物を付着させる(図5(b))。又は、生物処理槽に活性炭90を投入し、この活性炭90を流動状態で原水と接触させて微生物を付着させ、処理水は膜モジュールで活性炭から分離して、生物処理槽の外部に排出する(図5(c))。   The raw water contains microorganisms such as nitrifying bacteria, and the raw water is brought into contact with the activated carbon 90 to attach the microorganisms (FIG. 5 (a)). For example, activated carbon 90 is filled in a biofilm filtration tank, and raw water is passed through the packed bed to bring it into contact with activated carbon 90, thereby attaching microorganisms (FIG. 5B). Alternatively, activated carbon 90 is put into a biological treatment tank, and the activated carbon 90 is brought into contact with raw water in a fluid state to attach microorganisms. The treated water is separated from the activated carbon by a membrane module and discharged to the outside of the biological treatment tank ( FIG. 5 (c)).

いずれの場合も、数カ月の時間をかけて硝化細菌などの微生物が活性炭に自然に付着して生物活性炭となり、硝化細菌により原水中のアンモニア性窒素が生物的に除去される。しかも、生物活性炭は、アンモニア性窒素の除去以外にも、溶解性マンガンの不溶化など他の効果も生じる。   In either case, microorganisms such as nitrifying bacteria naturally adhere to the activated carbon over a period of several months to become biological activated carbon, and ammonia nitrogen in the raw water is biologically removed by the nitrifying bacteria. Moreover, biological activated carbon has other effects such as insolubilization of soluble manganese in addition to the removal of ammoniacal nitrogen.

上記では微生物を自然付着させる場合について説明したが、従来におけるこの種の技術では、自然付着に頼らずとも意図する微生物を活性炭に付着させる方法、或いは、硝化細菌の培養に適した培地組成、培養方法についても知られている。   In the above description, the case where microorganisms are naturally attached has been described. However, with this type of conventional technology, a method of attaching an intended microorganism to activated carbon without depending on natural attachment, or a medium composition and culture suitable for culturing nitrifying bacteria. The method is also known.

例えば、特許文献1には、粘着物質を生成する能力を有する微生物およびその粘着物質と、必要によりその他の微生物とを活性炭に付着させ、菌体を固定化した活性炭が開示されている。   For example, Patent Document 1 discloses activated carbon in which a microorganism having an ability to generate an adhesive substance and an adhesive substance thereof, and other microorganisms as necessary are attached to the activated carbon to immobilize the cells.

一方で、硝化細菌のアンモニア性窒素除去能は高度浄水処理以外にも利用されており、その一つに魚介類飼育分野がある。水槽などの閉鎖的な飼育環境において、魚介類の排出物や餌に由来するアンモニア性窒素は強い毒性を示すため、迅速な除去が望まれる。   On the other hand, the ability of nitrifying bacteria to remove ammoniacal nitrogen is used for purposes other than advanced water purification treatment, and one of them is the fishery breeding field. In a closed rearing environment such as an aquarium, ammonia nitrogen derived from seafood discharges and foods is highly toxic, and thus rapid removal is desired.

特許文献2には、硝化細菌養生装置によりアンモニア性窒素を除去する手法が開示されている。また非特許文献1には、ガラス廃材に硝化細菌を自然付着させてアンモニア性窒素を除去する水産養殖用ろ過材が示されている。   Patent Document 2 discloses a technique for removing ammonia nitrogen by a nitrifying bacteria curing device. Non-Patent Document 1 discloses an aquaculture filter material that removes ammonia nitrogen by allowing nitrifying bacteria to naturally adhere to glass waste material.

特開平6−239608号公報JP-A-6-239608 特開2002−125515号公報JP 2002-125515 A

第3回建設トップランナーフォーラム報告書、「ミラクルソルで海外進出」、日本建設技術株式会社、p.17〜20(2008年7月)3rd Construction Top Runner Forum Report, “Expanding Overseas with Miracle Sol”, Nippon Construction Technology Co., Ltd., p.17-20 (July 2008)

しかしながら、上記従来における活性炭の使用や利用では、以下の課題があった。   However, the use and utilization of activated carbon in the prior art have the following problems.

I)劣化炭の硝化活性維持
上記水処理工程において、使用開始から数年以上が経過しカビ臭原因物質やトリハロメタンなどの吸着性能が低下した活性炭は劣化炭と呼ばれる。一部は園芸用土などに利用されるものの、その多くは産業廃棄物として排出される。特に、浄水場の高度浄水処理工程などでは年間数千トンが排出され、十分な有効利用が成されていない。
I) Maintaining nitrification activity of deteriorated charcoal In the above water treatment process, activated carbon whose adsorbing performance of mold odor-causing substances, trihalomethanes and the like has been lowered after several years from the start of use is called deteriorated charcoal. Although some are used for horticultural soil, most of them are discharged as industrial waste. In particular, thousands of tons are discharged annually in advanced water purification treatment processes at water purification plants, and sufficient effective use is not achieved.

しかし、劣化炭は吸着性能が低下しているものの、アンモニア性窒素の分解を担っている硝化細菌は多数付着した状態であると推測される。   However, although the deteriorated charcoal has a reduced adsorption performance, it is presumed that many nitrifying bacteria responsible for the decomposition of ammoniacal nitrogen are attached.

一般的に、硝化細菌は温度や乾燥などの環境変化に対する耐性が著しく弱いことが知られており、劣化炭の有する硝化活性を利用しようと試みても、大気中に晒すだけで硝化細菌が急速に死滅し、硝化活性が速やかに消失してしまう課題があった。   In general, nitrifying bacteria are known to be extremely weak in resistance to environmental changes such as temperature and drying. Even if you try to use the nitrifying activity of deteriorated charcoal, nitrifying bacteria can be rapidly exposed to the atmosphere. There was a problem that the nitrification activity disappeared rapidly.

このように、従来技術では、劣化炭の硝化活性を維持する技術は存在せず、そもそも、硝化活性を維持したまま劣化炭を保存(貯蔵)し、劣化炭改良品を製造するという発想は存在していない。   As described above, in the prior art, there is no technology for maintaining the nitrification activity of the deteriorated coal, and in the first place there is an idea that the deteriorated coal is preserved (stored) while maintaining the nitrification activity, and an improved deteriorated coal is produced. Not done.

II)生物活性炭槽の立ち上げ短縮
一般的に、浄水場に流れ込む原水(河川水など)は絶えずアンモニア性窒素などの窒素源、リン源の濃度変動が起こっており、硝化細菌の生育にとって必ずしも望ましい環境やpHとはいえない。
II) Shortening the start-up time of biological activated carbon tanks In general, raw water (river water, etc.) flowing into a water purification plant is constantly desirable for the growth of nitrifying bacteria because the concentration of nitrogen and phosphorus sources such as ammoniacal nitrogen is constantly changing. It cannot be said to be environment or pH.

また、生物活性炭槽では季節ごとの温度変化も生じるため、硝化細菌が安定的に活性炭付着できる環境にはない。しかも、浄水場の原水(河川水)に含まれる硝化細菌は微量であり、その分裂速度は他の微生物種と比較して著しく遅い(例:分裂周期24時間以上)。そのため、浄水場では、活性炭投入後、活性炭吸着池に硝化細菌が自然付着するまで数カ月もの期間を要するのが常で、その結果、活性炭吸着池で十分なアンモニア性窒素除去性能を得るのに長期間を必要とする課題があった。   In addition, the biological activated carbon tank also has a seasonal temperature change, so it is not in an environment where nitrifying bacteria can stably adhere to the activated carbon. In addition, the amount of nitrifying bacteria contained in the raw water (river water) of the water purification plant is very small, and its division rate is significantly slower than other microbial species (eg, division cycle of 24 hours or more). For this reason, in water treatment plants, it usually takes several months for nitrifying bacteria to spontaneously adhere to the activated carbon adsorption pond after charging the activated carbon. As a result, it is long to obtain sufficient ammonia nitrogen removal performance in the activated carbon adsorption pond. There was a problem that required a period.

さらに、アンモニア性窒素除去の立ち上がりが遅いことに起因し、時として硝化細菌以外に大腸菌群やシュードモナス属などの有害微生物が付着する恐れも懸念される。   Furthermore, due to the slow rise of ammonia nitrogen removal, there is a concern that sometimes harmful microorganisms such as coliforms and Pseudomonas may adhere in addition to nitrifying bacteria.

前述した特許文献1の菌体を固定化した活性炭では、粘着物質を生成する微生物はシュードモナス属など一部の属に限られており、硝化細菌など多くの属は該当しない。   In the activated carbon in which the bacterial cells of Patent Document 1 described above are immobilized, microorganisms that produce an adhesive substance are limited to some genera such as Pseudomonas, and many genera such as nitrifying bacteria do not correspond.

従って、粘着物質を生成する微生物を利用して硝化細菌を付着させようとする場合、活性炭の周囲が粘着物質および粘着物質生成菌によって覆われてしまうため、硝化活性のみを得ようとする場合には菌の付着が効率的でない問題がある。   Therefore, when trying to attach nitrifying bacteria using microorganisms that produce adhesive substances, the area around the activated carbon is covered with adhesive substances and adhesive substance-producing bacteria. Has the problem that bacteria adherence is inefficient.

III)魚類飼育環境でのアンモニア除去
魚介類を飼育する環境では、餌や排出物に由来するアンモニア性窒素が水槽内に蓄積すると、魚介類にアンモニア中毒が起こることが知られている。
III) Ammonia removal in fish rearing environment It is known that in an environment rearing fish and shellfish, if ammonia nitrogen derived from food and effluent accumulates in the aquarium, ammonia poisoning occurs in the seafood.

一般的に、硝酸イオンであれば1,000mg/L程度まで魚介類に影響がないが、アンモニアや亜硝酸イオンは1mg/L程度であっても魚介類に影響を及ぼすとされている。   In general, nitrate ions do not affect fish and shellfish up to about 1,000 mg / L, but ammonia and nitrite ions are said to affect fish and shellfish even at about 1 mg / L.

硝化細菌が水槽内に定着した環境であれば、硝化細菌の硝化作用で、アンモニアが順次酸化され(アンモニア→亜硝酸イオン→硝酸イオン)、毒性が低下するが、硝化細菌が水槽内に自然付着するまで数カ月もの長期間を要するため、飼育初期段階ではアンモニア性窒素濃度の早期低減が課題の一つとなっている。   In an environment where nitrifying bacteria are established in the aquarium, ammonia is sequentially oxidized by the nitrifying action of the nitrifying bacteria (ammonia-> nitrite ion-> nitrate ion), and toxicity decreases, but nitrifying bacteria naturally adhere to the aquarium. Since it takes a long period of several months to do so, early reduction of the ammoniacal nitrogen concentration is one of the problems at the initial breeding stage.

例えば、特許文献2は、魚介類飼育用の硝化細菌含有水について開示しているものの、硝化細菌を増殖させる養生(培養)工程を必要とし、養生のための培養装置ならびに基質(培地成分)がコスト高となる。さらに養生日数が必要とされるため、導入後、迅速に使用できる装置とは言えない。   For example, Patent Document 2 discloses nitrifying bacteria-containing water for rearing seafood, but requires a curing (culturing) step for growing nitrifying bacteria, and a culture apparatus and substrate (medium components) for curing are required. Cost increases. Furthermore, since the curing days are required, it cannot be said that the apparatus can be used quickly after introduction.

非特許文献1では、ガラス廃材を硝化細菌付着用の担体として利用しているが、ガラス廃材自体に硝化細菌が付着していないために硝化の立ち上がりが遅く、アンモニア性窒素が除去され始める迄に10日以上の日数を要している。   In Non-Patent Document 1, glass waste is used as a carrier for attaching nitrifying bacteria, but since nitrifying bacteria do not adhere to the glass waste itself, nitrification rises slowly and ammonia nitrogen starts to be removed. It takes 10 days or more.

本発明は、上記課題を鑑み成されたものであり、その目的は、産業廃棄物として大量に排出される劣化炭を有効利用して劣化炭改良品を製造し、更には、高度浄水処理や魚介類飼育などの多様な用途で、劣化炭改良品を利用することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to effectively use deteriorated coal discharged in large quantities as industrial waste to produce deteriorated coal improved products. The purpose is to use deteriorated charcoal-improved products for various purposes such as seafood breeding.

上記課題を解決するために、本発明者等が鋭意検討を行った結果、劣化炭を保存溶液に接触させるという従来技術には存在しない発想で、劣化炭の硝化活性が維持され、劣化炭改良品として再利用可能なことを見出された。   As a result of intensive studies by the present inventors to solve the above problems, the nitrification activity of the deteriorated coal is maintained and the deterioration of the deteriorated coal is improved with the idea of not existing in the prior art that the deteriorated coal is brought into contact with the preservation solution. It was found that it can be reused as a product.

係る知見に基づく本発明は、以下の構成とすることができる。
(1)水処理で使用した劣化炭(使用済活性炭)を、無機塩を含有する保存溶液に接触させ、劣化炭に付着した硝化細菌が死活せず、硝化活性が維持可能な保存温度で保存し、保存後の劣化炭を劣化炭改良品とする。
(2)保存溶液としては、その無機塩濃度が0.017mol/L〜1.8mol/Lのものを用い、劣化炭に接触させる。
(3)また、本発明は上記(1)に限定されず、水処理で使用した劣化炭を、無機塩を含有する保存溶液に接触させて、劣化炭に付着した硝化細菌に、その硝化活性が維持可能な浸透圧ストレスを与えて保存し、保存後の劣化炭を劣化炭改良品とする方法も含む。
(4)上記浸透圧ストレスを与える方法において、保存溶液の無機塩濃度は0.017mol/L〜1.8mol/Lが好ましい。
(5)無機塩の種類は特に限定されないが、例えば、塩化ナトリウムと、塩化カリウムのいずれか一方又は両方を使用する。
The present invention based on such knowledge can be configured as follows.
(1) The deteriorated charcoal (used activated carbon) used in the water treatment is brought into contact with a storage solution containing inorganic salts, and the nitrifying bacteria adhering to the deteriorated charcoal are not killed and stored at a storage temperature at which nitrification activity can be maintained. Therefore, the deteriorated charcoal after storage shall be an improved deteriorated charcoal.
(2) As a preservation | save solution, the thing whose inorganic salt density | concentration is 0.017 mol / L-1.8 mol / L is used, and it contacts with deteriorated charcoal.
(3) Moreover, this invention is not limited to said (1), The deterioration charcoal used by water treatment is made to contact the preservation | save solution containing an inorganic salt, and the nitrification activity adhering to the deterioration charcoal is made into the nitrification activity. Includes a method of applying osmotic stress that can be maintained, and storing the deteriorated coal after storage as a deteriorated coal improvement product.
(4) In the method of applying the osmotic stress, the inorganic salt concentration of the storage solution is preferably 0.017 mol / L to 1.8 mol / L.
(5) Although the kind of inorganic salt is not specifically limited, For example, sodium chloride and any one or both of potassium chloride are used.

本発明により製造した劣化炭改良品の使用方法には、下記方法がある。
(6)上記いずれかの製造方法で製造した劣化炭改良品は、高度浄水処理工程で使用する活性炭の一部又は全部として使用することができる。
(7)また、上記いずれかの製造方法で製造した劣化炭改良品を魚介類飼育時のアンモニア性窒素除去剤として使用することもできる。
There are the following methods for using the improved deteriorated charcoal produced according to the present invention.
(6) The deteriorated coal improved product manufactured by any one of the above manufacturing methods can be used as a part or all of the activated carbon used in the advanced water purification treatment process.
(7) Moreover, the deteriorated charcoal improvement goods manufactured with one of the said manufacturing methods can also be used as an ammoniacal nitrogen removal agent at the time of seafood breeding.

本発明によれば、硝化活性を維持したままの劣化炭の長期間保存が可能である。保存後の劣化炭改良品はアンモニアの分解除去に利用可能である。劣化炭改良品は、産業廃棄物の1種である劣化炭の再利用品である上、培養工程なども不要なため、製造コストが安く、環境負荷への低減が大きく期待される。しかも、劣化炭の長期保存が可能なため、劣化炭改良品の製品としての流通が可能になる。   According to the present invention, it is possible to store deteriorated charcoal for a long time while maintaining nitrification activity. The improved degraded charcoal after storage can be used to decompose and remove ammonia. The deteriorated charcoal improved product is a reused product of deteriorated charcoal, which is one type of industrial waste, and also does not require a culturing process. Therefore, the manufacturing cost is low, and the reduction to the environmental load is greatly expected. Moreover, since the deteriorated charcoal can be stored for a long time, it is possible to distribute the deteriorated charcoal improved product as a product.

劣化炭改良品の硝化活性は高いため、種菌として利用すれば、高度浄水処理工程などでの生物活性炭槽の立ち上げ期間を大幅に短縮することが可能になる。また、劣化炭改良品は、家庭用、養殖産業、水族館などでの魚介類飼育用のアンモニア性窒素除去剤としても利用可能である。   Since the nitrification activity of the deteriorated charcoal improved product is high, if it is used as an inoculum, the start-up period of the biological activated carbon tank in the advanced water purification treatment process can be greatly shortened. In addition, the deteriorated charcoal improved product can be used as an ammonia nitrogen removing agent for domestic use, aquaculture industry, aquaculture, etc.

図1(a)は劣化炭を排出する水処理工程を示し、図1(b)は劣化炭から劣化炭改良品を製造する保存工程を示し、図1(c)は劣化炭改良品を使用する使用工程を示す。Fig. 1 (a) shows a water treatment process for discharging deteriorated coal, Fig. 1 (b) shows a storage process for producing an improved deteriorated coal from deteriorated coal, and Fig. 1 (c) uses an improved deteriorated coal. The use process is shown. 図2(a)、(b)は保存工程を説明する図面である。2 (a) and 2 (b) are drawings for explaining the storage process. 図3(a)は第一の使用方法を示し、図3(b)は第二の使用方法を示す図である。FIG. 3A shows a first usage method, and FIG. 3B shows a second usage method. 図4(a)は水処理の概略を示す図であり、図4(b)は活性炭充填層を有する生物膜処理の概略を示す図であり、図4(c)は流動活性炭と膜分離を利用した処理の概略を示す図である。FIG. 4 (a) is a diagram showing an outline of water treatment, FIG. 4 (b) is a diagram showing an outline of a biofilm treatment having an activated carbon packed bed, and FIG. 4 (c) is a diagram of fluidized activated carbon and membrane separation. It is a figure which shows the outline of the process utilized. 図5(a)は活性炭を用いた処理を説明する模式図であり、図5(b)は活性炭充填層を有する生物膜ろ過処理の模式図であり、図5(c)は流動活性炭と膜分離を利用した処理の模式図である。FIG. 5 (a) is a schematic diagram for explaining a treatment using activated carbon, FIG. 5 (b) is a schematic diagram of a biofilm filtration treatment having an activated carbon packed bed, and FIG. 5 (c) shows a fluidized activated carbon and a membrane. It is a schematic diagram of the process using separation. 図6は保存溶液の塩化ナトリウム濃度と硝化活性との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the sodium chloride concentration of the preservation solution and the nitrification activity. 図7は保存溶液の溶存酸素量と硝化活性との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the dissolved oxygen content of the preservation solution and the nitrification activity. 図8(a)は保存温度と硝化活性との関係をアンモニア性窒素濃度で表したグラフであり、図8(b)は保存温度と硝化活性との関係をアンモニア性窒素除去率で表したグラフである。FIG. 8A is a graph showing the relationship between storage temperature and nitrification activity in terms of ammonia nitrogen concentration, and FIG. 8B is a graph showing the relationship between storage temperature and nitrification activity in terms of ammonia nitrogen removal rate. It is. 図9は劣化炭改良品を浄水処理に使用した場合の硝化活性を示すグラフである。FIG. 9 is a graph showing nitrification activity when a deteriorated charcoal improved product is used for water purification treatment. 図10は(a)対照区の硝化活性、生存メダカ数及び飼育日数との関係を示すグラフであり、図10(b)は劣化炭改良品を使用した試験区の硝化活性、生存メダカ数及び飼育日数との関係を示すグラフである。FIG. 10 is a graph showing the relationship between (a) nitrification activity, survival medaka number and breeding days in the control group, and FIG. 10 (b) shows nitrification activity, survival medaka number and It is a graph which shows the relationship with breeding days.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example.

図1(a)〜(c)は本発明を説明するフロー図であり、活性炭は水処理工程で使用された後に劣化炭(使用済活性炭)として排出され(図1(a))、本発明は、その劣化炭を保存溶液で保存して劣化炭改良品とし(図1(b))、更に、その劣化炭改良品を使用する(図1(c))。   FIGS. 1A to 1C are flowcharts for explaining the present invention. Activated carbon is discharged as deteriorated charcoal (used activated carbon) after being used in the water treatment step (FIG. 1A), and the present invention. Stores the deteriorated charcoal in a preservation solution to obtain a deteriorated charcoal improved product (FIG. 1 (b)), and further uses the deteriorated charcoal improved product (FIG. 1 (c)).

先ず、活性炭と、活性炭を使用した水処理工程について説明する。   First, the activated carbon and the water treatment process using activated carbon will be described.

[活性炭]
活性炭は、硝化細菌を保持する担体として機能するばかりでなく、その吸着能を利用し、カビ臭原因物質やトリハロメタンなどを除去する。
[Activated carbon]
Activated carbon not only functions as a carrier for holding nitrifying bacteria, but also uses its adsorption ability to remove mold odor-causing substances and trihalomethanes.

活性炭は粒状でも、破砕状でもハニカム状活性炭などの成形品、紛体状であってもよいが、粒状活性炭が最も好ましい。なお、「粒状」とは、粒度表示が150μm以上のものを意味し(JIS K1474参照)、「紛体状」とは粒度表示が150μm未満のものを意味する。   The activated carbon may be granular, crushed, molded product such as honeycomb activated carbon, or powder, but granular activated carbon is most preferred. “Granular” means that the particle size is 150 μm or more (see JIS K1474), and “powder” means that the particle size is less than 150 μm.

活性炭の粒形状は特に限定されず、球状(水ing社製、エバダイヤLG−40Sなど)、破砕片状(水ing社製、エバダイヤLG−20Sなど)、円柱状など多様な形状とすることができるが、通水抵抗が小さいという点で球状又は円柱状が好ましく、均一充填が可能という点で特に球状が好ましい。なお、球状とは真球のみならず、楕円体(扁球体)、葉巻型を含む概念であり、表面に凹凸が形成されたものも含む。   The particle shape of the activated carbon is not particularly limited, and may be various shapes such as a spherical shape (manufactured by Mizuing Corporation, Evadia LG-40S, etc.), a crushed piece (manufactured by Mizuing Inc., Evadia LG-20S, etc.), and a columnar shape. However, a spherical shape or a cylindrical shape is preferable from the viewpoint of low water resistance, and a spherical shape is particularly preferable from the viewpoint that uniform filling is possible. Note that the spherical shape is a concept including not only a true sphere but also an ellipsoid (oblate sphere) and a cigar shape, and includes those having irregularities formed on the surface.

粒状活性炭の大きさは特に限定されないが、好ましくは、有効径(10%通過径)が0.3mm〜1.3mm、均等係数が1.2〜2.0である。   The size of the granular activated carbon is not particularly limited, but preferably the effective diameter (10% passing diameter) is 0.3 mm to 1.3 mm, and the uniformity coefficient is 1.2 to 2.0.

活性炭の原料は特に限定されず、
‐ヤシ殻、木炭、オガ屑、松、竹、硬質木材チップ、草炭、セルロース等の植物系
‐亜炭、褐炭、瀝青炭、無煙炭などの石炭系、または、
‐オイルカーボン、フェノール樹脂、レーヨン、石炭ピッチ、石油ピッチ等の石油系、
などがあり、これら多様な原料を1種類または2種類以上組み合わせて使用することができる。
The raw material of activated carbon is not particularly limited,
-Plants such as coconut shell, charcoal, sawdust, pine, bamboo, hard wood chips, grass charcoal, cellulose, etc.- Coal systems such as lignite, lignite, bituminous coal, anthracite, or
-Petroleum such as oil carbon, phenol resin, rayon, coal pitch, petroleum pitch,
These various raw materials can be used alone or in combination of two or more.

活性炭は、加工していない原料(未加工原料)、または、未加工原料の破砕品をそのまま使用してもよいし、原料を成形加工した成形品であってもよい。成形加工方法は特に限定されないが、通常、活性炭原料を粉砕し、必要であれば結着剤(有機バインダー、無機結着剤)、水、その他添加剤等と混練し、造粒又はプレス成型後に焼成(炭化、賦活)して成形する。   The activated carbon may be a raw material that has not been processed (raw raw material) or a crushed product of raw raw material, or may be a molded product obtained by molding the raw material. The forming method is not particularly limited. Usually, the activated carbon raw material is pulverized, and if necessary, kneaded with a binder (organic binder, inorganic binder), water, other additives, etc., after granulation or press molding Baking (carbonization, activation) and molding.

なお、活性炭は、市販品や製造直後の未使用品(新品)でもよいが、後述する水処理工程で使用した後の劣化炭を賦活処理し、再生した再生炭でもよい。これら活性炭は、下記水処理工程で使用される。   The activated carbon may be a commercial product or an unused product (new) immediately after production, but may also be regenerated coal that has been activated and regenerated by deteriorating coal after use in the water treatment step described below. These activated carbons are used in the following water treatment process.

[水処理工程]
水処理工程は、原水(被処理水)を浄化する工程であって、原水も特に限定されず、河川水、湖沼水、地下水、雨水、排水、養殖場用水、水族館用水など多様なものを処理対象とすることができる。
[Water treatment process]
The water treatment process is a process that purifies the raw water (treated water), and the raw water is not particularly limited, and treats a variety of water such as river water, lake water, ground water, rain water, drainage, aquaculture water, and aquarium water. Can be targeted.

水処理工程の用途は特に限定されず、上水道用の浄水処理、工場用、水族館用、養殖場用などの用水処理、家庭排水、工場排水などの排水処理などである。本発明では、水処理は上記具体例に限定されず、生物活性炭を使用する処理を広く「水処理」と称する。   The use of the water treatment process is not particularly limited, and includes water purification for waterworks, water treatment for factories, aquariums, aquaculture, etc., and wastewater treatment such as domestic wastewater and factory wastewater. In the present invention, the water treatment is not limited to the above specific examples, and treatment using biological activated carbon is widely referred to as “water treatment”.

これらの中でも、定期的に大量の排出量が期待できる点で、浄水処理場からの劣化炭を使用することが好ましい。   Among these, it is preferable to use deteriorated coal from a water treatment plant in that a large amount of emission can be expected regularly.

水処理工程の具体例は特に限定されず、凝集沈殿、砂ろ過、塩素消毒のいずれか1以上の処理を有する通常の水処理に、少なくとも活性炭処理を組み合わせた高度浄水処理工程が好ましく、活性炭処理に加えてオゾン処理等の他の処理工程を組み合わせることもできる(図4(a))。   The specific example of a water treatment process is not specifically limited, The advanced water purification process which combined at least activated carbon treatment with the normal water treatment which has any one or more of coagulation sedimentation, sand filtration, and chlorine disinfection is preferable, activated carbon treatment In addition, other processing steps such as ozone treatment can be combined (FIG. 4A).

活性炭処理は、通常、生物活性炭槽内などの活性炭90に原水を接触させる工程であって(図5(a))、具体的方法は特に限定されず、活性炭90の充填層に原水を通水してもよいし(図5(b))、活性炭90を流動状態で原水と接触させてもよい(図5c))。   The activated carbon treatment is usually a step of bringing the raw water into contact with the activated carbon 90 such as in a biological activated carbon tank (FIG. 5A), and the specific method is not particularly limited, and the raw water is passed through the packed bed of the activated carbon 90. Alternatively, the activated carbon 90 may be brought into contact with the raw water in a fluid state (FIG. 5B).

この活性炭処理に塩素消毒を組み合わせる場合は、活性炭処理の後段で行うことが好ましい。活性炭処理前段での塩素消毒を避け、好ましくは好気的条件で活性炭処理することで、原水中の除去対象物質(臭気物質、トリハロメタン及びその前駆体、その他汚濁物質等)が活性炭で吸着除去されるだけではなく、原水中の硝化細菌などの微生物を活性炭に意図的に付着させることができる。   When chlorination is combined with this activated carbon treatment, it is preferably performed after the activated carbon treatment. By avoiding chlorine disinfection before the activated carbon treatment, and preferably by aerobic treatment under aerobic conditions, the substances to be removed (odorous substances, trihalomethane and its precursors, other pollutants, etc.) in raw water are adsorbed and removed with activated carbon. In addition, microorganisms such as nitrifying bacteria in raw water can be intentionally attached to activated carbon.

[硝化細菌]
本発明で硝化細菌とは、アンモニア性窒素の分解、除去に有用な細菌類であって、特に、アンモニア性窒素の酸化並びに亜硝酸の酸化に寄与する細菌類、即ち、亜硝酸菌(アンモニア酸化細菌)と硝酸菌(亜硝酸酸化細菌)の少なくとも一方、好ましくは両方を使用可能であり、本願明細書ではこのような細菌類を硝化細菌と称する。例えば、アンモニアを亜硝酸イオンに酸化する亜硝酸菌としては、Nitrosomonas europaea、Nitrosomonas communis、Nitrosomonas nitrosa等があり、硝酸菌としてはNitrobacter winogradskyi等が公知であるが、これらに限定されない。更に、上記硝化細菌の他にも、アナモックス細菌などの独立栄養細菌、バチルス属・シュードモナス属などの従属栄養細菌、カンジダ属(トルラ酵母)などの酵母、メタン菌などの古細菌、および糸状菌や放線菌などの微生物類(酵母、真菌、細菌類)が活性炭に付着してもよい。
[Nitrifying bacteria]
The nitrifying bacteria in the present invention are bacteria useful for decomposing and removing ammonia nitrogen, and in particular, bacteria contributing to the oxidation of ammonia nitrogen and the oxidation of nitrite, that is, nitrite (ammonia oxidation). Bacteria) and nitrate bacteria (nitrite-oxidizing bacteria), preferably both, can be used, and in the present specification, such bacteria are referred to as nitrifying bacteria. For example, nitrite bacteria that oxidize ammonia to nitrite ions include Nitrosomonas europaea, Nitrosomonas communis, Nitrosomonas nitrosa, etc., and Nitrobacter winogradskyi etc. are not limited to these. Furthermore, in addition to the above nitrifying bacteria, autotrophic bacteria such as anammox bacteria, heterotrophic bacteria such as Bacillus and Pseudomonas, yeasts such as Candida (torula yeast), archaea such as methane, and filamentous fungi Microorganisms (yeast, fungus, bacteria) such as actinomycetes may adhere to the activated carbon.

上記のような硝化細菌は原水中に存在するため、水処理工程中に硝化細菌を活性炭90に自然に付着させてもよいし、或いは、培養した硝化細菌を原水又は活性炭に故意に付着させてもよい。更には、市販の納豆菌や水槽浄化用の硝酸菌・亜硝酸菌、NBRC(NITE Biological Resource Center、日本の政府外郭団体)やATCC(American Type Culture Collection、アメリカの政府外郭団体)(生物資源バンク)などの微生物保存機関から分譲される菌株を付着させることも可能である。   Since the nitrifying bacteria as described above are present in the raw water, the nitrifying bacteria may be naturally attached to the activated carbon 90 during the water treatment process, or the cultured nitrifying bacteria may be intentionally attached to the raw water or activated carbon. Also good. Furthermore, commercially available natto bacteria, nitric acid bacteria and nitrite bacteria for water tank purification, NBRC (NITE Biological Resource Center, Japanese government organization) and ATCC (American Type Culture Collection, US government organization) (Biological Resource Bank) It is also possible to attach a strain distributed from a microorganism storage organization such as

いずれの場合も、硝化細菌が付着した活性炭90に原水が接触すると、原水中のアンモニアは酸化(硝化)され、脱窒工程等を経て最終的に処理水から除去される。   In either case, when the raw water comes into contact with the activated carbon 90 to which nitrifying bacteria adhere, ammonia in the raw water is oxidized (nitrified) and finally removed from the treated water through a denitrification step and the like.

[劣化炭の排出]
一般に、硝化細菌の増殖速度は遅いため、水処理での活性炭使用開始から少なくとも1週間、通常は1ヶ月以上経過後にアンモニア性窒素の除去が確認される。一般に、活性炭を長く使用するほど硝化細菌の付着量も多くなるが、長時間(一ヶ月〜10年、通常は数カ月〜5年)使用した活性炭は、カビ臭原因物質やトリハロメタンなどの吸着性能が低下する。
[Degraded coal emissions]
In general, since the growth rate of nitrifying bacteria is slow, removal of ammonia nitrogen is confirmed after at least one week, usually one month or more after the start of use of activated carbon in water treatment. In general, the longer the activated carbon is used, the greater the amount of nitrifying bacteria attached. However, activated carbon that has been used for a long time (1 month to 10 years, usually several months to 5 years) has the ability to adsorb mold odor-causing substances and trihalomethanes. descend.

吸着性能低下の判断基準は特に限定されないが、例えば、予め設定した期間が終了した時、予め設定した水量の処理が終了した時、処理水の水質検査結果(トリハロメタン量、吸光度、2−メチルイソボルネオール量等)が設定値に到達した時、活性炭の品質検査結果(ヨウ素吸着量、その他物性試験)が設定値に到達した時などであり、これらの1以上の設定条件に達した時に活性炭が劣化したと判断し、劣化炭の一部又は全部を水処理工程(浄水場、水処理装置等)から取出し、新炭と交換する。   The criteria for determining the decrease in adsorption performance are not particularly limited. For example, when a preset period ends, when a predetermined amount of water is processed, water quality inspection results (trihalomethane amount, absorbance, 2-methyliso- Such as when the amount of borneol reaches the set value, or when the quality inspection result (iodine adsorption amount, other physical property test) of the activated carbon reaches the set value. Judge that it has deteriorated, take out part or all of the deteriorated charcoal from the water treatment process (water purification plant, water treatment equipment, etc.) and replace it with new charcoal.

劣化炭は、必要に応じて、スクリーン又は篩で夾雑物を除去する工程、原水から水切りする工程、蒸留水や脱塩素水などの洗浄液で洗浄する工程など、1以上の前処理工程を行った後に、下記保存工程に用いる。   As necessary, the deteriorated charcoal was subjected to one or more pretreatment steps such as a step of removing impurities with a screen or a sieve, a step of draining from raw water, a step of washing with a cleaning solution such as distilled water or dechlorinated water. Later, it is used in the following storage step.

[保存工程]
図2(a)、(b)は保存工程を具体的に説明する模式的断面図である。
[Preservation process]
2A and 2B are schematic cross-sectional views for specifically explaining the storage process.

劣化炭9は容器11などに収容し、保存溶液15に浸漬し、又は、保存溶液を散布(噴霧)して劣化炭9を保存溶液15に接触させる。   The deteriorated charcoal 9 is accommodated in a container 11 or the like and immersed in the storage solution 15 or sprayed with the storage solution to bring the deteriorated charcoal 9 into contact with the storage solution 15.

保存溶液15と接触した劣化炭9は、接触に用いた容器11又は別の保存容器21で保存する。これらの容器11、21は、劣化炭9を湿潤状態で保存可能であれば材質や構造は特に限定されず、槽、瓶、コンテナ、袋体、チューブなどの多様なものを使用可能であり、劣化炭9を収容した空間を蓋等の封止部材22で密閉してもよい。これら容器11、21には遮光性の高いものを使用するか、容器11、21ごと暗所で保管することが好ましい。   The deteriorated charcoal 9 that has come into contact with the storage solution 15 is stored in the container 11 used for the contact or another storage container 21. These containers 11 and 21 are not particularly limited in material and structure as long as the deteriorated charcoal 9 can be stored in a wet state, and various kinds of tanks, bottles, containers, bags, tubes, and the like can be used. The space containing the deteriorated charcoal 9 may be sealed with a sealing member 22 such as a lid. It is preferable to use a highly light-shielding container for these containers 11 or 21 or store the containers 11 and 21 together in a dark place.

また、保存工程では、劣化炭9を静置してもよいし、劣化炭9は保存溶液15と共に振とう又は撹拌してよい。好ましくは、好気条件で保存する。   Moreover, in the preservation | save process, the deteriorated charcoal 9 may be left still, and the deteriorated charcoal 9 may be shaken or stirred with the preservation solution 15. Preferably, it is stored under aerobic conditions.

浄水場などから排出される大量の劣化炭9を保存する場合、劣化炭9を保存溶液15から分離(水切り)して保存することもできる。活性炭には細孔が形成されているため、保存溶液15は劣化炭9の表面のみならず内部に浸入し、湿潤状態が維持される。   When a large amount of deteriorated coal 9 discharged from a water purification plant or the like is stored, the deteriorated coal 9 can be separated (drained) from the storage solution 15 and stored. Since pores are formed in the activated carbon, the preservation solution 15 enters not only the surface of the deteriorated charcoal 9 but also the inside thereof, and the wet state is maintained.

しかしながら、保存溶液15の乾燥を防ぐためには、水切りした劣化炭9は密栓コンテナ等の保存容器21に収容し、外気から遮断して保存することが好ましい。更に、保存工程中に連続的又は段階的に保存溶液15を1回以上劣化炭9に噴霧又は散布して劣化炭9の乾燥を防止してもよい。   However, in order to prevent the storage solution 15 from drying, it is preferable to store the drained deteriorated charcoal 9 in a storage container 21 such as a sealed container and cut off from the outside air. Furthermore, you may prevent the deterioration charcoal 9 from drying by spraying or spraying the preservation | save solution 15 to the deterioration charcoal 9 once or more continuously or in steps during a preservation | save process.

いずれの条件で保存する場合も、硝化細菌の硝化活性が維持される温度、即ち、劣化炭に付着された硝化細菌が生存可能であって、保存後の劣化炭が硝化能力(アンモニア性窒素除去)を維持する温度を保存温度とすることが好ましい。具体的には、保存温度の好適範囲は40℃未満であり、好ましくは0〜35℃、より好ましくは0〜30℃、特に好ましくは0〜10℃(冷蔵)とする。なお、保存温度とは、劣化炭9の温度のみならず、その周囲(保存溶液15、容器11、21又は大気)の温度を意味し、劣化炭9の周囲の温度が適温であれば、劣化炭9も適温にされたと推定する。   When stored under any conditions, the temperature at which the nitrifying activity of the nitrifying bacteria is maintained, that is, the nitrifying bacteria attached to the deteriorated charcoal can survive, and the deteriorated charcoal after storage is capable of nitrifying (removing ammonia nitrogen) ) Is preferably kept at the storage temperature. Specifically, the preferable range of the storage temperature is less than 40 ° C, preferably 0 to 35 ° C, more preferably 0 to 30 ° C, and particularly preferably 0 to 10 ° C (refrigerated). The storage temperature means not only the temperature of the deteriorated charcoal 9 but also the temperature around it (the storage solution 15, the container 11, 21 or the atmosphere). It is presumed that the charcoal 9 was also brought to an appropriate temperature.

上記保存温度は保存工程の間に変動させてもよく、更には、上記好適範囲外の温度にまで変動させることも可能であるが、好ましくは保存工程の開始から終了まで、保存溶液15及び劣化炭9の温度を上述した好適範囲内(例:0〜35℃)に維持する。   The storage temperature may be changed during the storage process, and further, may be changed to a temperature outside the above preferred range, but preferably the storage solution 15 and the deterioration from the start to the end of the storage process. The temperature of the charcoal 9 is maintained within the above-described preferred range (example: 0 to 35 ° C.).

次に、保存溶液15について具体的に説明する。   Next, the preservation solution 15 will be specifically described.

[保存溶液]
本発明に用いる保存溶液15は特に限定されないが、例えば、脱塩素道水、蒸留水などの水を主成分とし、好ましくは無機塩を更に含有する。
[Preservation solution]
Although the preservation | save solution 15 used for this invention is not specifically limited, For example, water, such as dechlorination water and distilled water, is the main component, Preferably it further contains inorganic salt.

無機塩は特に限定されず、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、亜硝酸ナトリウム、酢酸ナトリウム、炭酸水素ナトリウム、塩化カリウム、硫酸カリウム、硝酸カリウム、亜硝酸カリウム、酢酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、酢酸アンモニウム、硫酸マグネシウム、塩化カルシウムからなる群より選択されるいずれか1種以上の無機塩を使用することができる。これらの中でも、塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムが好ましく、より好ましくは塩化ナトリウム又は塩化カリウム、特に好ましくは塩化ナトリウムである。   The inorganic salt is not particularly limited, and sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, sodium acetate, sodium bicarbonate, potassium chloride, potassium sulfate, potassium nitrate, potassium nitrite, potassium acetate, dipotassium hydrogen phosphate, phosphoric acid Any one or more inorganic salts selected from the group consisting of potassium dihydrogen, ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium acetate, magnesium sulfate, and calcium chloride can be used. Among these, sodium chloride, potassium chloride, calcium chloride, sodium sulfate, potassium sulfate, and magnesium sulfate are preferable, sodium chloride or potassium chloride is more preferable, and sodium chloride is particularly preferable.

本発明では、保存温度が上記好適範囲の範囲内又は範囲外にある場合に、上記のような無機塩を保存溶液15に含有させ、劣化炭に付着した微生物(硝化細菌)に適度な浸透圧ストレスを付与する場合も含む。浸透圧は、例えば、無機塩濃度により調整可能である。   In the present invention, when the storage temperature is within or outside the above-mentioned preferred range, the above-mentioned inorganic salt is contained in the storage solution 15, and an appropriate osmotic pressure is applied to microorganisms (nitrifying bacteria) adhering to the deteriorated coal. This includes cases where stress is applied. The osmotic pressure can be adjusted by, for example, the inorganic salt concentration.

保存溶液の無機塩濃度は特に限定されないが、例えば、0.017〜3.5mol/L(塩化ナトリウム換算で約1〜200g/L)、好ましくは0.017〜1.8mol/L(塩化ナトリウム換算で約1〜100g/L)、より好ましくは、0.085〜1.75mol/L(塩化ナトリウム換算で約5〜100g/L)である。   The inorganic salt concentration of the preservation solution is not particularly limited, and is, for example, 0.017 to 3.5 mol / L (about 1 to 200 g / L in terms of sodium chloride), preferably 0.017 to 1.8 mol / L (sodium chloride). About 1 to 100 g / L in terms of conversion, and more preferably 0.085 to 1.75 mol / L (about 5 to 100 g / L in terms of sodium chloride).

なお、27℃における0.085〜1.75mol/L(塩化ナトリウム換算で5〜100g/L)を浸透圧に換算すると、4.2×10〜8.6×10Paとなり(pV=nRT、R=8.31×10、T=273+27℃=300Kと規定)。この数値範囲が、劣化炭の保存に好適な浸透圧範囲の一例である。 When 0.085 to 1.75 mol / L ( 5 to 100 g / L in terms of sodium chloride) at 27 ° C. is converted to osmotic pressure, it becomes 4.2 × 10 5 to 8.6 × 10 6 Pa (pV = nRT, R = 8.31 × 10 3 , T = 273 + 27 ° C. = 300K). This numerical range is an example of an osmotic pressure range suitable for storing deteriorated coal.

なお、浸透圧の調整により劣化炭を保存する場合も、劣化炭に付着した硝化細菌が生存可能であって、保存後の劣化炭が硝化能力(アンモニア性窒素除去)を維持する圧力を「硝化活性が維持されるような浸透圧ストレス」とする。このように、保存溶液15と接触した微生物(硝化細菌)に適度な浸透圧ストレスを与え、長期の活性維持を可能にする。   In addition, when storing deteriorated coal by adjusting the osmotic pressure, the nitrifying bacteria attached to the deteriorated charcoal can survive, and the pressure at which the deteriorated coal after storage maintains the nitrification ability (removal of ammonia nitrogen) The osmotic stress is such that the activity is maintained. In this way, an appropriate osmotic stress is applied to the microorganisms (nitrifying bacteria) that have come into contact with the storage solution 15 to enable long-term activity maintenance.

保存溶液15の浸透圧又は無機塩濃度が上記好適な範囲内であれば、劣化炭9の保存温度は特に限定されない。保存溶液15の凝固点は無機塩濃度に左右されるので、例えば、無機塩濃度に応じた保存溶液15の凝固点温度を保存温度の下限とすることもできる。   As long as the osmotic pressure or the inorganic salt concentration of the storage solution 15 is within the above preferred range, the storage temperature of the deteriorated charcoal 9 is not particularly limited. Since the freezing point of the storage solution 15 depends on the inorganic salt concentration, for example, the freezing point temperature of the storage solution 15 according to the inorganic salt concentration can be set as the lower limit of the storage temperature.

なお、多くの硝化細菌は好気性細菌であるため、無機塩の他にも、保存溶液15にある程度の酸素を含有させることが好ましい。保存溶液15の溶存酸素量が少ない場合は、劣化炭9を保存溶液15に接触させる前(保存工程の開始前)と、劣化炭9を保存溶液15に接触させている間(保存工程中)の一方又は両方で、保存溶液15に酸素を供給する。   In addition, since many nitrifying bacteria are aerobic bacteria, it is preferable that the preservation solution 15 contains a certain amount of oxygen in addition to the inorganic salt. When the amount of dissolved oxygen in the storage solution 15 is small, before the deteriorated charcoal 9 is brought into contact with the storage solution 15 (before the start of the storage step) and while the deteriorated charcoal 9 is in contact with the storage solution 15 (during the storage step). One or both of the above supply oxygen to the storage solution 15.

酸素の供給は特に限定されないが、空気、圧縮空気、酸素ガス又はそれらの混合ガスを含む酸素含有ガスを用いることが好ましい。酸素含有ガスの供給方法も特に限定されないが、酸素含有ガスを保存溶液15中に噴出する方法(散気)、酸素含有ガス雰囲気下で保存溶液15を循環又は撹拌する方法、或いは高圧の酸素含有ガスに保存溶液15を曝す方法など、多様な曝気方法を広く使用することができる。   Although supply of oxygen is not particularly limited, it is preferable to use an oxygen-containing gas including air, compressed air, oxygen gas, or a mixed gas thereof. The method for supplying the oxygen-containing gas is not particularly limited, but a method of blowing the oxygen-containing gas into the storage solution 15 (aeration), a method of circulating or stirring the storage solution 15 in an oxygen-containing gas atmosphere, or a high-pressure oxygen-containing gas Various aeration methods such as a method of exposing the storage solution 15 to gas can be widely used.

保存溶液15の溶存酸素量(濃度)は特に限定されないが、溶存酸素量は、例えば、保存温度での飽和溶存酸素量の1/4、好ましくは1/2を下限とし、より具体的には2.0mg/L以上、好ましくは4.0mg/L以上とする。その上限は特に限定されず、例えば、飽和溶存酸素濃度である。飽和溶存酸素量は温度により変化するため、例えば25℃での好ましい溶存酸素量は8.1mg/L以下(25℃での飽和値)になる。溶存酸素量は、隔膜電極法により測定することができる(JIS K0102 01)。   The amount of dissolved oxygen (concentration) of the preservation solution 15 is not particularly limited, but the amount of dissolved oxygen is, for example, 1/4 of the amount of saturated dissolved oxygen at the preservation temperature, preferably 1/2, and more specifically, 2.0 mg / L or more, preferably 4.0 mg / L or more. The upper limit is not particularly limited, and is, for example, a saturated dissolved oxygen concentration. Since the saturated dissolved oxygen amount varies depending on the temperature, for example, the preferable dissolved oxygen amount at 25 ° C. is 8.1 mg / L or less (saturated value at 25 ° C.). The amount of dissolved oxygen can be measured by the diaphragm electrode method (JIS K010201).

保存工程の間、溶存酸素量の好適範囲を保存工程の全行程で維持してもよいし、一部のみを好適範囲としてもよい。   During the storage process, the preferable range of the dissolved oxygen amount may be maintained in the entire process of the storage process, or only a part may be set as the preferable range.

保存溶液15の溶存酸素量は、保存工程中に変動することもあるが、溶存酸素量の実測値又は予想値が、上記下限値(例:2.0mg/L)を下回る場合は、保存工程中の保存溶液15に対し、酸素含有ガスを連続して又は断続的に1回以上追加供給することもできる。更には、水と反応して酸素を発生する酸素発生剤(過酸化カルシウム等を含む)を添加し、反応の進行と共に徐々に酸素を追加供給することも可能である。   The amount of dissolved oxygen in the preservation solution 15 may fluctuate during the preservation step, but when the actual value or the predicted value of the amount of dissolved oxygen is below the lower limit (eg, 2.0 mg / L), the preservation step The oxygen-containing gas can be additionally supplied one or more times continuously or intermittently to the storage solution 15 therein. Furthermore, it is also possible to add an oxygen generator (including calcium peroxide) that generates oxygen by reacting with water, and gradually supply additional oxygen as the reaction proceeds.

保存溶液15には、無機塩以外にも、窒素源、炭素源(炭酸塩、グルコース等)、微量元素(Co、Cu、Zn、Ni等)、緩衝剤などの添加剤を1種以上添加することも可能である。ただし、有機物由来の炭素源が多すぎると、大腸菌、一般細菌類等が増殖するおそれがある。例えば、劣化炭と接触前の保存溶液15は、好ましくは全有機炭素量(TOC、燃焼触媒酸化方式)が10mg/L以下、より好ましくは3mg/L以下である。また、劣化炭と接触前の保存溶液15は、生物化学的酸素要求量(C−BOD)が10mg/L以下が好ましく、より好ましくは2mg/L以下、特に1mg/L以下が好ましい。なお、C−BODは、N−アリルチオ尿素(ATU)の添加で硝化作用を抑制した時のBOD(ATU−BOD)であり、有機物質分解にともなう酸素消費量を意味する。   In addition to the inorganic salt, the preservation solution 15 includes one or more additives such as a nitrogen source, a carbon source (carbonate, glucose, etc.), a trace element (Co, Cu, Zn, Ni, etc.), and a buffer. It is also possible. However, if there are too many organic carbon sources, Escherichia coli, general bacteria, etc. may grow. For example, the preservation solution 15 before contact with deteriorated coal preferably has a total organic carbon content (TOC, combustion catalytic oxidation method) of 10 mg / L or less, more preferably 3 mg / L or less. In addition, the storage solution 15 before contact with the deteriorated charcoal preferably has a biochemical oxygen demand (C-BOD) of 10 mg / L or less, more preferably 2 mg / L or less, and particularly preferably 1 mg / L or less. C-BOD is BOD (ATU-BOD) when the nitrification action is suppressed by addition of N-allylthiourea (ATU), and means oxygen consumption accompanying organic substance decomposition.

保存溶液15には、更に、無機栄養源(P、S、K、Ca、Mg、Fe、Na等)を添加することも可能である。無機栄養源としてはリンが好ましく、より好ましくは、リンとしての濃度が1−10mg/Lになるようリン酸を添加する。   Further, an inorganic nutrient source (P, S, K, Ca, Mg, Fe, Na, etc.) can be added to the preservation solution 15. As an inorganic nutrient source, phosphorus is preferable, and more preferably, phosphoric acid is added so that the concentration as phosphorus is 1-10 mg / L.

保存溶液に緩衝剤やpH調整剤(酸、アルカリ)などを1種以上添加し、pH調整することも可能である。例えば、緩衝剤は、硝化細菌の代謝産物による保存溶液pHの変動防止のために使用され、HEPES(2‐[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸)、Tris(トリスヒドロキシメチルアミノメタン)等を使用することができる。保存溶液のpHは特に限定されないが、例えば、pH4〜10、好ましくは約4〜9に調整して使用する。   It is also possible to adjust the pH by adding at least one buffer or pH adjuster (acid, alkali) or the like to the preservation solution. For example, the buffer is used to prevent the stock solution pH from fluctuating by nitrifying bacteria metabolites, and is HEPES (2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid), Tris (Tris). Hydroxymethylaminomethane) and the like can be used. Although the pH of a preservation | save solution is not specifically limited, For example, it adjusts and uses pH 4-10, Preferably it is about 4-9.

また、劣化炭の硝化活性が低く、硝化細菌濃度が低いと推測される場合には、市販の硝化細菌を保存溶液に添加することもできる。   Moreover, when it is estimated that the nitrification activity of degraded charcoal is low and the concentration of nitrifying bacteria is low, commercially available nitrifying bacteria can be added to the preservation solution.

保存溶液15に添加する添加剤は上記のものに限定されず、硝化細菌以外の生物(稚魚、貝、原生生物、藻類、酵母、真菌、放線菌、古細菌、細菌類など)の異常繁殖を防止する目的で、防カビ剤や抗菌剤などの添加も可能である。   Additives to be added to the preservation solution 15 are not limited to the above, but abnormal growth of organisms other than nitrifying bacteria (fry, shellfish, protists, algae, yeast, fungi, actinomycetes, archaea, bacteria, etc.) In order to prevent this, an antifungal agent or an antibacterial agent can be added.

上記のような保存溶液15の使用により、例えば1〜720日、好ましくは1〜360日もの長期間の保存が可能になる。なお、本発明では、劣化炭9と保存溶液15を接触開始(混合)したときから後述する使用方法での使用開始までを保存期間とし、60日以上を長期間と定義し、60日以上の保存を長期保存とする。   The use of the storage solution 15 as described above enables storage for a long period of time, for example, 1 to 720 days, preferably 1 to 360 days. In the present invention, the period from the start of contact (mixing) of the deteriorated charcoal 9 and the storage solution 15 to the start of use in the method of use described later is defined as the storage period, 60 days or longer is defined as a long period, and 60 days or longer. Storage is long-term storage.

保存溶液15で保存した劣化炭9は硝化細菌の活性が維持されているため、劣化炭改良品として、図3(a)、(b)のような方法で使用することができる。   Since the deteriorated charcoal 9 stored in the storage solution 15 maintains the activity of nitrifying bacteria, it can be used as a deteriorated charcoal improved product by the methods shown in FIGS. 3 (a) and 3 (b).

[第一の使用方法]
図3(a)は使用方法の一例を示す概略図であって、劣化炭改良品9aを水処理に用いる方法を示している。この水処理工程は特に限定されず、例えば、劣化炭9の排出で説明した上記水処理工程のいずれかであってもよく、好ましくは、劣化炭9を排出した水処理工程と同じ水処理工程に使用する。
[First usage]
FIG. 3A is a schematic view showing an example of the method of use, and shows a method of using the deteriorated charcoal improved product 9a for water treatment. This water treatment process is not particularly limited, and may be, for example, any of the water treatment processes described above for discharging the deteriorated charcoal 9, preferably the same water treatment process as the water treatment process discharging the deteriorated charcoal 9 Used for.

水処理工程での使用の一例を説明すると、劣化炭改良品9aを活性炭の一部又は全部として生物活性炭槽に収容する。保存溶液15の成分(無機塩等)が問題にならないのであれば、保存溶液15と共に劣化炭改良品9aを収容してもよいが、好ましくは劣化炭改良品9aを保存溶液15から分離(水切り)し、必要に応じて洗浄してから使用する。   If an example of the use in a water treatment process is demonstrated, the deterioration charcoal improvement goods 9a will be accommodated in a biological activated carbon tank as a part or all of activated carbon. If the components (inorganic salts, etc.) of the preservation solution 15 are not a problem, the deteriorated charcoal improvement product 9a may be accommodated together with the preservation solution 15, but preferably the deterioration charcoal improvement product 9a is separated from the preservation solution 15 (drained). ) And wash before use.

劣化炭改良品9aを含む活性炭の充填層に原水を通水する(図5(b))、または、劣化炭改良品9aを含む活性炭を流動状態で原水に接触させる(図5(c))などの多様な方法で、原水を劣化炭改良品9a及び活性炭90に接触させる。   The raw water is passed through a packed bed of activated carbon containing the deteriorated charcoal improved product 9a (FIG. 5 (b)), or the activated carbon containing the deteriorated charcoal improved product 9a is brought into contact with the raw water in a fluid state (FIG. 5 (c)). The raw water is brought into contact with the deteriorated charcoal improved product 9a and the activated carbon 90 by various methods.

劣化炭改良品9aにはすでに硝化細菌が付着しており、硝化活性が高いので、新炭のみで活性炭処理を行ったときと比較して、非常に短時間で原水のアンモニア除去が開始される。しかも、劣化炭改良品9aは、劣化炭9を排出した工程と同様の水処理工程で使用されるので、硝化細菌の生育条件が近似しており、硝化細菌の環境適応が高い。   Since the nitrifying bacteria have already adhered to the deteriorated charcoal improved product 9a and the nitrifying activity is high, the removal of ammonia from the raw water is started in a very short time compared to when the activated carbon treatment is performed with only the new charcoal. . Moreover, since the deteriorated charcoal improved product 9a is used in the same water treatment process as the process of discharging the deteriorated charcoal 9, the growth conditions of the nitrifying bacteria are approximate, and the environmental adaptation of the nitrifying bacteria is high.

水処理工程で劣化炭改良品9aを使用する場合、活性炭の全てを劣化炭改良品9aとすることもできるが、劣化炭改良品9aは保存状態によっては活性炭本来の吸着能が劣る場合もあるので、好ましくは活性炭90(新炭)と劣化炭改良品9aとを混合して使用する。劣化炭改良品9aの使用割合は特に限定されないが、劣化炭改良品9aと活性炭90との合計を100体積%としたとき、劣化炭改良品9aの量は20体積%未満が好ましく、好ましくは1体積%以上20体積%未満、より好ましくは1体積%以上10体積%未満である。   When the deteriorated charcoal improved product 9a is used in the water treatment process, all of the activated carbon can be changed to the deteriorated charcoal improved product 9a. However, the deteriorated charcoal improved product 9a may be inferior in its original adsorption ability depending on the storage state. Therefore, the activated carbon 90 (new coal) and the deteriorated coal improved product 9a are preferably mixed and used. The use ratio of the deteriorated charcoal improved product 9a is not particularly limited, but when the total of the deteriorated charcoal improved product 9a and the activated carbon 90 is 100% by volume, the amount of the deteriorated charcoal improved product 9a is preferably less than 20% by volume, preferably 1 volume% or more and less than 20 volume%, More preferably, it is 1 volume% or more and less than 10 volume%.

[第二の使用方法]
図3(b)は使用方法の他の例を示す概略図であって、劣化炭改良品9aをアンモニア性窒素除去剤として魚介類の飼育に用いる方法を示している。
[Second usage]
FIG. 3B is a schematic view showing another example of the method of use, and shows a method of using deteriorated charcoal improved product 9a as an ammoniacal nitrogen removing agent for raising seafood.

魚介類は、淡水魚、海水魚、貝類、節足動物(甲殻類)、刺胞動物(クラゲ類)等特に限定されないが、いずれの場合も魚介類の飼育場(水槽など)に劣化炭改良品9aを添加する。   The seafood is not particularly limited to freshwater fish, saltwater fish, shellfish, arthropods (crustaceans), cnidarians (jellyfish), etc., but in any case, deteriorated charcoal-improved products for seafood breeding grounds (water tanks, etc.) Add 9a.

劣化炭改良品9aは、保存溶液15から分離(水切り、洗浄)してから添加してもよいが、海水生物などの耐塩性生物の飼育に使用する場合、保存溶液15と共に(水切りせずに)劣化炭改良品9aを添加してもよい。   The deteriorated charcoal improved product 9a may be added after being separated (drained and washed) from the preservation solution 15, but when used for breeding salt-tolerant organisms such as seawater organisms, the preservation charcoal improved product 9a (without draining) is used. ) Deteriorated charcoal improved product 9a may be added.

添加量は特に限定されないが、水槽の容量、又は、水槽に収容した飼育用水(淡水、海水)の容積に対し、0.01〜10%(重量/体積)の劣化炭改良品9aを添加する。添加方法は特に限定されず、飼育用水に直接添加(散布)してもよいし、ネット(網)のような通水性の袋に収容してから飼育用水内に吊るして配置してもよい。更には、劣化炭改良品9aをカラム充填し、ポンプ等を利用して飼育用水をカラムに通水し、飼育用水をカラムと水槽の間で循環させてもよい。   The addition amount is not particularly limited, but 0.01 to 10% (weight / volume) of the deteriorated charcoal improvement product 9a is added to the capacity of the aquarium or the volume of breeding water (fresh water, seawater) accommodated in the aquarium. . The addition method is not particularly limited, and the addition method may be directly added (sprayed) to the breeding water, or may be hung in the breeding water after being housed in a water-permeable bag such as a net. Further, the deteriorated charcoal improved product 9a may be filled in the column, the breeding water may be passed through the column using a pump or the like, and the breeding water may be circulated between the column and the water tank.

いずれの場合も、劣化炭改良品9aを魚介類飼育の初期段階から添加することが好ましい。魚介類の餌、死骸、排出物は分解され、アンモニアの発生源となるが、劣化炭改良品9aには硝化細菌が付着しているため、飼育初期段階からアンモニアを分解除去可能であり、魚介類のアンモニア中毒を防止し、安定した飼育を可能にする。   In any case, it is preferable to add the deteriorated charcoal improved product 9a from the initial stage of seafood breeding. The food, carcasses, and discharges of seafood are decomposed and become a source of ammonia. However, since nitrifying bacteria adhere to the deteriorated charcoal improved product 9a, it is possible to decompose and remove ammonia from the initial breeding stage. Prevents poisoning of ammonia and enables stable breeding.

また、飼育の初期段階を経過した後でも、劣化炭改良品9aの添加は可能であり、劣化炭改良品9aを一回のみならず、複数回断続的に添加してもよい。劣化炭改良品9aの継続使用により、餌の過剰投入や排出物の増加などによるアンモニア性窒素の一時的な濃度上昇の防止が可能になり、アンモニア中毒の長期防止が可能になる。   Moreover, even after the initial stage of breeding has passed, the deteriorated charcoal improved product 9a can be added, and the deteriorated charcoal improved product 9a may be added not only once but intermittently a plurality of times. The continuous use of the deteriorated charcoal improved product 9a makes it possible to prevent a temporary increase in concentration of ammonia nitrogen due to excessive input of feed or increase in emissions, and to prevent ammonia poisoning for a long time.

アンモニア性窒素除去剤としての劣化炭改良品9aは、家庭用から産業用(養殖場)まで多様な条件で使用することができる。また、水槽等の閉鎖空間のみならず、海上養殖などの開放空間での使用も可能である。   The deteriorated charcoal-improved product 9a as an ammoniacal nitrogen removing agent can be used under various conditions from household use to industrial use (culture farm). Moreover, it can be used not only in a closed space such as an aquarium but also in an open space such as aquaculture.

なお、劣化炭改良品9aの使用方法は上記のものに限定されず、アンモニア性窒素の分解又は除去が必要であれば、例えば、し尿処理場などの硝化槽、園芸用、土壌改良、水耕栽培等にも使用可能である。さらに、超音波処理などにより劣化炭改良品から硝化細菌を剥離させ、菌体懸濁液や菌体粉体品などとしたものもアンモニア性窒素の分解又は除去に使用可能である。   In addition, the usage method of the deteriorated charcoal improved product 9a is not limited to the above, and if it is necessary to decompose or remove ammoniacal nitrogen, for example, a nitrification tank such as a human waste treatment plant, gardening, soil improvement, hydroponics It can also be used for cultivation. Furthermore, nitrifying bacteria are peeled from the deteriorated charcoal-improved product by ultrasonic treatment or the like, and a cell suspension or cell powder product can be used for decomposition or removal of ammonia nitrogen.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

蒸留水に塩化ナトリウムを添加し、塩化ナトリウム濃度が0、1、5、10、50、100、200g/Lの7種類の保存溶液を、別々のメジューム瓶でそれぞれ100mlずつ作製した。各メジューム瓶の保存溶液の溶存酸素量を6.0mg/Lにし、次いで、浄水場から採取した劣化炭10g(湿重)を各保存溶液にそれぞれ浸漬し、4℃で30日間冷蔵保存し、劣化炭改良品を製造した。   Sodium chloride was added to distilled water, and 7 types of stock solutions with sodium chloride concentrations of 0, 1, 5, 10, 50, 100, and 200 g / L were prepared in 100 ml each in separate medium bottles. The amount of dissolved oxygen in the storage solution of each medium bottle is 6.0 mg / L, and then 10 g (wet weight) of deteriorated charcoal collected from the water purification plant is immersed in each storage solution and stored refrigerated at 4 ° C. for 30 days. A deteriorated charcoal improved product was produced.

蒸留水に塩化アンモニウム1.95mg/L(アンモニア性窒素0.5mg/L相当)、炭酸水素ナトリウム5.86mg/L、リン酸水素二ナトリウム・12水和物0.58mg/Lを添加して模擬原水(pH無調整)を作製した。   Add 1.95 mg / L ammonium chloride (equivalent to 0.5 mg / L ammonia nitrogen), 5.86 mg / L sodium hydrogen carbonate, 0.58 mg / L disodium hydrogen phosphate dodecahydrate to distilled water. Simulated raw water (pH unadjusted) was prepared.

上述した各劣化炭改良品と、対比実験用の劣化炭(保存溶液の浸漬なし)を、それぞれ2.5gずつ模擬原水50mlに投入し、120rpm、30℃で1時間振盪し、アンモニア性窒素の分解試験を行った。   Each of the above-mentioned deteriorated charcoal improved products and the deteriorated charcoal for comparison experiments (without soaking of the preservation solution) were added to 50 ml of simulated raw water, respectively, and shaken at 120 rpm, 30 ° C. for 1 hour, A degradation test was performed.

振盪後の模擬原水の上澄を25ml採取し、1‐ナフトールを用いた吸光光度法にてアンモニア性窒素濃度を測定した。その測定結果を図6に示す。   25 ml of the supernatant of the simulated raw water after shaking was collected, and the ammoniacal nitrogen concentration was measured by an absorptiometric method using 1-naphthol. The measurement results are shown in FIG.

図6に示すように、無機塩を含む保存溶液に浸漬しなかった試験区では、アンモニア性窒素の分解能(硝化活性)は確認されなかったのに対し、無機塩を含む保存溶液に浸漬した試験区においては、硝化活性が確認された。   As shown in FIG. 6, in the test section that was not immersed in a storage solution containing an inorganic salt, the resolution (nitrification activity) of ammoniacal nitrogen was not confirmed, whereas the test immersed in a storage solution containing an inorganic salt In the ward, nitrification activity was confirmed.

無機塩濃度については、塩化ナトリウム塩濃度1〜100g/L(無機塩濃度0.017mol/L〜1.712mol/L)の範囲で高い硝化活性が確認された。一方で、塩化ナトリウムを過剰添加し、その濃度が200g/L(3.423mol/L)を超えると硝化活性が低下した。   As for the inorganic salt concentration, high nitrification activity was confirmed in the range of sodium chloride salt concentration of 1 to 100 g / L (inorganic salt concentration of 0.017 mol / L to 1.712 mol / L). On the other hand, when sodium chloride was added excessively and the concentration exceeded 200 g / L (3.423 mol / L), the nitrification activity decreased.

以上の結果から、保存溶液の無機塩濃度は3.5mol/L以下が好ましく、より好ましくは0.017mol/L〜1.8mol/Lであることが確認された。   From the above results, it was confirmed that the inorganic salt concentration of the preservation solution is preferably 3.5 mol / L or less, more preferably 0.017 mol / L to 1.8 mol / L.

上記実施例1と同じ条件で塩化ナトリウム濃度が10g/Lの保存溶液を作製した。この保存溶液100mlを5本のメジューム瓶にそれぞれ収容した。これらの保存溶液を脱気、曝気し、溶存酸素量を、0、2.0、4.0、6.0、8.1mg/Lにそれぞれ調整した。なお、曝気は室温21℃で行い、8.1mg/Lは21℃、塩化ナトリウム濃度10g/L時の飽和溶存酸素量であるから、8.1mg/Lの保存溶液は飽和するまで曝気を行ったことになる。   A stock solution having a sodium chloride concentration of 10 g / L was prepared under the same conditions as in Example 1. 100 ml of this stock solution was placed in each of five medium bottles. These stock solutions were degassed and aerated, and the amount of dissolved oxygen was adjusted to 0, 2.0, 4.0, 6.0, and 8.1 mg / L, respectively. Aeration is performed at a room temperature of 21 ° C., and 8.1 mg / L is a saturated dissolved oxygen amount at 21 ° C. and a sodium chloride concentration of 10 g / L. Therefore, the storage solution of 8.1 mg / L is aerated until it is saturated. That's right.

溶存酸素量を調整した各保存溶液に、実施例1と同じ劣化炭10g(湿重)を浸漬し、蓋をして冷蔵(4℃)で30日間保存した。その後、実施例1と同様の手法でアンモニア性窒素分解能を調査した。その結果を図7に示す。   10 g (wet weight) of the same deteriorated charcoal as in Example 1 was immersed in each storage solution in which the amount of dissolved oxygen was adjusted, covered, and stored in a refrigerator (4 ° C.) for 30 days. Thereafter, ammonia nitrogen decomposing ability was investigated by the same method as in Example 1. The result is shown in FIG.

図7に示す通り、溶存酸素量4.0mg/L以上で高い硝化活性が確認された。このことから、保存溶液中の溶存酸素量は4.0mg/L以上が好ましいと考えられる。   As shown in FIG. 7, high nitrification activity was confirmed at a dissolved oxygen content of 4.0 mg / L or more. From this, it is considered that the amount of dissolved oxygen in the preservation solution is preferably 4.0 mg / L or more.

上記実施例2と同じ条件で塩化ナトリウム濃度10g/L、溶存酸素量6.0mg/Lの保存溶液100mlを複数本のメジューム瓶でそれぞれ作製した。メジューム瓶を異なる温度で保存し、ゼロ日、180日、360日、540日、720日それぞれ保存した劣化炭(劣化炭改良品)について、実施例1と同様の手法でアンモニア性窒素の分解能を調査した。分解されたアンモニア性窒素を濃度として表したものを図8(a)に、アンモニア性窒素除去率として計算したものを図8(b)に示す。   Under the same conditions as in Example 2 above, 100 ml of a stock solution having a sodium chloride concentration of 10 g / L and a dissolved oxygen content of 6.0 mg / L was prepared in each of a plurality of medium bottles. For the deteriorated charcoal (degraded charcoal improved product) stored at different temperatures and stored at zero temperature, 180 days, 360 days, 540 days, and 720 days respectively, the resolution of ammoniacal nitrogen was reduced in the same manner as in Example 1. investigated. FIG. 8A shows the concentration of decomposed ammonia nitrogen as the concentration, and FIG. 8B shows the ammonia nitrogen removal rate calculated as the concentration.

図8に示すように、0〜30℃の保存温度では硝化活性が長期間(1〜360日)維持されたが、保存温度が40℃〜50℃では硝化活性の消失が極端に早く、保存180日目で除去率が40%以下まで低下した。   As shown in FIG. 8, the nitrification activity was maintained for a long time (1 to 360 days) at a storage temperature of 0 to 30 ° C., but the disappearance of the nitrification activity was extremely fast and stored at a storage temperature of 40 ° C. to 50 ° C. On the 180th day, the removal rate decreased to 40% or less.

以上のことから、保存温度が40℃未満、好ましくは0℃〜35℃、より好ましくは0〜30℃であれば、約1年もの長期保存後でも硝化活性が維持されることが確認された。   From the above, it has been confirmed that if the storage temperature is less than 40 ° C, preferably 0 ° C to 35 ° C, more preferably 0 to 30 ° C, nitrification activity is maintained even after long-term storage for about 1 year. .

なお、無機塩を含む保存溶液(塩化ナトリウム水溶液)を使用せず、劣化炭を保存した場合は、0〜50℃のいずれの温度帯でも10日以内に硝化活性が完全に消失し、短期間しか保存できないことがわかった。   In addition, in the case of storing deteriorated charcoal without using a storage solution (sodium chloride aqueous solution) containing an inorganic salt, the nitrification activity completely disappears within 10 days at any temperature range of 0 to 50 ° C. I found that I could only save it.

‐第一の使用方法
劣化炭改良品を硝化細菌の種菌として浄水場の生物活性炭槽に導入することを想定した試験を行った。
-First method of use A test was conducted assuming that the deteriorated charcoal improved product was introduced into the biological activated carbon tank of the water treatment plant as an inoculum of nitrifying bacteria.

試験に供する劣化炭改良品は、実施例3と同じ保存溶液に劣化炭を4℃、長期間(180日間)保存したものを用いた。保存後の劣化炭改良品は、純水で軽く洗浄して塩化ナトリウムを除去したのち、カラム(直径20mm)に新炭(硝化細菌が付着していない乾燥粒状活性炭)63ml、劣化炭改良品7ml(10%相当)を充填した。   As the deteriorated charcoal improved product to be used for the test, a deteriorated charcoal stored at 4 ° C. for a long period (180 days) in the same storage solution as in Example 3 was used. After storage, the deteriorated charcoal improved product is washed lightly with pure water to remove sodium chloride, and then 63 ml of new charcoal (dried granular activated carbon with no nitrifying bacteria attached) and 7 ml of deteriorated charcoal improved product on the column (diameter 20 mm). (Equivalent to 10%) was filled.

実施例1と同じ条件で模擬原水(pH無調整)を作製し、この模擬原水を、室温、空間速度SV=5h-1の通水量で、劣化炭改良品を添加した上記カラムと、新炭のみを充填したカラム(100%新炭、対照区)に通水して通水試験を行った。 Simulated raw water (pH unadjusted) was prepared under the same conditions as in Example 1, and this simulated raw water was added to the above-mentioned column to which a deteriorated charcoal improved product was added at a room temperature and a space flow rate of SV = 5 h −1. A water flow test was conducted by passing water through a column (100% fresh coal, control group) packed only with water.

模擬原水および各試験区の処理水について、1−ナフトール法にてアンモニア性窒素の測定を行った。その結果を図9に示す。   Ammonia nitrogen was measured by a 1-naphthol method for simulated raw water and treated water in each test section. The result is shown in FIG.

長期保存後の劣化炭改良品による試験区では、通水15日目では0.5mg/L相当のアンモニア性窒素が0.1mg/L程度まで減少していることが確認され、それ以降も0.1mg/Lを上回ることはなかった。   In the test plot with deteriorated charcoal improved products after long-term storage, it was confirmed that ammonia nitrogen equivalent to 0.5 mg / L decreased to about 0.1 mg / L on the 15th day of water flow, and thereafter 0 .1 mg / L was not exceeded.

他方、対照区では、硝化細菌の自然付着により通水120日目でようやく0.2mg/Lを下回った。このことから、本発明により保存された劣化炭を使用することで、対照区(従来の浄水場に相当)で必要な試運転期間を100日以上短縮できることが実証された。   On the other hand, in the control group, it finally fell below 0.2 mg / L on the 120th day of water flow due to spontaneous attachment of nitrifying bacteria. From this, it was demonstrated that by using the deteriorated charcoal preserved according to the present invention, it is possible to shorten the trial operation period required in the control zone (equivalent to a conventional water purification plant) by 100 days or more.

‐第二の使用方法
長期保存後の劣化炭改良品を、アンモニア性窒素除去として魚類飼育に使用する試験を行った。
-Second method of use A test was conducted in which the deteriorated charcoal after long-term storage was used for fish breeding as ammonia nitrogen removal.

魚類飼育用の水槽(水量12L)に、塩化アンモニアを添加して飼育用水(水槽水)のアンモニア性窒素濃度を意図的に100mg/Lにした。   Ammonia chloride was added to a fish tank (water volume: 12 L) to intentionally make the concentration of ammoniacal nitrogen in the water for breeding (water tank water) 100 mg / L.

実施例4と同じ条件で劣化炭改良品を製造し、この劣化炭改良品200g(湿重)を水槽に添加し、水槽底部に堆積させた。この水槽に、モデル生物としてヒメダカ(Oryzias latipes)を10匹投入した後、曝気をしながら室温で5日間飼育した。飼育の間、オートフィーダーにより1日2回(12時間毎)ヒメダカに給餌した。   A deteriorated charcoal improved product was produced under the same conditions as in Example 4, and 200 g (wet weight) of the deteriorated charcoal improved product was added to the water tank and deposited on the bottom of the water tank. After ten medaka (Oryzias latipes) were introduced into this aquarium as a model organism, they were reared at room temperature for 5 days while aerated. During breeding, the medaka was fed twice a day (every 12 hours) by an auto feeder.

また、劣化炭改良品の代わりに、硝化細菌が付着していない活性炭(乾燥粒状活性炭の新炭)を使用した試験区を対照区として設け、同様の飼育試験を行った。   In addition, instead of the deteriorated charcoal improved product, a test group using activated carbon to which nitrifying bacteria did not adhere (new coal of dry granular activated carbon) was provided as a control group, and the same breeding test was conducted.

水槽水のアンモニア性窒素濃度(1−ナフトール法)及び硝酸濃度(イオンクロマトグラフィー法)を経時的に測定するとともに、ヒメダカの生存数をカウントした。対照区の試験結果を図10(a)に、劣化炭改良品を用いた試験結果を図10(b)にそれぞれ示す。   Ammonia nitrogen concentration (1-naphthol method) and nitric acid concentration (ion chromatography method) in the aquarium water were measured over time, and the number of surviving medaka fish was counted. FIG. 10 (a) shows the test results of the control group, and FIG. 10 (b) shows the test results using the deteriorated coal improved product.

図10(a)に示す通り、対照区では飼育日数の経過と共にアンモニア性窒素が上昇し、それに伴いヒメダカ生存数が減少した。他方、図10(b)に示すように、劣化炭改良品を使用した試験区では、飼育二日目からアンモニア性窒素の減少が始まると同時に硝酸量が増加し、また、ヒメダカの生存数の減少も起こらなかった。このことから、硝化細菌の硝化作用によりアンモニア性窒素が亜硝酸を経て毒性の低い硝酸へと変化し、ヒメダカの生育に適した環境が維持できることが確認された。   As shown in FIG. 10 (a), in the control group, the ammoniacal nitrogen increased with the passage of the breeding days, and accordingly, the number of living medaka decreased. On the other hand, as shown in FIG. 10 (b), in the test plot using the deteriorated charcoal improved product, the amount of nitric acid increased at the same time as the decrease of ammoniacal nitrogen started from the second day of breeding, and There was no decrease. From this, it was confirmed that due to the nitrifying action of nitrifying bacteria, ammonia nitrogen was converted to nitric acid with low toxicity through nitrous acid, and an environment suitable for the growth of Japanese medaka could be maintained.

以上の結果から、アンモニア性窒素が槽内に蓄積し易い飼育初期段階において、劣化炭を有効利用することで魚介類の死滅を防ぐことが可能となった。また、実施例1で保存溶液の好ましい塩化ナトリウム濃度が1〜100g/Lであったこと、海水の塩濃度が35g/L程度であることから、淡水魚のみならず海水魚などの海水生物も飼育対象と成り得ることが確認された。   From the above results, it became possible to prevent the death of fish and shellfish by effectively using the deteriorated charcoal at the initial breeding stage where ammonia nitrogen is likely to accumulate in the tank. Moreover, since the preferable sodium chloride density | concentration of the preservation | save solution in Example 1 was 1-100 g / L, and the salt concentration of seawater is about 35 g / L, marine organisms, such as not only freshwater fish but marine fish, are also raised. It was confirmed that it could be a target.

9 劣化炭
9a 劣化炭改良品
11、21 容器(保存容器)
15 保存溶液
22 封止部材(蓋)
90 活性炭(新炭)
9 Deteriorated Charcoal 9a Improved Degraded Charcoal 11, 21 Container (storage container)
15 Storage solution 22 Sealing member (lid)
90 Activated carbon (new charcoal)

Claims (7)

水処理で使用した後の劣化炭を、無機塩を含有する保存溶液に接触させ、該劣化炭に付着されている硝化細菌の硝化活性が維持される保存温度で保存することを特徴とする劣化炭改良品の製造方法。   Deterioration characterized by contacting deteriorated charcoal after use in water treatment with a storage solution containing an inorganic salt and storing it at a storage temperature at which the nitrifying activity of nitrifying bacteria attached to the deteriorated charcoal is maintained. A method for producing charcoal improvements. 前記保存溶液は、無機塩濃度が0.017mol/L〜1.8mol/Lであることを特徴とする請求項1に記載の劣化炭改良品の製造方法。   The method for producing an improved deteriorated coal according to claim 1, wherein the preservation solution has an inorganic salt concentration of 0.017 mol / L to 1.8 mol / L. 水処理で使用した後の劣化炭を、無機塩を含有する保存溶液に接触させ、該劣化炭に付着されている硝化細菌の硝化活性が維持されるような浸透圧ストレスを、当該硝化細菌に与えることを特徴とする劣化炭改良品の製造方法。   Degraded charcoal after use in water treatment is brought into contact with a preservation solution containing an inorganic salt, and osmotic stress is applied to the nitrifying bacterium so that the nitrifying activity of the nitrifying bacterium adhering to the degraded charcoal is maintained. The manufacturing method of the deteriorated charcoal improvement goods characterized by giving. 前記保存溶液は、無機塩濃度が0.017mol/L〜1.8mol/Lであることを特徴とする請求項3に記載の劣化炭改良品の製造方法。   The method for producing a deteriorated coal improved product according to claim 3, wherein the preservation solution has an inorganic salt concentration of 0.017 mol / L to 1.8 mol / L. 前記保存溶液は、無機塩として、塩化ナトリウムと、塩化カリウムのいずれか一方又は両方を含有する請求項1〜4のいずれか1項に記載の劣化炭改良品の製造方法。   The said preservation | save solution is a manufacturing method of the deteriorated charcoal improvement goods of any one of Claims 1-4 which contain sodium chloride, and any one or both of potassium chloride as inorganic salt. 請求項1〜5のいずれか1項の製造方法で製造した劣化炭改良品を、高度浄水処理工程で使用する活性炭の少なくとも一部として使用することを特徴とする劣化炭改良品の使用方法。   A method for using a deteriorated charcoal improvement product, wherein the deteriorated charcoal improvement product produced by the production method according to any one of claims 1 to 5 is used as at least a part of activated carbon used in an advanced water purification treatment process. 請求項1〜5のいずれか1項に記載の製造方法で製造した劣化炭改良品を、アンモニア性窒素除去剤として魚介類の飼育に用いることを特徴とする劣化炭改良品の使用方法。   A method for using a deteriorated charcoal improved product, wherein the deteriorated charcoal improved product produced by the production method according to any one of claims 1 to 5 is used as an ammoniacal nitrogen removing agent for rearing fish and shellfish.
JP2016053943A 2016-03-17 2016-03-17 Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article Pending JP2017164709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053943A JP2017164709A (en) 2016-03-17 2016-03-17 Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053943A JP2017164709A (en) 2016-03-17 2016-03-17 Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article

Publications (1)

Publication Number Publication Date
JP2017164709A true JP2017164709A (en) 2017-09-21

Family

ID=59909423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053943A Pending JP2017164709A (en) 2016-03-17 2016-03-17 Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article

Country Status (1)

Country Link
JP (1) JP2017164709A (en)

Similar Documents

Publication Publication Date Title
Ghafari et al. Bio-electrochemical removal of nitrate from water and wastewater—a review
Gichana et al. Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation
EP2333046B1 (en) Method for production of seed material for microorganisms optimized as catalyst for parallel complex mineralization reaction
JP5414090B2 (en) Solid support on which microorganism group performing parallel dual mineralization reaction is immobilized, catalyst column, and method for producing solid medium for plant cultivation
CA2708247C (en) Aquaponic facility for vegetable and fish production
da ROCHA et al. Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
JP6621342B2 (en) Method for producing biological activated carbon to which nitrifying bacteria are attached and advanced water purification method
Bracino et al. Biofiltration for recirculating aquaponic systems: A review
KR20210025434A (en) Growing method of fish and vegetables using circulating farming of natural ecosystem
Keeratiurai Efficiency of wastewater treatment with hydroponics
WO2000007944A1 (en) In situ treatment for contaminated surface waters and products therefor
CN107673558B (en) Black and odorous water body purification method
CN104961229A (en) Nitrifying bacterium microbial film and preparing method of nitrifying bacterium microbial film
CN106976992A (en) Carry pond culture biological membrane water purifier and the process for purifying water of strain and culture medium
US20080264859A1 (en) Method for Initiating Microbiological Processes in Artificial Waters
Montalvo et al. Improvement in nitrification through the use of natural zeolite: influence of the biomass concentration and inoculum source
JP7406776B1 (en) aquaponics system
JP6156821B2 (en) Manufacturing method of inorganic fertilizer
JP2017164709A (en) Manufacturing method of degraded carbon improved article and application method of degraded carbon improved article
WO2018190772A1 (en) Composition for aquaculture
JP5686352B2 (en) Solid support on which microorganism group performing parallel dual mineralization reaction is immobilized, catalyst column, and method for producing solid medium for plant cultivation
RU2348584C2 (en) Nitrate removal from aquarium water
Abdelfatah et al. Recent Used Techniques and Promised Solutions for Biofiltration Treatment of Fish Wastewater
EP1109749A1 (en) In situ treatment for contaminated surface waters and products therefor