JP2017161845A - Optical system, optical instrument and method for manufacturing optical system - Google Patents

Optical system, optical instrument and method for manufacturing optical system Download PDF

Info

Publication number
JP2017161845A
JP2017161845A JP2016048454A JP2016048454A JP2017161845A JP 2017161845 A JP2017161845 A JP 2017161845A JP 2016048454 A JP2016048454 A JP 2016048454A JP 2016048454 A JP2016048454 A JP 2016048454A JP 2017161845 A JP2017161845 A JP 2017161845A
Authority
JP
Japan
Prior art keywords
optical system
lens
group
conditional expression
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048454A
Other languages
Japanese (ja)
Other versions
JP6701831B2 (en
Inventor
真美 村谷
Mami Muratani
真美 村谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP2016048454A priority Critical patent/JP6701831B2/en
Publication of JP2017161845A publication Critical patent/JP2017161845A/en
Application granted granted Critical
Publication of JP6701831B2 publication Critical patent/JP6701831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical system (wide angle lens) that is small and has high optical performance.SOLUTION: An optical system WL includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, in which upon focusing from an infinite distance to a close distance object, the front group G1 and the rear group G2 move to an object side along the optical axis and an interval between the front group G1 and the rear group G2 varies, satisfying a conditional expression of 1.05<X1/X2<4.00. In the expression, X1 represents an amount of movement of the front group G1 upon focusing; and X2 represents an amount of movement of the rear group G2 upon focusing.SELECTED DRAWING: Figure 1

Description

本発明は、光学系、これを用いた光学機器およびこの光学系の製造方法に関する。   The present invention relates to an optical system, an optical apparatus using the optical system, and a method for manufacturing the optical system.

従来から、デジタルスチルカメラやデジタルビデオカメラ等の光学機器に用いられる光学系として、小型でありながら、フローティングフォーカス方式により良好な収差補正を行うことが可能な光学系が提案されている(例えば、特許文献1を参照)。しかしながら、このような光学系では、フォーカシング(合焦)の際に生じる像面の変位を抑える必要がある。   Conventionally, as an optical system used in an optical apparatus such as a digital still camera or a digital video camera, an optical system that is small and can perform good aberration correction by a floating focus method has been proposed (for example, (See Patent Document 1). However, in such an optical system, it is necessary to suppress the displacement of the image plane that occurs during focusing.

特開2012−128294号公報JP 2012-128294 A

本発明に係る光学系は、物体側から順に並んだ、正の屈折力を有する前群と、正の屈折力を有する後群とを有し、無限遠から近距離物体への合焦の際、前記前群および前記後群が光軸に沿って物体側に移動して、前記前群と前記後群との間隔が変化し、以下の条件式を満足する。   The optical system according to the present invention has a front group having a positive refractive power and a rear group having a positive refractive power arranged in order from the object side, and when focusing from infinity to a short distance object, The front group and the rear group move to the object side along the optical axis, the interval between the front group and the rear group changes, and the following conditional expression is satisfied.

1.05<X1/X2<4.00
但し、X1:前記合焦の際の前記前群の移動量、
X2:前記合焦の際の前記後群の移動量。
1.05 <X1 / X2 <4.00
Where X1: movement amount of the front group at the time of focusing,
X2: Movement amount of the rear group at the time of focusing.

本発明に係る光学機器は、上記光学系を搭載して構成される。   An optical apparatus according to the present invention is configured by mounting the above optical system.

本発明に係る光学系の製造方法は、物体側から順に並んだ、正の屈折力を有する前群と、正の屈折力を有する後群とを有する光学系の製造方法であって、無限遠から近距離物体への合焦の際、前記前群および前記後群が光軸に沿って物体側に移動して、前記前群と前記後群との間隔が変化し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする。
1.05<X1/X2<4.00
但し、X1:前記合焦の際の前記前群の移動量、
X2:前記合焦の際の前記後群の移動量。
An optical system manufacturing method according to the present invention is a method for manufacturing an optical system having a front group having a positive refractive power and a rear group having a positive refractive power, which are arranged in order from the object side. When focusing on a short-distance object, the front group and the rear group move to the object side along the optical axis, the interval between the front group and the rear group changes, and the following conditional expression is satisfied As described above, each lens is arranged in a lens barrel.
1.05 <X1 / X2 <4.00
Where X1: movement amount of the front group at the time of focusing,
X2: Movement amount of the rear group at the time of focusing.

本実施形態の第1実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 1st Example of this embodiment. 図2(a)は第1実施例に係る光学系の無限遠合焦時の諸収差図であり、図2(b)は第1実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 2A is a diagram illustrating various aberrations when the optical system according to the first example is focused at infinity, and FIG. 2B is a diagram illustrating various aberrations when the optical system according to the first example is focused at a short distance. FIG. 本実施形態の第2実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 2nd Example of this embodiment. 図4(a)は第2実施例に係る光学系の無限遠合焦時の諸収差図であり、図4(b)は第2実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 4A is a diagram showing various aberrations when the optical system according to the second example is focused at infinity, and FIG. 4B is a diagram showing various aberrations when the optical system according to the second example is focused at a short distance. FIG. 本実施形態の第3実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 3rd Example of this embodiment. 図6(a)は第3実施例に係る光学系の無限遠合焦時の諸収差図であり、図6(b)は第3実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 6A is a diagram illustrating various aberrations when the optical system according to the third example is focused at infinity, and FIG. 6B is a diagram illustrating various aberrations when the optical system according to the third example is focused at a short distance. FIG. 本実施形態の第4実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 4th Example of this embodiment. 図8(a)は第4実施例に係る光学系の無限遠合焦時の諸収差図であり、図8(b)は第4実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 8A is a diagram showing various aberrations when the optical system according to the fourth example is focused at infinity, and FIG. 8B is a diagram showing various aberrations when the optical system according to the fourth example is focused at a short distance. FIG. 本実施形態の第5実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 5th Example of this embodiment. 図10(a)は第5実施例に係る光学系の無限遠合焦時の諸収差図であり、図10(b)は第5実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 10A is a diagram showing various aberrations when the optical system according to the fifth example is focused at infinity, and FIG. 10B is a diagram showing various aberrations when the optical system according to the fifth example is focused at a short distance. FIG. 本実施形態の第6実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 6th Example of this embodiment. 図12(a)は第6実施例に係る光学系の無限遠合焦時の諸収差図であり、図12(b)は第6実施例に係る光学系の近距離合焦時の諸収差図である。12A is a diagram showing various aberrations when the optical system according to the sixth example is focused at infinity, and FIG. 12B is a diagram showing various aberrations when the optical system according to the sixth example is focused at a short distance. FIG. 本実施形態の第7実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on the 7th Example of this embodiment. 図14(a)は第7実施例に係る光学系の無限遠合焦時の諸収差図であり、図14(b)は第7実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 14A is a diagram showing various aberrations when the optical system according to the seventh example is focused at infinity, and FIG. 14B is a diagram showing various aberrations when focusing on the short distance of the optical system according to the seventh example. FIG. 本実施形態の第8実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on the 8th Example of this embodiment. 図16(a)は第8実施例に係る光学系の無限遠合焦時の諸収差図であり、図16(b)は第8実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 16A is a diagram showing various aberrations when the optical system according to the eighth example is focused at infinity, and FIG. 16B is a diagram showing various aberrations when the optical system according to the eighth example is focused at a short distance. FIG. 本実施形態に係る光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system which concerns on this embodiment. 本実施形態に係る光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.

以下、本実施形態の光学系、光学機器について図を参照して説明する。本実施形態に係る光学系(広角レンズ)WLの一例として、図1に示す光学系WL(1)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とを有して構成される。このような光学系WL(1)において、無限遠から近距離物体への合焦の際、前群G1および後群G2が光軸に沿って物体側に移動して、前群G1と後群G2との間隔が変化するようになっている。   Hereinafter, the optical system and the optical apparatus of the present embodiment will be described with reference to the drawings. As an example of the optical system (wide-angle lens) WL according to the present embodiment, an optical system WL (1) illustrated in FIG. 1 includes a front group G1 having a positive refractive power and a positive refractive power arranged in order from the object side. And a rear group G2. In such an optical system WL (1), when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move to the object side along the optical axis, and the front group G1 and the rear group G2 The interval between and changes.

本実施形態に係る光学系WLは、図3に示す光学系WL(2)でも良く、図5に示す光学系WL(3)でも良く、図7に示す光学系WL(4)でも良く、図9に示す光学系WL(5)でも良く、図11に示す光学系WL(6)でも良く、図13に示す光学系WL(7)でも良く、図15に示す光学系WL(8)でも良い。なお、図3、図5、図7、図9、図11、図13、および図15に示す光学系WL(2)〜WL(8)の各群は、図1に示す光学系WL(1)と同様に構成される。   The optical system WL according to the present embodiment may be the optical system WL (2) shown in FIG. 3, the optical system WL (3) shown in FIG. 5, or the optical system WL (4) shown in FIG. 9 may be the optical system WL (5) shown in FIG. 11, the optical system WL (6) shown in FIG. 11, the optical system WL (7) shown in FIG. 13, or the optical system WL (8) shown in FIG. . 3, 5, 7, 9, 11, 13, and 15, each group of the optical systems WL (2) to WL (8) includes the optical system WL (1 ).

上述したように、本実施形態に係る光学系WLは、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とを有して構成され、無限遠から近距離物体への合焦の際、前群G1および後群G2が光軸に沿って物体側に移動して、前群G1と後群G2との間隔が変化するようになっている。この構成により、合焦の際の像面の変位を抑制して、小型で良好な光学性能を有した光学系を得ることが可能になる。   As described above, the optical system WL according to the present embodiment is configured to include the front group G1 having a positive refractive power and the rear group G2 having a positive refractive power. At the time of focusing, the front group G1 and the rear group G2 move toward the object side along the optical axis, and the interval between the front group G1 and the rear group G2 changes. With this configuration, it is possible to obtain an optical system that is small and has good optical performance by suppressing displacement of the image plane during focusing.

上記構成の下、本実施形態に係る光学系WLは、次の条件式(1)を満足する。   Under the above configuration, the optical system WL according to the present embodiment satisfies the following conditional expression (1).

1.05<X1/X2<4.00 ・・・(1)
但し、X1:合焦の際の前群G1の移動量、
X2:合焦の際の後群G2の移動量。
1.05 <X1 / X2 <4.00 (1)
Where X1: the amount of movement of the front group G1 during focusing,
X2: A movement amount of the rear group G2 at the time of focusing.

条件式(1)は、合焦の際の前群G1および後群G2の移動量について適切な範囲を規定するための条件式である。条件式(1)を満足することで、像面湾曲および軸外収差を良好に補正することができる。   Conditional expression (1) is a conditional expression for defining an appropriate range for the amount of movement of the front group G1 and the rear group G2 during focusing. By satisfying conditional expression (1), it is possible to satisfactorily correct field curvature and off-axis aberrations.

条件式(1)の対応値が上限値を上回ると、後群G2のパワー(屈折力)を強くする必要があるため、球面収差、コマ収差等の補正が困難になる。本実施形態の効果を確実にするために、条件式(1)の上限値を好ましくは3.50とし、さらに好ましくは3.00
としてもよい。
If the corresponding value of the conditional expression (1) exceeds the upper limit value, it is necessary to increase the power (refractive power) of the rear group G2, so that it is difficult to correct spherical aberration, coma aberration, and the like. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (1) is preferably 3.50, more preferably 3.00.
It is good.

条件式(1)の対応値が下限値を下回ると、後群G2のパワーを弱くする必要があるため、至近距離合焦時の光学性能を良好に保つことができず、像面湾曲の補正が困難になる。本実施形態の効果を確実にするために、条件式(1)の下限値を好ましくは1.10とし、さらに好ましくは1.20としてもよい。   If the corresponding value of conditional expression (1) is lower than the lower limit value, it is necessary to weaken the power of the rear group G2, so that the optical performance at the time of focusing on a close range cannot be kept good, and correction of field curvature is performed. Becomes difficult. In order to ensure the effect of the present embodiment, the lower limit value of the conditional expression (1) is preferably 1.10, and more preferably 1.20.

本実施形態の光学系WLは、次の条件式(2)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (2).

0.20<Bf/f<0.75 ・・・(2)
但し、Bf:無限遠合焦状態の光学系WLにおける最も像側のレンズ面から像面Iまでの光軸上の空気換算距離、
f:無限遠合焦状態の光学系WLの焦点距離。
0.20 <Bf / f <0.75 (2)
Where Bf: the air equivalent distance on the optical axis from the lens surface closest to the image side to the image plane I in the optical system WL in the infinitely focused state,
f: Focal length of the optical system WL in an infinitely focused state.

条件式(2)は、光学系WLのバックフォーカスと焦点距離との適切な範囲を規定するための条件式である。条件式(2)の対応値が上限値を上回ると、バックフォーカスが長くなるため、テレセントリック性は保たれるものの、光学系全系が大型化するので好ましくない。また、前群G1の径が大きくなるため、歪曲収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(2)の上限値を好ましくは0.70とし、さらに好ましくは0.60としてもよい。   Conditional expression (2) is a conditional expression for defining an appropriate range between the back focus and the focal length of the optical system WL. If the corresponding value of the conditional expression (2) exceeds the upper limit value, the back focus becomes long, so that the telecentricity is maintained, but the entire optical system becomes large, which is not preferable. Further, since the diameter of the front group G1 is increased, it is difficult to correct distortion. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (2) is preferably 0.70, and more preferably 0.60.

条件式(2)の対応値が下限値を下回ると、バックフォーカスが短くて、射出瞳の位置が像面Iに近くなりすぎるため、シェーディングが顕著となり、特に画面周辺での解像の低下を招く。本実施形態の効果を確実にするために、条件式(2)の下限値を好ましくは0.30とし、さらに好ましくは0.40としてもよい。   When the corresponding value of the conditional expression (2) is lower than the lower limit, the back focus is short and the exit pupil position is too close to the image plane I, so that shading becomes remarkable, and particularly the resolution around the screen is reduced. Invite. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (2) is preferably 0.30, and more preferably 0.40.

本実施形態の光学系WLにおいて、前群G1もしくは後群G2に開口絞りSが配置され、次の条件式(3)を満足することが好ましい。   In the optical system WL of the present embodiment, it is preferable that the aperture stop S is disposed in the front group G1 or the rear group G2, and the following conditional expression (3) is satisfied.

0.04<ST1/TL<0.30 ・・・(3)
但し、ST1:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から開口絞りSまでの光軸上の距離、
TL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面Iまでの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
0.04 <ST1 / TL <0.30 (3)
However, ST1: the distance on the optical axis from the lens surface closest to the object side to the aperture stop S in the optical system WL in an infinitely focused state,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane I in the optical system WL in an infinitely focused state, and the air conversion distance from the lens surface closest to the image side to the image plane.

条件式(3)は、光学系WLの全長と開口絞りSの位置から、射出瞳の位置の適切な範囲を規定するための条件式である。条件式(3)の対応値が上限値を上回ると、テレセントリック性は保たれるものの、結果として光学系WLの全長が長くなり、光学系全系が大型化するので好ましくない。また、光学系WLの全長が長い状態で前群G1の径を小さくしようとすると、歪曲収差等の軸外光束の補正が困難になる。本実施形態の効果を確実にするために、条件式(3)の上限値を好ましくは0.25とし、さらに好ましくは0.20としてもよい。   Conditional expression (3) is a conditional expression for defining an appropriate range of the position of the exit pupil from the total length of the optical system WL and the position of the aperture stop S. If the corresponding value of the conditional expression (3) exceeds the upper limit value, the telecentricity is maintained, but as a result, the entire length of the optical system WL becomes long and the entire optical system becomes large, which is not preferable. Also, if the diameter of the front group G1 is to be reduced while the total length of the optical system WL is long, it is difficult to correct off-axis light beams such as distortion. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (3) is preferably 0.25, and more preferably 0.20.

条件式(3)の対応値が下限値を下回ると、開口絞りSの位置が適切な位置よりも物体側に変位するため、光線を均等に遮ることができない。そのため、絞り込み時の点像の歪みや、周辺減光が生じる。本実施形態の効果を確実にするために、条件式(3)の下限値を好ましくは0.05とし、さらに好ましくは0.06としてもよい。   When the corresponding value of the conditional expression (3) is below the lower limit value, the position of the aperture stop S is displaced to the object side from the appropriate position, so that the light rays cannot be blocked evenly. For this reason, distortion of the point image at the time of narrowing down and peripheral light reduction occur. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (3) is preferably 0.05, and more preferably 0.06.

本実施形態の光学系WLは、次の条件式(4)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (4).

0.10<Dinf/Dmod<1.60 ・・・(4)
但し、Dinf:無限遠合焦状態における前群G1と後群G2との光軸上の空気間隔、
Dmod:近距離合焦状態における前群G1と後群G2との光軸上の空気間隔。
0.10 <Dinf / Dmod <1.60 (4)
Where Dinf: the air spacing on the optical axis between the front group G1 and the rear group G2 in the infinitely focused state,
Dmod: the air space on the optical axis between the front group G1 and the rear group G2 in the short distance in-focus state.

条件式(4)は、前群G1と後群G2との間隔(空気間隔)について適切な範囲を規定するための条件式である。条件式(4)の対応値が上限値を上回ると、近距離合焦状態における前群G1と後群G2との間隔が短すぎるため、至近距離合焦時の光学性能を良好に保つことができず、像面湾曲の補正が困難になる。本実施形態の効果を確実にするために、条件式(4)の上限値を好ましくは1.30とし、さらに好ましくは1.10としてもよい。   Conditional expression (4) is a conditional expression for defining an appropriate range for the interval (air interval) between the front group G1 and the rear group G2. If the corresponding value of the conditional expression (4) exceeds the upper limit value, the distance between the front group G1 and the rear group G2 in the short distance in-focus state is too short, so that the optical performance at the time of close focus can be kept good. This makes it difficult to correct field curvature. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (4) is preferably 1.30, and more preferably 1.10.

条件式(4)の対応値が下限値を下回ると、近距離合焦状態における前群G1と後群G2との間隔が長くなるため、テレセントリック性は保たれるものの、前群G1の径が大きくなり、光学系全系が大型化するので好ましくない。また、歪曲収差等の軸外光束の補正が困難になる。本実施形態の効果を確実にするために、条件式(4)の下限値を好ましくは0.15とし、さらに好ましくは0.20としてもよい。   When the corresponding value of the conditional expression (4) is below the lower limit value, the distance between the front group G1 and the rear group G2 in the short distance in-focus state becomes long, so that the telecentricity is maintained, but the diameter of the front group G1 is This is not preferable because it becomes large and the entire optical system becomes large. In addition, it is difficult to correct off-axis light beams such as distortion. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (4) is preferably 0.15, and more preferably 0.20.

本実施形態の光学系WLは、次の条件式(5)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (5).

0.30<Y/BL<0.70 ・・・(5)
但し、Y:光学系WLのイメージサークルの半径、
BL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離。
0.30 <Y / BL <0.70 (5)
Y: radius of the image circle of the optical system WL,
BL: Distance on the optical axis from the most object-side lens surface to the most image-side lens surface in the infinitely focused optical system WL.

条件式(5)は、光学系WLのイメージサークルの半径(すなわち最大像高)とレンズ厚について、適切な範囲を規定するための条件式である。条件式(5)の対応値が上限値を上回ると、撮像素子のフォーマットサイズに対して薄型のレンズ構成になっているが、諸収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(5)の上限値を好ましくは0.65とし、さらに好ましくは0.60としてもよい。   Conditional expression (5) is a conditional expression for defining an appropriate range for the radius of the image circle (that is, the maximum image height) and the lens thickness of the optical system WL. If the corresponding value of conditional expression (5) exceeds the upper limit value, the lens configuration is thin with respect to the format size of the image sensor, but it becomes difficult to correct various aberrations. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (5) is preferably 0.65, and more preferably 0.60.

条件式(5)の対応値が下限値を下回ると、光学系WLの最大像高が小さくなるため、周辺光束においてケラレが生じるため好ましくない。また、軸外光線の入射高を小さくするためのパワー配置およびレンズ配置が必要になるため、結果的に像面湾曲、歪曲収差等の補正が困難になる可能性があり好ましくない。本実施形態の効果を確実にするために、条件式(5)の下限値を好ましくは0.35とし、さらに好ましくは0.40としてもよい。   If the corresponding value of conditional expression (5) is less than the lower limit value, the maximum image height of the optical system WL becomes small, and vignetting occurs in the peripheral light flux. Further, since it is necessary to arrange a power and a lens to reduce the incident height of off-axis rays, it is difficult to correct curvature of field, distortion, etc. as a result, which is not preferable. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (5) is preferably 0.35, and more preferably 0.40.

本実施形態の光学系WLは、次の条件式(6)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (6).

0.80<TL/(FNO×Bf)<2.70 ・・・(6)
但し、FNO:無限遠合焦状態の光学系WLのFナンバー、
Bf:無限遠合焦状態の光学系WLにおける最も像側のレンズ面から像面Iまでの光軸上の空気換算距離、
TL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面Iまでの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
0.80 <TL / (FNO × Bf) <2.70 (6)
Where FNO: F number of the optical system WL in focus at infinity,
Bf: an air equivalent distance on the optical axis from the lens surface closest to the image side to the image plane I in the optical system WL in an infinitely focused state,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane I in the optical system WL in an infinitely focused state, and the air conversion distance from the lens surface closest to the image side to the image plane.

条件式(6)は、明るい単焦点レンズ(広角レンズ)として、光学系WLの全長、バックフォーカス、Fナンバーの適切なバランスを規定する条件式である。条件式(6)の対応値が上限値を上回ると、光学系WLの全長が長すぎるため好ましくない。また、光学系WLのFナンバーが小さすぎるため、球面収差の補正が困難になる。本実施形態の効果を
確実にするために、条件式(6)の上限値を好ましくは2.40とし、さらに好ましくは2.20としてもよい。
Conditional expression (6) is a conditional expression that defines an appropriate balance of the overall length of the optical system WL, the back focus, and the F number as a bright single focus lens (wide angle lens). If the corresponding value of conditional expression (6) exceeds the upper limit value, the total length of the optical system WL is too long, which is not preferable. In addition, since the F number of the optical system WL is too small, it is difficult to correct spherical aberration. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (6) is preferably 2.40, and more preferably 2.20.

条件式(6)の対応値が下限値を下回ると、光学系WLの全長が短すぎるため、コマ収差等の補正が困難になる。本実施形態の効果を確実にするために、条件式(6)の下限値を好ましくは0.90とし、さらに好ましくは0.95としてもよい。   When the corresponding value of the conditional expression (6) is below the lower limit value, the total length of the optical system WL is too short, and it becomes difficult to correct coma and the like. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (6) is preferably 0.90, and more preferably 0.95.

本実施形態の光学系WLにおいて、前群G1の最も物体側に配置されたレンズは負レンズであることが好ましい。ガウス型のレンズ構成を有する光学系(広角レンズ)は、近距離合焦時に球面収差がマイナス側に変動し、近距離合焦時の光学性能を良好に保つことが困難であった。これに対し、前群G1の最も物体側に負レンズを配置することで、近距離合焦時の球面収差をプラス側に変動させて、結果的に球面収差を抑えることが可能になる。   In the optical system WL of the present embodiment, it is preferable that the lens disposed closest to the object side of the front group G1 is a negative lens. In an optical system (wide-angle lens) having a Gaussian lens configuration, spherical aberration fluctuates to the minus side when focusing at a short distance, and it is difficult to maintain good optical performance when focusing at a short distance. On the other hand, by disposing the negative lens closest to the object side in the front group G1, the spherical aberration at the time of focusing at a short distance can be changed to the plus side, and as a result, the spherical aberration can be suppressed.

本実施形態の光学系WLにおいて、前群G1の最も物体側に配置された負レンズにおける物体側のレンズ面が凹面であることが好ましい。前群G1の最も物体側の負レンズにおける物体側のレンズ面を凹面にすることで、当該負レンズのパワーが強くなるため、球面収差を効果的に抑えることが可能になる。   In the optical system WL of the present embodiment, it is preferable that the object-side lens surface of the negative lens disposed closest to the object side in the front group G1 is a concave surface. By making the object-side lens surface of the most object-side negative lens in the front group G1 concave, the power of the negative lens is increased, so that spherical aberration can be effectively suppressed.

本実施形態の光学系WLにおいて、後群G2の最も像側に配置されたレンズにおける像側のレンズ面が凸面であることが好ましい。これにより、ペッツバール和を適切に補正することが可能になり、像面Iから十分に離れた射出瞳の位置を確保することが可能になる。   In the optical system WL of the present embodiment, it is preferable that the image-side lens surface of the lens disposed closest to the image side in the rear group G2 is a convex surface. As a result, the Petzval sum can be appropriately corrected, and the position of the exit pupil sufficiently separated from the image plane I can be secured.

本実施形態の光学機器は、上述した構成の光学系WLを備えて構成される。その具体例として、上記光学系WLを備えたカメラ(光学機器)を図17に基づいて説明する。このカメラ1は、図17に示すように撮影レンズ2として上記実施形態に係る光学系WLを備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラ1は、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであってもよい。また、このカメラ1は、レンズ鏡筒とカメラボディ本体とが着脱可能な一眼レフタイプのカメラに限られるものではなく、レンズ鏡筒とカメラボディ本体とが一体型のコンパクトタイプのカメラであってもよい。このような構成によれば、撮影レンズとして上記光学系WLを搭載することにより、合焦の際の像面の変位を抑制して、小型で良好な光学性能を有した光学機器を得ることが可能になる。   The optical apparatus according to the present embodiment includes the optical system WL having the above-described configuration. As a specific example, a camera (optical apparatus) provided with the optical system WL will be described with reference to FIG. The camera 1 is a digital camera provided with the optical system WL according to the above-described embodiment as a photographing lens 2 as shown in FIG. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. The camera 1 may be a mirrorless camera or a single lens reflex camera having a quick return mirror. Further, the camera 1 is not limited to a single-lens reflex type camera in which the lens barrel and the camera body main body are detachable. Even if the lens barrel and the camera body main body are an integrated compact type camera. Good. According to such a configuration, by mounting the optical system WL as a photographic lens, it is possible to suppress the displacement of the image plane at the time of focusing, and obtain an optical apparatus that is small and has good optical performance. It becomes possible.

続いて、図18を参照しながら、上述の光学系WLの製造方法について概説する。まず、鏡筒内に、物体側から順に並べて、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とを配置する(ステップST1)。そして、無限遠から近距離物体への合焦の際、前群G1および後群G2が光軸に沿って物体側に移動して、前群G1と後群G2との間隔が変化するように構成する(ステップST2)。さらに、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、合焦の際の像面の変位を抑制して、小型で良好な光学性能を有した光学系を製造することが可能になる。   Next, the method for manufacturing the above-described optical system WL will be outlined with reference to FIG. First, a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power are arranged in order from the object side in the lens barrel (step ST1). When focusing from infinity to a short distance object, the front group G1 and the rear group G2 move to the object side along the optical axis, and the distance between the front group G1 and the rear group G2 changes. (Step ST2). Further, each lens is arranged in the lens barrel so as to satisfy at least the conditional expression (1) (step ST3). According to such a manufacturing method, it is possible to manufacture a small-sized optical system having good optical performance by suppressing the displacement of the image plane during focusing.

以下、本実施形態の実施例に係る光学系(広角レンズ)WLを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13、図15は、第1〜第8実施例に係る
光学系WL{WL(1)〜WL(8)}の構成及び屈折力配分を示す断面図である。各断面図には、無限遠から近距離物体へ合焦する際の、(「無限遠」および「近距離」と併記された)各群の位置が記載されている。
Hereinafter, an optical system (wide angle lens) WL according to an example of the present embodiment will be described with reference to the drawings. 1, 3, 5, 7, 9, 11, 13, and 15 show the configurations of the optical systems WL {WL (1) to WL (8)} according to the first to eighth embodiments. It is sectional drawing which shows refractive power distribution. Each cross-sectional view describes the position of each group (along with “infinity” and “near distance”) when focusing from infinity to a near object.

これら図1、図3、図5、図7、図9、図11、図13、図15において、各群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。   In FIGS. 1, 3, 5, 7, 9, 11, 13, and 15, each group is represented by a combination of a symbol G and a number, and each lens is represented by a combination of a symbol L and a number. ing. In this case, in order to prevent complications due to an increase in the types and numbers of codes and numbers, the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code | symbol and number is used between Examples, it does not mean that it is the same structure.

以下に表1〜表8を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。   Tables 1 to 8 are shown below. Of these, Table 1 is the first example, Table 2 is the second example, Table 3 is the third example, Table 4 is the fourth example, and Table 5 is the first. 5 Example, Table 6 is 6th Example, Table 7 is 7th Example, Table 8 is a table | surface which shows each item data in 8th Example. In each embodiment, d-line (wavelength λ = 587.6 nm) and g-line (wavelength λ = 435.8 nm) are selected as the aberration characteristic calculation targets.

[全体諸元]の表において、fは無限遠合焦状態の光学系WLにおける全系の焦点距離を示し、FNОはFナンバーを示す。2ωは画角(単位は°(度)で、ωが半画角である)を示し、Yは像高(最大像高)を示す。Bfは無限遠合焦状態の光学系WLにおける最も像側のレンズ面から像面Iまでの光軸上の空気換算距離(バックフォーカス)を示し、TLは無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面Iまでの光軸上の距離(全長)を示す。なお、TLにおいて、光学系WLにおける最も像側のレンズ面から像面Iまでは空気換算距離を示す。また、TLおよびBfの値は、後述の[可変間隔データ]において、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。   In the [Overall Specifications] table, f indicates the focal length of the entire system in the optical system WL in the infinitely focused state, and FNO indicates the F number. 2ω represents an angle of view (the unit is ° (degree), ω is a half angle of view), and Y represents an image height (maximum image height). Bf represents the air-converted distance (back focus) on the optical axis from the lens surface closest to the image side to the image plane I in the optical system WL in the infinite focus state, and TL in the optical system WL in the infinite focus state. The distance (full length) on the optical axis from the lens surface closest to the object side to the image plane I is shown. In TL, the distance from the lens surface closest to the image side to the image plane I in the optical system WL indicates an air conversion distance. In addition, the values of TL and Bf are shown for the infinite focus state and the short distance (closest distance) focus state in [variable interval data] described later.

また、X1は合焦の際の前群G1の移動量を示し、X2は合焦の際の後群G2の移動量を示す。各移動量は、物体側から像側へ向かう方向を正とする。ST1は無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から開口絞りSまでの光軸上の距離を示し、BLは無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離を示す。   X1 represents the amount of movement of the front group G1 during focusing, and X2 represents the amount of movement of the rear group G2 during focusing. Each moving amount is positive in the direction from the object side to the image side. ST1 indicates the distance on the optical axis from the most object side lens surface to the aperture stop S in the infinitely focused optical system WL, and BL indicates the most object side lens surface in the infinitely focused optical system WL. The distance on the optical axis from the lens surface to the most image side lens surface is shown.

[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdは光学部材の材質のd線を基準とするアッベ数、ndは光学部材の材質のd線に対する屈折率を、それぞれ示す。曲率半径の「∞」は平面又は開口を示し、(絞りS)は開口絞りSを示す。空気の屈折率nd=1.00000の記載は省略している。レンズ面が非球面であ
る場合には面番号に*印を付して曲率半径Rの欄には近軸曲率半径を示している。
In the table of [lens specifications], the surface number indicates the order of the optical surfaces from the object side along the light traveling direction, and R indicates the radius of curvature of each optical surface (the surface where the center of curvature is located on the image side). D is a positive value), D is a surface interval which is a distance on the optical axis from each optical surface to the next optical surface (or image surface), νd is an Abbe number based on the d-line of the material of the optical member, nd indicates the refractive index of the optical member material with respect to the d-line. The curvature radius “∞” indicates a plane or an aperture, and (aperture S) indicates the aperture aperture S. The description of the refractive index of air nd = 1.0000 is omitted. When the lens surface is an aspherical surface, the surface number is marked with * and the radius of curvature R column indicates the paraxial radius of curvature.

[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。 In the [Aspherical Data] table, the shape of the aspherical surface shown in [Lens Specifications] is shown by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y (zag amount), and R is the radius of curvature of the reference sphere (paraxial curvature radius) , Κ is the conic constant, and Ai is the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 . The secondary aspheric coefficient A2 is 0, and the description thereof is omitted.

X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12+A14×y14 ・・・(a) X (y) = (y 2 / R) / {1+ (1−κ × y 2 / R 2 ) 1/2 } + A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12 + A14 Xy 14 ... (a)

[群データ]の表において、前群G1および後群G2のそれぞれの始面(最も物体側の面)と焦点距離を示す。   In the table of [Group Data], the start surfaces (most object side surfaces) and focal lengths of the front group G1 and the rear group G2 are shown.

[可変間隔データ]の表は、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号iにおける次の面までの面間隔Diを示す。例えば、第1実施例では、面番号8,16での面間隔D8,D16を示す。これらの値は、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。   The table of [variable distance data] shows the surface distance Di to the next surface in the surface number i in which the surface distance is “variable” in the table indicating [lens specifications]. For example, in the first embodiment, surface intervals D8 and D16 at surface numbers 8 and 16 are shown. These values are shown for the infinite focus state and the short distance (closest distance) focus state, respectively.

[条件式対応値]の表には、上記の条件式(1)〜(6)に対応する値を示す。   The table corresponding to the conditional expressions (1) to (6) shows values corresponding to the conditional expressions (1) to (6).

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。   The explanation of the table so far is common to all the embodiments, and the duplicate explanation below will be omitted.

(第1実施例)
第1実施例について、図1〜図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系のレンズ構成を示す図である。第1実施例に係る光学系WL(1)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。各群の記号に付けている符号(+)もしくは(−)は各群の屈折力を示し、このことは以下の全ての実施例でも同様である。
(First embodiment)
A first embodiment will be described with reference to FIGS. FIG. 1 is a diagram illustrating a lens configuration of an optical system according to a first example of the present embodiment. The optical system WL (1) according to the first example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side. The sign (+) or (−) attached to the symbol of each group indicates the refractive power of each group, and this is the same in all the following examples.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、開口絞りSと、両凹形状の第2の負レンズL12および両凸形状の第1の正レンズL13からなる接合レンズと、両凸形状の第2の正レンズL14と、から構成される。第1の負レンズL11は、物体側のレンズ面が非球面である。   The front group G1 is arranged in order from the object side, the meniscus first negative lens L11 having a convex surface facing the object side, an aperture stop S, a biconcave second negative lens L12, and a biconvex shape. It is composed of a cemented lens composed of a first positive lens L13 and a biconvex second positive lens L14. The first negative lens L11 has an aspheric lens surface on the object side.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、像側に凸面を向けたメニスカス形状の第2の正レンズL23および像側に凸面を向けたメニスカス形状の第2の負レンズL24からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の正レンズL25と、から構成される。第3の正レンズL25は、像側のレンズ面が非球面である。   The rear group G2 includes a cemented lens composed of a biconvex first positive lens L21 and a biconcave first negative lens L22, arranged in order from the object side, and a meniscus-shaped first lens with a convex surface facing the image side. A cemented lens including a second positive lens L23, a meniscus second negative lens L24 having a convex surface facing the image side, and a meniscus third positive lens L25 having a convex surface facing the image side. . The third positive lens L25 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第1実施例に係る光学系WL(1)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (1) according to the first example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。   Table 1 below lists values of specifications of the optical system according to the first example.

(表1)
[全体諸元]
f=24.88
FNO=1.87
2ω=60.1
Y=14.25
Bf=14.687
TL=44.867
X1=-2.466
X2=-1.925
ST1=3.701
BL=30.180
[レンズ諸元]
面番号 R D νd nd
1* 30.8401 1.5000 31.16 1.688930
2 20.5905 2.2008
3 ∞ 2.6833 (絞りS)
4 -19.3699 0.8001 40.98 1.581440
5 27.7890 3.1806 52.33 1.755000
6 -30.9598 0.1001
7 52.2934 3.2581 40.66 1.883000
8 -32.4827 D8(可変)
9 36.5887 5.0663 40.66 1.883000
10 -18.9352 0.8001 30.13 1.698950
11 19.9997 4.3541
12 -19.0168 2.0763 46.59 1.816000
13 -13.5233 0.8004 30.13 1.698950
14 -254.9861 0.8000
15 -71.2612 2.0000 40.10 1.851348
16* -21.9663 D16(可変)
17 ∞ 2.0000 63.88 1.516800
18 ∞ 0.1000
[非球面データ]
第1面
κ=1.0000,A4=-5.34672E-05,A6=-6.49809E-08
A8=-4.57464E-09,A10=4.18288E-11,A12=-1.57370E-13,A14=0.00000E+00
第16面
κ=1.0000,A4=4.49624E-05,A6=1.25196E-08
A8=3.83338E-09,A10=-3.15603E-11,A12=1.34880E-13,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 24.38
G2 9 916.87
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.88 β=-0.1
D0 ∞ 261.29
D8 0.559 1.101
D16 13.268 15.193
Bf(air) 14.687 16.612
TL(air) 44.867 47.332
[条件式対応値]
条件式(1) X1/X2=1.281
条件式(2) Bf/f=0.590
条件式(3) ST1/TL=0.082
条件式(4) Dinf/Dmod=0.508
条件式(5) Y/BL=0.472
条件式(6) TL/(FNO×Bf)=1.632
(Table 1)
[Overall specifications]
f = 24.88
FNO = 1.87
2ω = 60.1
Y = 14.25
Bf = 14.687
TL = 44.867
X1 = -2.466
X2 = -1.925
ST1 = 3.701
BL = 30.180
[Lens specifications]
Surface number R D νd nd
1 * 30.8401 1.5000 31.16 1.688930
2 20.5905 2.2008
3 ∞ 2.6833 (Aperture S)
4 -19.3699 0.8001 40.98 1.581440
5 27.7890 3.1806 52.33 1.755000
6 -30.9598 0.1001
7 52.2934 3.2581 40.66 1.883000
8 -32.4827 D8 (variable)
9 36.5887 5.0663 40.66 1.883000
10 -18.9352 0.8001 30.13 1.698950
11 19.9997 4.3541
12 -19.0168 2.0763 46.59 1.816000
13 -13.5233 0.8004 30.13 1.698950
14 -254.9861 0.8000
15 -71.2612 2.0000 40.10 1.851348
16 * -21.9663 D16 (variable)
17 ∞ 2.0000 63.88 1.516800
18 ∞ 0.1000
[Aspherical data]
1st surface κ = 1.0000, A4 = -5.34672E-05, A6 = -6.49809E-08
A8 = -4.57464E-09, A10 = 4.18288E-11, A12 = -1.57370E-13, A14 = 0.00000E + 00
16th surface κ = 1.0000, A4 = 4.49624E-05, A6 = 1.25196E-08
A8 = 3.83338E-09, A10 = -3.15603E-11, A12 = 1.34880E-13, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 24.38
G2 9 916.87
[Variable interval data]
Infinite focus state Short range focus state
f = 24.88 β = −0.1
D0 ∞ 261.29
D8 0.559 1.101
D16 13.268 15.193
Bf (air) 14.687 16.612
TL (air) 44.867 47.332
[Conditional expression values]
Conditional expression (1) X1 / X2 = 1.281
Conditional expression (2) Bf / f = 0.590
Conditional expression (3) ST1 / TL = 0.082
Conditional expression (4) Dinf / Dmod = 0.508
Conditional expression (5) Y / BL = 0.472
Conditional expression (6) TL / (FNO × Bf) = 1.632

図2(a)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(a)の各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では半画角の最大値をそれぞれ示し、横収差図では各半画角の値を示す。図2(b)は、第1実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。図2(b)の各収差図において、NAは開口数、H0は物体高をそれぞれ示す。なお、球面収差図では最大口径に対応する開口数の値を示し、非点収差図および歪曲収差図では物体高の最大値をそれぞれ示し、横収差図では各物体高の値を示す。また、図2(a)および図2(b)の各収差図において、dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。   FIG. 2A is a diagram illustrating various aberrations of the optical system according to the first example when focusing on infinity. In each aberration diagram of FIG. 2A, FNO represents an F number, and A represents a half angle of view. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum half field angle, and the lateral aberration diagram shows the half field angle value. FIG. 2B is a diagram of various aberrations when the optical system according to Example 1 is in focus at a short distance (closest distance). In each aberration diagram of FIG. 2B, NA represents the numerical aperture, and H0 represents the object height. The spherical aberration diagram shows the numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum object height, and the lateral aberration diagram shows the value of each object height. 2A and 2B, d indicates the d-line (wavelength λ = 587.6 nm), and g indicates the g-line (wavelength λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the aberration diagrams of the following examples, the same reference numerals as those in this example are used, and redundant description is omitted.

各収差図より、第1実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the optical system according to the first example has excellent imaging performance by satisfactorily correcting various aberrations.

(第2実施例)
第2実施例について、図3〜図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系のレンズ構成を示す図である。第2実施例に係る光学系WL(2)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Second embodiment)
2nd Example is described using FIGS. 3-4 and Table 2. FIG. FIG. 3 is a diagram illustrating a lens configuration of an optical system according to the second example of the present embodiment. The optical system WL (2) according to the second example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、開口絞りSと、両凹形状の第2の負レンズL12および両凸形状の第1の正レンズL13からなる接合レンズと、両凸形状の第2の正レンズL14と、から構成される。第1の負レンズL11は、物体側のレンズ面が非球面である。   The front group G1 is arranged in order from the object side, the meniscus first negative lens L11 having a convex surface facing the object side, an aperture stop S, a biconcave second negative lens L12, and a biconvex shape. It is composed of a cemented lens composed of a first positive lens L13 and a biconvex second positive lens L14. The first negative lens L11 has an aspheric lens surface on the object side.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、像側に凸面を向けたメニスカス形状の第2の負レンズL23と、像側に凸面を向けたメニスカス形状の第2の正レンズL24と、から構成される。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes a cemented lens composed of a biconvex first positive lens L21 and a biconcave first negative lens L22, arranged in order from the object side, and a meniscus-shaped first lens with a convex surface facing the image side. 2 negative lenses L23 and a meniscus second positive lens L24 having a convex surface facing the image side. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第2実施例に係る光学系WL(2)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (2) according to the second example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different amounts of movement when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。   Table 2 below lists values of specifications of the optical system according to the second example.

(表2)
[全体諸元]
f=24.87
FNO=1.85
2ω=60.3
Y=14.25
Bf=14.314
TL=44.835
X1=-2.548
X2=-1.927
ST1=3.916
BL=30.521
[レンズ諸元]
面番号 R D νd nd
1* 25.5040 1.5000 31.16 1.688930
2 18.6960 2.4157
3 ∞ 2.6833 (絞りS)
4 -15.7969 0.8001 38.03 1.603420
5 60.8750 3.0479 52.33 1.755000
6 -24.1051 0.1001
7 57.7654 3.2320 40.66 1.883000
8 -31.5105 D8(可変)
9 37.6601 5.8206 40.66 1.883000
10 -16.5976 0.7993 30.13 1.698950
11 20.0514 4.7260
12 -17.8284 0.8002 27.57 1.755200
13 -93.7042 1.0000
14 -77.4574 2.2166 40.10 1.851348
15* -19.9971 D15(可変)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[非球面データ]
第1面
κ=1.0000,A4=-4.88778E-05,A6=2.20240E-08
A8=-5.16914E-09,A10=3.00275E-11,A12=0.00000E+00,A14=0.00000E+00
第15面
κ=1.0000,A4=4.38327E-05,A6=5.96629E-09
A8=3.39332E-09,A10=-8.97554E-12,A12=-2.19810E-13,A14=1.84040E-15
[群データ]
群 始面 焦点距離
G1 1 26.15
G2 9 325.65
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.87 β=-0.1
D0 ∞ 261.29
D8 1.379 2.001
D15 12.896 14.823
Bf(air) 14.314 16.241
TL(air) 44.835 47.383
[条件式対応値]
条件式(1) X1/X2=1.323
条件式(2) Bf/f=0.576
条件式(3) ST1/TL=0.087
条件式(4) Dinf/Dmod=0.689
条件式(5) Y/BL=0.467
条件式(6) TL/(FNO×Bf)=1.693
(Table 2)
[Overall specifications]
f = 24.87
FNO = 1.85
2ω = 60.3
Y = 14.25
Bf = 14.314
TL = 44.835
X1 = -2.548
X2 = -1.927
ST1 = 3.916
BL = 30.521
[Lens specifications]
Surface number R D νd nd
1 * 25.5040 1.5000 31.16 1.688930
2 18.6960 2.4157
3 ∞ 2.6833 (Aperture S)
4 -15.7969 0.8001 38.03 1.603420
5 60.8750 3.0479 52.33 1.755000
6 -24.1051 0.1001
7 57.7654 3.2320 40.66 1.883000
8 -31.5105 D8 (variable)
9 37.6601 5.8206 40.66 1.883000
10 -16.5976 0.7993 30.13 1.698950
11 20.0514 4.7260
12 -17.8284 0.8002 27.57 1.755200
13 -93.7042 1.0000
14 -77.4574 2.2166 40.10 1.851348
15 * -19.9971 D15 (variable)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[Aspherical data]
1st surface κ = 1.0000, A4 = -4.88778E-05, A6 = 2.20240E-08
A8 = -5.16914E-09, A10 = 3.00275E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
15th surface κ = 1.0000, A4 = 4.38327E-05, A6 = 5.96629E-09
A8 = 3.39332E-09, A10 = -8.97554E-12, A12 = -2.19810E-13, A14 = 1.84040E-15
[Group data]
Group Start surface Focal length
G1 1 26.15
G2 9 325.65
[Variable interval data]
Infinite focus state Short range focus state
f = 24.87 β = −0.1
D0 ∞ 261.29
D8 1.379 2.001
D15 12.896 14.823
Bf (air) 14.314 16.241
TL (air) 44.835 47.383
[Conditional expression values]
Conditional expression (1) X1 / X2 = 1.323
Conditional expression (2) Bf / f = 0.576
Conditional expression (3) ST1 / TL = 0.087
Conditional expression (4) Dinf / Dmod = 0.689
Conditional expression (5) Y / BL = 0.467
Conditional expression (6) TL / (FNO × Bf) = 1.593

図4(a)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(b)は、第2実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第2実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 4A is a diagram illustrating various aberrations of the optical system according to Example 2 when focused on infinity. FIG. 4B is a diagram illustrating various aberrations when the optical system according to Example 2 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the second example has excellent imaging performance by properly correcting various aberrations.

(第3実施例)
第3実施例について、図5〜図6および表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系のレンズ構成を示す図である。第3実施例に係る光学系WL(3)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Third embodiment)
A third embodiment will be described with reference to FIGS. FIG. 5 is a diagram showing a lens configuration of an optical system according to the third example of the present embodiment. The optical system WL (3) according to the third example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、開口絞りSと、両凹形状の第2の負レンズL12および両凸形状の第1の正レンズL13からなる接合レンズと、両凸形状の第2の正レンズL14と、から構成される。第1の負レンズL11は、物体側のレンズ面が非球面である。   The front group G1 is arranged in order from the object side, the meniscus first negative lens L11 having a convex surface facing the object side, an aperture stop S, a biconcave second negative lens L12, and a biconvex shape. It is composed of a cemented lens composed of a first positive lens L13 and a biconvex second positive lens L14. The first negative lens L11 has an aspheric lens surface on the object side.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23と、像側に凸面を向けたメニスカス形状の第2の正レンズL24と、から構成される。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes, in order from the object side, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second negative lens L23. And a second meniscus positive lens L24 having a convex surface facing the image side. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第3実施例に係る光学系WL(3)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (3) according to the third example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。   Table 3 below lists values of specifications of the optical system according to the third example.

(表3)
[全体諸元]
f=24.47
FNO=1.80
2ω=64.7
Y=15.30
Bf=14.174
TL=44.984
X1=-2.513
X2=-1.854
ST1=3.918
BL=30.810
[レンズ諸元]
面番号 R D νd nd
1* 33.6258 1.5000 31.16 1.688930
2 21.3183 2.4178
3 ∞ 2.6833 (絞りS)
4 -18.3419 0.7972 38.03 1.603420
5 52.2261 3.2276 52.33 1.755000
6 -27.2223 0.0975
7 58.8778 3.2618 40.66 1.883000
8 -30.7587 D8(可変)
9 34.5854 5.7924 40.66 1.883000
10 -17.5323 0.8042 30.13 1.698950
11 19.2264 4.5520
12 -19.3254 0.8777 27.57 1.755200
13 2309.2099 1.0000
14 -141.6693 2.4035 40.10 1.851348
15* -20.2687 D15(可変)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[非球面データ]
第1面
κ=1.0000,A4=-5.40060E-05,A6=-7.45960E-08
A8=-3.30700E-09,A10=2.14440E-11,A12=0.00000E+00,A14=0.00000E+00
第15面
κ=1.0000,A4=4.41290E-05,A6=-1.40220E-08
A8=3.73110E-09,A10=-8.21740E-12,A12=-2.66630E-13,A14=2.18070E-15
[群データ]
群 始面 焦点距離
G1 1 25.78
G2 9 319.15
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.47 β=-0.1
D0 ∞ 256.93
D8 1.395 2.054
D15 12.755 14.609
Bf(air) 14.174 16.028
TL(air) 44.984 47.497
[条件式対応値]
条件式(1) X1/X2=1.356
条件式(2) Bf/f=0.579
条件式(3) ST1/TL=0.087
条件式(4) Dinf/Dmod=0.375
条件式(5) Y/BL=0.497
条件式(6) TL/(FNO×Bf)=1.763
(Table 3)
[Overall specifications]
f = 24.47
FNO = 1.80
2ω = 64.7
Y = 15.30
Bf = 14.174
TL = 44.984
X1 = -2.513
X2 = -1.854
ST1 = 3.918
BL = 30.810
[Lens specifications]
Surface number R D νd nd
1 * 33.6258 1.5000 31.16 1.688930
2 21.3183 2.4178
3 ∞ 2.6833 (Aperture S)
4 -18.3419 0.7972 38.03 1.603420
5 52.2261 3.2276 52.33 1.755000
6 -27.2223 0.0975
7 58.8778 3.2618 40.66 1.883000
8 -30.7587 D8 (variable)
9 34.5854 5.7924 40.66 1.883000
10 -17.5323 0.8042 30.13 1.698950
11 19.2264 4.5520
12 -19.3254 0.8777 27.57 1.755200
13 2309.2099 1.0000
14 -141.6693 2.4035 40.10 1.851348
15 * -20.2687 D15 (variable)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[Aspherical data]
1st surface κ = 1.0000, A4 = -5.40060E-05, A6 = -7.45960E-08
A8 = -3.30700E-09, A10 = 2.14440E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
15th surface κ = 1.0000, A4 = 4.41290E-05, A6 = -1.40220E-08
A8 = 3.73110E-09, A10 = -8.21740E-12, A12 = -2.66630E-13, A14 = 2.18070E-15
[Group data]
Group Start surface Focal length
G1 1 25.78
G2 9 319.15
[Variable interval data]
Infinite focus state Short range focus state
f = 24.47 β = −0.1
D0 ∞ 256.93
D8 1.395 2.054
D15 12.755 14.609
Bf (air) 14.174 16.028
TL (air) 44.984 47.497
[Conditional expression values]
Conditional expression (1) X1 / X2 = 1.356
Conditional expression (2) Bf / f = 0.579
Conditional expression (3) ST1 / TL = 0.087
Conditional expression (4) Dinf / Dmod = 0.375
Conditional expression (5) Y / BL = 0.497
Conditional expression (6) TL / (FNO × Bf) = 1.763

図6(a)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(b)は、第3実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第3実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 6A is a diagram of various aberrations of the optical system according to the third example when focusing on infinity. FIG. 6B is a diagram of various aberrations when the optical system according to Example 3 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the third example has excellent imaging performance by properly correcting various aberrations.

(第4実施例)
第4実施例について、図7〜図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系のレンズ構成を示す図である。第4実施例に係る光学系WL(4)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群
G2とから構成されている。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 7 to 8 and Table 4. FIG. FIG. 7 is a diagram showing a lens configuration of an optical system according to the fourth example of the present embodiment. The optical system WL (4) according to the fourth example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、両凹形状の第1の負レンズL11と、両凸形状の第1の正レンズL12と、開口絞りSと、両凹形状の第2の負レンズL13および両凸形状の第2の正レンズL14からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の負レンズL15と、から構成される。第3の負レンズL15は、像側のレンズ面が非球面である。   The front group G1 includes, in order from the object side, a biconcave first negative lens L11, a biconvex first positive lens L12, an aperture stop S, and a biconcave second negative lens. The lens includes a cemented lens including L13 and a biconvex second positive lens L14, and a meniscus third negative lens L15 having a convex surface facing the image side. The third negative lens L15 has an aspheric lens surface on the image side.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23と、両凸形状の第2の正レンズL24と、から構成される。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes, in order from the object side, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second negative lens L23. And a biconvex second positive lens L24. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第4実施例に係る光学系WL(4)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (4) according to the fourth example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。   Table 4 below provides values of specifications of the optical system according to the fourth example.

(表4)
[全体諸元]
f=24.97
FNO=1.85
2ω=62.1
Y=14.25
Bf=14.318
TL=44.678
X1=-3.115
X2=-2.382
ST1=6.433
BL=30.360
[レンズ諸元]
面番号 R D νd nd
1 -23.5865 1.0000 41.51 1.575010
2 32.5087 0.9332
3 20.7551 3.5088 40.66 1.883000
4 -45.6852 1.0000
5 ∞ 2.0111 (絞りS)
6 -30.3720 0.8000 32.18 1.672700
7 15.9804 3.7857 40.66 1.883000
8 -34.7764 1.0000
9 -23.1553 0.8000 31.16 1.688930
10* -100.1049 D10(可変)
11 34.2710 5.2717 40.66 1.883000
12 -13.3880 0.8000 32.18 1.672700
13 31.6442 3.9709
14 -16.5099 0.8000 33.72 1.647690
15 104.7860 0.1000
16 62.8584 4.2211 40.10 1.851348
17* -21.0915 D17(可変)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[非球面データ]
第10面
κ=1.0000,A4=7.09969E-05,A6=5.82420E-08
A8=3.73981E-09,A10=-1.74407E-11,A12=0.00000E+00,A14=0.00000E+00
第17面
κ=1.0000,A4=3.72602E-05,A6=-2.34539E-08
A8=1.32257E-09,A10=-6.49301E-12,A12=0.00000E+00,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 57.97
G2 11 34.64
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.97 β=-0.1
D0 ∞ 263.17
D10 0.358 1.090
D17 12.899 15.281
Bf(air) 14.318 16.700
TL(air) 44.678 47.792
[条件式対応値]
条件式(1) X1/X2=1.307
条件式(2) Bf/f=0.573
条件式(3) ST1/TL=0.144
条件式(4) Dinf/Dmod=0.328
条件式(5) Y/BL=0.469
条件式(6) TL/(FNO×Bf)=1.687
(Table 4)
[Overall specifications]
f = 24.97
FNO = 1.85
2ω = 62.1
Y = 14.25
Bf = 14.318
TL = 44.678
X1 = -3.115
X2 = -2.382
ST1 = 6.433
BL = 30.360
[Lens specifications]
Surface number R D νd nd
1 -23.5865 1.0000 41.51 1.575010
2 32.5087 0.9332
3 20.7551 3.5088 40.66 1.883000
4 -45.6852 1.0000
5 ∞ 2.0111 (Aperture S)
6 -30.3720 0.8000 32.18 1.672700
7 15.9804 3.7857 40.66 1.883000
8 -34.7764 1.0000
9 -23.1553 0.8000 31.16 1.688930
10 * -100.1049 D10 (variable)
11 34.2710 5.2717 40.66 1.883000
12 -13.3880 0.8000 32.18 1.672700
13 31.6442 3.9709
14 -16.5099 0.8000 33.72 1.647690
15 104.7860 0.1000
16 62.8584 4.2211 40.10 1.851348
17 * -21.0915 D17 (variable)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[Aspherical data]
10th surface κ = 1.0000, A4 = 7.09969E-05, A6 = 5.82420E-08
A8 = 3.73981E-09, A10 = -1.74407E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
17th surface κ = 1.0000, A4 = 3.72602E-05, A6 = -2.34539E-08
A8 = 1.32257E-09, A10 = -6.49301E-12, A12 = 0.00000E + 00, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 57.97
G2 11 34.64
[Variable interval data]
Infinite focus state Short range focus state
f = 24.97 β = −0.1
D0 ∞ 263.17
D10 0.358 1.090
D17 12.899 15.281
Bf (air) 14.318 16.700
TL (air) 44.678 47.792
[Conditional expression values]
Conditional expression (1) X1 / X2 = 1.307
Conditional expression (2) Bf / f = 0.573
Conditional expression (3) ST1 / TL = 0.144
Conditional expression (4) Dinf / Dmod = 0.328
Conditional expression (5) Y / BL = 0.469
Conditional expression (6) TL / (FNO × Bf) = 1.687

図8(a)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(b)は、第4実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第4実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 8A is a diagram of various aberrations of the optical system according to Example 4 when focused on infinity. FIG. 8B is a diagram of various aberrations when the optical system according to Example 4 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the fourth example has excellent imaging performance by satisfactorily correcting various aberrations.

(第5実施例)
第5実施例について、図9〜図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系のレンズ構成を示す図である。第5実施例に係る光学系WL(5)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(5th Example)
A fifth embodiment will be described with reference to FIGS. 9 to 10 and Table 5. FIG. FIG. 9 is a diagram illustrating a lens configuration of an optical system according to Example 5 of the present embodiment. The optical system WL (5) according to the fifth example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の負レンズL11と、物体側に凸面を向けたメニスカス形状の正レンズL12と、から構成される。   The front group G1 includes a meniscus negative lens L11 having a convex surface facing the object side and a meniscus positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side.

後群G2は、物体側から順に並んだ、開口絞りSと、両凹形状の第1の負レンズL21および両凸形状の第1の正レンズL22からなる接合レンズと、物体側に凸面を向けたメニスカス形状の第2の負レンズL23と、両凹形状の第3の負レンズL24および両凸形状の第2の正レンズL25からなる接合レンズと、両凹形状の第4の負レンズL26と、
両凸形状の第3の正レンズL27と、から構成される。第2の負レンズL23は、像側のレンズ面が非球面である。第4の負レンズL26は、物体側のレンズ面が非球面である。第3の正レンズL27は、像側のレンズ面が非球面である。
The rear group G2 has an aperture stop S, a cemented lens including a biconcave first negative lens L21 and a biconvex first positive lens L22, and a convex surface facing the object side, which are arranged in order from the object side. A meniscus second negative lens L23, a cemented lens composed of a biconcave third negative lens L24 and a biconvex second positive lens L25, and a biconcave fourth negative lens L26. ,
And a biconvex third positive lens L27. The second negative lens L23 has an aspheric lens surface on the image side. The fourth negative lens L26 has an aspheric lens surface on the object side. The third positive lens L27 has an aspheric image side lens surface.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第5実施例に係る光学系WL(5)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (5) according to the fifth example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。   Table 5 below lists values of specifications of the optical system according to the fifth example.

(表5)
[全体諸元]
f=30.54
FNO=2.09
2ω=53.0
Y=15.00
Bf=18.311
TL=47.320
X1=-5.716
X2=-2.286
ST1=7.414
BL=29.009
[レンズ諸元]
面番号 R D νd nd
1 55.0636 0.8000 29.57 1.717360
2 22.1561 0.3000
3 23.9630 1.8848 40.66 1.883000
4 643.3073 D4(可変)
5 ∞ 2.0651 (絞りS)
6 -42.5194 0.8000 39.21 1.595510
7 9.3595 6.7632 40.66 1.883000
8 -69.0596 0.1121
9 148.4065 0.8000 45.45 1.801387
10* 34.0456 3.3527
11 -15.0000 0.8371 30.13 1.698950
12 25.5709 4.1237 40.66 1.883000
13 -17.8073 0.5000
14* -29.1326 1.4823 31.16 1.688930
15 124.3007 1.5000
16 45.4049 2.6878 40.10 1.851348
17* -96.6279 D17(可変)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[非球面データ]
第10面
κ=1.0000,A4=3.93427E-05,A6=7.10185E-07
A8=-1.02837E-08,A10=3.49200E-10,A12=0.00000E+00,A14=0.00000E+00
第14面
κ=1.0000,A4=-6.65698E-05,A6=1.61906E-08
A8=-7.10032E-09,A10=4.59883E-11,A12=0.00000E+00,A14=0.00000E+00
第17面
κ=1.0000,A4=-5.81195E-07,A6=-3.43147E-08
A8=2.90295E-10,A10=-6.62198E-13,A12=0.00000E+00,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 61.22
G2 5 43.63
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=30.54 β=-0.1
D0 ∞ 334.22
D4 1.000 4.430
D17 16.892 19.178
Bf(air) 18.311 20.597
TL(air) 47.320 53.036
[条件式対応値]
条件式(1) X1/X2=2.500
条件式(2) Bf/f=0.600
条件式(3) ST1/TL=0.157
条件式(4) Dinf/Dmod=0.226
条件式(5) Y/BL=0.517
条件式(6) TL/(FNO×Bf)=1.236
(Table 5)
[Overall specifications]
f = 30.54
FNO = 2.09
2ω = 53.0
Y = 15.00
Bf = 18.311
TL = 47.320
X1 = -5.716
X2 = -2.286
ST1 = 7.414
BL = 29.009
[Lens specifications]
Surface number R D νd nd
1 55.0636 0.8000 29.57 1.717360
2 22.1561 0.3000
3 23.9630 1.8848 40.66 1.883000
4 643.3073 D4 (variable)
5 ∞ 2.0651 (Aperture S)
6 -42.5194 0.8000 39.21 1.595510
7 9.3595 6.7632 40.66 1.883000
8 -69.0596 0.1121
9 148.4065 0.8000 45.45 1.801387
10 * 34.0456 3.3527
11 -15.0000 0.8371 30.13 1.698950
12 25.5709 4.1237 40.66 1.883000
13 -17.8073 0.5000
14 * -29.1326 1.4823 31.16 1.688930
15 124.3007 1.5000
16 45.4049 2.6878 40.10 1.851348
17 * -96.6279 D17 (variable)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[Aspherical data]
10th surface κ = 1.0000, A4 = 3.93427E-05, A6 = 7.10185E-07
A8 = -1.02837E-08, A10 = 3.49200E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
14th surface κ = 1.0000, A4 = -6.65698E-05, A6 = 1.61906E-08
A8 = -7.10032E-09, A10 = 4.59883E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
17th surface κ = 1.0000, A4 = -5.81195E-07, A6 = -3.43147E-08
A8 = 2.90295E-10, A10 = -6.62198E-13, A12 = 0.00000E + 00, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 61.22
G2 5 43.63
[Variable interval data]
Infinite focus state Short range focus state
f = 30.54 β = -0.1
D0 ∞ 334.22
D4 1.000 4.430
D17 16.892 19.178
Bf (air) 18.311 20.597
TL (air) 47.320 53.036
[Conditional expression values]
Conditional expression (1) X1 / X2 = 2.500
Conditional expression (2) Bf / f = 0.600
Conditional expression (3) ST1 / TL = 0.157
Conditional expression (4) Dinf / Dmod = 0.226
Conditional expression (5) Y / BL = 0.517
Conditional expression (6) TL / (FNO × Bf) = 1.236

図10(a)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(b)は、第5実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第5実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 10A is a diagram of various aberrations of the optical system according to Example 5 when focusing on infinity. FIG. 10B is a diagram illustrating various aberrations when the optical system according to Example 5 is in focus at a short distance (closest distance). From each aberration diagram, it can be seen that the optical system according to the fifth example has excellent imaging performance by satisfactorily correcting various aberrations.

(第6実施例)
第6実施例について、図11〜図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系のレンズ構成を示す図である。第6実施例に係る光学系WL(6)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIGS. 11 to 12 and Table 6. FIG. FIG. 11 is a diagram showing a lens configuration of an optical system according to the sixth example of the present embodiment. The optical system WL (6) according to the sixth example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の負レンズL11と、物体側に凸面を向けたメニスカス形状の正レンズL12と、から構成される。   The front group G1 includes a meniscus negative lens L11 having a convex surface facing the object side and a meniscus positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side.

後群G2は、物体側から順に並んだ、開口絞りSと、両凹形状の第1の負レンズL21および両凸形状の第1の正レンズL22からなる接合レンズと、物体側に凸面を向けたメニスカス形状の第2の負レンズL23と、両凹形状の第3の負レンズL24および両凸形状の第2の正レンズL25からなる接合レンズと、像側に凸面を向けたメニスカス形状の第4の負レンズL26と、両凸形状の第3の正レンズL27と、から構成される。第2の負レンズL23は、像側のレンズ面が非球面である。第4の負レンズL26は、物体側のレンズ面が非球面である。第3の正レンズL27は、像側のレンズ面が非球面である。   The rear group G2 has an aperture stop S, a cemented lens including a biconcave first negative lens L21 and a biconvex first positive lens L22, and a convex surface facing the object side, which are arranged in order from the object side. A meniscus second negative lens L23, a cemented lens composed of a biconcave third negative lens L24 and a biconvex second positive lens L25, and a meniscus second lens having a convex surface facing the image side. 4 negative lens L26, and biconvex third positive lens L27. The second negative lens L23 has an aspheric lens surface on the image side. The fourth negative lens L26 has an aspheric lens surface on the object side. The third positive lens L27 has an aspheric image side lens surface.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空
間周波数をカットするためのローパスフィルタFLが配置される。第6実施例に係る光学系WL(6)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。
An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (6) according to the sixth example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different amounts of movement when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。   Table 6 below provides values of specifications of the optical system according to the sixth example.

(表6)
[全体諸元]
f=30.62
FNO=2.14
2ω=52.8
Y=15.00
Bf=16.576
TL=46.417
X1=-5.237
X2=-2.089
ST1=7.304
BL=29.841
[レンズ諸元]
面番号 R D νd nd
1 53.1624 0.8000 29.57 1.717360
2 18.9326 0.3000
3 19.9763 2.0557 40.66 1.883000
4 713.1579 D4(可変)
5 ∞ 2.0651 (絞りS)
6 -39.7457 0.8000 39.21 1.595510
7 9.5460 7.0748 40.66 1.883000
8 -64.0501 0.1000
9 200.6575 0.8000 45.45 1.801387
10* 37.1432 3.8475
11 -15.0000 0.8000 30.13 1.698950
12 24.6832 4.0285 40.66 1.883000
13 -19.2739 0.5000
14* -25.7603 1.4823 31.16 1.688930
15 -981.1528 1.5000
16 40.1314 2.6878 40.10 1.851348
17* -189.9800 D17(可変)
18 ∞ 4.6521 63.88 1.516800
19 ∞ 0.1000
[非球面データ]
第10面
κ=1.0000,A4=2.83775E-05,A6=4.12350E-07
A8=-2.80992E-09,A10=1.77330E-10,A12=0.00000E+00,A14=0.00000E+00
第14面
κ=1.0000,A4=-5.97932E-05,A6=-1.37330E-07
A8=-5.45235E-09,A10=1.92647E-11,A12=0.00000E+00,A14=0.00000E+00
第17面
κ=1.0000,A4=7.84190E-06,A6=-5.42053E-08
A8=1.93014E-10,A10=-2.25932E-13,A12=0.00000E+00,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 52.98
G2 5 48.18
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=30.62 β=-0.1
D0 ∞ 335.52
D4 0.999 4.148
D17 13.409 15.498
Bf(air) 16.576 18.665
TL(air) 46.417 51.654
[条件式対応値]
条件式(1) X1/X2=2.507
条件式(2) Bf/f=0.541
条件式(3) ST1/TL=0.157
条件式(4) Dinf/Dmod=0.241
条件式(5) Y/BL=0.503
条件式(6) TL/(FNO×Bf)=1.309
(Table 6)
[Overall specifications]
f = 30.62
FNO = 2.14
2ω = 52.8
Y = 15.00
Bf = 16.576
TL = 46.417
X1 = -5.237
X2 = -2.089
ST1 = 7.304
BL = 29.841
[Lens specifications]
Surface number R D νd nd
1 53.1624 0.8000 29.57 1.717360
2 18.9326 0.3000
3 19.9763 2.0557 40.66 1.883000
4 713.1579 D4 (variable)
5 ∞ 2.0651 (Aperture S)
6 -39.7457 0.8000 39.21 1.595510
7 9.5460 7.0748 40.66 1.883000
8 -64.0501 0.1000
9 200.6575 0.8000 45.45 1.801387
10 * 37.1432 3.8475
11 -15.0000 0.8000 30.13 1.698950
12 24.6832 4.0285 40.66 1.883000
13 -19.2739 0.5000
14 * -25.7603 1.4823 31.16 1.688930
15 -981.1528 1.5000
16 40.1314 2.6878 40.10 1.851348
17 * -189.9800 D17 (variable)
18 ∞ 4.6521 63.88 1.516800
19 ∞ 0.1000
[Aspherical data]
10th surface κ = 1.0000, A4 = 2.83775E-05, A6 = 4.12350E-07
A8 = -2.80992E-09, A10 = 1.77330E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
14th surface κ = 1.0000, A4 = -5.97932E-05, A6 = -1.37330E-07
A8 = -5.45235E-09, A10 = 1.92647E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
17th surface κ = 1.0000, A4 = 7.84190E-06, A6 = -5.42053E-08
A8 = 1.93014E-10, A10 = -2.25932E-13, A12 = 0.00000E + 00, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 52.98
G2 5 48.18
[Variable interval data]
Infinite focus state Short range focus state
f = 30.62 β = −0.1
D0 ∞ 335.52
D4 0.999 4.148
D17 13.409 15.498
Bf (air) 16.576 18.665
TL (air) 46.417 51.654
[Conditional expression values]
Conditional expression (1) X1 / X2 = 2.507
Conditional expression (2) Bf / f = 0.541
Conditional expression (3) ST1 / TL = 0.157
Conditional expression (4) Dinf / Dmod = 0.241
Conditional expression (5) Y / BL = 0.503
Conditional expression (6) TL / (FNO × Bf) = 1.309

図12(a)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(b)は、第6実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第6実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 12A is a diagram of various aberrations of the optical system according to Example 6 when focused on infinity. FIG. 12B is a diagram illustrating various aberrations when the optical system according to Example 6 is in focus at a short distance (closest distance). From each aberration diagram, it can be seen that the optical system according to Example 6 has excellent imaging performance by correcting various aberrations satisfactorily.

(第7実施例)
第7実施例について、図13〜図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系のレンズ構成を示す図である。第7実施例に係る光学系WL(7)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIGS. 13 to 14 and Table 7. FIG. FIG. 13 is a diagram showing a lens configuration of an optical system according to the seventh example of the present embodiment. The optical system WL (7) according to the seventh example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凸形状の正レンズL12および両凹形状の第2の負レンズL13からなる接合レンズと、から構成される。   The front group G1 includes a meniscus first negative lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave second negative lens L13 arranged in order from the object side. And a cemented lens.

後群G2は、物体側から順に並んだ、開口絞りSと、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23および両凸形状の第2の正レンズL24からなる接合レンズと、両凸形状の第3の正レンズL25と、から構成される。第1の正レンズL21は、物体側のレンズ面が非球面である。第2の負レンズL23は、物体側のレンズ面が非球面である。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes an aperture stop S, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second, which are arranged in order from the object side. The negative lens L23 and a biconvex second positive lens L24, and a biconvex third positive lens L25. The first positive lens L21 has an aspheric lens surface on the object side. The second negative lens L23 has an aspheric lens surface on the object side. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第7実施例に係る光学系WL(7)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (7) according to the seventh example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。   Table 7 below provides values of specifications of the optical system according to the seventh example.

(表7)
[全体諸元]
f=31.56
FNO=2.20
2ω=47.4
Y=14.00
Bf=22.645
TL=47.455
X1=-7.006
X2=-3.117
ST1=8.804
BL=24.810
[レンズ諸元]
面番号 R D νd nd
1 59.8248 0.8040 70.32 1.487490
2 14.4329 0.3274
3 16.3422 4.8625 49.26 1.743200
4 -36.6404 0.7989 41.51 1.575010
5 27.5371 D5(可変)
6 ∞ 0.2959 (絞りS)
7* 16.6614 2.5633 40.10 1.851348
8 -39.9032 0.8000 30.13 1.698950
9 16.3607 5.0395
10* -12.0711 0.8000 31.16 1.688930
11 30.6678 2.2782 40.10 1.851348
12* -24.1100 1.0000
13 96.5352 3.2292 40.66 1.883000
14 -41.0451 D14(可変)
15 ∞ 2.0000 64.17 1.516800
16 ∞ 0.1000
[非球面データ]
第7面
κ=1.0000,A4=-2.21170E-05,A6=-1.02561E-07
A8=-3.74746E-09,A10=1.54704E-11,A12=0.00000E+00,A14=0.00000E+00
第10面
κ=1.0000,A4=4.14903E-04,A6=1.73676E-06
A8=-6.05789E-08,A10=7.26224E-10,A12=0.00000E+00,A14=0.00000E+00
第12面
κ=1.0000,A4=2.36538E-04,A6=3.42662E-07
A8=-1.74584E-08,A10=1.51803E-10,A12=0.00000E+00,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 200.03
G2 6 32.96
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=31.56 β=-0.1
D0 ∞ 336.06
D5 2.011 5.900
D14 21.226 24.343
Bf(air) 22.645 25.762
TL(air) 47.455 54.460
[条件式対応値]
条件式(1) X1/X2=2.248
条件式(2) Bf/f=0.718
条件式(3) ST1/TL=0.186
条件式(4) Dinf/Dmod=0.341
条件式(5) Y/BL=0.564
条件式(6) TL/(FNO×Bf)=0.953
(Table 7)
[Overall specifications]
f = 31.56
FNO = 2.20
2ω = 47.4
Y = 14.00
Bf = 22.645
TL = 47.455
X1 = -7.006
X2 = -3.117
ST1 = 8.804
BL = 24.810
[Lens specifications]
Surface number R D νd nd
1 59.8248 0.8040 70.32 1.487490
2 14.4329 0.3274
3 16.3422 4.8625 49.26 1.743200
4 -36.6404 0.7989 41.51 1.575010
5 27.5371 D5 (variable)
6 ∞ 0.2959 (Aperture S)
7 * 16.6614 2.5633 40.10 1.851348
8 -39.9032 0.8000 30.13 1.698950
9 16.3607 5.0395
10 * -12.0711 0.8000 31.16 1.688930
11 30.6678 2.2782 40.10 1.851348
12 * -24.1100 1.0000
13 96.5352 3.2292 40.66 1.883000
14 -41.0451 D14 (variable)
15 ∞ 2.0000 64.17 1.516800
16 ∞ 0.1000
[Aspherical data]
7th surface κ = 1.0000, A4 = -2.21170E-05, A6 = -1.02561E-07
A8 = -3.74746E-09, A10 = 1.54704E-11, A12 = 0.00000E + 00, A14 = 0.00000E + 00
10th surface κ = 1.0000, A4 = 4.14903E-04, A6 = 1.73676E-06
A8 = -6.05789E-08, A10 = 7.26224E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
12th surface κ = 1.0000, A4 = 2.36538E-04, A6 = 3.42662E-07
A8 = -1.74584E-08, A10 = 1.51803E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 200.03
G2 6 32.96
[Variable interval data]
Infinite focus state Short range focus state
f = 31.56 β = −0.1
D0 ∞ 336.06
D5 2.011 5.900
D14 21.226 24.343
Bf (air) 22.645 25.762
TL (air) 47.455 54.460
[Conditional expression values]
Conditional expression (1) X1 / X2 = 2.248
Conditional expression (2) Bf / f = 0.718
Conditional expression (3) ST1 / TL = 0.186
Conditional expression (4) Dinf / Dmod = 0.341
Conditional expression (5) Y / BL = 0.564
Conditional expression (6) TL / (FNO × Bf) = 0.953

図14(a)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(b)は、第7実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第7実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 14A is a diagram of various aberrations of the optical system according to Example 7 when focused on infinity. FIG. 14B is a diagram illustrating various aberrations when the optical system according to Example 7 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the seventh example has excellent imaging performance by properly correcting various aberrations.

(第8実施例)
第8実施例について、図15〜図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系のレンズ構成を示す図である。第8実施例に係る光学系WL(8)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Eighth embodiment)
The eighth embodiment will be described with reference to FIGS. 15 to 16 and Table 8. FIG. FIG. 15 is a diagram showing a lens configuration of an optical system according to the eighth example of the present embodiment. The optical system WL (8) according to the eighth example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、両凹形状の第1の負レンズL11と、物体側に凸面を向けたメニスカス形状の第1の正レンズL12と、開口絞りSと、両凸形状の第2の正レンズL13および両凹形状の第2の負レンズL14からなる接合レンズと、両凹形状の第3の負レンズL15および両凸形状の第3の正レンズL16からなる接合レンズと、から構成される。第1の正レンズL12は、像側のレンズ面が非球面である。第2の正レンズL13は、物体側のレンズ面が非球面である。第3の負レンズL15は、物体側のレンズ面が非球面である。第3の正レンズL16は、像側のレンズ面が非球面である。   The front group G1 includes, in order from the object side, a biconcave first negative lens L11, a meniscus first positive lens L12 having a convex surface facing the object side, an aperture stop S, and a biconvex shape A cemented lens composed of the second positive lens L13 and the biconcave second negative lens L14, and a cemented lens composed of the biconcave third negative lens L15 and the biconvex third positive lens L16. Is composed of. The first positive lens L12 has an aspheric lens surface on the image side. The second positive lens L13 has an aspheric lens surface on the object side. The third negative lens L15 has an aspheric lens surface on the object side. The third positive lens L16 has an aspheric lens surface on the image side.

後群G2は、両凸形状の正レンズL21から構成される。   The rear group G2 includes a biconvex positive lens L21.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第8実施例に係る光学系WL(8)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (8) according to the eighth example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。   Table 8 below provides values of specifications of the optical system according to the eighth example.

(表8)
[全体諸元]
f=36.00
FNO=1.86
2ω=66.4
Y=21.60
Bf=26.266
TL=67.489
X1=-10.611
X2=-7.439
ST1=21.099
BL=41.223
[レンズ諸元]
面番号 R D νd nd
1 -55.9752 3.276 32.2 1.67270
2 66.4702 6.696
3 22.3000 4.647 37.2 1.88202
4* 78.5590 6.480
5 ∞ 1.390 (絞りS)
6* 36.8224 7.514 40.1 1.85135
7 -13.1563 1.195 30.1 1.69895
8 28.8627 3.895
9* -17.3649 0.800 31.2 1.68893
10 41.4253 2.867 37.2 1.88202
11* -38.8979 D11(可変)
12 148.1269 2.363 40.7 1.88300
13 -84.7387 D13(可変)
14 ∞ 1.500 63.9 1.51680
15 ∞ 0.100
[非球面データ]
第4面
κ=-7.4347,A4=-2.12039E-06,A6=-4.62851E-09
A8=-3.89378E-11,A10=1.62537E-13,A12=0.00000E+00,A14=0.00000E+00
第6面
κ=-3.7658,A4=-3.64787E-05,A6=-2.46920E-07
A8=-2.72969E-11,A10=-1.06678E-11,A12=5.40520E-14,A14=0.00000E+00
第9面
κ=-2.4977,A4=1.15907E-04,A6=-6.01456E-08
A8=1.13761E-09,A10=-6.10067E-12,A12=0.00000E+00,A14=0.00000E+00
第11面
κ=-20.0000,A4=6.91648E-05,A6=-6.87359E-08
A8=-3.48048E-10,A10=6.16431E-13,A12=0.00000E+00,A14=0.00000E+00
[群データ]
群 始面 焦点距離
G1 1 63.80
G2 12 61.34
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.00 β=-0.2287
D0 ∞ 176.59
D11 0.100 3.271
D13 25.177 32.617
Bf(air) 26.266 33.706
TL(air) 67.489 85.538
[条件式対応値]
条件式(1) X1/X2=1.426
条件式(2) Bf/f=0.730
条件式(3) ST1/TL=0.313
条件式(4) Dinf/Dmod=0.031
条件式(5) Y/BL=0.524
条件式(6) TL/(FNO×Bf)=1.381
(Table 8)
[Overall specifications]
f = 36.00
FNO = 1.86
2ω = 66.4
Y = 21.60
Bf = 26.266
TL = 67.489
X1 = -10.611
X2 = -7.439
ST1 = 21.099
BL = 41.223
[Lens specifications]
Surface number R D νd nd
1 -55.9752 3.276 32.2 1.67270
2 66.4702 6.696
3 22.3000 4.647 37.2 1.88202
4 * 78.5590 6.480
5 ∞ 1.390 (Aperture S)
6 * 36.8224 7.514 40.1 1.85135
7 -13.1563 1.195 30.1 1.69895
8 28.8627 3.895
9 * -17.3649 0.800 31.2 1.68893
10 41.4253 2.867 37.2 1.88202
11 * -38.8979 D11 (variable)
12 148.1269 2.363 40.7 1.88300
13 -84.7387 D13 (variable)
14 ∞ 1.500 63.9 1.51680
15 ∞ 0.100
[Aspherical data]
4th surface κ = -7.4347, A4 = -2.12039E-06, A6 = -4.62851E-09
A8 = -3.89378E-11, A10 = 1.62537E-13, A12 = 0.00000E + 00, A14 = 0.00000E + 00
6th surface κ = -3.7658, A4 = -3.64787E-05, A6 = -2.46920E-07
A8 = -2.72969E-11, A10 = -1.06678E-11, A12 = 5.40520E-14, A14 = 0.00000E + 00
9th surface κ = -2.4977, A4 = 1.15907E-04, A6 = -6.01456E-08
A8 = 1.13761E-09, A10 = -6.10067E-12, A12 = 0.00000E + 00, A14 = 0.00000E + 00
11th surface κ = -20.0000, A4 = 6.91648E-05, A6 = -6.87359E-08
A8 = -3.48048E-10, A10 = 6.16431E-13, A12 = 0.00000E + 00, A14 = 0.00000E + 00
[Group data]
Group Start surface Focal length
G1 1 63.80
G2 12 61.34
[Variable interval data]
Infinite focus state Short range focus state
f = 36.00 β = -0.2287
D0 ∞ 176.59
D11 0.100 3.271
D13 25.177 32.617
Bf (air) 26.266 33.706
TL (air) 67.489 85.538
[Conditional expression values]
Conditional expression (1) X1 / X2 = 1.426
Conditional expression (2) Bf / f = 0.730
Conditional expression (3) ST1 / TL = 0.313
Conditional expression (4) Dinf / Dmod = 0.031
Conditional expression (5) Y / BL = 0.524
Conditional expression (6) TL / (FNO × Bf) = 1.382

図16(a)は、第8実施例に係る光学系の無限遠合焦時の諸収差図である。図16(b)は、第8実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第8実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 16A is a diagram of various types of aberration when the optical system according to Example 8 is in focus at infinity. FIG. 16B is a diagram illustrating various aberrations when the optical system according to Example 8 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the eighth example has excellent imaging performance by satisfactorily correcting various aberrations.

上記各実施例によれば、小型で良好な光学性能を有した光学系を実現することができる。   According to each of the embodiments described above, an optical system that is small and has good optical performance can be realized.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。   Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.

なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。   Note that the following contents can be adopted as appropriate as long as the optical performance of the optical system of the present embodiment is not impaired.

本実施形態の光学系の数値実施例として、前群と後群からなる2群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、3群等)の光学系を構成することもできる。具体的には、本実施形態の光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。   As a numerical example of the optical system of the present embodiment, a two-group configuration including a front group and a rear group has been shown, but the present application is not limited to this, and an optical system having other group configurations (for example, three groups). Can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the optical system of the present embodiment may be used.

本実施形態の光学系において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。   In the optical system of the present embodiment, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated and moved (oscillated) in the in-plane direction including the optical axis. An anti-vibration lens group that corrects image blur caused by blur may be used.

レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。   The lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Either is fine. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りは、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop may be replaced by a lens frame without providing a member as an aperture stop.

各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。   Each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high contrast optical performance. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

G1 前群 G2 後群
I 像面 S 開口絞り
G1 Front group G2 Rear group I Image surface S Aperture stop

Claims (11)

物体側から順に並んだ、正の屈折力を有する前群と、正の屈折力を有する後群とを有し、
無限遠から近距離物体への合焦の際、前記前群および前記後群が光軸に沿って物体側に移動して、前記前群と前記後群との間隔が変化し、
以下の条件式を満足することを特徴とする光学系。
1.05<X1/X2<4.00
但し、X1:前記合焦の際の前記前群の移動量、
X2:前記合焦の際の前記後群の移動量。
A front group having a positive refractive power and a rear group having a positive refractive power, arranged in order from the object side,
When focusing from infinity to a short distance object, the front group and the rear group move to the object side along the optical axis, the interval between the front group and the rear group changes,
An optical system satisfying the following conditional expression:
1.05 <X1 / X2 <4.00
Where X1: movement amount of the front group at the time of focusing,
X2: Movement amount of the rear group at the time of focusing.
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
0.20<Bf/f<0.75
但し、Bf:無限遠合焦状態の前記光学系における最も像側のレンズ面から像面までの光軸上の空気換算距離、
f:無限遠合焦状態の前記光学系の焦点距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.20 <Bf / f <0.75
Where Bf: the air equivalent distance on the optical axis from the lens surface closest to the image side to the image plane in the optical system in the infinitely focused state,
f: Focal length of the optical system in an infinitely focused state.
前記前群もしくは前記後群に開口絞りが配置され、
以下の条件式を満足することを特徴とする請求項1または2に記載の光学系。
0.04<ST1/TL<0.30
但し、ST1:無限遠合焦状態の前記光学系における最も物体側のレンズ面から前記開口絞りまでの光軸上の距離、
TL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
An aperture stop is disposed in the front group or the rear group,
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.04 <ST1 / TL <0.30
However, ST1: Distance on the optical axis from the lens surface closest to the object side to the aperture stop in the optical system in the infinitely focused state,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system in the infinitely focused state, and the air-converted distance from the lens surface closest to the image side to the image plane.
以下の条件式を満足することを特徴とする請求項1から3のいずれか一項に記載の光学系。
0.10<Dinf/Dmod<1.60
但し、Dinf:無限遠合焦状態における前記前群と前記後群との光軸上の空気間隔、
Dmod:近距離合焦状態における前記前群と前記後群との光軸上の空気間隔。
The optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.10 <Dinf / Dmod <1.60
Where Dinf: the air space on the optical axis between the front group and the rear group in an infinitely focused state,
Dmod: an air space on the optical axis between the front group and the rear group in a short distance in-focus state.
以下の条件式を満足することを特徴とする請求項1から4のいずれか一項に記載の光学系。
0.30<Y/BL<0.70
但し、Y:前記光学系のイメージサークルの半径、
BL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.30 <Y / BL <0.70
Where Y: radius of the image circle of the optical system,
BL: Distance on the optical axis from the most object side lens surface to the most image side lens surface in the optical system in an infinitely focused state.
以下の条件式を満足することを特徴とする請求項1から5のいずれか一項に記載の光学系。
0.80<TL/(FNO×Bf)<2.70
但し、FNO:無限遠合焦状態の前記光学系のFナンバー、
Bf:無限遠合焦状態の前記光学系における最も像側のレンズ面から像面までの光軸上の空気換算距離、
TL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.80 <TL / (FNO × Bf) <2.70
Where FNO: F number of the optical system in focus at infinity,
Bf: air equivalent distance on the optical axis from the lens surface closest to the image side to the image plane in the optical system in the infinitely focused state,
TL: Distance on the optical axis from the most object-side lens surface to the image plane in the optical system in the infinitely focused state, and the distance from the most image-side lens surface to the image plane in terms of air.
前記前群の最も物体側に配置されたレンズは負レンズであることを特徴とする請求項1から6のいずれか一項に記載の光学系。   The optical system according to any one of claims 1 to 6, wherein the lens disposed closest to the object side in the front group is a negative lens. 前記前群の最も物体側に配置された前記負レンズにおける物体側のレンズ面が凹面であることを特徴とする請求項7に記載の光学系。   The optical system according to claim 7, wherein an object side lens surface of the negative lens disposed closest to the object side of the front group is a concave surface. 前記後群の最も像側に配置されたレンズにおける像側のレンズ面が凸面であることを特徴とする請求項1から8のいずれか一項に記載の光学系。   9. The optical system according to claim 1, wherein an image-side lens surface of a lens disposed closest to the image side of the rear group is a convex surface. 請求項1から9のいずれか一項に記載の光学系を搭載して構成される光学機器。   An optical apparatus configured by mounting the optical system according to claim 1. 物体側から順に並んだ、正の屈折力を有する前群と、正の屈折力を有する後群とを有する光学系の製造方法であって、
無限遠から近距離物体への合焦の際、前記前群および前記後群が光軸に沿って物体側に移動して、前記前群と前記後群との間隔が変化し、
以下の条件式を満足するように、
レンズ鏡筒内に各レンズを配置することを特徴とする光学系の製造方法。
1.05<X1/X2<4.00
但し、X1:前記合焦の際の前記前群の移動量、
X2:前記合焦の際の前記後群の移動量。
A method of manufacturing an optical system having a front group having a positive refractive power and a rear group having a positive refractive power, arranged in order from the object side,
When focusing from infinity to a short distance object, the front group and the rear group move to the object side along the optical axis, the interval between the front group and the rear group changes,
To satisfy the following conditional expression,
A method of manufacturing an optical system, wherein each lens is arranged in a lens barrel.
1.05 <X1 / X2 <4.00
Where X1: movement amount of the front group at the time of focusing,
X2: Movement amount of the rear group at the time of focusing.
JP2016048454A 2016-03-11 2016-03-11 Optical system and optical equipment Active JP6701831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048454A JP6701831B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048454A JP6701831B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2017161845A true JP2017161845A (en) 2017-09-14
JP6701831B2 JP6701831B2 (en) 2020-05-27

Family

ID=59854049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048454A Active JP6701831B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Country Status (1)

Country Link
JP (1) JP6701831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444471B2 (en) 2017-09-13 2019-10-15 Largan Precision Co., Ltd. Image system lens assembly, image capturing unit and electronic device
JP7234444B1 (en) 2021-10-25 2023-03-07 佳凌科技股▲ふん▼有限公司 Optical imaging lens device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107209A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Photographic lens of large aperture ratio corrected for short distance
JPS6218513A (en) * 1985-07-18 1987-01-27 Olympus Optical Co Ltd Large aperture long focus macrolens
JPH05224119A (en) * 1992-02-17 1993-09-03 Olympus Optical Co Ltd Large-diameter intermediate telephoto lens
JP2003161877A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Macro lens and camera equipped with the same
JP2013231941A (en) * 2012-04-06 2013-11-14 Ricoh Imaging Co Ltd Macro lens system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107209A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Photographic lens of large aperture ratio corrected for short distance
JPS6218513A (en) * 1985-07-18 1987-01-27 Olympus Optical Co Ltd Large aperture long focus macrolens
JPH05224119A (en) * 1992-02-17 1993-09-03 Olympus Optical Co Ltd Large-diameter intermediate telephoto lens
JP2003161877A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Macro lens and camera equipped with the same
JP2013231941A (en) * 2012-04-06 2013-11-14 Ricoh Imaging Co Ltd Macro lens system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444471B2 (en) 2017-09-13 2019-10-15 Largan Precision Co., Ltd. Image system lens assembly, image capturing unit and electronic device
JP7234444B1 (en) 2021-10-25 2023-03-07 佳凌科技股▲ふん▼有限公司 Optical imaging lens device
JP2023064031A (en) * 2021-10-25 2023-05-10 佳凌科技股▲ふん▼有限公司 Optical imaging lens device

Also Published As

Publication number Publication date
JP6701831B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
JP2008170720A (en) Wide angle lens, imaging apparatus, and focusing method for wide angle lens
JP3200925B2 (en) Zoom lens with wide angle of view
JP5777655B2 (en) Zoom lens and imaging apparatus having the same
JP2009169414A (en) Zoom lens and image pickup apparatus having the same
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5428775B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2017161847A (en) Optical system, optical instrument and method for manufacturing optical system
JP5333906B2 (en) Zoom lens and optical equipment
WO2013128882A1 (en) Optical system, optical device, and method for manufacturing optical system
JP2011076021A (en) Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP2011076022A (en) Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP3032126B2 (en) Large aperture zoom lens
JP6701831B2 (en) Optical system and optical equipment
JP4817551B2 (en) Zoom lens
JP6816370B2 (en) Optical system and optical equipment
JP6828252B2 (en) Optical system and optical equipment
JP7218813B2 (en) Variable magnification optical system and optical equipment
JP5282399B2 (en) Macro lens, optical device, macro lens focusing method
JP2017161848A (en) Optical system, optical instrument and method for manufacturing optical system
JP2010117532A (en) Zoom lens, optical equipment, and method for manufacturing zoom lens
JP5434006B2 (en) Zoom lens, image pickup apparatus, and zooming method
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP6938845B2 (en) Optical system and optical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6701831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250