JP2017162755A - Separator - Google Patents

Separator Download PDF

Info

Publication number
JP2017162755A
JP2017162755A JP2016048056A JP2016048056A JP2017162755A JP 2017162755 A JP2017162755 A JP 2017162755A JP 2016048056 A JP2016048056 A JP 2016048056A JP 2016048056 A JP2016048056 A JP 2016048056A JP 2017162755 A JP2017162755 A JP 2017162755A
Authority
JP
Japan
Prior art keywords
molecular weight
polyethylene
separator
weight polyethylene
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048056A
Other languages
Japanese (ja)
Other versions
JP6699258B2 (en
Inventor
稲富 敬
Takashi Inatomi
敬 稲富
若林 保武
Yasutake Wakabayashi
保武 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016048056A priority Critical patent/JP6699258B2/en
Publication of JP2017162755A publication Critical patent/JP2017162755A/en
Application granted granted Critical
Publication of JP6699258B2 publication Critical patent/JP6699258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator which is high in melting point and strength, less in low-molecular weight component and superior in cleanness, and which can be shaped in a thin film form.SOLUTION: A separator comprises an ultra high molecular weight polyethylene composition including an ultra high molecular weight polyethylene having an intrinsic viscosity ([η]) of 10-80 dl/g, and 5-5000 pts.wt. of polyethylene to 100 pts.wt. of the ultra high molecular weight polyethylene. The polyethylene has a weight-average molecular weight(Mw) of 600,000 or less, a 210°C-melt tension of 100 mN or more, and a strain hardening property, of which the JIS K6760-compliant density is 935-960 kg/m.SELECTED DRAWING: None

Description

本発明は、特定の超高分子量ポリエチレン組成物製セパレータに関するものであり、さらに詳細には、融点及び強度が高く薄膜化が可能で、かつ低分子量成分が少なく、クリーン性に優れた超高分子量ポリエチレン組成物製セパレータに関するものである。   The present invention relates to a separator made of a specific ultra-high molecular weight polyethylene composition, and more specifically, an ultra-high molecular weight having a high melting point and high strength, capable of being thinned, having low low molecular weight components and excellent cleanliness. The present invention relates to a polyethylene composition separator.

超高分子量エチレン系重合体は、粘度平均分子量(Mv)で100万以上に相当する極めて高い分子量を有していることから、耐衝撃性、自己潤滑性、耐摩耗性、耐候性、耐薬品性、寸法安定性等に優れており、エンジニアリングプラスチックに匹敵する高い物性を有している。このため、各種成形方法により、ライニング材、食品工業のライン部品、機械部品、人工関節、スポーツ用品、微多孔膜等の用途への適用が試みられている。   The ultra high molecular weight ethylene polymer has an extremely high molecular weight corresponding to a viscosity average molecular weight (Mv) of 1 million or more, so that it has impact resistance, self-lubricity, abrasion resistance, weather resistance, chemical resistance It has excellent physical properties and dimensional stability, and has high physical properties comparable to engineering plastics. For this reason, application to applications such as lining materials, food industry line parts, machine parts, artificial joints, sporting goods, and microporous membranes has been attempted by various molding methods.

しかし、超高分子量エチレン系重合体は、その高い分子量故に、溶融時の流動性が極めて低く、分子量が数万から約50万の範囲にある通常のポリエチレンのように混練押出により成形することは困難である。そこで、超高分子量ポリエチレンは、重合により得られた重合体粉末を直接焼結する方法、圧縮成形する方法、間歇圧縮させながら押出成形するラム押出機による成形方法、溶媒等に分散させた状態で押出成形した後、溶媒を除去する方法等の方法が行われている。   However, ultra-high molecular weight ethylene polymer has extremely low fluidity when melted due to its high molecular weight, and it can be molded by kneading extrusion like ordinary polyethylene having a molecular weight in the range of tens of thousands to about 500,000. Have difficulty. Therefore, ultrahigh molecular weight polyethylene is a method of directly sintering polymer powder obtained by polymerization, a method of compression molding, a molding method by a ram extruder that extrudes while intermittently compressing, a state where it is dispersed in a solvent, etc. After extrusion molding, a method such as a method of removing the solvent is performed.

このうち、溶媒等に分散させた状態で押出成形した後、溶媒を除去する成形方法においては、溶媒を除去する前後で、一軸、二軸延伸することで、多孔質膜が製造できることが知られている。そして、この超高分子量ポリエチレン微多孔膜は、超高分子量ポリエチレンの高い分子量により耐熱性、強度、耐衝撃性等の物性が優れたものになることが期待される。但し、現在市販されているチーグラー触媒によって製造される超高分子量ポリエチレンは、重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布)が4より大きく、分子量分布が広いため、成形体の強度、耐熱性は、十分に向上したものとは言えず、期待される性能を発揮するものとは言えないものである。   Among these, in the molding method in which the solvent is removed after extrusion molding in a state dispersed in a solvent or the like, it is known that a porous film can be produced by uniaxial or biaxial stretching before and after removing the solvent. ing. The ultrahigh molecular weight polyethylene microporous membrane is expected to have excellent physical properties such as heat resistance, strength, and impact resistance due to the high molecular weight of ultra high molecular weight polyethylene. However, the ultra-high molecular weight polyethylene produced by the Ziegler catalyst currently on the market has a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (molecular weight distribution) larger than 4, and the molecular weight distribution is wide. The strength and heat resistance of the molded body cannot be said to be sufficiently improved, and cannot be said to exhibit the expected performance.

一方、メタロセン系触媒、ポストメタロセン系触媒を用いて製造した分子量分布の狭い超高分子量エチレン系重合体も提案されている(例えば特許文献1、2参照。)。   On the other hand, an ultrahigh molecular weight ethylene polymer having a narrow molecular weight distribution produced by using a metallocene catalyst or a post metallocene catalyst has also been proposed (see, for example, Patent Documents 1 and 2).

また、超高分子量ポリエチレンに延伸性を付与する方法として、分子量の低いポリエチレンを混合する方法が提案されている(例えば特許文献3参照。)。   Further, as a method for imparting stretchability to ultrahigh molecular weight polyethylene, a method of mixing low molecular weight polyethylene has been proposed (see, for example, Patent Document 3).

特許4868853号公報Japanese Patent No. 4868853 特開2006−36988号公報JP 2006-36988 A 特開2003−105121号公報JP 2003-105121 A

しかし、特許文献1、2に提案された超高分子量ポリエチレンを用いて延伸微多孔膜を製造した場合、成形性が劣るため、延伸がしにくく、その性能は充分満足を得られるものではなかった。   However, when a stretched microporous membrane is produced using the ultrahigh molecular weight polyethylene proposed in Patent Documents 1 and 2, since the moldability is poor, stretching is difficult and the performance is not sufficiently satisfactory. .

また、特許文献3に提案された方法においては、延伸性を付与するために混合するポリエチレンが低分子量成分を多く含むものであるため得られる組成物は、低分子量成分の溶出が多く、クリーン性に課題を有するばかりか、超高分子量ポリエチレンの特徴である力学的強度にも悪影響を与える可能性の極めて高いものであった。   Further, in the method proposed in Patent Document 3, since the polyethylene to be mixed for imparting stretchability contains many low molecular weight components, the composition obtained has many elutions of low molecular weight components, and there is a problem in cleanliness. In addition, it has a very high possibility of adversely affecting the mechanical strength characteristic of ultrahigh molecular weight polyethylene.

そこで、本発明は、力学的強度、耐熱性、延伸性に優れると共に、クリーン性にも優れる超高分子量ポリエチレン組成物よりなるセパレータを提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a separator made of an ultra-high molecular weight polyethylene composition that is excellent in mechanical strength, heat resistance, stretchability, and cleanliness.

本発明者らは、上記課題を解決するために鋭意研究した結果、超高分子量ポリエチレンと特定の分子量、溶融張力、歪硬化性を有するポリエチレンを含む組成物を用いることで、力学的強度、耐熱性、延伸性に優れ、クリーン性も優れるセパレータとなり得ることを見出し、本発明を完成させるに至った。   As a result of diligent research to solve the above problems, the present inventors have used a composition containing ultra-high molecular weight polyethylene and polyethylene having a specific molecular weight, melt tension, and strain-hardening property, thereby providing mechanical strength and heat resistance. It has been found that the separator can be excellent in properties and stretchability and excellent in cleanliness, and the present invention has been completed.

即ち、本発明は、固有粘度([η])が10dl/g以上80dl/g以下の超高分子量ポリエチレン100重量部に対し、重量平均分子量(Mw)60万以下、210℃における溶融張力が100mN以上で、歪硬化性を有し、JIS K6760に準拠した密度が935kg/m以上960kg/m以下のポリエチレン5重量部以上5000重量部以下を含むことを特徴とする超高分子量ポリエチレン組成物よりなるセパレータに関するものである。 That is, according to the present invention, the weight average molecular weight (Mw) is 600,000 or less and the melt tension at 210 ° C. is 100 mN with respect to 100 parts by weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity ([η]) of 10 dl / g to 80 dl / g. The ultrahigh molecular weight polyethylene composition having 5 to 5000 parts by weight of polyethylene having strain hardening property and density of 935 kg / m 3 or more and 960 kg / m 3 or less according to JIS K6760 It is related with the separator which consists of.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明のセパレータを構成する超高分子量ポリエチレン組成物は、[η]が10dl/g以上80dl/g以下の超高分子量ポリエチレン100重量部に対し、Mwが60万以下、210℃における溶融張力が100mN以上で、歪硬化性を有し、JIS K6760に準拠した密度が935kg/m以上960kg/m以下のポリエチレンを含む組成物である。 The ultra high molecular weight polyethylene composition constituting the separator of the present invention has an Mw of 600,000 or less and a melt tension at 210 ° C. of 100 parts by weight of ultra high molecular weight polyethylene having [η] of 10 dl / g to 80 dl / g. It is a composition containing polyethylene having a strain hardening property and a density according to JIS K6760 of 935 kg / m 3 or more and 960 kg / m 3 or less at 100 mN or more.

そして、該超高分子量ポリエチレン組成物としては、超高分子量ポリエチレン組成物の[η]が、超高分子量ポリエチレンの[η]の0.9倍以下、特に0.8倍以下となる超高分子量ポリエチレン組成物であることが好ましい。   And as this ultra high molecular weight polyethylene composition, [η] of the ultra high molecular weight polyethylene composition is 0.9 times or less, especially 0.8 times or less of [η] of ultra high molecular weight polyethylene. A polyethylene composition is preferred.

該超高分子量ポリエチレン組成物を構成する超高分子量ポリエチレンとしては、[η]が10dl/g以上80dl/g以下の超高分子量ポリエチレンと称される範疇に属するものであればよく、チーグラーナッタ触媒、メタロセン触媒等により調製された如何なる超高分子量ポリエチレンであってもよい。また、超高分子量ポリエチレンと称されるものとしては、例えば超高分子量エチレン単独重合体;超高分子量エチレン−プロピレン共重合体、超高分子量エチレン−1−ブテン共重合体、超高分子量エチレン−1−ヘキセン共重合体、超高分子量エチレン−1−オクテン共重合体等の超高分子量エチレン−α−オレフィン共重合体;等を挙げることができる。ここで、[η]が10dl/g未満である場合、得られる組成物は、力学的特性に劣るものとなる。一方、[η]が80dl/gを越える場合、得られる組成物は成形時の流動性に劣るものとなり、特にセパレータとする際の成形性に劣るものとなる。なお、本発明における[η]は、例えばウベローデ型粘度計を用い、デカヒドロナフタレンを溶媒としたポリマー濃度0.0005〜0.01%の溶液にて、135℃において測定する方法により測定することが可能である。   The ultrahigh molecular weight polyethylene constituting the ultrahigh molecular weight polyethylene composition may be any polymer as long as it belongs to the category called ultrahigh molecular weight polyethylene having [η] of 10 dl / g or more and 80 dl / g or less. Any ultrahigh molecular weight polyethylene prepared by a metallocene catalyst or the like may be used. Examples of ultra high molecular weight polyethylene include ultra high molecular weight ethylene homopolymer; ultra high molecular weight ethylene-propylene copolymer, ultra high molecular weight ethylene-1-butene copolymer, and ultra high molecular weight ethylene- And ultra high molecular weight ethylene-α-olefin copolymers such as 1-hexene copolymer and ultra high molecular weight ethylene-1-octene copolymer. Here, when [η] is less than 10 dl / g, the resulting composition is inferior in mechanical properties. On the other hand, when [η] exceeds 80 dl / g, the resulting composition is inferior in fluidity during molding, and particularly inferior in moldability when used as a separator. [Η] in the present invention is measured by a method of measuring at 135 ° C. with a polymer concentration of 0.0005 to 0.01% using decahydronaphthalene as a solvent, for example, using an Ubbelohde viscometer. Is possible.

そして、該超高分子量ポリエチレン組成物を構成する超高分子量ポリエチレンとしては上記範疇に属するものであれば如何なるものであってもよく、中でもセパレータとした際に力学的強度、耐熱性、延伸性に優れ、クリーン性も優れるものとなることからメタロセン系超高分子量ポリエチレンであることが好ましく、特に以下に説明する超高分子量ポリエチレン又はその粒子であることが好ましい。   The ultra-high molecular weight polyethylene constituting the ultra-high molecular weight polyethylene composition may be anything as long as it belongs to the above category, and in particular, when it is used as a separator, it has mechanical strength, heat resistance, and stretchability. Metallocene ultrahigh molecular weight polyethylene is preferable because it is excellent and cleanliness is excellent, and ultra high molecular weight polyethylene described below or particles thereof are particularly preferable.

該超高分子量ポリエチレンは、セパレータとする際に粒子の流動性がよく、保管設備、保管容器、ホッパーでの充満率に優れる等、操作性が向上することから、粒子形状を有するものであることが好ましく、その際の(2)嵩密度は130kg/m以上700kg/m以下であることが好ましく、セパレータとする際の特に加工性に優れるものとなることから200kg/m以上600kg/m以下であることが好ましい。なお、嵩密度は、例えばJIS K6760(1995)に準拠した方法で測定することが可能である。 The ultra high molecular weight polyethylene has a particle shape because it has good fluidity of particles when used as a separator and has improved operability such as excellent filling rate in storage facilities, storage containers, and hoppers. are preferred, where the (2) bulk density 130 kg / m 3 or more is preferably 700 kg / m 3 or less and 200 kg / m 3 or more from that becomes excellent particularly workability at the time of the separator 600 kg / m 3 or less is preferable. The bulk density can be measured by a method based on, for example, JIS K6760 (1995).

該超高分子量ポリエチレンは、セパレータとした際に、耐熱性、強度等に優れるものとなることから、(3)示差走査型熱量計(以下、DSCと記すこともある。)にて、1stスキャンした際の1stスキャンのTm、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、2ndスキャンした際の2ndスキャンのTmをそれぞれ測定し、ΔTm=Tm−Tmが9℃以上30℃以下であることが好ましく、特に11℃以上30℃以下であることが好ましく、更に耐熱性、機械的強度、成形性のバランスに優れる超高分子量ポリエチレン組成物製セパレータとなることからΔTmが11℃以上15℃以下であることが好ましい。 Since the ultrahigh molecular weight polyethylene is excellent in heat resistance, strength and the like when used as a separator, (1) 1st scan with a differential scanning calorimeter (hereinafter also referred to as DSC). Tm 1 of the 1st scan at the time, then left for 5 minutes, then cooled to −20 ° C. at a temperature drop rate of 10 ° C./min, left for 5 minutes, and then again Tm 2 of 2nd scan when 2nd scan was performed Measured, ΔTm = Tm 1 -Tm 2 is preferably 9 ° C. or higher and 30 ° C. or lower, particularly preferably 11 ° C. or higher and 30 ° C. or lower, and further excellent in heat resistance, mechanical strength, and moldability balance. ΔTm is preferably 11 ° C. or higher and 15 ° C. or lower because the separator is made of an ultrahigh molecular weight polyethylene composition.

なお、一般的なポリエチレンにおいては、高融点を有するポリエチレンとして、高密度ポリエチレンに属するエチレン単独重合体が知られている。しかし、該高密度ポリエチレンにおける融点は130〜135℃程度と低いものである。一方、本発明のセパレータに適した超高分子量ポリエチレンは、従来から知られているポリエチレンと比較しても極めて高い融点(Tm)を有するものであり、例えばエチレン単独重合体であるならば、Tmとして140℃を超える極めて高い融点を有している。該超高分子量ポリエチレンにおいては、ポリエチレンの分子鎖が配向するなどして、高度に結晶化されているため、DSCにて測定した際のTmとTm差であるΔTmが9℃以上30℃以下という極めて大きな差となると考えている。 In general polyethylene, an ethylene homopolymer belonging to high-density polyethylene is known as a polyethylene having a high melting point. However, the melting point of the high density polyethylene is as low as about 130 to 135 ° C. On the other hand, the ultra-high molecular weight polyethylene suitable for the separator of the present invention has an extremely high melting point (Tm) as compared with conventionally known polyethylene. For example, if it is an ethylene homopolymer, Tm 1 has an extremely high melting point exceeding 140 ° C. In the ultra-high molecular weight polyethylene, the molecular chain of the polyethylene is highly crystallized, for example, so that ΔTm which is a difference between Tm 1 and Tm 2 when measured by DSC is 9 ° C. or more and 30 ° C. I think this will be a very big difference.

さらに、該超高分子量ポリエチレンは、チタンが原因で発生する変色(黄変)や酸化劣化等の抑制が可能で色調が良好なものとなり、耐候性にも優れる超高分子量ポリエチレン組成物を提供することが可能となるから、チタンの含有量が少ないものであることが好ましく、特にチタンの含有量が0.02ppm以下又は検出限界以下、のものが好ましい。なお、チタンの含有量は、化学滴定法、蛍光X線分析装置、ICP発光分析装置等による測定等により求めることができる。   Furthermore, the ultra high molecular weight polyethylene is capable of suppressing discoloration (yellowing) caused by titanium, oxidative deterioration, and the like, has a good color tone, and provides an ultra high molecular weight polyethylene composition having excellent weather resistance. In view of this, it is preferable that the titanium content is low, and in particular, the titanium content is preferably 0.02 ppm or less or the detection limit or less. The titanium content can be determined by chemical titration, measurement using a fluorescent X-ray analyzer, ICP emission analyzer, or the like.

該超高分子量ポリエチレンは、より強靭なセパレータを提供することが可能となることから、(4)プレス温度190℃、プレス圧力20MPaで加熱圧縮した後、前記(3)により測定した2ndスキャンのTmより10℃〜30℃低い金型温度で冷却して成形したシートの引張破断強度(TS(MPa))が、下記関係式(a)を満たすものであることが好ましく、更により強靭で機械強度、耐摩耗性に優れるセパレータを提供することが可能となることから、下記関係式(c)を満たすものであることが好ましい。
TS≧1.35×Tm−130 (a)
1.35×Tm−130≦TS≦2×Tm−175 (c)
なお、一般的なポリエチレンの引張破断強度は、最も高い高密度ポリエチレンでも45MPa程度と低いものである。また、従来の超高分子量ポリエチレンも、その高い分子量を十分生かすことができておらず、引張破断強度は一般的なポリエチレンと同等であり、50MPaを超えることはなかった。このため、高延伸倍率で圧延成形するなどにより配向させて、強度を高める方法がとられていた。
Since the ultra high molecular weight polyethylene can provide a tougher separator, (4) Tm of 2nd scan measured by the above (3) after being heated and compressed at a press temperature of 190 ° C. and a press pressure of 20 MPa. It is preferable that the tensile strength at break (TS (MPa)) of the sheet formed by cooling at a mold temperature lower by 10 to 30 ° C. than 2 satisfies the following relational expression (a). Since it is possible to provide a separator having excellent strength and wear resistance, it is preferable that the following relational expression (c) is satisfied.
TS ≧ 1.35 × Tm 2 −130 (a)
1.35 × Tm 2 −130 ≦ TS ≦ 2 × Tm 2 −175 (c)
The tensile strength at break of general polyethylene is as low as about 45 MPa even with the highest density polyethylene. Further, conventional ultra-high molecular weight polyethylene has not been able to make full use of its high molecular weight, and the tensile strength at break was equivalent to that of general polyethylene, and did not exceed 50 MPa. For this reason, a method has been adopted in which the strength is increased by orientation by rolling at a high draw ratio.

しかし、該超高分子量ポリエチレンは、高分子鎖が適度に絡み合っているため、[η]が7dl/g、好ましくは15dl/gを超える超高分子量ポリエチレンの領域であっても、更にその分子量を高くしても引張破断強度が低下せず、むしろ、さらに向上する傾向を示すものである。そして、該超高分子量ポリエチレンとしては、セパレータとした際により強度が優れるものとなることから、高密度ポリエチレンの領域に属するものであるならば前記(4)により測定した引張破断強度として、40MPa以上を有するものであることが好ましく、より好ましくは50MPa以上を有するものである。   However, since the ultra high molecular weight polyethylene has moderately entangled polymer chains, [η] is 7 dl / g, preferably even in the ultra high molecular weight polyethylene region exceeding 15 dl / g. Even if it raises, tensile fracture strength does not fall, but rather shows the tendency to improve further. And, as the ultra high molecular weight polyethylene, when it is used as a separator, the strength is excellent. Therefore, if it belongs to the region of high density polyethylene, the tensile breaking strength measured by the above (4) is 40 MPa or more. It is preferable that it has, and, more preferably, it has 50 MPa or more.

なお、引張破断強度の測定条件としては、特に制限はなく、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で測定する方法を例示することができる。   In addition, there is no restriction | limiting in particular as measurement conditions of tensile breaking strength, For example, test pieces, such as a strip shape and a dumbbell type | mold of thickness 0.1-5mm and width 1-50mm, are used for the tensile speed of 1 mm / min-500 mm / min. A method of measuring by speed can be exemplified.

該超高分子量ポリエチレンは、比較的低分子量成分の含有量が低く、高分子鎖の適度な絡み合いが可能となり、特に耐熱性にも優れるセパレータとなることから、(5)加熱圧縮成形したシートを、前記(3)により測定した2ndスキャンのTmより20℃高い温度で溶融延伸したときの破断応力(MTS(MPa))が1.5MPa以上を有するものであることが好ましく、更に2MPa以上を有するものであることが好ましい。 Since the ultra-high molecular weight polyethylene has a relatively low content of low molecular weight components, enables moderate entanglement of polymer chains, and is a separator that is particularly excellent in heat resistance. The fracture stress (MTS (MPa)) when melt stretched at a temperature 20 ° C. higher than Tm 2 of the 2nd scan measured by (3) is preferably 1.5 MPa or more, and more preferably 2 MPa or more. It is preferable to have it.

なお、分子量50万以下の一般的なポリエチレンは、融点(Tm)より20℃高い温度では、流動性が高く、自重で成形体が変形してしまい、溶融延伸はできない。また、従来の超高分子量ポリエチレンは、融点(Tm)より20℃高い温度でも、溶融延伸は可能であるが、含有する低分子量成分の影響により、歪み硬化が起きず、応力が低い状態のまま、1MPa前後の応力で破断してしまい、耐熱性に劣るものとなる場合が多々見られた。   Note that general polyethylene having a molecular weight of 500,000 or less has high fluidity at a temperature 20 ° C. higher than the melting point (Tm), and the molded body is deformed by its own weight, so that it cannot be melt-stretched. In addition, the conventional ultrahigh molecular weight polyethylene can be melt-stretched even at a temperature 20 ° C. higher than the melting point (Tm), but strain hardening does not occur due to the low molecular weight component contained, and the stress remains low. In many cases, the fracture occurred due to a stress of about 1 MPa, resulting in poor heat resistance.

そして、溶融延伸に用いる加熱圧縮成形シートの成形条件としては、制限はなく、例えばプレス温度100〜250℃、プレス圧力5〜50MPaの条件であり、その中でも特に前記(4)に記載した加熱圧縮成形法を例示することができる。また、溶融延伸方法としては、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で延伸する方法を例示することができる。さらに、溶融延伸時の破断応力としては、歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。   And there is no restriction | limiting as a shaping | molding condition of the heat compression molding sheet | seat used for melt drawing, For example, it is the conditions of press temperature 100-250 degreeC and press pressure 5-50 MPa, Among them, especially the heat compression described in said (4). A molding method can be exemplified. Examples of the melt stretching method include a method of stretching a test piece such as a strip shape having a thickness of 0.1 to 5 mm and a width of 1 to 50 mm and a dumbbell shape at a tensile speed of 1 mm / min to 500 mm / min. be able to. Furthermore, as the rupture stress at the time of melt stretching, strain hardening occurs, if the stress increases with stretching, the maximum value is the rupture stress, strain hardening does not occur, and if the stress does not increase even after stretching, The stress in the flat region after yielding was taken as the breaking stress.

該超高分子量ポリエチレンは、特に耐熱性に優れる超高分子量ポリエチレン組成物となることから、(6)前記(5)により測定した溶融延伸したときの破断応力(MTS(MPa))と固有粘度([η])が、下記関係式(b)を満たすものであることが好ましく、特に溶融延伸性、成形性にも優れるものとなることから、下記関係式(d)を満たすものであることが好ましい。
MTS≧0.079×[η] (b)
0.079×[η]≦MTS≦0.23×[η] (d)
該超高分子量ポリエチレンは、特に粉体としての流動性に優れ、成形加工性、物性に優れる超高分子量ポリエチレン組成物となることから、(7)平均粒径が1μm以上1000μm以下であるものが好ましい。なお、平均粒径に関しては、例えばJIS Z8801で規定された標準篩を用いたふるい分け試験法等の方法により測定することができる。
Since the ultra high molecular weight polyethylene is an ultra high molecular weight polyethylene composition having particularly excellent heat resistance, (6) the breaking stress (MTS (MPa)) and intrinsic viscosity (MTS (MPa)) measured by the above (5). [Η]) preferably satisfies the following relational expression (b), and particularly has excellent melt stretchability and moldability, and therefore satisfies the following relational expression (d). preferable.
MTS ≧ 0.079 × [η] (b)
0.079 × [η] ≦ MTS ≦ 0.23 × [η] (d)
The ultra-high molecular weight polyethylene is an ultra-high molecular weight polyethylene composition that is particularly excellent in fluidity as a powder and excellent in molding processability and physical properties. (7) Those having an average particle diameter of 1 μm or more and 1000 μm or less. preferable. The average particle size can be measured by a method such as a sieving test method using a standard sieve defined in JIS Z8801, for example.

該超高分子量ポリエチレンの製造方法としては、如何なる方法を用いても良く、例えばポリエチレン製造用触媒を用い、エチレンの単独重合、エチレンと他のオレフィンとの共重合を行う方法を挙げることができ、その際のα−オレフィンとしては、例えばプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン等を挙げることができる。また、重合方法としては、例えば溶液重合法、塊状重合法、気相重合法、スラリー重合法等の方法を挙げることができ、その中でも、特に粒子形状が整った超高分子量ポリエチレンの製造が可能となると共に、高融点、高結晶化度を有し、機械強度、耐熱性、耐摩耗性に優れる超高分子量ポリエチレン組成物製セパレータを提供しうる超高分子量ポリエチレンを効率よく安定的に製造することが可能となることからスラリー重合法であることが好ましい。また、スラリー重合法に用いる溶媒としては、一般に用いられている有機溶媒であればいずれでもよく、例えばベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン等が挙げられ、イソブタン、プロパン等の液化ガス、プロピレン、1−ブテン、1−オクテン、1−ヘキセンなどのオレフィンを溶媒として用いることもできる。   As the method for producing the ultra high molecular weight polyethylene, any method may be used, for example, a method for homopolymerization of ethylene, copolymerization of ethylene and other olefins using a catalyst for polyethylene production, Examples of the α-olefin at that time include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like. Examples of the polymerization method include a solution polymerization method, a bulk polymerization method, a gas phase polymerization method, a slurry polymerization method, and the like. Among them, it is possible to produce ultra high molecular weight polyethylene having a particularly uniform particle shape. Ultra high molecular weight polyethylene that can provide a separator made of an ultra high molecular weight polyethylene composition that has a high melting point, high crystallinity, and excellent mechanical strength, heat resistance, and wear resistance is efficiently and stably produced. Therefore, the slurry polymerization method is preferable. Further, the solvent used in the slurry polymerization method may be any organic solvent that is generally used, such as benzene, toluene, xylene, pentane, hexane, heptane, etc., and liquefied gas such as isobutane and propane, Olefins such as propylene, 1-butene, 1-octene and 1-hexene can also be used as a solvent.

また、該超高分子量ポリエチレンを製造するのに用いるポリエチレン製造用触媒としては、該超高分子量ポリエチレンの製造が可能であれば如何なるものを用いることも可能であり、例えば少なくとも遷移金属化合物(A)、脂肪族塩にて変性した有機変性粘土(B)及び有機アルミニウム化合物(C)より得られるメタロセン系触媒を挙げることができる。   Further, as the polyethylene production catalyst used for producing the ultra high molecular weight polyethylene, any catalyst can be used as long as the ultra high molecular weight polyethylene can be produced. For example, at least the transition metal compound (A) And metallocene catalysts obtained from an organically modified clay (B) modified with an aliphatic salt and an organoaluminum compound (C).

そして、該遷移金属化合物(A)としては、例えば(置換)シクロペンタジエニル基と(置換)フルオレニル基を有する遷移金属化合物、(置換)シクロペンタジエニル基と(置換)インデニル基を有する遷移金属化合物、(置換)インデニル基と(置換)フルオレニル基を有する遷移金属化合物等を挙げることができ、その際の遷移金属としては、例えばジルコニウム、ハフニウム等を挙げることができ、その中でも特に超高分子量ポリエチレンを効率よく製造することが可能となることから、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するジルコニウム化合物、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するハフニウム化合物であることが好ましい。   Examples of the transition metal compound (A) include a transition metal compound having a (substituted) cyclopentadienyl group and a (substituted) fluorenyl group, and a transition having a (substituted) cyclopentadienyl group and a (substituted) indenyl group. Metal compounds, transition metal compounds having a (substituted) indenyl group and a (substituted) fluorenyl group, etc. can be mentioned. Examples of the transition metal in this case include zirconium, hafnium, etc. Since it is possible to efficiently produce a molecular weight polyethylene, a zirconium compound having a (substituted) cyclopentadienyl group and an amino group-substituted fluorenyl group, and a (substituted) cyclopentadienyl group and an amino group-substituted fluorenyl group A hafnium compound is preferred.

そして、より具体的には、例えばジフェニルメチレン(1−インデニル)(9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライドジフェニルメチレン(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジ−n−ブチル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジ−n−プロピル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライドなどのジルコニウム化合物;これらのジクロロ体をジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体に変えたジルコニウム化合物、およびこれら化合物のジルコニウムをハフニウムに変えたハフニウム化合物などを例示することができる。   More specifically, for example, diphenylmethylene (1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (4-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (2- (dimethylamino) -9-fluorenyl) zirconium Dichloride, diphenylsilanediyl (cyclopentadienyl) (2- (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (2- (dibenzylamino) -9-fluorenyl) zyl Nium dichloride, diphenylsilanediyl (cyclopentadienyl) (2,7-bis (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (2,7-bis (diethylamino) -9 -Fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (2,7-bis (dibenzylamino) -9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (4- (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (4- (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadiyl) Nyl) (4- (dibenzylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2- (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) ( 2- (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2- (dibenzylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,7- Bis (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,7-bis (diethylamino) -9-fluorenyl) zirconium dichloride, diphenyl Methylene (cyclopentadienyl) (2,7-bis (dibenzylamino) -9-fluorenyl) zirconium dichloride diphenylmethylene (cyclopentadienyl) (4- (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (Cyclopentadienyl) (4- (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (4- (dibenzylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadi) Enyl) (2,7-bis (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,7-bis (diethylamino) -9-fluorenyl) zyl Nium dichloride, diphenylmethylene (cyclopentadienyl) (2,7-bis (diisopropylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,7-bis (di-n-butyl- Amino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,7-bis (dibenzylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (3,6- Bis (dimethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (3,6-bis (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclope Tadienyl) (3,6-bis (di-n-propyl-amino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,5-bis (dimethylamino) -9-fluorenyl) zirconium dichloride Diphenylmethylene (cyclopentadienyl) (2,5-bis (diethylamino) -9-fluorenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (2,5-bis (diisopropylamino) -9-fluorenyl) zirconium Zirconium compounds such as dichloride; zirconium compounds obtained by converting these dichloro compounds to dimethyl, diethyl, dihydro, diphenyl, and dibenzyl compounds, and hafnium compounds obtained by converting zirconium of these compounds to hafnium A thing etc. can be illustrated.

該脂肪族塩にて変性した有機変性粘土(B)としては、例えばN,N−ジメチル−ベヘニルアミン塩酸塩、N−メチル−N−エチル−ベヘニルアミン塩酸塩、N−メチル−N−n−プロピル−ベヘニルアミン塩酸塩、N,N−ジオレイル−メチルアミン塩酸塩、N,N−ジメチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンフッ化水素酸塩、N,N−ジオレイル−メチルアミンフッ化水素酸塩、N,N−ジメチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−エチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミン臭化水素酸塩、N,N−ジオレイル−メチルアミン臭化水素酸塩、N,N−ジメチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンヨウ化水素酸塩、N,N−ジオレイル−メチルアミンヨウ化水素酸塩、N,N−ジメチル−ベヘニルアミン硫酸塩、N−メチル−N−エチル−ベヘニルアミン硫酸塩、N−メチル−N−n−プロピル−ベヘニルアミン硫酸塩、N,N−ジオレイル−メチルアミン硫酸塩等の脂肪族アミン塩;P,P−ジメチル−ベヘニルホスフィン塩酸塩、P,P−ジエチル−ベヘニルホスフィン塩酸塩、P,P−ジプロピル−ベヘニルホスフィン塩酸塩、P,P−ジメチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジエチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジプロピル−ベヘニルホスフィン臭化水素酸塩、P,P−ジメチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン硫酸塩、P,P−ジエチル−ベヘニルホスフィン硫酸塩、P,P−ジプロピル−ベヘニルホスフィン硫酸塩等の脂肪族ホスフォニウム塩;等の脂肪族塩により変性された粘土を挙げることができる。   Examples of the organically modified clay (B) modified with the aliphatic salt include N, N-dimethyl-behenylamine hydrochloride, N-methyl-N-ethyl-behenylamine hydrochloride, N-methyl-Nn- Propyl-behenylamine hydrochloride, N, N-dioleyl-methylamine hydrochloride, N, N-dimethyl-behenylamine hydrofluoride, N-methyl-N-ethyl-behenylamine hydrofluoride, N- Methyl-Nn-propyl-behenylamine hydrofluorate, N, N-dioleyl-methylamine hydrofluoride, N, N-dimethyl-behenylamine hydrobromide, N-methyl-N- Ethyl-behenylamine hydrobromide, N-methyl-Nn-propyl-behenylamine hydrobromide, N, N-dioleyl-methylamine hydrobromide, N, N-dimethyl-be Nylamine hydroiodide, N-methyl-N-ethyl-behenylamine hydroiodide, N-methyl-Nn-propyl-behenylamine hydroiodide, N, N-dioleyl-methylamine iodide Hydronate, N, N-dimethyl-behenylamine sulfate, N-methyl-N-ethyl-behenylamine sulfate, N-methyl-Nn-propyl-behenylamine sulfate, N, N-dioleoyl-methyl Aliphatic amine salts such as amine sulfates; P, P-dimethyl-behenylphosphine hydrochloride, P, P-diethyl-behenylphosphine hydrochloride, P, P-dipropyl-behenylphosphine hydrochloride, P, P-dimethyl-behenyl Phosphine hydrofluoride, P, P-diethyl-behenylphosphine hydrofluoride, P, P-dipropyl-behenylphosphine fluoride Hydronate, P, P-dimethyl-behenylphosphine hydrobromide, P, P-diethyl-behenylphosphine hydrobromide, P, P-dipropyl-behenylphosphine hydrobromide, P, P- Dimethyl-behenylphosphine hydroiodide, P, P-diethyl-behenylphosphine hydroiodide, P, P-dipropyl-behenylphosphine hydroiodide, P, P-dimethyl-behenylphosphine sulfate, P , P-diethyl-behenylphosphine sulfate, and aliphatic phosphonium salts such as P, P-dipropyl-behenylphosphine sulfate;

また、該有機変性粘土(B)を構成する粘土化合物としては、粘土化合物の範疇に属するものであれば如何なるものであってもよく、一般的にシリカ四面体が二次元上に連続した四面体シートと、アルミナ八面体やマグネシア八面体等が二次元上に連続した八面体シートが1:1又は2:1で組合わさって構成されるシリケート層と呼ばれる層が何枚にも重なって形成され、一部のシリカ四面体のSiがAl、アルミナ八面体のAlがMg、マグネシア八面体のMgがLi等に同型置換されることにより層内部の正電荷が不足し、層全体として負電荷を帯びており、この負電荷を補償するために層間にはNaやCa2+等の陽イオンが存在しているものとして知られているものである。そして、該粘土化合物としては天然品、または合成品としてのカオリナイト、タルク、スメクタイト、バーミキュライト、雲母、脆雲母、縁泥石等が存在し、これらを用いることが可能であり、その中でも入手のしやすさと有機変性の容易さからスメクタイトが好ましく、特にスメクタイトのなかでもヘクトライトまたはモンモリロナイトがさらに好ましい。 Further, the clay compound constituting the organically modified clay (B) may be any clay compound as long as it belongs to the category of clay compounds, and generally a tetrahedron in which a silica tetrahedron is two-dimensionally continuous. A layer called a silicate layer formed by combining a sheet and an octahedron sheet in which an alumina octahedron, a magnesia octahedron, etc. are two-dimensionally continuous in a 1: 1 or 2: 1 layer is formed to overlap. Some of the silica tetrahedrons are replaced with the same type of Si by Al, alumina octahedron Al by Mg, magnesia octahedron Mg by Li, etc. It is known that cations such as Na + and Ca 2+ exist between the layers in order to compensate for this negative charge. As the clay compound, kaolinite, talc, smectite, vermiculite, mica, brittle mica, curdstone and the like as natural products or synthetic products exist, and these can be used. Smectite is preferable from the viewpoint of easiness of modification and organic modification, and hectorite or montmorillonite is more preferable among smectites.

該有機変性粘土(B)は、該粘土化合物の層間に該脂肪族塩を導入し、イオン複合体を形成することにより得る事が可能である。該有機変性粘土(B)を調製する際には、粘土化合物の濃度0.1〜30重量%、処理温度0〜150℃の条件を選択して処理を行うことが好ましい。また、該脂肪族塩は固体として調製して溶媒に溶解させて使用しても良いし、溶媒中での化学反応により該脂肪族塩の溶液を調製してそのまま使用しても良い。該粘土化合物と該脂肪族塩の反応量比については、粘土化合物の交換可能なカチオンに対して当量以上の脂肪族塩を用いることが好ましい。処理溶媒としては、例えばペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;エチルアルコール、メチルアルコール等のアルコール類;エチルエーテル、n−ブチルエーテル等のエーテル類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;アセトン;1,4−ジオキサン;テトラヒドロフラン;水、等を用いることができる。そして、好ましくは、アルコール類または水を単独もしくは溶媒の一成分として用いることである。   The organically modified clay (B) can be obtained by introducing the aliphatic salt between layers of the clay compound to form an ionic complex. In preparing the organically modified clay (B), it is preferable to carry out the treatment by selecting conditions of a clay compound concentration of 0.1 to 30% by weight and a treatment temperature of 0 to 150 ° C. The aliphatic salt may be prepared as a solid and dissolved in a solvent for use, or a solution of the aliphatic salt may be prepared by a chemical reaction in the solvent and used as it is. Regarding the reaction amount ratio between the clay compound and the aliphatic salt, it is preferable to use an aliphatic salt having an equivalent amount or more with respect to exchangeable cations of the clay compound. Examples of the processing solvent include aliphatic hydrocarbons such as pentane, hexane and heptane; aromatic hydrocarbons such as benzene and toluene; alcohols such as ethyl alcohol and methyl alcohol; ethers such as ethyl ether and n-butyl ether. Halogenated hydrocarbons such as methylene chloride and chloroform; acetone; 1,4-dioxane; tetrahydrofuran; water; Preferably, alcohols or water is used alone or as one component of a solvent.

また、ポリエチレン製造用触媒を構成する有機変性粘土(B)の粒径に制限はなく、その中でも触媒調製時の効率、ポリエチレン製造時の効率に優れるものとなることから1〜100μmであることが好ましい。その際の粒径を調節する方法にも制限はなく、大きな粒子を粉砕して適切な粒径にしても、小さな粒子を造粒して適切な粒径にしても良く、あるいは粉砕と造粒を組み合わせても良い。また、粒径の調節は有機変性前の粘土に行っても、変性後の有機変性粘土に行っても良い。   Moreover, there is no restriction | limiting in the particle size of the organic modified clay (B) which comprises the catalyst for polyethylene manufacture, and since it will become excellent in the efficiency at the time of catalyst preparation and the efficiency at the time of polyethylene manufacture among them, it may be 1-100 micrometers. preferable. There is no limitation on the method of adjusting the particle size at that time, and large particles may be pulverized to an appropriate particle size, small particles may be granulated to an appropriate particle size, or pulverization and granulation May be combined. The particle size may be adjusted on the clay before organic modification or on the organic modified clay after modification.

該有機アルミニウム化合物(C)としては、有機アルミニウム化合物と称される範疇に属するものであれば如何なるものも用いることができ、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのアルキルアルミニウムなどを挙げることができる。   Any organoaluminum compound (C) may be used as long as it belongs to the category called organoaluminum compound, and examples thereof include alkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum. Can do.

該ポリエチレン製造用触媒を構成する該遷移金属化合物(A)(以下(A)成分ということもある。)、該有機変性粘土(B)(以下、(B)成分ということもある。)、および該有機アルミニウム化合物(C)(以下、(C)成分ということもある。)の使用割合に関しては、ポリエチレン製造用触媒としての使用が可能であれば如何なる制限を受けるものでなく、その中でも、特に超高分子量ポリエチレンを生産効率よく製造することが可能なポリエチレン製造用触媒となることから、(A)成分と(C)成分の金属原子当たりのモル比は(A)成分:(C)成分=100:1〜1:100000の範囲にあることが好ましく、特に1:1〜1:10000の範囲であることが好ましい。また、(A)成分と(B)成分の重量比が(A)成分:(B)成分=10:1〜1:10000にあることが好ましく、特に3:1〜1:1000の範囲であることが好ましい。   The transition metal compound (A) (hereinafter also referred to as component (A)) constituting the catalyst for producing polyethylene, the organically modified clay (B) (hereinafter also referred to as component (B)), and The use ratio of the organoaluminum compound (C) (hereinafter sometimes referred to as component (C)) is not subject to any limitation as long as it can be used as a catalyst for polyethylene production. Since it becomes a polyethylene production catalyst capable of producing ultra-high molecular weight polyethylene with high production efficiency, the molar ratio of the component (A) to the component (C) per metal atom is (A) component: (C) component = It is preferably in the range of 100: 1 to 1: 100000, particularly preferably in the range of 1: 1 to 1: 10000. The weight ratio of the component (A) to the component (B) is preferably (A) component: (B) component = 10: 1 to 1: 10000, particularly in the range of 3: 1 to 1: 1000. It is preferable.

該ポリエチレン製造用触媒の調製方法に関しては、該(A)成分、該(B)成分および該(C)成分を含むポリエチレン製造用触媒を調製することが可能であれば如何なる方法を用いてもよく、例えば各(A)、(B)、(C)成分に関して不活性な溶媒中あるいは重合を行うモノマーを溶媒として用い、混合する方法などを挙げることができる。また、これらの成分を反応させる順番に関しても制限はなく、この処理を行う温度、処理時間も制限はない。また、(A)成分、(B)成分、(C)成分のそれぞれを2種類以上用いてポリエチレン製造用触媒を調製することも可能である。   Regarding the method for preparing the polyethylene production catalyst, any method may be used as long as it is possible to prepare the polyethylene production catalyst containing the component (A), the component (B) and the component (C). For example, there can be mentioned a method in which each of the components (A), (B) and (C) is mixed in an inert solvent or using a monomer for polymerization as a solvent. Moreover, there is no restriction | limiting also about the order which makes these components react, and the temperature and processing time which perform this process also have no restriction | limiting. It is also possible to prepare a catalyst for polyethylene production using two or more of each of the component (A), the component (B), and the component (C).

該超高分子量ポリエチレンを製造する際の重合温度、重合時間、重合圧力、モノマー濃度などの重合条件については任意に選択可能であり、その中でも、重合温度0〜100℃、重合時間10秒〜20時間、重合圧力常圧〜100MPaの範囲で行うことが好ましい。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて、2段以上に分けて行うことも可能である。また、重合終了後に得られる超高分子量ポリエチレンは、従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。   Polymerization conditions such as a polymerization temperature, a polymerization time, a polymerization pressure, and a monomer concentration in producing the ultrahigh molecular weight polyethylene can be arbitrarily selected. Among them, a polymerization temperature of 0 to 100 ° C., a polymerization time of 10 seconds to 20 It is preferable to carry out in a range of time and polymerization pressure from normal pressure to 100 MPa. It is also possible to adjust the molecular weight using hydrogen during polymerization. The polymerization can be carried out by any of batch, semi-continuous and continuous methods, and can be carried out in two or more stages by changing the polymerization conditions. Further, the ultra-high molecular weight polyethylene obtained after completion of the polymerization can be obtained by separating and recovering from the polymerization solvent by a conventionally known method and drying it.

次に、本発明のセパレータに用いる超高分子量ポリエチレン組成物を構成するポリエチレンは、Mwが60万以下、好ましくは5万以上60万以下、さらに好ましくは10万以上60万以下である。ここで、Mwが60万を超えるポリエチレンである場合、得られる組成物の粘度が高くなり、成形が困難になる。   Next, the polyethylene constituting the ultrahigh molecular weight polyethylene composition used for the separator of the present invention has an Mw of 600,000 or less, preferably 50,000 to 600,000, more preferably 100,000 to 600,000. Here, when Mw is polyethylene exceeding 600,000, the viscosity of the obtained composition becomes high, and molding becomes difficult.

該ポリエチレンは、190℃における溶融張力が100mN以上、好ましくは150mN以上を有するものである。また、該ポリエチレンは、一軸伸張等において、(伸長)粘度が歪みと共に急激に増加する歪硬化性を示すものである。このような特性を有するポリエチレンを構成とすることにより、本発明のセパレータは膜厚のバラツキが小さくなり、薄膜化しても、均一な膜厚を有するものとなる。   The polyethylene has a melt tension at 190 ° C. of 100 mN or more, preferably 150 mN or more. In addition, the polyethylene exhibits strain hardening in which (extension) viscosity increases rapidly with strain in uniaxial stretching or the like. By configuring the polyethylene having such characteristics, the separator of the present invention has a small variation in film thickness, and even with a thin film, the separator has a uniform film thickness.

該ポリエチレンは、JIS K6760に準拠した密度が935kg/m以上960kg/m以下のものである。ここで、密度が935kg/m未満である場合、得られる組成物は、強度が低いものとなる。一方、960kg/mを超える場合、得られる組成物は、脆い上に取扱い性に劣るものとなる。 The polyethylene has a density of 935 kg / m 3 or more and 960 kg / m 3 or less in accordance with JIS K6760. Here, when the density is less than 935 kg / m 3 , the resulting composition has low strength. On the other hand, if it exceeds 960 kg / m 3 , the resulting composition is brittle and inferior in handleability.

そして、該ポリエチレンは、セパレータとした際に強度、表面外観に優れるセパレータとなることから重量平均分子量と数平均分子量(以下、Mnと称する場合もある。)の比(Mw/Mn)が3.0〜8.0であるものが好ましい。   And since this polyethylene becomes a separator which is excellent in strength and surface appearance when used as a separator, the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (hereinafter sometimes referred to as Mn) is 3. What is 0-8.0 is preferable.

該ポリエチレンは、例えばメタロセン触媒と呼ばれる遷移金属錯体と特定の助触媒を組み合わせた触媒の存在下に、エチレンを単独重合、またはエチレンと上記にて例示したα−オレフィンを共重合することにより製造することができる。該ポリエチレンは、特開2004−346304号公報、特開2005−248013号公報、特開2006−2057号公報、特開2006−321991号公報、特開2007−169341号公報、特開2010−43152号公報、特開2011−89019号公報、特開2011−89020号公報等の方法によって得られたものであってもよい。   The polyethylene is produced, for example, by homopolymerizing ethylene or copolymerizing ethylene and the α-olefin exemplified above in the presence of a catalyst obtained by combining a transition metal complex called a metallocene catalyst and a specific promoter. be able to. The polyethylene is disclosed in JP-A-2004-346304, JP-A-2005-248013, JP-A-2006-2057, JP-A-2006-321991, JP-A-2007-169341, JP-A-2010-43152. What was obtained by methods, such as gazette, JP, 2011-89019, A JP, 2011-89020, A, may be sufficient.

本発明のセパレータを構成する超高分子量ポリエチレン組成物は、該超高分子量ポリエチレン100重量部に対し、該ポリエチレン5重量部以上5000重量部以下、好ましくは20重量部以上2000重量部以下を含んでなるものである。ここで、ポリエチレンが5重量部未満である場合、セパレータする際の成形加工性に劣るものとなる。一方、5000重量部を越える場合、得られるセパレータは、機械的強度、耐熱性に劣るものとなる。   The ultrahigh molecular weight polyethylene composition constituting the separator of the present invention contains 5 parts by weight or more and 5000 parts by weight or less, preferably 20 parts by weight or more and 2000 parts by weight or less of the polyethylene with respect to 100 parts by weight of the ultrahigh molecular weight polyethylene. It will be. Here, when polyethylene is less than 5 weight part, it will be inferior to the moldability at the time of carrying out a separator. On the other hand, when it exceeds 5000 parts by weight, the separator obtained is inferior in mechanical strength and heat resistance.

本発明のセパレータを構成する超高分子量ポリエチレン組成物を調製する際の方法としては、該超高分子量ポリエチレンとポリエチレンを混合して超高分子量ポリエチレンの組成物を得ることが可能であれば如何なる方法であってもよく、例えば溶融状態での押出混練、ロール混練、または、溶媒に溶解し、溶液状態にした後、押出混練、ロール混練、もしくは攪拌翼を用いた攪拌混合などをした後、溶媒留去、溶媒抽出等により溶媒を除去する方法等を挙げることができる。また、有機溶媒に溶解する場合は、後で述べる有機溶媒との混合反応と兼ね、得られた混合物をそのまま用いることも可能である。この際の溶媒としては、例えばヘキサン、ヘプタン、デカン、ドデカン、テトラデカン、オクタデカン、エイコサン、流動パラフィン、イソパラフィン等の直鎖状若しくは分岐状の飽和又は不飽和の脂肪族化合物;シクロヘキサン、シクロデカン、テトラヒドロナフタレン、デカヒドロナフタレン等の飽和又は不飽和の脂環族化合物;ベンゼン、トルエン、キシレン、ナフタレン、アントラセン等の芳香族化合物;塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素化合物;等を例示することができる。   The ultra high molecular weight polyethylene composition constituting the separator of the present invention may be prepared by any method as long as the ultra high molecular weight polyethylene and polyethylene can be mixed to obtain an ultra high molecular weight polyethylene composition. For example, after extrusion kneading in a molten state, roll kneading, or dissolving in a solvent to form a solution, extrusion kneading, roll kneading, or stirring and mixing using a stirring blade, etc. Examples thereof include a method for removing the solvent by distillation, solvent extraction, and the like. Moreover, when melt | dissolving in an organic solvent, it can also be used for the mixed reaction with the organic solvent mentioned later to use the obtained mixture as it is. Examples of the solvent used here include linear or branched saturated or unsaturated aliphatic compounds such as hexane, heptane, decane, dodecane, tetradecane, octadecane, eicosane, liquid paraffin, and isoparaffin; cyclohexane, cyclodecane, and tetrahydronaphthalene. Saturated or unsaturated alicyclic compounds such as decahydronaphthalene; aromatic compounds such as benzene, toluene, xylene, naphthalene, anthracene; methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, And halogenated hydrocarbon compounds such as dichlorobenzene.

該超高分子量ポリエチレン組成物は、本発明の目的を逸脱しない限りにおいて、耐熱安定剤、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料等;カーボンブラック、タルク、ガラス粉、ガラス繊維、金属粉等の無機充填剤または補強剤;有機充填剤または補強剤;難燃剤;中性子遮蔽剤等の公知の添加剤、更には、ポリプロピレン系樹脂、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等の樹脂を配合していても良く、このような添加剤の添加方法としては、超高分子量ポリエチレン、ポリエチレンに配合する方法、超高分子量ポリエチレン、ポリエチレンと、成形の際にブレンドする方法、予めドライブレンドもしくはメルトブレンドする方法、等を挙げることができる。   The ultrahigh molecular weight polyethylene composition is a heat stabilizer, weather stabilizer, antistatic agent, antifogging agent, antiblocking agent, slip agent, lubricant, nucleating agent, pigment, etc., as long as it does not depart from the object of the present invention; Inorganic fillers or reinforcing agents such as carbon black, talc, glass powder, glass fiber, metal powder, etc .; organic fillers or reinforcing agents; flame retardants; known additives such as neutron shielding agents; Resins such as -1-butene, poly-4-methyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, polystyrene, and these maleic anhydride grafts may be blended. The method of adding such additives includes ultra high molecular weight polyethylene, a method of blending with polyethylene, ultra high molecular weight polyethylene, polyethylene, and molding. It can be exemplified a method of blending, a method of preliminarily dry-blended or melt-blending, and the like to.

そして、該超高分子量ポリエチレン組成物は、超高分子量ポリエチレンの有する優れた耐熱性、機械的特性と共に、ポリエチレンの有する優れた加工性を有し、さらに優れた延伸性、クリーン性も有するものであることから、セパレータに適したものである。   The ultrahigh molecular weight polyethylene composition has excellent heat resistance and mechanical properties possessed by ultra high molecular weight polyethylene, has excellent processability possessed by polyethylene, and has excellent stretchability and cleanliness. Therefore, it is suitable for a separator.

本発明のセパレータは、膜強度と透過性に影響する膜抵抗とのバランスに優れるものとなることから空隙率10%以上80%以下、特に25%以上65%以下のセパレータであることが好ましい。その際の膜厚としては、0.001〜1mm、平均細孔径としては、1〜1000nmであることが好ましい。その際の空隙率は、例えば空隙率(V%)=100−10×(10cm×10cmのセパレータ重量)(W、g)/(セパレータの真密度(g/cm)×セパレータの膜厚(d、mm))により求めることができる。また、セパレータの膜厚(mm)は、例えば該セパレータの30点で接触式膜厚計にて膜厚を測定し、その平均値として求めることができる。平均細孔径は、窒素吸着法、水銀圧入法の他、走査型電子顕微鏡による観察により得られた画像から画像解析により求めることも可能である。 The separator of the present invention is preferably a separator having a porosity of 10% or more and 80% or less, particularly 25% or more and 65% or less because it has an excellent balance between membrane strength and membrane resistance that affects permeability. In this case, the film thickness is preferably 0.001 to 1 mm, and the average pore diameter is preferably 1 to 1000 nm. The porosity in this case is, for example, porosity (V%) = 100−10 × (10 cm × 10 cm separator weight) (W, g) / (separator true density (g / cm 3 ) × separator film thickness ( d, mm)). Moreover, the film thickness (mm) of a separator can be calculated | required as an average value, for example, by measuring a film thickness with a contact-type film thickness meter at 30 points of the separator. The average pore diameter can be obtained by image analysis from an image obtained by observation with a scanning electron microscope in addition to the nitrogen adsorption method and the mercury intrusion method.

該セパレータは、特に強度に優れ、薄膜化が可能となることから、23℃で測定した引張破断強度が150MPa以上であることが好ましい。また、特に耐熱性、高温時の耐久性、安定性に優れることから熱収縮率が2%以下であることが好ましい。なお、本発明における引張破断強度は、例えば引張試験機等により測定できる。その際の測定条件としては、初期長20mmの試験片を延伸速度10〜100mm/分で延伸するなどして測定することができる。また、熱収縮率は、5cm角の微多孔膜を例えば、1時間100℃で加熱した後、24時間放冷し、その後の収縮率を測定することにより測定することができる。   The separator is particularly excellent in strength and can be made into a thin film. Therefore, the tensile strength at break measured at 23 ° C. is preferably 150 MPa or more. In particular, the heat shrinkage rate is preferably 2% or less because of excellent heat resistance, durability at high temperatures, and stability. In addition, the tensile breaking strength in this invention can be measured with a tensile tester etc., for example. Measurement conditions at that time can be measured, for example, by stretching a test piece having an initial length of 20 mm at a stretching speed of 10 to 100 mm / min. The thermal contraction rate can be measured by, for example, heating a 5 cm square microporous membrane at 100 ° C. for 1 hour, allowing to cool for 24 hours, and measuring the subsequent shrinkage rate.

本発明のセパレータの製造方法としては特に制限は無く、例えば超高分子量ポリエチレン組成物と有機溶媒とを50℃以上300℃以下の温度で混合しシート状物とした後、該シート状物から有機溶媒の除去を行う工程と二軸延伸を施す工程を付する方法を挙げることができる。   The method for producing the separator of the present invention is not particularly limited. For example, an ultrahigh molecular weight polyethylene composition and an organic solvent are mixed at a temperature of 50 ° C. or higher and 300 ° C. or lower to form a sheet, and then the organic material is converted from the sheet The method of attaching | subjecting the process of removing a solvent, and the process of giving biaxial stretching can be mentioned.

その際の有機溶媒としては、例えばオクタン、デカン、ドデカン、オクタデンカン、デカヒドロナフタレン、テトラヒドロナフタレン等の高沸点の脂肪族炭化水素又は脂環族炭化水素;ベンゼン、トルエン、キシレン、ナフタレン等の芳香族炭化水素;ジクロロエタン、トリクロロエタン、クロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素;直鎖もしくは分岐状の流動パラフィン;パラフィンワックス;炭素数5以上の高級アルコール;フタル酸エステル類、又はこれらの混合物を挙げることができる。また、該超高分子量ポリエチレン組成物と有機溶媒を混合する際には、効率よく均一性、平滑性に優れるセパレータが得られることから超高分子量ポリエチレン組成物の濃度が0.5wt%以上60wt%以下であることが好ましく、5wt%以上40wt%以下であることが特に好ましい。そして、超高分子量ポリエチレン組成物と有機溶媒とを混合する際には、例えば攪拌翼を取り付けた反応槽で混合する方法、単軸、二軸等の押出機で押出混練する方法、反応器での混合の後、押出混練をする方法等の方法を挙げることができる。そして、得られた混合物は、例えば圧縮成形、Tダイ、サーキュラーダイ等からの押出法、インフレーション成形等の方法により、有機溶媒を含むシート状物として成形される。   Examples of the organic solvent in this case include high-boiling aliphatic hydrocarbons or alicyclic hydrocarbons such as octane, decane, dodecane, octadencan, decahydronaphthalene, and tetrahydronaphthalene; aromatics such as benzene, toluene, xylene, and naphthalene. Hydrocarbons: Halogenated hydrocarbons such as dichloroethane, trichloroethane, chlorobenzene, and trichlorobenzene; linear or branched liquid paraffin; paraffin wax; higher alcohols having 5 or more carbon atoms; phthalates, or mixtures thereof Can do. In addition, when the ultrahigh molecular weight polyethylene composition and the organic solvent are mixed, a separator having an excellent uniformity and smoothness can be obtained efficiently, so that the concentration of the ultrahigh molecular weight polyethylene composition is 0.5 wt% or more and 60 wt%. The content is preferably 5 wt% or more and 40 wt% or less. Then, when mixing the ultrahigh molecular weight polyethylene composition and the organic solvent, for example, a method of mixing in a reaction vessel equipped with a stirring blade, a method of extrusion kneading with a single-screw or twin-screw extruder, a reactor Examples of the method include extrusion kneading after the mixing. And the obtained mixture is shape | molded as a sheet-like material containing an organic solvent, for example by methods, such as compression molding, the extrusion method from T-die, a circular die, and inflation molding.

さらに、該シート状物から有機溶媒を除去する工程としては、例えば加熱による乾燥法、低融点の脂肪族又は脂環族炭化水素、アルコール、ハロゲン化炭化水素等による溶媒抽出後、乾燥する方法等が挙げられる。   Further, as the step of removing the organic solvent from the sheet-like material, for example, a drying method by heating, a method of drying after solvent extraction with a low melting point aliphatic or alicyclic hydrocarbon, alcohol, halogenated hydrocarbon, etc. Is mentioned.

また、二軸延伸を施す工程としては、例えば同時二軸延伸法、逐次二軸延伸を行う遂次二軸延伸法等を行う工程を挙げることができ、その際の延伸速度、延伸温度は一定又は変化を伴う多段階であってもよい。延伸倍率が縦方向に2〜20倍、横方向に2〜20倍のものであることが好ましい。延伸温度は、0℃以上200℃以下が好ましい。なお、有機溶媒の除去工程、二軸延伸を行う工程の工程順は任意であり、例えば有機溶媒の除去の後に二軸延伸を行なっても、二軸延伸の後に有機溶媒の除去を行なっても、これらを同時におこなってもよい。また、延伸後、アニーリングを施すこともできる。   Examples of the biaxial stretching step include a simultaneous biaxial stretching method and a sequential biaxial stretching method in which sequential biaxial stretching is performed, and the stretching speed and stretching temperature at that time are constant. Alternatively, it may be multi-stage with change. The draw ratio is preferably 2 to 20 times in the longitudinal direction and 2 to 20 times in the transverse direction. The stretching temperature is preferably 0 ° C. or higher and 200 ° C. or lower. The order of the organic solvent removal step and the biaxial stretching step is arbitrary. For example, the biaxial stretching may be performed after the organic solvent is removed, or the organic solvent may be removed after the biaxial stretching. These may be performed simultaneously. Moreover, annealing can also be given after extending | stretching.

本発明のセパレータは、例えばリチウム電池セパレータ、鉛蓄電池セパレータ、ニッケル−カドニウム蓄電池セパレータ、ニッケル−水素電池用の各種電池セパレータ;電解槽セパレータ;等として用いることができ、中でもリチウム二次電池セパレータとして適したものである。   The separator of the present invention can be used as, for example, a lithium battery separator, a lead storage battery separator, a nickel-cadmium storage battery separator, various battery separators for nickel-hydrogen batteries, an electrolytic cell separator, and the like, and is particularly suitable as a lithium secondary battery separator. It is a thing.

そして、本発明のセパレータは、耐熱性、高温時の耐久性、安定性に優れ、リチウムイオン二次電池のセパレータとして適用した場合には、薄膜化による小型、軽量化のみならず、緊急時のシャットダウン性、安全性にも優れるものとなり、特に適したものとなる。そして、本発明のセパレータをリチウムイオン二次電池のセパレータとして用いる際には、膜厚を15μm以下とすることが好ましい。   The separator of the present invention is excellent in heat resistance, durability at high temperature, and stability, and when applied as a separator of a lithium ion secondary battery, it is not only reduced in size and weight by thinning, but also in an emergency. It is excellent in shutdown and safety, and is particularly suitable. And when using the separator of this invention as a separator of a lithium ion secondary battery, it is preferable that a film thickness shall be 15 micrometers or less.

また、リチウムイオン二次電池とする際、正極としてはリチウム金属酸化物、例えばコバルト・マンガン・ニッケル複合酸化物−リチウムを挙げることができ、陰極としては炭素材、例えばグラファイトを挙げることができ、電解液としては、例えば1MのLiPFのエチルカーボネート/ジエチルカーボネート溶液を挙げることができる。そして、これらを用いてリチウムイオン二次電池に適用した際には、全容量の50%に相当する充電状態としたリチウムイオン二次電池に0.5C(リチウムイオン二次電池の放電容量を2時間で放電する電流値)、1C(リチウムイオン二次電池の放電容量を1時間で放電する電流値)、2C(リチウムイオン二次電池の放電容量を0.5時間で放電する電流値)に相当する定電流放電を10秒行った後、電流を停止し、その時の電圧上昇を測定、この電圧降下の電流値依存性(IR損)から算出した直流抵抗値が10Ω・m以下、かつ該リチウムイオン電池の放電容量を2時間で放電する電流値(0.5C)で定電流充放電したとき、500回以上の充放電を行えるリチウムイオン二次電池となるセパレータであることが好ましい。 In addition, when making a lithium ion secondary battery, the positive electrode can include lithium metal oxides such as cobalt, manganese and nickel composite oxide-lithium, and the cathode can include carbon materials such as graphite. Examples of the electrolytic solution may include an ethyl carbonate / diethyl carbonate solution of 1M LiPF 6 . When these are applied to a lithium ion secondary battery, the lithium ion secondary battery in a charged state corresponding to 50% of the total capacity is set to 0.5 C (the discharge capacity of the lithium ion secondary battery is 2). 1C (current value for discharging the discharge capacity of the lithium ion secondary battery in 1 hour), 2C (current value for discharging the discharge capacity of the lithium ion secondary battery in 0.5 hour) After performing the corresponding constant current discharge for 10 seconds, the current was stopped, the voltage rise at that time was measured, and the DC resistance value calculated from the current value dependency (IR loss) of this voltage drop was 10 Ω · m 2 or less, and When the lithium ion battery is charged and discharged at a constant current at a current value (0.5 C) for discharging in 2 hours, the separator is preferably a lithium ion secondary battery that can be charged and discharged 500 times or more.

本発明のセパレータは、強度、耐熱性に優れることから、リチウムイオン電池(LiB)、鉛蓄電池、ニッケル水素電池、アルカリ電池等のセパレータとして用いることができる。   Since the separator of this invention is excellent in intensity | strength and heat resistance, it can be used as separators, such as a lithium ion battery (LiB), a lead storage battery, a nickel hydride battery, an alkaline battery.

融点及び強度が高く、かつ低分子量成分が少なく、クリーン性、強度に優れるセパレータを提供することで、電池の連続使用時間延長や小型化が可能となる。   By providing a separator having a high melting point and high strength, low low molecular weight components, and excellent cleanliness and strength, it is possible to extend the continuous use time and reduce the size of the battery.

以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

なお、断りのない限り、用いた試薬等は市販品、あるいは既知の方法に従って合成したものを用いた。   Unless otherwise noted, the reagents used were commercially available products or those synthesized according to known methods.

有機変性粘土の粉砕にはジェットミル(セイシン企業社製、(商品名)CO−JET SYSTEM α MARK III)を用い、粉砕後の粒径はマイクロトラック粒度分布測定装置(日機装(株)製、(商品名)MT3000)を用いてエタノールを分散剤として測定した。   A jet mill (manufactured by Seishin Enterprise Co., Ltd., (trade name) CO-JET SYSTEM α MARK III) was used for pulverizing the organically modified clay, and the particle size after pulverization was measured using a microtrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., (Trade name) MT3000) was used to measure ethanol as a dispersant.

ポリエチレン製造用触媒の調製、ポリエチレンの製造および溶媒精製は全て不活性ガス雰囲気下で行った。トリイソブチルアルミニウムのヘキサン溶液(20wt%)は東ソーファインケム(株)製を用いた。   Preparation of the catalyst for polyethylene production, production of polyethylene and solvent purification were all carried out in an inert gas atmosphere. A hexane solution (20 wt%) of triisobutylaluminum manufactured by Tosoh Finechem Co., Ltd. was used.

さらに、実施例における超高分子量ポリエチレン、ポリエチレンの諸物性は、以下に示す方法により測定した。   Furthermore, various physical properties of the ultrahigh molecular weight polyethylene and polyethylene in the examples were measured by the following methods.

〜固有粘度([η])の測定〜
ウベローデ型粘度計を用い、デカヒドロナフタレンを溶媒として、135℃において、超高分子量ポリエチレン濃度0.005wt%で測定した。
~ Measurement of intrinsic viscosity ([η]) ~
Using an Ubbelohde viscometer, measurement was conducted at 135 ° C. using decahydronaphthalene as a solvent at an ultrahigh molecular weight polyethylene concentration of 0.005 wt%.

〜嵩密度の測定〜
JIS K6760(1995)に準拠した方法で測定した。
~ Measurement of bulk density ~
It measured by the method based on JISK6760 (1995).

〜TmとTmの測定〜
DSC(エスアイアイ・ナノテクノロジー(株)製 (商品名)DSC6220)を用いて、10℃/分の昇温速度で1stスキャンし1stスキャンの結晶融解ピーク(Tm)の測定を行った。その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、2ndスキャンし2ndスキャンの結晶融解ピーク(Tm)を測定した。その際の超高分子量ポリエチレンのサンプル量は4〜6mgとした。
~ Measurement of Tm 1 and Tm 2 ~
Using DSC (product name: DSC6220, manufactured by SII NanoTechnology Co., Ltd.), the 1st scan was performed at a heating rate of 10 ° C./min, and the crystal melting peak (Tm 1 ) of the 1st scan was measured. Thereafter, after standing for 5 minutes, the temperature was lowered to −20 ° C. at a rate of temperature drop of 10 ° C./min. After standing for 5 minutes, 2nd scan was performed again, and a crystal melting peak (Tm 2 ) of 2nd scan was measured. The sample amount of ultra high molecular weight polyethylene at that time was 4 to 6 mg.

〜チタン含有量の測定〜
超高分子量ポリエチレンを灰化し、アルカリ溶融して、調製した溶液を用いて、ICP発光分析装置((株)パーキンエルマー製、(商品名)Optima3000XL)により、超高分子量ポリエチレン中のチタン含有量を測定した。
-Measurement of titanium content-
The ultra high molecular weight polyethylene was incinerated, alkali melted, and the prepared solution was used to determine the titanium content in the ultra high molecular weight polyethylene using an ICP emission analyzer (manufactured by PerkinElmer Co., Ltd., (trade name) Optima 3000XL). It was measured.

〜平均粒径の測定〜
JIS Z8801で規定された9種類の篩(目開き:710μm、500μm、425μm、300μm、212μm、150μm、106μm、75μm、53μm)を用いて、100gの超高分子量ポリエチレン粒子を分級した際に得られる各篩に残った粒子の重量を目開きの大きい側から積分した積分曲線において、50%の重量になる粒子径を測定することにより平均粒径を求めた。
~ Measurement of average particle diameter ~
Obtained when classifying 100 g of ultrahigh molecular weight polyethylene particles using 9 types of sieves defined by JIS Z8801 (openings: 710 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm, 53 μm) The average particle diameter was determined by measuring the particle diameter at 50% weight on an integral curve obtained by integrating the weight of the particles remaining on each sieve from the side having a large opening.

〜超高分子量ポリエチレン粒子の評価用シートの作成〜
超高分子量ポリエチレン粒子の評価用シートは以下の方法で成形した。すなわち、超高分子量ポリエチレンをポリエチレンテレフタレートフィルムに挟んで、190℃で、5分間予熱した後、190℃、プレス圧力20MPaの条件にて加熱圧延した。その後、金型温度110℃、10分間冷却し、厚さ0.3mmのプレスシートを作成した。
~ Preparation of sheet for evaluation of ultra high molecular weight polyethylene particles ~
The evaluation sheet for ultrahigh molecular weight polyethylene particles was molded by the following method. That is, ultra high molecular weight polyethylene was sandwiched between polyethylene terephthalate films, preheated at 190 ° C. for 5 minutes, and then heat-rolled under conditions of 190 ° C. and a press pressure of 20 MPa. Thereafter, the mold was cooled at a mold temperature of 110 ° C. for 10 minutes to prepare a press sheet having a thickness of 0.3 mm.

〜引張破断強度の測定〜
セパレータおよび超高分子量ポリエチレン粒子の評価用シートからダンベル型に切り出したサンプル(測定部の幅5mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンRTG−1210)にて、測定温度23℃、試験片の初期長さ20mm、引張速度20mm/分で引張試験をし、引張破断強度を求めた。
~ Measurement of tensile strength at break ~
A sample cut into a dumbbell shape from a separator and an evaluation sheet for ultrahigh molecular weight polyethylene particles (measurement part width 5 mm) was allowed to stand at 23 ° C. for 48 hours, and then a tensile tester (A & D Co., Ltd.). (Trade name) Tensilon RTG-1210), a tensile test was performed at a measurement temperature of 23 ° C., an initial length of the test piece of 20 mm, and a tensile speed of 20 mm / min to obtain a tensile breaking strength.

〜溶融延伸時の破断応力の測定〜
上記引張破断強度の測定に記載の方法により、セパレータおよび超高分子量ポリエチレン粒子の評価用シートからダンベル型に切り出したサンプル(測定部の幅10mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンUMT2.5T)にて、150℃で、試験片の初期長さ10mm、引張速度20mm/分で引張試験をし、溶融延伸時の破断応力を求めた。歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。なお、微多孔膜においては、荷重を見掛けの初期断面積で除した値を応力とした。
-Measurement of breaking stress during melt drawing-
After the sample cut into a dumbbell shape from the separator and the evaluation sheet for ultrahigh molecular weight polyethylene particles by the method described in the measurement of tensile strength at break (10 mm in width of the measurement part) was left at 23 ° C. for 48 hours, Using a tensile tester (manufactured by A & D Co., Ltd., (trade name) Tensilon UMT2.5T), a tensile test is performed at 150 ° C. with an initial length of the test piece of 10 mm and a tensile speed of 20 mm / min. The breaking stress during stretching was determined. When strain hardening occurs and stress increases with stretching, the maximum value is the breaking stress, and when strain hardening does not occur and stress does not increase after stretching, the stress in the flat region after yielding is the breaking stress. did. In the microporous membrane, the value obtained by dividing the load by the apparent initial cross-sectional area was defined as stress.

〜重量平均分子量(Mw)、数平均分子量(Mn)、重量平均分子量と数平均分子量の比(Mw/Mn)〜
重量平均分子量(Mw)、数平均分子量(Mn)、および重量平均分子量と数平均分子量の比(Mw/Mn)は、GPCによって測定した。GPC装置(東ソー(株)製(商品名)HLC−8121GPC/HT)およびカラム(東ソー(株)製(商品名)TSKgel GMHhr−H(20)HT)を用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は1.0mg/mlの濃度で調製し、0.3ml注入して測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正した。なお、MwおよびMnは直鎖状ポリエチレン換算の値として求めた。
-Weight average molecular weight (Mw), number average molecular weight (Mn), ratio of weight average molecular weight to number average molecular weight (Mw / Mn)-
The weight average molecular weight (Mw), the number average molecular weight (Mn), and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) were measured by GPC. The column temperature was set to 140 ° C. using a GPC device (trade name: HLC-8121 GPC / HT, manufactured by Tosoh Corporation) and a column (trade name: TSKgel GMHhr-H (20) HT, manufactured by Tosoh Corporation). The measurement was performed using 1,2,4-trichlorobenzene as an eluent. A measurement sample was prepared at a concentration of 1.0 mg / ml, and 0.3 ml was injected and measured. The calibration curve of molecular weight was calibrated using a polystyrene sample having a known molecular weight. In addition, Mw and Mn were calculated | required as a value of linear polyethylene conversion.

〜溶融張力の測定〜
キャピログラフ(東洋精機製作所製)を使用した。210℃で、長さ(L)が8mm,直径(D)が2.095mmのダイから、ピストン降下速度10mm/分で降下させたストランドを10m/分で引き取り、引き取り荷重を溶融張力とした。
~ Measurement of melt tension ~
Capillograph (manufactured by Toyo Seiki Seisakusho) was used. A strand lowered at a piston descending speed of 10 mm / min was drawn at 10 m / min from a die having a length (L) of 8 mm and a diameter (D) of 2.095 mm at 210 ° C., and the take-up load was defined as melt tension.

〜歪硬化性の測定〜
温度180℃に設定したマイスナー型一軸伸長粘度計(東洋精機製作所製、商品名:メルテンレオメーター)を用いて測定した。非線型パラメータ(λ)は、ひずみ速度0.07〜0.1s−1の条件で測定した伸長粘度の最大値を、その時間の線形領域の伸長粘度で除した値として求めた。なお、線形領域における伸長粘度の値は、福田猛著,新高分子実験学1,高分子実験の基礎,分子特性解析,“3−4.分子形状および形態”,295(1994).に記載の方法に従い、動的粘弾性より近似式を用いて計算した。得られたλが1を越える場合は歪硬化性ありと判断した。
~ Measurement of strain hardening ~
The measurement was performed using a Meissner type uniaxial extensional viscometer (manufactured by Toyo Seiki Seisakusho, trade name: Melten Rheometer) set at a temperature of 180 ° C. The non-linear parameter (λ) was obtained as a value obtained by dividing the maximum value of the extensional viscosity measured under the condition of strain rate of 0.07 to 0.1 s −1 by the extensional viscosity in the linear region at that time. In addition, the value of the extensional viscosity in the linear region is taken by Takeshi Fukuda, New Polymer Experimental Science 1, Basics of Polymer Experiment, Molecular Characteristic Analysis, “3-4. Molecular Shape and Form”, 295 (1994). According to the method described in the above, calculation was performed using an approximate expression from dynamic viscoelasticity. When the obtained λ exceeded 1, it was judged that there was strain hardening.

〜密度〜
JIS K6760(1995)に準拠して密度勾配管法で測定した。
~density~
The density gradient tube method was used in accordance with JIS K6760 (1995).

〜セパレータの膜厚および空隙率の測定〜
セパレータの膜厚(d、mm)は、微多孔膜の30点で接触式膜厚計にて膜厚を測定し、その平均値とした。空隙率(V、%)は10cm×10cmの微多孔膜の重量(W、g)を測定し、多孔質膜の真密度(0.950g/cm)、下記(e)で算出した。
~ Measurement of separator film thickness and porosity ~
The film thickness (d, mm) of the separator was determined by measuring the film thickness with a contact-type film thickness meter at 30 points of the microporous film, and taking the average value. The porosity (V,%) was calculated by measuring the weight (W, g) of a 10 cm × 10 cm microporous membrane, and calculating the true density (0.950 g / cm 3 ) of the porous membrane as shown below (e).

V=100−W/0.095d (e)
〜セパレータの細孔分布の測定〜
金蒸着を施した後、走査型電子顕微鏡((株)キーエンス製、(商品名)VE−9800)により、倍率10000倍で微多孔膜表面を観察し、得られたSEM写真の画像解析により細孔分布を求め、それを幾何対数分布関数に近似し、そのメジアン径を平均細孔径とした。
V = 100-W / 0.095d (e)
~ Measurement of separator pore distribution ~
After gold deposition, the surface of the microporous film was observed at a magnification of 10,000 times with a scanning electron microscope (manufactured by Keyence Co., Ltd., (trade name) VE-9800), and fine analysis was performed by image analysis of the obtained SEM photograph. The pore distribution was obtained, approximated to a geometric logarithmic distribution function, and the median diameter was taken as the average pore diameter.

〜熱収縮率の測定〜
熱収縮率は、5cm×5cmの微多孔膜を、100℃で1時間加熱し、室温24時間放冷した後の縦横の長さの変化率を算出し、その平均値とした。
~ Measurement of heat shrinkage ~
The heat shrinkage rate was calculated by calculating the rate of change in length and width after heating a 5 cm × 5 cm microporous membrane at 100 ° C. for 1 hour and allowing it to cool at room temperature for 24 hours.

〜二次電池セパレータとしての電池性能の評価〜
得られたセパレータをリチウムイオン二次電池セパレータとして用いたラミネート型リチウムイオン二次電池(正極;コバルト・マンガン・ニッケル複合酸化物−リチウム、陰極;グラファイト、電解液;1M LiPFのエチルカーボネート/ジエチルカーボネート(=1/1vol%)溶液、電極サイズ;4mm×4mm、充電容量が約35mA・h)を作製し、その性能評価を行った。得られたリチウムイオン二次電池は、充放電を3サイクルし、初期の状態調整をした後、直流抵抗および充放電効率(=放電容量/充電容量×100)を測定することにより評価を行った。
(直流抵抗);全容量の50%に相当する充電状態としたリチウムイオン二次電池に0.5C(リチウムイオン二次電池の放電容量を2時間で放電する電流値)、1C(リチウムイオン二次電池の放電容量を1時間で放電する電流値)、2C(リチウムイオン二次電池の放電容量を0.5時間で放電する電流値)に相当する定電流放電を10秒行った後、電流を停止し、その時の電圧上昇を測定、この電圧降下の電流値依存性(IR損)から直流抵抗値を算出した。測定温度は25℃である。
(充放サイクル数);25℃で、0.5C(リチウムイオン二次電池の放電容量を2時間で放電する電流値)の定電流で4.2Vまで充電し、それを同じく0.5Cの定電流で2.7Vまで放電する充放電を繰り返し、放電容量(C)が初期の放電容量の60%まで低減する回数を測定した。
-Evaluation of battery performance as secondary battery separator-
Laminate type lithium ion secondary battery using the obtained separator as a lithium ion secondary battery separator (positive electrode; cobalt-manganese-nickel composite oxide-lithium, cathode; graphite, electrolyte; 1M LiPF 6 ethyl carbonate / diethyl A carbonate (= 1/1 vol%) solution, an electrode size: 4 mm × 4 mm, and a charging capacity of about 35 mA · h were prepared, and the performance was evaluated. The obtained lithium ion secondary battery was evaluated by measuring DC resistance and charge / discharge efficiency (= discharge capacity / charge capacity × 100) after three cycles of charge / discharge and adjusting the initial state. .
(DC resistance); 0.5C (current value for discharging the discharge capacity of the lithium ion secondary battery in 2 hours), 1C (lithium ion secondary battery) in a charged state corresponding to 50% of the total capacity The secondary battery was discharged for 10 seconds at a constant current corresponding to 2C (current value at which the discharge capacity of the lithium ion secondary battery was discharged at 0.5 hour). The voltage rise at that time was measured, and the DC resistance value was calculated from the current value dependence (IR loss) of this voltage drop. The measurement temperature is 25 ° C.
(Number of charge / discharge cycles): Charged to 4.2 V at a constant current of 0.5 C (current value for discharging the discharge capacity of the lithium ion secondary battery in 2 hours) at 25 ° C. Charging / discharging which discharged to 2.7V with a constant current was repeated, and the number of times the discharge capacity (C) was reduced to 60% of the initial discharge capacity was measured.

製造例1
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジメチルベヘニルアミン(ライオン(株)製、(商品名)アーミンDM22D)42.4g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより125gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
Production Example 1
(1) Preparation of organically modified clay Into a 1 liter flask was placed 300 ml of industrial alcohol (manufactured by Nippon Alcohol Sales, (trade name) Echinen F-3) and 300 ml of distilled water, 15.0 g of concentrated hydrochloric acid and dimethylbehenylamine (Lion After adding 42.4 g (120 mmol) of (trade name) Armin DM22D manufactured by Co., Ltd. and heating to 45 ° C., 100 g of synthetic hectorite (Rockwood Additives, (trade name) Laponite RDS) was dispersed. The mixture was heated to 60 ° C. and stirred for 1 hour while maintaining the temperature. The slurry was separated by filtration, washed twice with 600 ml of 60 ° C. water, and dried in an oven at 85 ° C. for 12 hours to obtain 125 g of an organically modified clay. This organically modified clay was pulverized by a jet mill to have a median diameter of 7 μm.

(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ハフニウムジクロライドを0.710g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.5wt%)。
(2) Preparation of catalyst suspension for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added. Diphenylmethylene (cyclopentadienyl) (2- (diethylamino) -9-fluorenyl) hafnium dichloride (0.710 g) and 20% triisobutylaluminum (142 ml) were added, and the mixture was stirred at 60 ° C. for 3 hours. After cooling to 45 ° C., the supernatant was extracted, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid weight: 11.5 wt%).

(3)超高分子量ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を95.2mg(固形分10.9mg相当)加え、65℃に昇温後、分圧が1.3MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで102gの超高分子量ポリエチレン(1)を得た(活性:9360g/g触媒)。得られた超高分子量ポリエチレン(1)の物性は表1に示す。
(3) Production of ultrahigh molecular weight polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, and 95.2 mg of the suspension of the catalyst for polyethylene production obtained in (2) (Equivalent to 10.9 mg of solid content) In addition, after the temperature was raised to 65 ° C., ethylene was continuously supplied so that the partial pressure became 1.3 MPa, and slurry polymerization of ethylene was performed. After 180 minutes, the pressure was released, and the slurry was filtered and dried to obtain 102 g of ultrahigh molecular weight polyethylene (1) (activity: 9360 g / g catalyst). The physical properties of the obtained ultrahigh molecular weight polyethylene (1) are shown in Table 1.

製造例2
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売社製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジオレイルメチルアミン(ライオン(株)製、(商品名)アーミンM20)64.2g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより160gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
Production Example 2
(1) Preparation of organically modified clay Into a 1 liter flask, 300 ml of industrial alcohol (manufactured by Nippon Alcohol Sales Co., Ltd., (trade name) Echinen F-3) and 300 ml of distilled water were added, 15.0 g of concentrated hydrochloric acid and dioleylmethylamine (Lion Co., Ltd., (trade name) Armin M20) 64.2 g (120 mmol) was added and heated to 45 ° C. to disperse 100 g of synthetic hectorite (Rockwood Additives, (trade name) Laponite RDS). After that, the temperature was raised to 60 ° C. and stirred for 1 hour while maintaining the temperature. The slurry was separated by filtration, washed twice with 600 ml of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 160 g of organically modified clay. This organically modified clay was pulverized by a jet mill to have a median diameter of 7 μm.

(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライドを0.795g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.3wt%)。
(2) Preparation of catalyst suspension for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added. Add 0.795 g of diphenylmethylene (4-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride and 142 ml of 20% triisobutylaluminum and stir at 60 ° C. for 3 hours. did. After cooling to 45 ° C., the supernatant was extracted, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid weight: 11.3 wt%).

(3)超高分子量ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を345mg(固形分38.9mg相当)加え、45℃にした後、分圧が1.6MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで42.1gの超高分子量ポリエチレン(2)を得た(活性:1080g/g触媒)。得られた超高分子量ポリエチレン(2)の物性は表1に示す。
(3) Production of ultra-high molecular weight polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, 345 mg (solid) of the suspension for the catalyst for polyethylene production obtained in (2) (Corresponding to 38.9 mg / min), and the temperature was set to 45 ° C., and then ethylene was continuously supplied so that the partial pressure became 1.6 MPa to carry out slurry polymerization of ethylene. After 180 minutes, the pressure was released, and the slurry was filtered and dried to obtain 42.1 g of ultrahigh molecular weight polyethylene (2) (activity: 1080 g / g catalyst). The physical properties of the obtained ultrahigh molecular weight polyethylene (2) are shown in Table 1.

製造例3
(1)有機変性粘土の調製
製造例1と同様に実施した。
Production Example 3
(1) Preparation of organically modified clay The same procedure as in Production Example 1 was performed.

(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライドを0.593g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:12.5wt%)。
(2) Preparation of catalyst suspension for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added. Diphenylmethylene (cyclopentadienyl) (2- (dimethylamino) -9-fluorenyl) zirconium dichloride (0.593 g) and 20% triisobutylaluminum (142 ml) were added, and the mixture was stirred at 60 ° C. for 3 hours. After cooling to 45 ° C., the supernatant was taken out, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid weight: 12.5 wt%).

(3)超高分子量ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を93.5mg(固形分11.7mg相当)加え、50℃に昇温後、1−ブテン1.0gを加え、分圧が1.1MPaになるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで72.3gの超高分子量ポリエチレン(3)を得た(活性:6180g/g触媒)。得られた超高分子量ポリエチレン(3)の物性は表1に示す。
(3) Production of ultrahigh molecular weight polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, 93.5 mg of the suspension for the catalyst for polyethylene production obtained in (2) (Equivalent to 11.7 mg of solid content) was added, and after raising the temperature to 50 ° C., 1.0 g of 1-butene was added, and ethylene was continuously supplied so that the partial pressure became 1.1 MPa, and slurry polymerization was performed. After 180 minutes, the pressure was released, and the slurry was filtered and dried to obtain 72.3 g of ultrahigh molecular weight polyethylene (3) (activity: 6180 g / g catalyst). Table 1 shows the physical properties of the obtained ultrahigh molecular weight polyethylene (3).

製造例4
(1)有機変性粘土の調製及び(2)ポリエチレン製造用触媒の懸濁液の調製は、製造例3と同様に実施した。
Production Example 4
(1) Preparation of organically modified clay and (2) Preparation of suspension of catalyst for polyethylene production were carried out in the same manner as in Production Example 3.

(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を102mg(固形分12.8mg相当)加え、60℃に昇温後、水素を150ppm含む水素/エチレン混合ガスを分圧が1.2MPaになるように供給し、その後、分圧が1.3MPa分圧になるようにエチレンを連続的に供給しスラリー重合を行った。210分経過後に脱圧し、スラリーを濾別後、乾燥することで88.2gの超高分子量ポリエチレン(4)を得た(活性:6900g/g触媒)。得られた超高分子量ポリエチレン(4)の物性は表1に示す。
(3) Production of ultrahigh molecular weight polyethylene particles 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, and 102 mg of a suspension of the catalyst for polyethylene production obtained in (2) ( (Equivalent to 12.8 mg of solid content), and after raising the temperature to 60 ° C., a hydrogen / ethylene mixed gas containing 150 ppm of hydrogen is supplied so that the partial pressure becomes 1.2 MPa, and then the partial pressure becomes 1.3 MPa. Thus, ethylene was continuously supplied to carry out slurry polymerization. After 210 minutes, the pressure was released, and the slurry was filtered and dried to obtain 88.2 g of ultrahigh molecular weight polyethylene (4) (activity: 6900 g / g catalyst). The physical properties of the obtained ultrahigh molecular weight polyethylene (4) are shown in Table 1.

Figure 2017162755
製造例5
(1)固体触媒成分の調製は、製造例4と同様に実施した。
Figure 2017162755
Production Example 5
(1) The solid catalyst component was prepared in the same manner as in Production Example 4.

(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジメチルシリレン(シクロペンタジエニル)(4,7−ジメチル−1−インデニル)ジルコニウムジクロリドを0.427g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.5wt%)。
(2) Preparation of catalyst suspension for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added. 0.427 g of dimethylsilylene (cyclopentadienyl) (4,7-dimethyl-1-indenyl) zirconium dichloride and 142 ml of 20% triisobutylaluminum were added and stirred at 60 ° C. for 3 hours. After cooling to 45 ° C., the supernatant was extracted, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid weight: 11.5 wt%).

(3)ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を132mg(固形分15.2mg相当)加え、70℃に昇温後、ブテン0.1gを加え、さらに、エチレンを分圧が1.2MPaになるように供給し、その後、分圧が1.2MPa分圧になるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで71.7gのポリエチレン(5)を得た(活性:4720g/g触媒)。得られたポリエチレン(5)の物性は表2に示す。
(3) Production of polyethylene 1.2 liters of hexane and 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, 132 mg of a suspension of the catalyst for polyethylene production obtained in (2) (solid content 15. 2 mg equivalent), and after raising the temperature to 70 ° C., 0.1 g of butene is added. Further, ethylene is supplied so that the partial pressure becomes 1.2 MPa, and then the partial pressure becomes 1.2 MPa. Ethylene was continuously supplied to carry out slurry polymerization. After 180 minutes, the pressure was released, and the slurry was filtered and dried to obtain 71.7 g of polyethylene (5) (activity: 4720 g / g catalyst). Table 2 shows the physical properties of the obtained polyethylene (5).

製造例6
(1)固体触媒成分の調製、(2)ポリエチレン製造用触媒の懸濁液の調製は、製造例5と同様に実施した。
Production Example 6
(1) Preparation of solid catalyst component, (2) Preparation of suspension of catalyst for polyethylene production was carried out in the same manner as in Production Example 5.

(2)ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を250mg(固形分28.8mg相当)加え、55℃に昇温後、ブテン0.15gを加え、さらに、エチレンを分圧が1.2MPaになるように供給し、その後、分圧が1.2MPa分圧になるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで82.1gのポリエチレン(6)を得た(活性:2860g/g触媒)。得られたポリエチレン(6)の物性は表2に示す。
(2) Production of polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, and 250 mg of a suspension of the catalyst for production of polyethylene obtained in (2) (solid content 28. 8 mg equivalent), and after raising the temperature to 55 ° C., 0.15 g of butene is added. Further, ethylene is supplied so that the partial pressure becomes 1.2 MPa, and then the partial pressure becomes 1.2 MPa. Ethylene was continuously supplied to carry out slurry polymerization. After 180 minutes, the pressure was released, and the slurry was filtered and dried to obtain 82.1 g of polyethylene (6) (activity: 2860 g / g catalyst). Table 2 shows the physical properties of the obtained polyethylene (6).

製造例7
(1)固体触媒成分の調製は、製造例4と同様に実施した。
Production Example 7
(1) The solid catalyst component was prepared in the same manner as in Production Example 4.

(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジメチルシリレン(シクロペンタジエニル)(2,4,7−トリメチル−1−インデニル)ジルコニウムジクロリド0.441g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:12.3wt%)。
(2) Preparation of catalyst suspension for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added. Dimethylsilylene (cyclopentadienyl) (2,4,7-trimethyl-1-indenyl) zirconium dichloride (0.441 g) and 20% triisobutylaluminum (142 ml) were added, and the mixture was stirred at 60 ° C. for 3 hours. After cooling to 45 ° C., the supernatant was taken out, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid weight: 12.3 wt%).

(3)ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を325mg(固形分40.0mg相当)加え、50℃に昇温後、ブテン0.5gを加え、さらに、エチレンを分圧が1.2MPaになるように供給し、ブテン0.15gを加え、さらに、その後、分圧が1.2MPa分圧になるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで83.2gのポリエチレン(7)を得た(活性:2080g/g触媒)。得られたポリエチレン(7)の物性は表2に示す。
(3) Production of polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum in a 2 liter autoclave, and 325 mg (solid content of 40. 5 ml) of the catalyst for the production of polyethylene obtained in (2). 0 mg equivalent), and after raising the temperature to 50 ° C., 0.5 g of butene is added, ethylene is further supplied so that the partial pressure becomes 1.2 MPa, 0.15 g of butene is added, and then the partial pressure is reduced. Ethylene was continuously supplied so that the partial pressure became 1.2 MPa, and slurry polymerization was performed. After 180 minutes, the pressure was released, the slurry was filtered, and dried to obtain 83.2 g of polyethylene (7) (activity: 2080 g / g catalyst). Table 2 shows the physical properties of the obtained polyethylene (7).

製造例8
(1)固体触媒成分の調製
温度計と還流管が装着された1リットルのガラスフラスコに、金属マグネシウム粉末50g(2.1モル)およびチタンテトラブトキシド210g(0.62モル)を入れ、ヨウ素2.5gを溶解したn−ブタノール320g(4.3モル)を90℃で2時間かけて加え、さらに発生する水素ガスを排除しながら窒素シール下において140℃で2時間撹拌し、均一溶液とした。次いで、ヘキサン2100mlを加えた。
Production Example 8
(1) Preparation of solid catalyst component In a 1 liter glass flask equipped with a thermometer and a reflux tube, 50 g (2.1 mol) of metal magnesium powder and 210 g (0.62 mol) of titanium tetrabutoxide were added. Then, 320 g (4.3 mol) of n-butanol in which 0.5 g was dissolved was added at 90 ° C. over 2 hours, and the mixture was further stirred at 140 ° C. for 2 hours under a nitrogen seal while excluding generated hydrogen gas to obtain a homogeneous solution. . Then 2100 ml of hexane was added.

この成分90g(マグネシウムで0.095モルに相当)を別途用意した500mlのガラスフラスコに入れ、ヘキサン59mlで希釈した。45℃でイソブチルアルミニウムジクロライド0.29モルを含むヘキサン溶液106mlを2時間かけて滴下し、さらに70℃で1時間撹拌し、固体触媒成分を得た。ヘキサンを用いて傾斜法により残存する未反応物および副生成物を除去し、組成を分析したところチタン含有量は8.6wt%であった。   90 g of this component (equivalent to 0.095 mol of magnesium) was put in a separately prepared 500 ml glass flask and diluted with 59 ml of hexane. A hexane solution (106 ml) containing isobutylaluminum dichloride (0.29 mol) at 45 ° C. was added dropwise over 2 hours and further stirred at 70 ° C. for 1 hour to obtain a solid catalyst component. Remaining unreacted products and by-products were removed by decantation using hexane, and the composition was analyzed. The titanium content was 8.6 wt%.

(2)ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(1)で得られた固体触媒成分を8.3mg加え、80℃に昇温後、水素を0.08MPaになるように供給し、分圧が0.6MPaになるようにエチレンを連続的に供給した。90分経過後に脱圧し、スラリーを濾別後、乾燥することで195gのポリエチレン(8)を得た(活性:23500g/g触媒)。得られたポリエチレン(8)の物性は表2に示す。
(2) Production of polyethylene 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum, and 8.3 mg of the solid catalyst component obtained in (1) were added to a 2 liter autoclave, and the temperature was raised to 80 ° C. Then, hydrogen was supplied at 0.08 MPa, and ethylene was continuously supplied at a partial pressure of 0.6 MPa. After 90 minutes, the pressure was released, and the slurry was filtered and dried to obtain 195 g of polyethylene (8) (activity: 23500 g / g catalyst). Table 2 shows the physical properties of the obtained polyethylene (8).

Figure 2017162755
実施例1
製造例1で製造した超高分子量ポリエチレン(1)1.4g、製造例5で製造したポリエチレン(5)12.6g、及び、流動パラフィン(MORESCO社製、(商品名)モレスコホワイトP−350P)56g、酸化防止剤として、(商品名)Irganox1010(BASF製)0.13g、(商品名)Irgafos168(BASF製)0.13gを、100ccのバッチ式混練機((株)東洋精機製作所製、(商品名)ラボプラストミル4C150)で、混練温度190℃、回転数50rpmにて、10分間混練し、得られた混合物を圧縮成形し、厚さ0.6mmのシート状物とした。
Figure 2017162755
Example 1
1.4 g of ultrahigh molecular weight polyethylene (1) produced in Production Example 1, 12.6 g of polyethylene (5) produced in Production Example 5, and liquid paraffin (MORESCO, (trade name) Moresco White P-350P ) 56 g, (Product name) Irganox 1010 (BASF) 0.13 g, (Product name) Irgafos 168 (BASF) 0.13 g as a 100 cc batch kneader (Toyo Seiki Seisakusho, (Trade name) Labo Plast Mill 4C150) and kneading for 10 minutes at a kneading temperature of 190 ° C. and a rotation speed of 50 rpm, and the resulting mixture was compression-molded to obtain a sheet-like material having a thickness of 0.6 mm.

このシート状物を、設定延伸倍率が縦方向×横方向が7倍×8倍となるように、115℃で同時二軸延伸し、ヘキサンで洗浄し、流動パラフィンの除去を行い、乾燥することによりセパレータを製造した。   The sheet-like material is simultaneously biaxially stretched at 115 ° C. so that the set stretching ratio is 7 × 8 times in the longitudinal direction × lateral direction, washed with hexane, liquid paraffin is removed, and dried. Thus, a separator was manufactured.

得られたセパレータには肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。このセパレータの膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。   The obtained separator had no holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the thickness of the separator, the standard deviation of the thickness, the porosity, the tensile strength at break, the thermal shrinkage, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles.

比較例1
ポリエチレン(5)を用いずに、超高分子量ポリエチレン(1)2.1gを14gに変えた以外は、実施例1と同様の方法によりセパレータの製造を試みた。
Comparative Example 1
A separator was produced in the same manner as in Example 1 except that 2.1 g of ultrahigh molecular weight polyethylene (1) was changed to 14 g without using polyethylene (5).

延伸時の負荷が高く、所定の倍率まで延伸することができなかった。   The load at the time of extending | stretching was high and it was not able to extend | stretch to a predetermined magnification.

実施例2
超高分子量ポリエチレン(1)の代りに、製造例2で製造した超高分子量ポリエチレン(2)2.8g、ポリエチレン(5)の代わりに製造例6で製造したポリエチレン(6)11.2gを用いた以外は、実施例1と同様の方法により、超高分子量ポリエチレン組成物及びセパレータを製造した。
Example 2
Instead of ultra high molecular weight polyethylene (1), 2.8 g of ultra high molecular weight polyethylene (2) produced in Production Example 2 and 11.2 g of polyethylene (6) produced in Production Example 6 instead of polyethylene (5) were used. An ultra-high molecular weight polyethylene composition and a separator were produced in the same manner as in Example 1 except that.

得られたセパレータには肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。このセパレータの膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。   The obtained separator had no holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the thickness of the separator, the standard deviation of the thickness, the porosity, the tensile strength at break, the thermal shrinkage, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles.

比較例2
超高分子量ポリエチレンを用いず、ポリエチレン(6)を12.6gから14gに変えた以外は、実施例2と同様の方法により微多孔膜を製造した。
Comparative Example 2
A microporous membrane was produced in the same manner as in Example 2 except that polyethylene (6) was changed from 12.6 g to 14 g without using ultrahigh molecular weight polyethylene.

得られた膜には肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。この膜の膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。引張破断強度が小さく、熱収縮率が大きく、また、溶出成分があった。   The obtained film had no holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the film thickness, the standard deviation of the film thickness, the porosity, the tensile strength at break, the thermal contraction rate, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles. The tensile strength at break was small, the thermal shrinkage ratio was large, and there were elution components.

比較例3
ポリエチレン(6)の代わりに、製造例8で製造したポリエチレン(8)を用いた以外は、実施例2と同様の方法により微多孔膜を製造した。
Comparative Example 3
A microporous membrane was produced in the same manner as in Example 2 except that polyethylene (8) produced in Production Example 8 was used instead of polyethylene (6).

得られた膜には肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。この膜の膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。引張破断強度が小さく、熱収縮率が大きく、また、溶出成分があった。   The obtained film had no holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the film thickness, the standard deviation of the film thickness, the porosity, the tensile strength at break, the thermal contraction rate, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles. The tensile strength at break was small, the thermal shrinkage ratio was large, and there were elution components.

実施例3
超高分子量ポリエチレン(1)の代りに、製造例3で製造した超高分子量ポリエチレン(3)4.9g、ポリエチレン(5)の代わりに製造例7で製造したポリエチレン(7)9.1gを用いた以外は、実施例1と同様の方法により超高分子量ポリエチレン組成物を得、厚みを0.9mmの超高分子量ポリエチレン混合物のシート状物を作製した。さらに、設定延伸倍率が縦方向×横方向が6倍×6倍として、実施例1と同様の方法でセパレータを製造した。
Example 3
Instead of ultra high molecular weight polyethylene (1), 4.9 g of ultra high molecular weight polyethylene (3) produced in Production Example 3 and 9.1 g of polyethylene (7) produced in Production Example 7 instead of polyethylene (5) were used. Except for the above, an ultrahigh molecular weight polyethylene composition was obtained in the same manner as in Example 1 to prepare a sheet of ultrahigh molecular weight polyethylene mixture having a thickness of 0.9 mm. Further, a separator was manufactured in the same manner as in Example 1 with the set stretching ratio of 6 × 6 in the vertical direction × horizontal direction.

得られたセパレータには肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。このセパレータの膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。   The obtained separator had no holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the thickness of the separator, the standard deviation of the thickness, the porosity, the tensile strength at break, the thermal shrinkage, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles.

実施例4
超高分子量ポリエチレン(3)の代りに、製造例4で製造した超高分子量ポリエチレン(4)7.7gを用い、ポリエチレン(7)をポリエチレン(6)6.3gとした以外は、実施例3と同様の方法により、超高分子量ポリエチレン組成物、セパレータを製造した。
Example 4
Example 3 except that 7.7 g of the ultrahigh molecular weight polyethylene (4) produced in Production Example 4 was used instead of the ultrahigh molecular weight polyethylene (3), and the polyethylene (7) was changed to 6.3 g of polyethylene (6). In the same manner as above, an ultrahigh molecular weight polyethylene composition and a separator were produced.

得られた延伸多孔膜には肉眼で確認できるような穴、破れはなく、電子顕微鏡において、微細孔が観察された。このセパレータの膜厚、膜厚の標準偏差、空隙率、引張破断強度、熱収縮率、リチウムイオン二次電池セパレータに用いたときの電池の直流抵抗、充放電サイクル数を表3に示す。   The obtained stretched porous film did not have holes or tears that could be confirmed with the naked eye, and micropores were observed with an electron microscope. Table 3 shows the thickness of the separator, the standard deviation of the thickness, the porosity, the tensile strength at break, the thermal shrinkage, the direct current resistance of the battery when used for a lithium ion secondary battery separator, and the number of charge / discharge cycles.

Figure 2017162755
Figure 2017162755

本発明のセパレータは、力学的強度、耐熱性、延伸性に優れると共に、クリーン性にも優れるものであり、リチウムイオン電池(LiB)、鉛蓄電池、ニッケル水素電池、アルカリ電池。電解槽等のセパレータとして用いることができる。   The separator of the present invention is excellent in mechanical strength, heat resistance, stretchability and cleanliness, and is a lithium ion battery (LiB), a lead storage battery, a nickel metal hydride battery, and an alkaline battery. It can be used as a separator for an electrolytic cell or the like.

Claims (5)

固有粘度([η])が10dl/g以上80dl/g以下の超高分子量ポリエチレン100重量部に対し、重量平均分子量(Mw)60万以下、210℃における溶融張力が100mN以上で、歪硬化性を有し、JIS K6760に準拠した密度が935kg/m以上960kg/m以下のポリエチレン5重量部以上5000重量部以下を含む超高分子量ポリエチレン組成物からなることを特徴とするセパレータ。 For 100 parts by weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity ([η]) of 10 dl / g or more and 80 dl / g or less, a weight average molecular weight (Mw) of 600,000 or less, a melt tension at 210 ° C. of 100 mN or more, and strain hardening A separator comprising an ultrahigh molecular weight polyethylene composition comprising 5 parts by weight or more and 5000 parts by weight or less of polyethylene having a density according to JIS K6760 and having a density of 935 kg / m 3 or more and 960 kg / m 3 or less. 空隙率10%以上80%以下を有することを特徴とする請求項1に記載のセパレータ。 The separator according to claim 1, wherein the separator has a porosity of 10% or more and 80% or less. 23℃で測定した引張破断強度が150MPa以上、かつ、熱収縮率が2%以下である、ことを特徴とする請求項1又は2に記載のセパレータ。 The separator according to claim 1 or 2, wherein a tensile breaking strength measured at 23 ° C is 150 MPa or more and a heat shrinkage rate is 2% or less. 超高分子量ポリエチレンが、DSCにて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm)、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm)のそれぞれを測定し、該Tmと該Tmの差(ΔTm=Tm−Tm)が9℃以上30℃以下である超高分子量ポリエチレンであることを特徴とする請求項1〜3のいずれかに記載のセパレータ。 The melting point (Tm 1 ) of the 1st scan when the ultra-high molecular weight polyethylene was heated from 0 ° C. to 230 ° C. (1st scan) at a heating rate of 10 ° C./min by DSC, then left for 5 minutes, The temperature was lowered to −20 ° C. at a temperature lowering rate of 10 ° C./min, left for 5 minutes, and then raised again from −20 ° C. to 230 ° C. (2nd scan) at a temperature rising rate of 10 ° C./min. Each of the melting points (Tm 2 ) is measured, and the difference between the Tm 1 and the Tm 2 (ΔTm = Tm 1 −Tm 2 ) is an ultrahigh molecular weight polyethylene having a temperature of 9 ° C. or more and 30 ° C. or less. Item 4. The separator according to any one of Items 1 to 3. リチウムイオン二次電池のセパレータであることを特徴とする請求項1〜4のいずれかに記載のセパレータ。 It is a separator of a lithium ion secondary battery, The separator in any one of Claims 1-4 characterized by the above-mentioned.
JP2016048056A 2016-03-11 2016-03-11 Separator Active JP6699258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048056A JP6699258B2 (en) 2016-03-11 2016-03-11 Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048056A JP6699258B2 (en) 2016-03-11 2016-03-11 Separator

Publications (2)

Publication Number Publication Date
JP2017162755A true JP2017162755A (en) 2017-09-14
JP6699258B2 JP6699258B2 (en) 2020-05-27

Family

ID=59857257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048056A Active JP6699258B2 (en) 2016-03-11 2016-03-11 Separator

Country Status (1)

Country Link
JP (1) JP6699258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285184A (en) * 2021-04-16 2021-08-20 安徽超威电源有限公司 Acid adding method for improving acid specific gravity of valve-controlled lead-acid storage battery separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155096A (en) * 2016-02-29 2017-09-07 東ソー株式会社 Ultrahigh-molecular-weight polyethylene composition and stretched microporous film formed from the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155096A (en) * 2016-02-29 2017-09-07 東ソー株式会社 Ultrahigh-molecular-weight polyethylene composition and stretched microporous film formed from the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285184A (en) * 2021-04-16 2021-08-20 安徽超威电源有限公司 Acid adding method for improving acid specific gravity of valve-controlled lead-acid storage battery separator

Also Published As

Publication number Publication date
JP6699258B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6520248B2 (en) Ultrahigh molecular weight polyethylene oriented microporous membrane
JP6878841B2 (en) Separator made of ultra high molecular weight polyethylene composition
JP6572520B2 (en) Ultra high molecular weight polyethylene particles and molded articles comprising the same
JP6711022B2 (en) Ultra high molecular weight polyethylene porous sintered body
JP6252322B2 (en) Stretched microporous membrane made of ultrahigh molecular weight polyethylene composition
JP6364774B2 (en) Ultra high molecular weight polyethylene particles and molded articles comprising the same
JP6357781B2 (en) Ultra high molecular weight polyethylene compression molding
JP6686530B2 (en) Ultrahigh molecular weight polyethylene composition and stretched microporous membrane comprising the same
JP2018145412A (en) Ultra-high-molecular-weight polyethylene particle and molded body consisting of the same
JP6699258B2 (en) Separator
JP2015071737A (en) Ultra-high molecular weight polyethylene particle and molded body composed of the same
JP6604398B2 (en) Ultra high molecular weight polyethylene rolled compact
JP6705467B2 (en) Ultra high molecular weight polyethylene compression molding
JP6822070B2 (en) Ultra-high molecular weight polyethylene composition and stretched microporous membrane made of it
JP6318649B2 (en) Ultra high molecular weight polyethylene composition and molded article comprising the same
JP2022020963A (en) Microporous film made of ultrahigh molecular weight polyethylene
JP6349843B2 (en) Ultra high molecular weight polyethylene rolled compact
JP6357820B2 (en) Cutting film made of ultra high molecular weight polyethylene
JP6590020B2 (en) Cutting film made of ultra high molecular weight polyethylene
JP2023173054A (en) Microporous film
JP2018016819A (en) Ultrahigh-molecular weight polyethylene copolymer
JP6747468B2 (en) Ultra high molecular weight polyethylene cutting molding
JP6357819B2 (en) Ultra high molecular weight polyethylene cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151