JP2017161942A - Interference exposure equipment and interference exposure method - Google Patents

Interference exposure equipment and interference exposure method Download PDF

Info

Publication number
JP2017161942A
JP2017161942A JP2017112554A JP2017112554A JP2017161942A JP 2017161942 A JP2017161942 A JP 2017161942A JP 2017112554 A JP2017112554 A JP 2017112554A JP 2017112554 A JP2017112554 A JP 2017112554A JP 2017161942 A JP2017161942 A JP 2017161942A
Authority
JP
Japan
Prior art keywords
exposure
light
interference
substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017112554A
Other languages
Japanese (ja)
Other versions
JP6454380B2 (en
Inventor
直樹 花島
Naoki Hanashima
直樹 花島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017112554A priority Critical patent/JP6454380B2/en
Publication of JP2017161942A publication Critical patent/JP2017161942A/en
Application granted granted Critical
Publication of JP6454380B2 publication Critical patent/JP6454380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an interference exposure equipment and an interference exposure method, which can obtain a uniform interference pattern in an exposure substrate by preventing stray light from influencing.SOLUTION: Provided with light shielding opening parts 18A and 18B having an opening part shielding a periphery of a light bundle emitted from special filters 17A and 17B, and an exposure mask 19 that is adjacently arranged on an exposure substrate and masks a periphery of an interference exposure region formed by light bundle emitted from the opening part. Since in addition to reduction of unnecessary stray light to the interference exposure region by the light shielding opening plates 18A and 18B, an influence of diffraction fluctuation of an exposure region periphery by an opening edge of the light shielding opening plates 18A and 18B is removed by the exposure mask 19, a uniform interference pattern may be obtained on the exposure substrate.SELECTED DRAWING: Figure 1

Description

本発明は、露光基板上で二光束を合成し、その干渉縞により周期的パターンを形成する干渉露光装置及び干渉露光方法に関する。   The present invention relates to an interference exposure apparatus and an interference exposure method for synthesizing two light beams on an exposure substrate and forming a periodic pattern by the interference fringes.

近年、光の波長よりも小さな周期を有する微細凹凸構造、いわゆるサブ波長構造を利用した光学素子が注目を浴びている。微細凹凸構造が使用する光の波長よりも小さくなると透過率や反射率が偏光依存性を持つようになる。   In recent years, an optical element using a fine concavo-convex structure having a period smaller than the wavelength of light, a so-called sub-wavelength structure, has attracted attention. When the fine concavo-convex structure is smaller than the wavelength of light used, the transmittance and reflectance have polarization dependency.

このような微細凹凸構造を作製する手段として、電子ビームによる露光、ステッパによる投影露光、複数光束の干渉を利用した干渉露光法などがある。   As means for producing such a fine concavo-convex structure, there are exposure by an electron beam, projection exposure by a stepper, interference exposure method using interference of a plurality of light beams, and the like.

電子ビームによる露光は、集光された電子ビームを電子線用フォトレジストが塗布された基板上で走査することによって任意の微細パターンを形成することができる。しかし、この方法は、電子ビームを物理的に走査し、描画するため、露光に非常に時間が掛かり、大面積露光への適用は難しい。   In the exposure with an electron beam, an arbitrary fine pattern can be formed by scanning the condensed electron beam on a substrate coated with an electron beam photoresist. However, since this method physically scans and draws an electron beam, it takes a very long time for exposure and is difficult to apply to large area exposure.

ステッパによる露光は、所望のパターンが形成されたマスクを介して縮小投影露光することにより、フォトレジストに微細パターンを転写するものである。形状も任意のパターンが可能であり、大面積での処理や量産性に富むといった利点がある。しかし、微細なパターン形成する場合、光学系の回折限界による制約やそれを改善するための光学系の工夫など、装置の複雑化や大型化が避けられない。   In the exposure by the stepper, a fine pattern is transferred to the photoresist by performing reduced projection exposure through a mask on which a desired pattern is formed. The shape can be an arbitrary pattern, and there is an advantage that processing in a large area and mass productivity are rich. However, in the case of forming a fine pattern, it is inevitable that the apparatus becomes complicated and large in size, such as a restriction due to the diffraction limit of the optical system and a device for improving the optical system.

干渉露光は、形状が格子状のパターンだけに制約されるものの、比較的簡易な光学系で大面積な露光が可能という特徴を持つ。光学素子としてのサブ波長構造は、単純なパターンの繰り返しで十分であるので、干渉露光法は、最適なアプリケーションの一つである。   Although the interference exposure is limited only to a lattice pattern, it has a feature that a large area exposure is possible with a relatively simple optical system. Since the sub-wavelength structure as an optical element is sufficient by repeating a simple pattern, the interference exposure method is one of the optimum applications.

図24は、従来の一般的な干渉露光装置の光学系を示す図である。この図24は、Mach−Zehnder型と呼ばれる光学系であり、レーザ光源111と、レーザのビーム径を平行に拡げるビームエキスパンダ112と、偏光ビームスプリッタ(PBS:Polarization Beam Splitter)113と、PBS13によって二分割された一方の光路に設置される波長板114と、反射板115A,115Bと、対物レンズ116A,116Bと、集光ビームスポット径とほぼ同じ径のピンホールを有するスペイシャルフィルタ117A,117Bとを備える。この干渉露光装置は、例えばYAG4倍波の固体レーザを用いた波長266nmの光(s偏光)をPBS113で二つの光路に分割した上で、露光基板120に二方向からそれらの光を入射させて干渉露光を行う。   FIG. 24 is a diagram showing an optical system of a conventional general interference exposure apparatus. FIG. 24 shows an optical system called a Mach-Zehnder type, which includes a laser light source 111, a beam expander 112 that expands the laser beam diameter in parallel, a polarization beam splitter (PBS) 113, and a PBS 13. Spatial filters 117A and 117B having a wave plate 114, reflectors 115A and 115B, objective lenses 116A and 116B, and pinholes having substantially the same diameter as the focused beam spot diameter. With. This interference exposure apparatus, for example, splits light (s-polarized light) having a wavelength of 266 nm using a YAG quadruple wave solid-state laser into two optical paths with PBS 113, and then makes the light incident on the exposure substrate 120 from two directions. Perform interference exposure.

複数の光束を合わせたときに生じる干渉縞のコントラスト(黒白比)は、光束のコヒーレンシ(可干渉性)によって左右される。このコヒーレンシには、光束に含まれる光の波長の単色性(純度)によって決まる(縦(時間)のコヒーレンシ)と、光束の位相の揺らぎによって決まる(横(空間)のコヒーレンシ)の二つがある。例えば、縦のコヒーレンシが不十分な場合、二つの光束に光路長差が大きくなると干渉縞コントラストが低下してしまう。横のコヒーレンシが不十分な場合では、干渉パターンはきれいな縞状をとはならずランダムなスペックルパターンに近づいていく。   The contrast (black / white ratio) of interference fringes generated when a plurality of light beams are combined depends on the coherency (coherence) of the light beams. There are two types of coherency, which are determined by the monochromaticity (purity) of the wavelength of light contained in the light beam (longitudinal (time) coherency) and that determined by fluctuations in the phase of the light beam (lateral (space) coherency). For example, when the vertical coherency is insufficient, the interference fringe contrast decreases if the optical path length difference between the two light beams increases. When the horizontal coherency is insufficient, the interference pattern does not form a beautiful stripe pattern and approaches a random speckle pattern.

露光装置として安定で良質な干渉縞を形成するためには、これらのコヒーレンシを十分に保つ必要がある。一般的には、波長単色性の高いレーザがその光源として選ばれ、さらに横のコヒーレンシを確保するためにレーザの内部共振器で発生する複数の高次モードが十分抑制されている必要がある。また、レンズなど光学部品を通過した際には反射光や面精度によって通過する光の位相面の乱れを生じ、上記(横のコヒーレンシ)を低下させることとなるため、スペイシャルフィルタなどで適切に位相乱れを取り除く必要がある。   In order to form stable and high-quality interference fringes as an exposure apparatus, it is necessary to sufficiently maintain such coherency. In general, a laser with high wavelength monochromaticity is selected as the light source, and a plurality of higher-order modes generated in the internal resonator of the laser need to be sufficiently suppressed in order to secure lateral coherency. In addition, when passing through an optical component such as a lens, the phase plane of the reflected light or the light passing through the surface accuracy will be disturbed, and the above (lateral coherency) will be reduced. It is necessary to remove the phase disturbance.

このように干渉露光においては、光源の高いコヒーレンシは必要条件であるが、コヒーレンシが高いため、露光での不要な干渉成分による不安定性が増大してしまう。不要な干渉成分のうち大きなものは、本来の光路から離れて発生する散乱成分や反射成分である「迷光」となる。干渉という現象は、強度ではなく振幅で加算されるため、迷光の影響が増幅され、例えば強度比で1%の迷光により干渉縞強度で10%の変化が生じてしまう。   Thus, in interference exposure, high coherency of the light source is a necessary condition, but since coherency is high, instability due to unnecessary interference components in exposure increases. Among unnecessary interference components, a large one becomes “stray light” which is a scattering component or a reflection component generated away from the original optical path. Since the phenomenon of interference is added not by intensity but by amplitude, the influence of stray light is amplified. For example, stray light having an intensity ratio of 1% causes a 10% change in interference fringe intensity.

この「迷光」については、例えば特許文献1では、基板端面での散乱によるものが開示されている。この場合、基板端面の面取り角度を入射光束に対して所望の角度とすることで、散乱迷光を低減させることが記載されている。また、特許文献2では、基板裏面からの反射迷光が開示されている。この場合には、露光波長に対する反射防止膜を裏面に形成することで反射迷光を低減させることが記載されている。また、迷光に対する影響ではないが、特許文献3においては、露光領域を制限する方法として、マスク又は遮蔽シャッタを二光束干渉露光に適用する例が開示されている。   As for the “stray light”, for example, Patent Document 1 discloses the “stray light” due to scattering at the end face of the substrate. In this case, it is described that scattered stray light is reduced by setting the chamfer angle of the substrate end face to a desired angle with respect to the incident light flux. Patent Document 2 discloses reflected stray light from the back surface of the substrate. In this case, it is described that reflection stray light is reduced by forming an antireflection film for the exposure wavelength on the back surface. Moreover, although it is not an influence with respect to a stray light, in patent document 3, the example which applies a mask or a shielding shutter to two-beam interference exposure as a method of restrict | limiting an exposure area | region is disclosed.

しかしながら、特許文献1〜3の技術では、スペイシャルフィルタからの出射光が、露光基板近傍の防振台表面、露光治具、ネジなどに当たった場合の迷光の影響を防止することはできない。   However, the techniques of Patent Documents 1 to 3 cannot prevent the influence of stray light when the light emitted from the spatial filter hits the surface of the vibration isolation table near the exposure substrate, the exposure jig, the screw, or the like.

特開2010−60621号公報JP 2010-60621 A 特開2010−60587号公報JP 2010-60587 A 特開平9−184909号公報JP-A-9-184909

本発明は、前記実情に鑑みてなされたものであり、迷光の影響を防止し、露光基板において均一な干渉縞を得ることができる干渉露光装置及び干渉露光方法を提供すること目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an interference exposure apparatus and an interference exposure method capable of preventing the influence of stray light and obtaining uniform interference fringes on an exposure substrate.

本発明者は、鋭意検討の結果、スペイシャルフィルタからの出射光束の周縁を遮光開口板で遮蔽し、露光に使用するエリアに光が当たるようにして迷光を減少させ、さらに、遮光開口板の開口端(稜線部)によって生じる干渉縞強度の回折ゆらぎを露光マスクでマスクすることにより、露光基板において均一な干渉縞を得ることができることを見出し、本発明に至った。   As a result of intensive studies, the inventor shields the peripheral edge of the light beam emitted from the spatial filter with a light-shielding aperture plate, reduces stray light so that light strikes an area used for exposure, and further reduces the light-shield aperture plate. It has been found that a uniform interference fringe can be obtained on the exposure substrate by masking the diffraction fluctuation of the interference fringe intensity caused by the opening end (ridge line portion) with an exposure mask, and the present invention has been achieved.

すなわち、本発明に係る干渉露光装置は、スペイシャルフィルタから出射された光束の周縁を遮蔽する開口部を有する遮光開口板と、露光基板上に隣接配置され、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクする露光マスクとを備えることを特徴とする。   That is, the interference exposure apparatus according to the present invention includes a light-shielding aperture plate having an opening that shields the peripheral edge of the light beam emitted from the spatial filter, and an adjacently disposed on the exposure substrate, and the light beam emitted from the opening portion. And an exposure mask that masks the periphery of the interference exposure region to be formed.

また、本発明に係る干渉露光方法は、開口部を有する遮光開口板により、スペイシャルフィルタから出射される光束の周縁を遮蔽し、露光基板上に隣接配置した露光マスクにより、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクすることを特徴とする。   In the interference exposure method according to the present invention, the periphery of the light beam emitted from the spatial filter is shielded by the light-shielding aperture plate having the aperture, and is emitted from the aperture by the exposure mask arranged adjacent to the exposure substrate. The periphery of the interference exposure area formed by the emitted light beam is masked.

また、本発明に係る露光治具は、露光基板の端縁部と同形状の枠部を有する第1の保持部材と、露光基板と同形状の開口を有する第2の保持部材とを備え、前記第2の保持部材の開口周縁部の厚さが0.5mm以下であることを特徴とする。   An exposure jig according to the present invention includes a first holding member having a frame portion having the same shape as the edge portion of the exposure substrate, and a second holding member having an opening having the same shape as the exposure substrate. The thickness of the peripheral edge portion of the opening of the second holding member is 0.5 mm or less.

本発明によれば、遮光開口板により干渉露光領域への不要な迷光を低減するとともに、遮光開口板の開口端による露光領域周縁の回折ゆらぎの影響を露光マスクにより除去するため、露光基板において均一な干渉縞を得ることができる。   According to the present invention, unnecessary stray light to the interference exposure area is reduced by the light shielding aperture plate, and the influence of diffraction fluctuations at the periphery of the exposure area due to the opening end of the light shielding aperture plate is removed by the exposure mask. Interference fringes can be obtained.

Mach−Zehnder型の光学系を示す図である。It is a figure which shows a Mach-Zehnder type optical system. Lloyd Mirror型の光学系を示す図である。It is a figure which shows a Lloyd Mirror type | mold optical system. 遮光開口板の開口端(稜線部)によって生じる回折ゆらぎを説明するための図である。It is a figure for demonstrating the diffraction fluctuation produced by the opening end (ridgeline part) of a light-shielding aperture plate. 露光基板面を示す図である。It is a figure which shows an exposure board | substrate surface. X方向の光強度分布を示す図である。It is a figure which shows the light intensity distribution of a X direction. Lloyd Mirror型の干渉露光装置の光学系におけるフレネル回折の実験例を示す図である。It is a figure which shows the experimental example of Fresnel diffraction in the optical system of a Lloyd Mirror type | mold interference exposure apparatus. 遮光開口板の開口エッジによるフレネル回折縞を示す写真である。It is a photograph which shows the Fresnel diffraction fringe by the opening edge of a light-shielding aperture plate. 遮光開口板の開口エッジによるフレネル回折縞を示す拡大写真である。It is an enlarged photograph which shows the Fresnel diffraction fringe by the opening edge of a light-shielding aperture plate. 遮光開口板を露光基板側に近づけて配置した例を示す図である。It is a figure which shows the example which has arrange | positioned the light-shielding aperture plate near the exposure board | substrate side. 遮光開口板をスペイシャルフィルタ側に近づけて配置した例を示す図である。It is a figure which shows the example which has arrange | positioned the light-shielding aperture plate near the spatial filter side. 強度比で4%の迷光を加えた場合の露光基板上の光強度分布に対する迷光の影響を示すグラフである。It is a graph which shows the influence of a stray light with respect to the light intensity distribution on an exposure board | substrate at the time of adding 4% of stray light by intensity ratio. 迷光/干渉光の強度に対する干渉縞の最大強度の変化を示すグラフである。It is a graph which shows the change of the maximum intensity | strength of an interference fringe with respect to the intensity | strength of a stray light / interference light. 露光基板と遮光開口の距離zを800mmとしたときの実験例を示す図である。It is a figure which shows the experiment example when the distance z of an exposure board | substrate and a light-shielding opening is 800 mm. 回折積分値の計算結果を示すグラフである。It is a graph which shows the calculation result of a diffraction integral value. Mach−Zehnder型の光学系の構成例を示す図である。It is a figure which shows the structural example of a Mach-Zehnder type optical system. 本実施の形態における露光治具の一例を示す断面図である。It is sectional drawing which shows an example of the exposure jig | tool in this Embodiment. 従来のマスク稜線部の面取り加工を示す断面図である。It is sectional drawing which shows the chamfering process of the conventional mask ridgeline part. 露光治具を示す上面図である。It is a top view which shows an exposure jig. 露光治具を示す断面図である。It is sectional drawing which shows an exposure jig. 格子基板を示す模式図である。It is a schematic diagram which shows a lattice board | substrate. 格子基板上の位置Aにおける拡大写真である。It is an enlarged photograph in the position A on a lattice board | substrate. 格子基板上の位置Bにおける拡大写真である。It is an enlarged photograph in position B on a lattice substrate. 格子基板上の位置Cにおける拡大写真である。It is an enlarged photograph in the position C on a lattice board | substrate. 従来のMach−Zehnder型の光学系を示す図である。It is a figure which shows the conventional Mach-Zehnder type optical system.

以下、本発明の実施の形態(以下、本実施の形態ともいう。)について、図面を参照しながら下記順序にて詳細に説明する。
1.干渉露光装置(図1、図2)
2.回折ゆらぎの影響(図3〜図8)
3.遮光開口板による迷光の低減(図9〜図15)
4.露光治具による干渉ゆらぎの低減(図16、17)
5.干渉露光方法
6.実施例(図18〜図23)
Hereinafter, embodiments of the present invention (hereinafter also referred to as the present embodiment) will be described in detail in the following order with reference to the drawings.
1. Interferometric exposure system (Figs. 1 and 2)
2. Effect of diffraction fluctuations (Figs. 3-8)
3. Reduction of stray light by light shielding aperture plate (FIGS. 9 to 15)
4). Reduction of interference fluctuation by exposure jig (Figs. 16 and 17)
5. 5. Interference exposure method Example (FIGS. 18 to 23)

<1.干渉露光装置>
図1は、本実施の形態におけるMach−Zehnder型光学系を示す図である。この干渉露光装置は、レーザ光源11と、レーザのビーム径を平行に拡げるビームエキスパンダ12と、偏光ビームスプリッタ(PBS:Polarization Beam Splitter)13と、PBS13によって二分割された一方の光路に設置される波長板14と、反射板15A,15Bと、対物レンズ16A,16Bと、集光ビームスポット径とほぼ同じ径のピンホールを有するスペイシャルフィルタ17A,17Bと、スペイシャルフィルタ17A,17Bからの出射光束の周縁を遮蔽する開口部を有する遮光開口板18A,18Bと、露光基板20上に近接配置され、開口部からの出射光束により形成される干渉露光領域の周縁をマスクする露光マスク19とを備える。
<1. Interference exposure system>
FIG. 1 is a diagram showing a Mach-Zehnder type optical system in the present embodiment. This interference exposure apparatus is installed in one optical path divided into two by a laser light source 11, a beam expander 12 that expands the laser beam diameter in parallel, a polarization beam splitter (PBS) 13, and the PBS 13. From the wavelength plate 14, the reflecting plates 15A and 15B, the objective lenses 16A and 16B, the spatial filters 17A and 17B having pinholes having substantially the same diameter as the focused beam spot diameter, and the spatial filters 17A and 17B. Light shielding aperture plates 18A and 18B having openings that shield the periphery of the emitted light beam, and an exposure mask 19 that is disposed close to the exposure substrate 20 and masks the periphery of the interference exposure region formed by the light beam emitted from the opening. Is provided.

レーザ光源11としては、例えばYAG4倍波(266nm)の固体レーザが用いられる。レーザ光源11からのレーザ光は、ビームエキスパンダ12によってビーム径が変換され、PBS13によって二分割される。一方の分枝光路には、二分割された光束同士を干渉させるために、波長板14を設置し、偏光方向を90度回転させて偏光を揃える。   As the laser light source 11, for example, a YAG fourth harmonic (266 nm) solid-state laser is used. The laser light from the laser light source 11 has its beam diameter converted by the beam expander 12 and divided into two by the PBS 13. In one branch optical path, a wave plate 14 is installed in order to cause the two split light beams to interfere with each other, and the polarization direction is rotated by 90 degrees to align the polarization.

PBS13によって二分割された光路1及び光路2は、それぞれ反射板15A,15Bによって干渉するように反射され、対物レンズ16A,16Bによって集光される。集光ビームは、スペイシャルフィルタ17A,17Bを通過し、レーザ光波面のノイズや歪みが取り除かれる。   The optical path 1 and the optical path 2 divided by the PBS 13 are reflected so as to interfere with each other by the reflecting plates 15A and 15B, and are collected by the objective lenses 16A and 16B. The condensed beam passes through the spatial filters 17A and 17B, and noise and distortion of the laser light wavefront are removed.

スペイシャルフィルタ17A,17Bからの出射光束は、その周縁を遮光開口板18A,18Bの開口部により遮蔽される。遮光開口板18A,18Bの開口部は、露光に使用するエリアに光が当たるように形状が加工されており、開口部からの出射光束は、露光基板20上で合成され、回折縞(干渉縞)が形成されて干渉露光となる。   The light fluxes emitted from the spatial filters 17A and 17B are shielded at the periphery by the openings of the light shielding aperture plates 18A and 18B. The openings of the light-shielding aperture plates 18A and 18B are processed so that light strikes an area used for exposure, and light beams emitted from the openings are synthesized on the exposure substrate 20 to form diffraction fringes (interference fringes). ) Is formed to form interference exposure.

また、図2は、本実施の形態におけるLloyd Mirror型光学系を示す図である。この干渉露光装置は、レーザ光源21と、シャッタ22と、対物レンズ23と、集光ビームスポット径とほぼ同じ径のピンホールを有するスペイシャルフィルタ24と、スペイシャルフィルタ24からの出射光束の周縁を遮蔽する開口部を有する遮光開口板25と、開口部からの出射光束の一部を露光基板27上に反射するミラー26と、露光基板28上に近接配置され、開口部からの直接の出射光束とミラー26からの反射の出射光束とにより形成される干渉露光領域の周縁をマスクする露光マスク27とを備える。   FIG. 2 is a diagram showing the Lloyd Mirror type optical system in the present embodiment. This interference exposure apparatus includes a laser light source 21, a shutter 22, an objective lens 23, a spatial filter 24 having a pinhole having substantially the same diameter as the focused beam spot diameter, and a peripheral edge of a light beam emitted from the spatial filter 24. A light-shielding aperture plate 25 having an aperture that shields light, a mirror 26 that reflects a part of the light beam emitted from the aperture on the exposure substrate 27, and an exposure substrate 28 that is disposed in close proximity and directly emitted from the aperture. An exposure mask 27 that masks the periphery of the interference exposure region formed by the light beam and the outgoing light beam reflected from the mirror 26 is provided.

レーザ光源21としては、Mach−Zehnder型と同様、例えばYAG4倍波(266nm)の固体レーザが用いられる。シャッタ22を通過したレーザ光は、対物レンズ23によって集光される。集光ビームは、スペイシャルフィルタ24を通過し、レーザ光波面のノイズや歪みが取り除かれる。   As the laser light source 21, for example, a YAG quadruple wave (266 nm) solid-state laser is used as in the Mach-Zehnder type. The laser light that has passed through the shutter 22 is collected by the objective lens 23. The condensed beam passes through the spatial filter 24, and noise and distortion of the laser light wavefront are removed.

スペイシャルフィルタ24からの出射光束は、その周縁を遮光開口板25の開口部により遮蔽される。遮光開口板25の開口部は、露光基板28及び露光基板28に対して直角となる位置に隣接して配置されたミラー26に光が当たるように形状が加工されており、開口部からの出射光束は、露光基板28上で合成され、回折縞(干渉縞)が形成され、干渉露光が行われる。   The light beam emitted from the spatial filter 24 is shielded at its periphery by the opening of the light shielding aperture plate 25. The opening portion of the light shielding aperture plate 25 is processed so that the light strikes the exposure substrate 28 and the mirror 26 disposed adjacent to the exposure substrate 28 at a right angle, and the light is emitted from the opening portion. The light beams are synthesized on the exposure substrate 28 to form diffraction fringes (interference fringes), and interference exposure is performed.

前述のMach−Zehnder型及びLloyd Mirror型の干渉露光装置のように、スペイシャルフィルタ17A,17B,24からの出射光束の周縁を遮光開口板18A,18B,25で遮蔽し、露光に使用するエリアに光が当たるようにすることにより、迷光を減少させることができる。さらに、遮光開口板18A,18B,25の開口端(稜線部)によって生じる干渉縞強度の干渉ゆらぎを露光マスク19、27でマスクすることにより、露光基板20,28において均一な干渉縞を得ることができる。   As in the above-described Mach-Zehnder type and Lloyd Mirror type interference exposure apparatuses, the periphery of the luminous flux emitted from the spatial filters 17A, 17B, and 24 is shielded by the light-shielding aperture plates 18A, 18B, and 25, and used for exposure. The stray light can be reduced by allowing the light to strike. Further, the interference fringes of the interference fringe intensity generated by the opening ends (ridge line portions) of the light shielding aperture plates 18A, 18B, and 25 are masked by the exposure masks 19 and 27, thereby obtaining uniform interference fringes on the exposure substrates 20 and 28. Can do.

<2.回折ゆらぎの影響>
次に、図3〜図8を参照して、遮光開口板の開口端(稜線部)によって生じる回折ゆらぎの影響について説明する。図3に示すように、出射光束を遮光開口板30によって遮蔽すると、干渉露光領域301と遮光領域302とが形成され、干渉露光領域301の周縁には、図4示すようなフレネル回折縞303が生じる。図5は、干渉露光領域のX方向の光強度分布を示す図である。この光強度分布の回折ゆらぎは、干渉縞強度の干渉ゆらぎに大きく影響する。
<2. Effect of diffraction fluctuations>
Next, with reference to FIGS. 3 to 8, the influence of diffraction fluctuations caused by the opening end (ridge line portion) of the light shielding aperture plate will be described. As shown in FIG. 3, when the outgoing light beam is shielded by the light shielding aperture plate 30, an interference exposure region 301 and a light shielding region 302 are formed, and a fresnel diffraction fringe 303 as shown in FIG. Arise. FIG. 5 is a diagram showing a light intensity distribution in the X direction in the interference exposure region. The diffraction fluctuation of the light intensity distribution greatly affects the interference fluctuation of the interference fringe intensity.

図6は、Lloyd Mirror型の干渉露光装置の光学系におけるフレネル回折の実験例を示す図である。なお、図2に示す光学系と同一の構成には同一の符号を付し、ここでは説明を省略する。   FIG. 6 is a diagram showing an experimental example of Fresnel diffraction in the optical system of the Lloyd Mirror type interference exposure apparatus. The same components as those in the optical system shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted here.

露光マスク27をしない状態で露光を行うと、露光基板28上には、図7及び図8に示すように遮光開口板25の開口エッジによるフレネル回折縞aが観測される。この回折領域は、目視でもエッジから約3mm幅である。   When exposure is performed without the exposure mask 27, Fresnel diffraction fringes a due to the opening edge of the light shielding aperture plate 25 are observed on the exposure substrate 28 as shown in FIGS. This diffraction region is about 3 mm wide from the edge visually.

また、遮光開口板25の開口サイズは、迷光抑制のために絞ることが好ましいが、回折の影響を考えると開口サイズは拡げることが好ましい。具体的な、遮光開口板25の開口サイズは、露光マスク27により決定される露光エリアよりも外側に3mm以上大きくすることが好ましい。   Further, the aperture size of the light shielding aperture plate 25 is preferably narrowed to suppress stray light, but it is preferable to increase the aperture size in consideration of the influence of diffraction. Specifically, the opening size of the light shielding aperture plate 25 is preferably larger by 3 mm or more outside the exposure area determined by the exposure mask 27.

一般的な1次元のナイフエッジによる回折現象は、λを光の波長、zを遮光開口板から露光基板面までの距離、xを露光面の開口境界を0としたときの座標、θを遮光開口板と露光基板面のなす角度、S(ω)、C(ω)を各々正弦余弦フレネル積分としたとき、
下記(1)式で表される。
The diffraction phenomenon due to a general one-dimensional knife edge is as follows: λ is the wavelength of light, z is the distance from the light shielding aperture plate to the exposure substrate surface, x is the coordinate when the aperture boundary of the exposure surface is 0, and θ is light shielding. When the angle formed by the aperture plate and the exposure substrate surface, S (ω), C (ω) is each sine cosine Fresnel integral,
It is represented by the following formula (1).

Figure 2017161942
Figure 2017161942

前記(1)式より、遮光開口板から露光基板面までの距離zを小さくすること、すなわち、遮光開口板30を露光基板に近づけることで回折ゆらぎが生じる領域を小さくすることができる。   From the equation (1), it is possible to reduce the region where diffraction fluctuation occurs by reducing the distance z from the light shielding aperture plate to the exposure substrate surface, that is, by bringing the light shielding aperture plate 30 closer to the exposure substrate.

本実施の形態では、遮光開口板30とスペイシャルフィルタの間にある散乱源からの光が露光基板上に入射する不要な迷光を低減するために、遮光開口板30をスペイシャルフィルタ側に配置する。すなわち、遮光開口板から露光基板面までの距離zが大きくなり、遮光開口板30の開口端(稜線部)によって回折ゆらぎの影響が大きくなるが、本実施の形態では、回折ゆらぎによる干渉縞強度の干渉ゆらぎ領域を露光マスクでマスクする。これにより、露光基板において均一な干渉縞を得ることができる。   In the present embodiment, the light shielding aperture plate 30 is arranged on the side of the spatial filter in order to reduce unnecessary stray light that is incident on the exposure substrate from the light source between the light shielding aperture plate 30 and the spatial filter. To do. That is, the distance z from the light shielding aperture plate to the exposure substrate surface is increased, and the influence of diffraction fluctuations is increased by the opening end (ridge line portion) of the light shielding aperture plate 30, but in this embodiment, the interference fringe intensity due to diffraction fluctuations is increased. The interference fluctuation region is masked with an exposure mask. Thereby, uniform interference fringes can be obtained on the exposure substrate.

また、前記(1)式に示す距離zは、露光マスクの開口稜線部と露光基板との距離(露光マスクの厚さ)にも相当する。そのため、本実施の形態では、露光マスクの開口稜線部と露光基板との距離を小さくする。これにより、回折ゆらぎが生じる影響を小さくすることができる。   Further, the distance z shown in the equation (1) also corresponds to the distance between the opening ridge line portion of the exposure mask and the exposure substrate (thickness of the exposure mask). Therefore, in this embodiment, the distance between the opening ridge line portion of the exposure mask and the exposure substrate is reduced. Thereby, the influence which a diffraction fluctuation produces can be made small.

<3.遮光開口板による迷光の低減>
次に、遮光開口板によりスペイシャルフィルタと遮光開口板との間にある迷光を低減する方法について説明する。スペイシャルフィルタと遮光開口板との間にある散乱源(迷光)とは、例えば、露光光軸が水平で露光基板を地面に対して垂直に立てて露光する場合の光学系の土台である防振台表面、光路中の空気のゆらぎを抑えるため光路を覆うように設置されたカバー表面などがある。
<3. Reduction of stray light by light shielding aperture plate>
Next, a method for reducing stray light between the spatial filter and the light shielding aperture plate using the light shielding aperture plate will be described. The scattering source (stray light) between the spatial filter and the light-shielding aperture plate is, for example, a protection that is a base of an optical system when exposure is performed with the exposure optical axis being horizontal and the exposure substrate standing vertically to the ground. There are a shaking table surface, a cover surface installed so as to cover the optical path in order to suppress air fluctuation in the optical path.

図9は、遮光開口板を露光基板側に近づけて配置した例を示す図である。この場合、回折ゆらぎ領域aは小さくなるものの、防振台表面34からの迷光bや遮光開口板32からの迷光cが露光基板33に入射する確率が高くなる。   FIG. 9 is a diagram showing an example in which the light shielding aperture plate is arranged close to the exposure substrate side. In this case, although the diffraction fluctuation region a is reduced, the probability that the stray light b from the vibration isolation table surface 34 or the stray light c from the light shielding aperture plate 32 is incident on the exposure substrate 33 is increased.

一方、図10は、遮光開口板をスペイシャルフィルタ側に近づけて配置した例を示す図である。この場合、回折ゆらぎ領域aは大きくなるものの、防振台表面34からの迷光bや遮光開口板33からの迷光cが露光基板33に入射する確率は低くなる。   On the other hand, FIG. 10 is a diagram showing an example in which the light shielding aperture plate is arranged close to the spatial filter side. In this case, although the diffraction fluctuation region a becomes large, the probability that the stray light b from the vibration isolation table surface 34 or the stray light c from the light shielding aperture plate 33 enters the exposure substrate 33 is low.

また、図11は、強度比で4%の迷光を加えた場合の露光基板上の光強度分布に対する迷光の影響を示すグラフである。また、図12は、迷光/干渉光の強度に対する干渉縞の最大強度の変化を示すグラフである。   FIG. 11 is a graph showing the influence of stray light on the light intensity distribution on the exposure substrate when stray light having an intensity ratio of 4% is added. FIG. 12 is a graph showing a change in the maximum intensity of interference fringes with respect to the intensity of stray light / interference light.

このように強度比で4%の迷光を加えた場合、最大で±20%の強度変動が生じてしまう。また、迷光の入射方向によっては線幅のうねりが生じてしまう。線幅分布を3nm(露光時間換算で5sec)未満とするためには、迷光強度比を0.4%未満とする必要がある。   When stray light with an intensity ratio of 4% is added in this way, an intensity variation of ± 20% at maximum occurs. Further, the line width undulates depending on the incident direction of stray light. In order to make the line width distribution less than 3 nm (5 seconds in terms of exposure time), the stray light intensity ratio needs to be less than 0.4%.

すなわち、遮光開口板32は、強度比で0.4%未満の迷光となるようにスペイシャルフィルタ31と露光基板33との間で最適な位置に配置される。具体的にはスペイシャルフィルタ31と露光基板33との中間よりスペイシャルフィルタ31側に配置される。   That is, the light shielding aperture plate 32 is disposed at an optimum position between the spatial filter 31 and the exposure substrate 33 so that stray light with an intensity ratio of less than 0.4% is obtained. Specifically, it is arranged on the spatial filter 31 side from the middle between the spatial filter 31 and the exposure substrate 33.

図13は、露光基板と遮光開口の距離zを800mmとしたときの実験例を示す図である。波長λを266mm、光束(光軸)に対する露光基板の傾きを64度とした。また、露光基板とスペイシャルフィルタとの間の距離Lは、露光基板面の光強度分布との関係で決められ、例えばL=1400mmmのとき、露光基板と遮光開口の距離zが800mmである場合、スペイシャルフィルタと露光基板の間の距離は600mmとなる。   FIG. 13 is a diagram showing an experimental example when the distance z between the exposure substrate and the light shielding opening is 800 mm. The wavelength λ was 266 mm, and the inclination of the exposure substrate with respect to the light beam (optical axis) was 64 degrees. The distance L between the exposure substrate and the spatial filter is determined by the relationship with the light intensity distribution on the exposure substrate surface. For example, when L = 1400 mm, the distance z between the exposure substrate and the light-shielding opening is 800 mm. The distance between the spatial filter and the exposure substrate is 600 mm.

図14は、前述した条件における回折積分値の計算結果を示すグラフである。xが3mm以上のとき回折積分の振動幅(=回折ゆらぎ)が10%以下、x=10mm以上のとき5%以下となる。したがって、露光マスクにより干渉露光領域の回折積分の振動幅が10%を超える領域をマスクすること、すなわち干渉露光領域の周縁の内側を3mm以上マスクすることにより、露光基板全面で干渉ゆらぎの小さい均一な干渉縞を形成することができる。   FIG. 14 is a graph showing the calculation result of the diffraction integral value under the above-described conditions. When x is 3 mm or more, the vibration width (= diffraction fluctuation) of the diffraction integral is 10% or less, and when x = 10 mm or more, it is 5% or less. Therefore, by masking the region where the vibration width of the diffraction integration in the interference exposure region exceeds 10% with the exposure mask, that is, by masking the inner side of the periphery of the interference exposure region by 3 mm or more, the entire exposure substrate has a small interference fluctuation. Interference fringes can be formed.

図15は、Mach−Zehnder型の光学系の構成例を示す図である。なお、図1に示す光学系と同一の構成には同一の符号を付し、ここでは説明を省略する。   FIG. 15 is a diagram illustrating a configuration example of a Mach-Zehnder type optical system. In addition, the same code | symbol is attached | subjected to the structure same as the optical system shown in FIG. 1, and description is abbreviate | omitted here.

この干渉露光装置の構成例は、露光基板20に隣接して配置された露光マスク19と、露光マスク19よりもスペイシャルフィルタ17A,17B側に配置された遮光開口板18A,18Bとの2段階の遮光構成とするものである。これにより露光エリア外への光照射による不要な迷光成分と、開口端(稜線部)によるフレネル回折の両方を同時に抑制することができる。   The configuration example of this interference exposure apparatus has two stages: an exposure mask 19 disposed adjacent to the exposure substrate 20 and light shielding aperture plates 18A and 18B disposed on the spatial filters 17A and 17B side of the exposure mask 19. The light shielding configuration is as follows. Thereby, both unnecessary stray light components due to light irradiation outside the exposure area and Fresnel diffraction due to the opening end (ridge line portion) can be suppressed at the same time.

また、露光マスク19によって決められる露光エリアbは、遮光開口板18A,18Bによって決められる露光エリアaより内側に3mm以上小さいことが好ましい。開口端によるフレネル回折の大きさは、露光エリアの周縁から内側に離れるほど低減し、周縁部から3mm以上離れた場所の強度ゆらぎの大きさは、±3%以下となる。このため、露光エリアaより内側に3mm以上小さいことにより、フレネル回折の影響を十分抑制することができる。   The exposure area b determined by the exposure mask 19 is preferably smaller by 3 mm or more inside than the exposure area a determined by the light shielding aperture plates 18A and 18B. The magnitude of Fresnel diffraction due to the opening edge decreases as the distance from the periphery of the exposure area increases, and the intensity fluctuation at a position 3 mm or more away from the periphery is ± 3% or less. For this reason, the influence of Fresnel diffraction can be sufficiently suppressed by being 3 mm or more smaller than the exposure area a.

<4.露光治具による干渉ゆらぎの低減>
次に、露光基板上に隣接して配置される露光マスクにより干渉ゆらぎを低減する方法について説明する。露光マスクは、露光光束が露光基板の側面に当たることによって生じる散乱光を防止する他、露光基板が動かないように固定するための露光治具として機能する。
<4. Reduction of interference fluctuation by exposure jig>
Next, a method for reducing interference fluctuations by using an exposure mask disposed adjacent to the exposure substrate will be described. The exposure mask functions as an exposure jig for fixing the exposure substrate so that the exposure substrate does not move, in addition to preventing scattered light generated when the exposure light beam strikes the side surface of the exposure substrate.

図16は、本実施の形態における露光治具の一例を示す断面図である。この露光治具40は、露光基板43の端縁部と同形状の枠部41aを有する第1の保持部材41と、露光基板43とほぼ同形状の開口を有する第2の保持部材42とを備え、第1の保持部材41と第2の保持部材42とにより露光基板43を挟持する。   FIG. 16 is a cross-sectional view showing an example of an exposure jig in the present embodiment. The exposure jig 40 includes a first holding member 41 having a frame portion 41 a having the same shape as the edge portion of the exposure substrate 43, and a second holding member 42 having an opening having substantially the same shape as the exposure substrate 43. The exposure substrate 43 is sandwiched between the first holding member 41 and the second holding member 42.

第1の保持部材41は、露光基板43とほぼ同じ厚さで掘り込まれている枠部41aによって、露光基板43の少なくとも両側端部を載せ、露光基板43を収容可能となっている。第2の保持部材42は、開口周縁部42aによって露光基板43の少なくとも両側端部を固定する。   The first holding member 41 can accommodate the exposure substrate 43 by placing at least both end portions of the exposure substrate 43 by a frame portion 41 a that is dug in substantially the same thickness as the exposure substrate 43. The second holding member 42 fixes at least both end portions of the exposure substrate 43 by the opening peripheral edge portion 42a.

このように露光治具40によって干渉ゆらぎの影響が大きい露光基板43周縁の一部又は全部を覆うことにより、露光基板43全面で均一な干渉縞を形成することができる。   Thus, by covering a part or all of the periphery of the exposure substrate 43 where the influence of the interference fluctuation is large by the exposure jig 40, uniform interference fringes can be formed on the entire surface of the exposure substrate 43.

また、第2の保持部材42の開口稜線と露光基板43表面との距離、すなわち、開口周縁部42aの厚さは0.5mm以下であることが好ましい。開口周縁部42aの厚さが0.5mm以下であることにより、第2の保持部材の開口からの回折が露光エリアの干渉縞への影響を減少させることができる。   Further, the distance between the opening ridge line of the second holding member 42 and the surface of the exposure substrate 43, that is, the thickness of the opening peripheral edge 42a is preferably 0.5 mm or less. When the thickness of the opening peripheral portion 42a is 0.5 mm or less, the diffraction from the opening of the second holding member can reduce the influence on the interference fringes in the exposure area.

この第2の保持部材42の開口稜線と露光基板43表面との距離(開口周縁部42aの厚さ)は、前記(1)式のzに相当するため、これを小さくすることで干渉縞への影響を小さくすることができる。距離zが1mm以下のとき、開口周縁部42aによる回折ゆらぎは、露光マスクの内側の2mm以内に収めることができるが、二光束干渉での斜入射方向になる場合は、斜入射によるシャドウイングのため、回折ゆらぎ領域が露光マスクの内側にシフトする。このため、第2の保持部材42の開口稜線と露光基板43表面との距離zは、0.5mm以下とすることが好ましい。   The distance between the opening ridge line of the second holding member 42 and the surface of the exposure substrate 43 (thickness of the opening peripheral edge 42a) corresponds to z in the equation (1). The influence of can be reduced. When the distance z is 1 mm or less, the diffraction fluctuation due to the opening peripheral edge portion 42a can be within 2 mm inside the exposure mask. However, in the case of the oblique incidence direction due to two-beam interference, shadowing due to the oblique incidence is caused. Therefore, the diffraction fluctuation region is shifted to the inside of the exposure mask. For this reason, the distance z between the opening ridge line of the second holding member 42 and the surface of the exposure substrate 43 is preferably 0.5 mm or less.

ところで、図17に示すように第2の保持部材44の開口周縁部42aに面取り44aが施された場合、この部分の面積が大きいと、本質的な回折に加えて面取り44aによる散乱光が加わるため、回折ゆらぎ領域が拡大してしまう。このため、図16に示すように、第2の保持部材42の開口周縁部は、表面から0.2mm以下の範囲で小さく面取りされていることが好ましい。   By the way, as shown in FIG. 17, when the chamfer 44a is given to the opening peripheral part 42a of the 2nd holding member 44, if the area of this part is large, in addition to essential diffraction, the scattered light by the chamfer 44a will be added. Therefore, the diffraction fluctuation region is enlarged. For this reason, as shown in FIG. 16, it is preferable that the opening peripheral part of the 2nd holding member 42 is chamfered small in the range below 0.2 mm from the surface.

このように開口周縁部42aの厚さを0.5mm以下とすることにより、開口周縁部42aにより生じる回折ゆらぎを低減することができ、露光エリア全面で均一な干渉縞を形成することができる。さらに、マスク稜線部aの面取りを表面から0.2mm以下とすることにより、エッジ部分で発生する散乱迷光の総量を低減でき、この迷光成分が露光エリア内に及ぼす干渉縞ゆらぎを低減することができる。   Thus, by setting the thickness of the opening peripheral portion 42a to 0.5 mm or less, diffraction fluctuations generated by the opening peripheral portion 42a can be reduced, and uniform interference fringes can be formed over the entire exposure area. Furthermore, by making the chamfering of the mask ridge line portion a 0.2 mm or less from the surface, the total amount of scattered stray light generated at the edge portion can be reduced, and interference fringe fluctuations caused by this stray light component in the exposure area can be reduced. it can.

<5.干渉露光方法>
次に、前述した干渉露光装置を用いた干渉露光方法について説明する。原板としては、使用光に対して透明な基板、例えば、水晶または石英からなるものを用いる。また、光学素子に応じて、Al、Taなどの金属又は半導体を原板上に成膜してもよい。
<5. Interference exposure method>
Next, an interference exposure method using the above-described interference exposure apparatus will be described. As the original plate, a substrate transparent to the light used, for example, made of quartz or quartz is used. Further, a metal such as Al or Ta or a semiconductor may be formed on the original plate depending on the optical element.

先ず、基板の主面(一方の主面)上にレジスト層を形成し露光基板を作製する。レジスト層は、フォトリソグラフィで一般的に用いられる露光光源に対応したフォトレジスト材料(感光性有機材料)からなり、反応性ガスやイオンビーム等によって基板とともにエッチングが可能な層である。なお、レジスト層は、反射防止膜の形成後、あるいは反射防止膜の形成と同時に形成される。   First, a resist layer is formed on the main surface (one main surface) of the substrate to produce an exposed substrate. The resist layer is made of a photoresist material (photosensitive organic material) corresponding to an exposure light source generally used in photolithography, and can be etched together with the substrate by a reactive gas, an ion beam, or the like. The resist layer is formed after the formation of the antireflection film or simultaneously with the formation of the antireflection film.

次に、露光基板のレジスト層に対して干渉露光を行い、レジスト層が所定パターンに感光した感光層を形成する。前述した図1,図2のいずれの光学系においても、二光束干渉により露光基板上に干渉縞が形成され、レジスト層を露光することができる。例えば、波長266nmのレーザ光を用いて、ピッチ150nmの回折格子を形成する場合、露光基板に対するレーザ光の入射角θを64°とする。また、干渉露光を行った後、加熱(PEB:Post Exposure Bake)を行う。   Next, interference exposure is performed on the resist layer of the exposure substrate to form a photosensitive layer in which the resist layer is exposed to a predetermined pattern. In both the optical systems shown in FIGS. 1 and 2, interference fringes are formed on the exposure substrate by two-beam interference, and the resist layer can be exposed. For example, when a diffraction grating having a pitch of 150 nm is formed using laser light having a wavelength of 266 nm, the incident angle θ of the laser light with respect to the exposure substrate is set to 64 °. Further, after performing interference exposure, heating (PEB: Post Exposure Bake) is performed.

次に、感光層について現像を行う。現像条件は、例えば、アルカリ現像30秒、純水洗浄による定着30秒である。これにより、感光層のうち、例えば感光した部分は除去され、感光していない部分が残されることになり(あるいは感光していない部分は除去され、感光した部分が残されることになり)、回折格子状の凹凸形状にパターニングされたパターニング層となる。   Next, the photosensitive layer is developed. The development conditions are, for example, alkali development for 30 seconds and fixing with pure water washing for 30 seconds. This removes, for example, the exposed portion of the photosensitive layer and leaves the unexposed portion (or the unexposed portion is removed and the exposed portion remains), and diffraction. The patterning layer is patterned into a lattice-shaped uneven shape.

次に、パターニング層及び基板をエッチングする。エッチングは、パターニング層及び基板それぞれが表層から順次除去できる方法であればよく、例えばCFなどのフッ素系ガスやArガス、あるいはそれらの混合ガスによるRIE(reactive ion etching、反応性ガスエッチング)やイオンビームエッチングで処理するとよい。このとき、パターニング層は基板のマスクパターンとなるため、基板に回折格子パターンの凹凸形状を形成することができる。 Next, the patterning layer and the substrate are etched. Etching may be a method that allows the patterning layer and the substrate to be sequentially removed from the surface layer. For example, RIE (reactive ion etching) using a fluorine-based gas such as CF 4 , Ar gas, or a mixed gas thereof may be used. It is good to process by ion beam etching. At this time, since the patterning layer serves as a mask pattern of the substrate, the uneven shape of the diffraction grating pattern can be formed on the substrate.

<6.実施例>
以下、実施例を挙げて、本発明を具体的に説明する。ここでは、例として二光束干渉露光法でサブ波長微細格子を作製した。なお、本発明は、これらの実施例に限定されるものではない。
<6. Example>
Hereinafter, the present invention will be specifically described with reference to examples. Here, as an example, a sub-wavelength fine grating was fabricated by a two-beam interference exposure method. The present invention is not limited to these examples.

干渉露光装置に用いる光源は、Nd:YAGの4倍波による波長266nmの遠紫外CWレーザを用いた。波長単色性は0.1fm、コヒレント長は3mで縦のコヒーレンシは良好であった。レーザの出射光の状態を示すM2(エムスクエア)は1.1であり、直径0.8mmの出射ビームは、ほぼ単一モードで横のコヒーレンシも良好であった。   As a light source used for the interference exposure apparatus, a far ultraviolet CW laser having a wavelength of 266 nm based on the fourth harmonic of Nd: YAG was used. The wavelength monochromaticity was 0.1 fm, the coherent length was 3 m, and the vertical coherency was good. M2 (em square) indicating the state of the emitted light of the laser was 1.1, and the emitted beam with a diameter of 0.8 mm was almost single mode and had good lateral coherency.

光学系としてはMach−Zehnder型の干渉露光装置を用いた。入射角度と微細格子の周期p(ピッチ)の関係は、下記(2)式で表される。   As the optical system, a Mach-Zehnder type interference exposure apparatus was used. The relationship between the incident angle and the period p (pitch) of the fine grating is expressed by the following equation (2).

Figure 2017161942
Figure 2017161942

サブ波長格子としての機能を有するためには、使用する光波長(可視光であれば、400〜700nm)の半分以下の周期が必要となる。このため、本例では、入射角度を64度とすることにより148nmのピッチpを得た。各分枝において、スペイシャルフィルタと遮光開口板との距離を600mm、遮光開口板から露光基板までの距離を800mmとした。遮光開口板によって制限された照射領域は、露光基板全面を十分覆うように広く、且つ、ステージや他の光学部品からの余計な散乱光を防ぐように十分狭くした。   In order to have a function as a sub-wavelength grating, a period of half or less of the light wavelength to be used (400 to 700 nm for visible light) is required. For this reason, in this example, the pitch p of 148 nm was obtained by setting the incident angle to 64 degrees. In each branch, the distance between the spatial filter and the light shielding aperture plate was 600 mm, and the distance from the light shielding aperture plate to the exposure substrate was 800 mm. The irradiation area limited by the light-shielding aperture plate is wide enough to cover the entire surface of the exposure substrate and sufficiently narrow to prevent extra scattered light from the stage and other optical components.

露光基板の原板として、20mm×20mm、厚さ0.7mmのガラスを用いた。まず、DCスパッタでAlを厚さ50nm形成し、次いでスピンコートによって反射防止膜(BARC)と化学増幅感光型レジストとを各々30nm、230nm塗布し、露光基板を得た。こうして作製された露光基板に対して二光束干渉露光を行った。   As an original plate of the exposure substrate, glass having a size of 20 mm × 20 mm and a thickness of 0.7 mm was used. First, Al was formed to a thickness of 50 nm by DC sputtering, and then an antireflection film (BARC) and a chemically amplified photosensitive resist were applied by spin coating at 30 nm and 230 nm, respectively, to obtain an exposed substrate. Two-beam interference exposure was performed on the exposure substrate thus prepared.

図18は、露光治具を示す上面図であり、図19は露光治具を示す断面図である。露光基板51は、図18及び図19に示すような露光治具に配列されており、基板端の一部は光が照射されない構成となっている。また、露光治具50の開口稜線と露光基板51表面との距離zを0.5mmとした。また、露光治具50の開口周縁部を表面から0.2mm面取りした。   FIG. 18 is a top view showing the exposure jig, and FIG. 19 is a cross-sectional view showing the exposure jig. The exposure substrate 51 is arranged in an exposure jig as shown in FIGS. 18 and 19, and a part of the substrate end is not irradiated with light. The distance z between the opening ridge line of the exposure jig 50 and the surface of the exposure substrate 51 was set to 0.5 mm. Further, the peripheral edge of the opening of the exposure jig 50 was chamfered 0.2 mm from the surface.

露光時間は、レジストの感光感度や基板面の照射強度によって決まり、本例では40sec程度とした。レジストとしてKrF用の化学増幅型のものを使用し、露光後のPEB(Post Exposure Bake)処理を経て反応を完結させた。露光後のPEB(Post Exposure Bake)処理は、110度、90secの熱処理を行った。その後、アルカリ液での現像、乾燥を得て、レジストの微細格子パターンを形成した。断面形状は、高さ190nm、幅60nmで、格子の周期は148nmであった。   The exposure time is determined by the photosensitive sensitivity of the resist and the irradiation intensity of the substrate surface, and is about 40 sec in this example. A chemically amplified resist for KrF was used as the resist, and the reaction was completed through PEB (Post Exposure Bake) treatment after exposure. In the post-exposure PEB (Post Exposure Bake) treatment, heat treatment was performed at 110 degrees for 90 seconds. Thereafter, development with an alkali solution and drying were obtained to form a fine lattice pattern of a resist. The cross-sectional shape was 190 nm in height, 60 nm in width, and the period of the grating was 148 nm.

最後に、このレジストパターンをマスクとし、塩素ガスを用いてAlをドライエッチングし、格子状のAlパターンを形成した。Al断面形状は、高さ50nm、幅60nm、格子の周期は148mmであった。   Finally, using this resist pattern as a mask, Al was dry etched using chlorine gas to form a lattice-like Al pattern. The Al cross section had a height of 50 nm, a width of 60 nm, and a lattice period of 148 mm.

作製された格子基板について、図20に示す基板端からの位置A,B,Cをマイクロスコープで観察した。マイクロスコープの倍率は1000倍程度とした。これにより、各々の微細グリッドは見えずに、逆に回折などのマクロなグリッド形状の分布がやや増幅されて観察可能となる。なお、位置Dは、露光治具による基板押さえ部分である。   About the produced lattice board | substrate, position A, B, C from the board | substrate end shown in FIG. 20 was observed with the microscope. The magnification of the microscope was about 1000 times. As a result, each fine grid is not visible, and on the contrary, a macro-grid distribution such as diffraction is slightly amplified and can be observed. Note that the position D is a substrate pressing portion by the exposure jig.

図21〜図23は、それぞれ基板端から1mm付近の位置A、基板端から2mm付近の位置B、及び基板端から10mm付近の位置Cを示す拡大写真である。位置B付近では、位置Aで見られる回折ゆらぎが低減されており、基板端から10mm付近の位置Cではさらに低減されていることが観察された。位置B、Cで見られる回折ゆらぎのレベルは、実際の透過特性では問題はなく、本実施例による光束干渉露光の構成によって、迷光の影響や回折ゆらぎの影響を十分低減させることができることが分かった。   FIGS. 21 to 23 are enlarged photographs showing a position A near 1 mm from the substrate end, a position B near 2 mm from the substrate end, and a position C near 10 mm from the substrate end. It was observed that near the position B, the diffraction fluctuation seen at the position A was reduced, and further reduced at the position C near 10 mm from the edge of the substrate. It can be seen that the diffraction fluctuation levels observed at the positions B and C have no problem in the actual transmission characteristics, and the configuration of the light beam interference exposure according to the present embodiment can sufficiently reduce the influence of stray light and the influence of the diffraction fluctuation. It was.

以上説明したように、開口部を有する遮光開口板と、露光マスクとを用いることにより、基板の有効領域を最大化し、迷光や回折の影響の少ない干渉縞パターンを形成することができる。   As described above, by using the light shielding aperture plate having the aperture and the exposure mask, it is possible to maximize the effective area of the substrate and form an interference fringe pattern with less influence of stray light and diffraction.

11 レーザ光源、 12 ビームエキスパンダ、 13 偏光ビームスプリッタ、 14 波長板、 15A,15B 反射板、 16A,16B 対物レンズ、 17A,17B スペイシャルフィルタ、 18A,18B 遮光開口板、 19 露光マスク、 20 露光基板、21 レーザ光源、 22 シャッタ、23 対物レンズ、 24 スペイシャルフィルタ、 25 遮光開口板、 26 ミラー、 27 露光マスク、 28 露光基板、 30 遮光開口板、 31 スペイシャルフィルタ、 32 遮光開口板、 33 露光基板、 34 防振台、 40 露光治具、 41 露光基板、 42 露光治具、 50 露光治具、 51 露光基板   DESCRIPTION OF SYMBOLS 11 Laser light source, 12 Beam expander, 13 Polarizing beam splitter, 14 Wavelength plate, 15A, 15B Reflector, 16A, 16B Objective lens, 17A, 17B Spatial filter, 18A, 18B Shading aperture plate, 19 Exposure mask, 20 Exposure Substrate, 21 Laser light source, 22 Shutter, 23 Objective lens, 24 Spatial filter, 25 Light-shielding aperture plate, 26 Mirror, 27 Exposure mask, 28 Exposure substrate, 30 Light-shielding aperture plate, 31 Spatial filter, 32 Light-shielding aperture plate, 33 Exposure substrate, 34 vibration isolator, 40 exposure jig, 41 exposure substrate, 42 exposure jig, 50 exposure jig, 51 exposure substrate

すなわち、本発明は、出射光束の一部を反射させ、直接の出射光束と反射させた出射光束により干渉露光領域を形成する干渉露光装置であって、スペイシャルフィルタから出射された光束の周縁を遮蔽する開口部を有する遮光開口板と、露光基板上に隣接配置され、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクする露光マスクとを備えることを特徴とする。 That is, the present invention is an interference exposure apparatus that reflects a part of an outgoing light beam and forms an interference exposure region by the reflected outgoing light beam and the direct outgoing light beam, and the peripheral edge of the light beam emitted from the spatial filter is A light-shielding aperture plate having an aperture to be shielded, and an exposure mask that is arranged adjacent to the exposure substrate and masks the periphery of an interference exposure area formed by a light beam emitted from the aperture.

また、本発明は、出射光束を二分割し、一方の光束を偏光して干渉露光領域を形成する干渉露光装置であって、スペイシャルフィルタから出射された光束の周縁を遮蔽する開口部を有する遮光開口板と、露光基板上に隣接配置され、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクする露光マスクとを備えることを特徴とする。The present invention also provides an interference exposure apparatus that divides an emitted light beam into two and polarizes one of the light beams to form an interference exposure region, and has an opening that shields the periphery of the light beam emitted from the spatial filter. A light-shielding aperture plate and an exposure mask that is arranged adjacent to the exposure substrate and masks the periphery of an interference exposure region formed by a light beam emitted from the aperture.

また、本発明に係る干渉露光方法は、開口部を有する遮光開口板により、スペイシャルフィルタから出射される光束の周縁を遮蔽し、露光基板上に隣接配置した露光マスクにより、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクすることを特徴とする。In the interference exposure method according to the present invention, the periphery of the light beam emitted from the spatial filter is shielded by the light-shielding aperture plate having the aperture, and is emitted from the aperture by the exposure mask arranged adjacent to the exposure substrate. The periphery of the interference exposure area formed by the emitted light beam is masked.

Claims (10)

スペイシャルフィルタから出射された光束の周縁を遮蔽する開口部を有する遮光開口板と、
露光基板上に隣接配置され、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクする露光マスクと
を備える干渉露光装置。
A light-shielding aperture plate having an aperture that shields the periphery of the luminous flux emitted from the spatial filter;
An interference exposure apparatus comprising: an exposure mask which is arranged adjacently on an exposure substrate and masks a periphery of an interference exposure region formed by a light beam emitted from the opening.
前記露光マスクは、前記干渉露光領域の回折ゆらぎの振動幅が10%を超える領域をマスクする請求項1記載の干渉露光装置。   The interference exposure apparatus according to claim 1, wherein the exposure mask masks an area where a vibration fluctuation width of diffraction fluctuation in the interference exposure area exceeds 10%. 前記露光マスクは、前記干渉露光領域の周縁の内側を3mm以上マスクする請求項1又は2記載の干渉露光装置。   The interference exposure apparatus according to claim 1, wherein the exposure mask masks an inner side of a periphery of the interference exposure region by 3 mm or more. 前記露光マスクの表面から露光基板までの距離は、0.5mm以下である請求項1乃至3のいずれか1項に記載の干渉露光装置。   The interference exposure apparatus according to any one of claims 1 to 3, wherein a distance from a surface of the exposure mask to an exposure substrate is 0.5 mm or less. 前記露光マスクの表面から0.2mm以下の範囲で稜線部が面取りされている請求項4項に記載の干渉露光装置。   The interference exposure apparatus according to claim 4, wherein a ridge line portion is chamfered within a range of 0.2 mm or less from the surface of the exposure mask. 前記露光マスクは、露光基板の端縁部と同形状の枠部を有する第1の保持部材と、露光基板と同形状の開口を有する第2の保持部材とを備え、前記第2の保持部材の開口周縁部の厚さが0.5mm以下である請求項1乃至3のいずれか1項に記載の干渉露光装置。   The exposure mask includes a first holding member having a frame portion having the same shape as an edge portion of the exposure substrate, and a second holding member having an opening having the same shape as the exposure substrate, and the second holding member. The interference exposure apparatus according to any one of claims 1 to 3, wherein the thickness of the peripheral edge of the opening is 0.5 mm or less. 前記第2の保持部材の開口周縁部は、表面から0.2mm以下の範囲で面取りされている請求項6に記載の干渉露光装置。   The interference exposure apparatus according to claim 6, wherein an opening peripheral edge portion of the second holding member is chamfered within a range of 0.2 mm or less from the surface. 開口部を有する遮光開口板により、スペイシャルフィルタから出射される光束の周縁を遮蔽し、
露光基板上に隣接配置した露光マスクにより、前記開口部から出射された光束により形成される干渉露光領域の周縁をマスクする干渉露光方法。
The light shielding aperture plate having an opening shields the periphery of the light beam emitted from the spatial filter,
An interference exposure method for masking a peripheral edge of an interference exposure region formed by a light beam emitted from the opening by an exposure mask arranged adjacently on an exposure substrate.
露光基板の端縁部と同形状の枠部を有する第1の保持部材と、露光基板と同形状の開口を有する第2の保持部材とを備え、
前記第2の保持部材の開口周縁部の厚さが0.5mm以下である露光治具。
A first holding member having a frame portion having the same shape as the edge portion of the exposure substrate, and a second holding member having an opening having the same shape as the exposure substrate,
An exposure jig wherein the thickness of the peripheral edge of the opening of the second holding member is 0.5 mm or less.
前記第2の保持部材の開口周縁部は、表面から0.2mm以下の範囲で面取りされている請求項9に記載の露光治具。   The exposure jig according to claim 9, wherein the peripheral edge of the opening of the second holding member is chamfered within a range of 0.2 mm or less from the surface.
JP2017112554A 2017-06-07 2017-06-07 Interference exposure apparatus and interference exposure method Active JP6454380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017112554A JP6454380B2 (en) 2017-06-07 2017-06-07 Interference exposure apparatus and interference exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112554A JP6454380B2 (en) 2017-06-07 2017-06-07 Interference exposure apparatus and interference exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011278786A Division JP2013130649A (en) 2011-12-20 2011-12-20 Interference exposure device and interference exposure method

Publications (2)

Publication Number Publication Date
JP2017161942A true JP2017161942A (en) 2017-09-14
JP6454380B2 JP6454380B2 (en) 2019-01-16

Family

ID=59857931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112554A Active JP6454380B2 (en) 2017-06-07 2017-06-07 Interference exposure apparatus and interference exposure method

Country Status (1)

Country Link
JP (1) JP6454380B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381304A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Diffraction grating exposing device
JPH0561397A (en) * 1991-08-29 1993-03-12 Fujitsu Ltd Hologram plotting device
JP2005505147A (en) * 2001-10-09 2005-02-17 ウルトラテック インク Method and apparatus for mechanically masking a workpiece
JP2010087392A (en) * 2008-10-02 2010-04-15 Nikon Corp Optical system, exposure apparatus, and method of manufacturing electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381304A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Diffraction grating exposing device
JPH0561397A (en) * 1991-08-29 1993-03-12 Fujitsu Ltd Hologram plotting device
JP2005505147A (en) * 2001-10-09 2005-02-17 ウルトラテック インク Method and apparatus for mechanically masking a workpiece
JP2010087392A (en) * 2008-10-02 2010-04-15 Nikon Corp Optical system, exposure apparatus, and method of manufacturing electronic device

Also Published As

Publication number Publication date
JP6454380B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP4389791B2 (en) Fine structure manufacturing method and exposure apparatus
US5863677A (en) Aligner and patterning method using phase shift mask
KR100553069B1 (en) Photomask and method of producing photomask
JP4495679B2 (en) System and method for producing a pattern on a substrate
US7629087B2 (en) Photomask, method of making a photomask and photolithography method and system using the same
US8221963B2 (en) Method for producing fine structure
JPH08316125A (en) Method and apparatus for projection exposing
KR20060091246A (en) Photomask, method of generating mask pattern, and method of manufacturing semiconductor device
JP4417881B2 (en) Manufacturing method of member having fine structure, and exposure method used for manufacturing method thereof
JPH07307268A (en) Optical device for illumination
JP2007116016A (en) Diffraction optical element, pattern forming apparatus and pattern forming method
JP2013130649A (en) Interference exposure device and interference exposure method
JPH10186629A (en) Mask for exposure and its manufacture, and production of semiconductor device
JP2006339359A (en) Method of manufacturing fine structure, and electronic apparatus
KR100713955B1 (en) Arrangement for projecting a pattern into an image plane
US20100304279A1 (en) Manufacturing method of phase shift mask, creating method of mask data of phase shift mask, and manufacturing method of semiconductor device
JP6454380B2 (en) Interference exposure apparatus and interference exposure method
JP3303077B2 (en) Mask and pattern forming method
JPH0950117A (en) Photomask and exposing method using the same
US6352800B1 (en) Reticle for use in exposing semiconductor, method of producing the reticle, and semiconductor device
JP4894899B2 (en) Manufacturing method of fine structure
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP4491682B2 (en) Photo mask
JP3351401B2 (en) Projection exposure equipment
JP3173100B2 (en) Projection exposure equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6454380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250