JP2017161562A - 光学素子、照明用光学ユニット及び照明装置 - Google Patents

光学素子、照明用光学ユニット及び照明装置 Download PDF

Info

Publication number
JP2017161562A
JP2017161562A JP2016043073A JP2016043073A JP2017161562A JP 2017161562 A JP2017161562 A JP 2017161562A JP 2016043073 A JP2016043073 A JP 2016043073A JP 2016043073 A JP2016043073 A JP 2016043073A JP 2017161562 A JP2017161562 A JP 2017161562A
Authority
JP
Japan
Prior art keywords
lens
reference surface
array
optical element
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016043073A
Other languages
English (en)
Inventor
中村 健太郎
Kentaro Nakamura
中村  健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016043073A priority Critical patent/JP2017161562A/ja
Publication of JP2017161562A publication Critical patent/JP2017161562A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

【課題】レンズ面上にレンズアレイを付与する加工を容易にしつつ、所望の光学特性を有する光学素子を提供する。
【解決手段】複数のレンズ部を有するレンズアレイが非球面の基準面上に配置された光学素子であって、複数のレンズ部は、基準面上に規定されるアレイ形成領域を光軸に垂直なXY平面に関して分割して、X方向及びY方向に等間隔DX,DYで配置され、レンズ部の基準面からの突出量又は陥没量の最大値dは、基準面の法線に沿って略一定の値になるように設定され、近軸において、複数のレンズ部と基準面の凹凸の向きとが一致しており、かつ基準面の非球面式の2階微分値がアレイ形成領域内において−0.02以上又は0.02以下であり、以下の条件式を満足する。0<Ra/Rb<1…(1)、4d・Ra≦Dx+Dy≦8d・Ra…(2)、ただし、Ra、Rbはそれぞれレンズ部の曲率半径、基準面の近軸曲率半径の絶対値である。
【選択図】図1

Description

本発明は、複数の光源から放射される光を被照明物体に照射するための照明用光学ユニットに組み込まれる光学素子、当該光学素子を組み込んだ照明用光学ユニット及び照明装置に関する。
近年、エネルギー問題の高まりの中で省エネルギーかつ長寿命である発光ダイオード(LED)を光源として用いたLED照明装置が注目され、実際に利用されている。一般に、LEDは指向性が強いため、例えば看板照明や液晶のバックライト等に使用される場合、照射範囲を拡大する目的でレンズや拡散板等が用いられる。より強く、より広範囲を照射したい場合においては、複数のLEDチップが配置された基板と、それぞれのLEDからの放射光を集光、コリメート、又は拡散するレンズとを用いる手法がとられている。このような光源を使用する場合、複数のLEDチップのうち特定のLEDチップを消灯することにより、特定の方向に光を照らさなかったり、あるいは特定のLEDチップを点灯することにより文字や形等を模って光を照らしたりすることもできる。ここで、一般に、光源から放射される光を、光学手段によって集光した場合、照射面における光強度分布は光源の形がそのまま像として投射される。つまり複数の光源を使用する場合、それらが高密度に配列されていたとしても、物理的制約のため光源と光源との隙間を完全に無くすことは難しく、例えば矩形の光源を高密度に配列した場合、照射面上の光強度分布にはグリッド状の強弱が発生してしまう。このような現象は照明装置としては回避すべき問題である。
この問題を解決するため、レンズ面にレンズアレイを付加した光学素子を照明装置に組み込むことが考えられる。ここで、曲面に複数のレンズ用曲面形状を切削加工する方法がある(例えば、特許文献1参照)。また、発光素子パッケージに組み込むレンズのレンズ面にレンズアレイとして複数の屈折レンズを形成したものがある(例えば、特許文献2参照)。
しかしながら、特許文献1では、レンズアレイの土台となる面と、レンズアレイとの配置関係が具体的に示されていない。特許文献2では、レンズアレイの土台となる曲面の曲率半径が3mmであり、個々の屈折レンズの曲率半径が0.9mmであり、隣接する屈折レンズ間の間隔が0.45mmとなっている。所定の光学特性を得るには、隣接するレンズが繋がることが好ましく、特許文献2の場合、レンズアレイの土台となる面からのレンズの突出量を0.04以上にする必要がある。この場合、突出比(突出量/屈折レンズの曲率半径)が0.044以上となるため、屈折レンズのアスペクト比が大きくなり、レンズアレイの加工が困難となる。
特開2014−104563号公報 特開2010−199544号公報
本発明は、上記背景技術に鑑みてなされたものであり、レンズ面(曲面)上にレンズアレイを付与する加工又は成形を容易にしつつ、所望の光学特性を有する光学素子を提供することを目的とする。
また、本発明は、上記光学素子を組み込んだ照明用光学ユニット及び照明装置を提供することを目的とする。
上記目的を達成するため、本発明に係る第1の光学素子は、複数のレンズ部を有するレンズアレイが非球面の基準面上に配置された光学素子であって、複数のレンズ部は、基準面上に規定されるアレイ形成領域を光軸に垂直なXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置され、レンズ部の基準面からの突出量及び陥没量のいずれか一方の最大値は、基準面の法線に沿って略一定の値になるように設定され、近軸において、複数のレンズ部の凹凸の向きと基準面の凹凸の向きとが一致しており、かつ基準面の非球面式の2階微分値がアレイ形成領域内において−0.02以上及び0.02以下のいずれか一方であり、以下の条件式を満足する。ここで、略一定の値とは、個々のレンズ部の突出量又は陥没量の最大値が完全に一致している必要はなく、ある程度の幅があってもよいという意味である。
0<Ra/Rb<1 … (1)
4d・Ra≦Dx+Dy≦8d・Ra … (2)
ただし、値Raはレンズ部の曲率半径の絶対値であり、値Rbは基準面の近軸曲率半径の絶対値であり、値Dxはレンズ部のX方向のアレイピッチであり、値Dyはレンズ部のY方向のアレイピッチであり、値dはレンズ部の基準面からの突出量及び陥没量のいずれか一方の最大値である。なお、各レンズ部の曲率半径は、アレイ形成領域内で同一となっている。
上記第1の光学素子は、非球面の基準面にレンズアレイを設けることにより、照射強度を確保しつつ強度分布を均一化できる。非球面では局所的に凹凸が変化する場合があるが、基準面の非球面式の2階微分値がアレイ形成領域内において−0.02以上又は0.02以下であれば、基準面に急激な凹凸変化はない。また、レンズ部の凹凸の向きと基準面の凹凸の向きとが一致するため、光学素子のアレイ形成領域内でレンズ部のパワーに大きな変化は生じない。レンズアレイのアレイピッチを変えることにより、X方向及びY方向における光のぼかし量や発散角を容易に調整させることができる。また、アレイピッチやレンズ部の突出量又は陥没量の最大値が略一定であり、条件式(2)を満たすことにより後述するように隣接するレンズ部が連続的に繋がる構造となるため、レンズアレイの加工又は成形が容易となる。また、光学素子の非球面(すなわち巨視的なレンズ面)にレンズアレイを設けるため、別途レンズアレイを有する平板を組み合わせる必要がなく、部品点数を削減し、コストダウンを図ることができる。
条件式(1)は、レンズ部の曲率半径が基準面の近軸曲率半径より小さいことを規定する。また、条件式(2)は、隣接するレンズ部の配置状態を規定する。条件式(2)を満たすことにより、基準面が非球面であっても、レンズ部は略隙間なく並び、連続的に繋がる構造となる。これにより、所望の光学特性を得ることができる。条件式(2)の下限値を上回ることにより、レンズ部が隙間なく繋がるために必要な最低限の個数又は密度の2倍以上にならず、レンズアレイの加工性及び成形性を良好に維持することができる。
上記目的を達成するため、本発明に係る第2の光学素子は、複数のレンズ部を有するレンズアレイが球面の基準面上に配置された光学素子であって、複数のレンズ部は、基準面上に規定されるアレイ形成領域を光軸に垂直なXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置され、レンズ部の基準面からの突出量及び陥没量のいずれか一方の最大値は、基準面の法線に沿って略一定の値になるように設定され、レンズ部の凹凸の向きと基準面の凹凸の向きとが一致しており、以下の条件式を満足する。
0<Ra/Rb<1 … (1)
4d・Ra/(1−Ra/Rb)<Dx+Dy<8d・Ra/(1−Ra/Rb) … (5)
ここで、1/(1−Ra/Rb)とは、基準面が球面のときにのみ必要な補正係数である。
上記第2の光学素子は、球面の基準面にレンズアレイを設けることにより、照射強度を確保しつつ強度分布を均一化できる。レンズ部の凹凸の向きと基準面の凹凸の向きとが一致しているため、光学素子のアレイ形成領域内でレンズ部のパワーに大きな変化は生じない。レンズアレイのアレイピッチを変えることにより、X方向及びY方向における光のぼかし量や発散角を容易に調整させることができる。また、アレイピッチやレンズ部の突出量又は陥没量の最大値が略一定であり、条件式(5)を満たすことにより隣接するレンズ部が連続的に繋がる構造となるため、レンズアレイの加工又は成形が容易となる。また、光学素子の球面(すなわち巨視的なレンズ面)にレンズアレイを設けるため、別途レンズアレイを有する平板を組み合わせる必要がなく、部品点数を削減し、コストダウンを図ることができる。
条件式(1)は、レンズ部の曲率半径が基準面の近軸曲率半径より小さいことを規定する。また、条件式(5)は、隣接するレンズ部の配置状態を規定する。条件式(5)を満たすことにより、基準面が球面であっても、レンズ部は略隙間なく並び、連続的に繋がる構造となる。これにより、所望の光学特性を得ることができる。条件式(5)の下限値を上回ることにより、レンズ部が隙間なく繋がるために必要な最低限の個数又は密度の2倍以上にならず、レンズアレイの加工性及び成形性を良好に維持することができる。
本発明の具体的な側面では、第1及び第2の光学素子において、アレイ形成領域は、有効径領域である。
本発明の別の側面では、有効径領域において、複数のレンズ部は、少なくとも1000個以上配置される。この場合、基準面の形状がポリゴン面のように粗くなることを防ぎ、基準面が本来有する光学作用を維持することができる。
本発明のさらに別の側面では、アレイ形成領域は、有効径の一部の領域である。
本発明のさらに別の側面では、光学素子は、以下の条件式を満足する。
0<d/Ra<0.02 … (3)
条件式(3)は、レンズ部の基準面からの突出量又は陥没量とレンズ部の曲率半径との関係を規定する。条件式(3)の上限値を下回ることにより、レンズ部の曲率半径に対してレンズ部の突出量又は陥没量が大きくなりすぎず、レンズアレイの加工又は成形を容易にすることができる。
本発明のさらに別の側面では、光学素子は、以下の条件式を満足する。
d≦50μm … (4)
条件式(4)は、レンズ部の基準面からの突出量又は陥没量を規定する。条件式(4)を満たすことにより、レンズアレイの加工又は成形を容易にすることができる。また、光学素子の芯厚を適切なものとすることができ、光学素子の本来の光学特性を維持することができる。
本発明に係る照明用光学ユニットは、光軸方向に配列された複数の光学素子を有し、光軸に垂直な方向に配置された複数の光源からの入射光を照明用の出射光に変換する照明用光学系を備え、複数の光学素子のうち少なくとも1つは、上述の光学素子である。ここで、光源からの入射光を照明用の出射光に変換するとは、光の進む方向を変えるもの、例えば、集光、コリメート、又は発散光とすることを意味する。
上記照明用光学ユニットは、基準面にレンズアレイを有する上述の光学素子を照明用光学系に組み込むことにより、照射強度を確保しつつ強度分布を均一化できる。そのため、光源と光学手段である照明用光学ユニット等との組み立て誤差や温度等の外乱の影響に強くなる。また、照射面上での個々の光源からの放射光の強度が確保できるため、特定の領域を照らさない場合、あるいは文字や形を模る場合において、明領域内に光源間の隙間に対応する暗線が生じることを防ぎつつ明領域外縁において明暗の境界を明確にすることができる。
本発明に係る照明装置は、上述の照明用光学ユニットと、複数の光源を有するアレイ光源と、を備える。
上記照明装置は、上述のような照明用光学ユニットを組み込むことで、照射強度を確保しつつ強度分布を均一化できる。そのため、光源と光学手段である照明用光学ユニット等との組み立て誤差や温度等の外乱の影響に強くなる。また、照射面上での個々の光源からの放射光の強度が確保できるため、特定の領域を照らさない場合、あるいは文字や形を模る場合において、明領域内に暗線が生じることを防ぎつつ明領域外縁において明暗の境界を明確にすることができる。
本発明のさらに別の側面では、上記照明装置において、光源はLEDチップである。
(A)は、第1実施形態の照明用光学ユニットを備える照明装置等を説明する概念図であり、(B)は、照明装置のうちアレイ光源の平面図である。 レンズアレイを有する光学素子を説明する図である。 (A)〜(D)は、光学素子の基準面の凹凸の向きとレンズ部の凹凸の向きとの関係を説明する図である。 (A)〜(D)は、比較例としての光学素子の基準面の凹凸の向きとレンズ部の凹凸の向きとの関係を説明する図である。 (A)及び(B)は、レンズアレイを有する光学素子が満たす条件式(3)を説明する図である。 (A)及び(B)は、実施例1及び2の光学素子をそれぞれ説明する部分拡大図である。 (A)〜(E)は、比較例1〜5の光学素子をそれぞれ説明する部分拡大図である。 (A)及び(B)は、実施例3の2次元配列光源での照明装置のシミュレーション結果を示す図であり、(C)は、実施例3の照明装置のうち光源の配列を説明する図である。 (A)〜(F)は、比較例6〜8の2次元配列光源での照明装置のシミュレーション結果をそれぞれ示す図である。 (A)〜(C)は、比較例7の単色光源での照明装置のシミュレーション結果を示す図である。
〔第1実施形態〕
以下、図1等を参照して、本発明の第1実施形態である光学素子、照明用光学ユニット及び照明装置について説明する。なお、図1で例示した照明用光学ユニット10は、後述する実施例1の照明用光学ユニット10と同一の構成となっている。
図1(A)及び1(B)に示すように、照明装置100は、アレイ状に配列された複数の光源から放出される光を、後述する照明用光学ユニット10を用いて被照明物体SBに照射するものである。照明装置100は、照明用光学ユニット10と、アレイ光源20と、制御装置30とを備える。照明装置100の用途としては、例えば室内照明装置、建築物照明装置、車載用照明装置、拡大投影装置等の映像装置、顕微鏡照明装置等が挙げられる。
照明用光学ユニット10は、照明用光学系11と、鏡胴12とを備える。照明用光学ユニット10は、明るさに関する前提として、以下の条件式を満足することが好ましい。
Fno<1.0
ただし、Fnoは照明用光学系11のFナンバーである。これにより、照明用光学ユニット10の取り込み光量が多くなり、光利用効率が高くなる。
照明用光学系11は、アレイ光源20からの入射光を照明用の出射光に変換するものであり、光軸OA方向に配列された複数の光学素子であるレンズL1〜Ln(本実施形態では、自然数n=4)で構成される。ここで、アレイ光源20(光源)からの入射光を照明用の出射光に変換するとは、光の進む方向を変えるもの、例えば、集光、コリメート、又は発散光とすることを意味する。レンズL1〜Lnは、樹脂又はガラスで形成されている。樹脂としては、用途に応じて適宜選択できるが、例えばアクリルやポリカーボネート等の高耐熱性を有する材料であることが好ましい。レンズL1〜Lnは、例えばプレス成形、射出成形、切削加工等によって作製される。
照明用光学系11において、複数のレンズL1〜Lnのうち少なくとも1つのレンズLxは、一方のレンズ面51にレンズアレイ52(図2参照)が付与されている。本実施形態において、第3レンズL3の光源22側のレンズ面S32上にレンズアレイ52が形成されている。
以下、レンズアレイ52が付与された光学素子であるレンズLxについて詳細に説明する。図2に拡大して示すように、レンズLxにおいて、レンズアレイ52が配置されたレンズ面51は、非球面の基準面53を覆うように形成された複数のレンズ部54を有する。基準面53とは、複数のレンズ部54が形成される前の曲面であり、レンズ部54の配置の基準となっている。なお、仮に複数のレンズ部54が連続的に繋がらない場合、基準面53はレンズ部54の間に露出し、レンズ面51を構成することになる。
複数のレンズ部54は、基準面53上に規定されるアレイ形成領域AR1をXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置される。つまり、レンズアレイ52のX方向のアレイピッチDxは互いに等しく、かつY方向のアレイピッチDyは互いに等しい。ここで、XY平面とは、レンズLxを設計上の基準とする光軸OAに垂直な平面である。光軸OAは、Z軸に相当する。X方向のアレイピッチDxは、Y方向のアレイピッチDyと同じであってもよいし、異なっていてもよい。X方向及びY方向のアレイピッチDx,Dyを変えることによって、X方向及びY方向の光のぼかし量や発散角を調整することができる。レンズ部54の基準面53からの突出量及び陥没量のいずれか一方の最大値dは、基準面53の法線NVに沿って略一定の値になるように設定されている。ここで、最大値dは、各レンズ部54で設定されるものであるが、レンズLxの中心近傍(すなわち光軸OA近傍)のレンズ部54の頂点P1からこのレンズ部54と対角4方向に隣接するレンズ部54(上下左右ではない)のいずれかとの境界P2までの光軸OA方向の高さを近似したもの(図2に示す最大値dc)とできる。レンズ部54の突出量又は陥没量の最大値dを略一定の値としているが、完全に一致している必要はなくある程度の幅があってもよい。レンズLxの近軸(つまり、光軸OA)において、複数のレンズ部54の凹凸の向きと基準面53の凹凸の向きとは一致している。
以下、複数のレンズ部54の凹凸の向きと基準面53の凹凸の向きとが一致する場合のレンズ面51について説明する。図3(A)〜3(D)は、凸状の基準面53に設けた凸状のレンズ部54の断面を説明するものであり、左側が基準面53及びレンズ部54の設計上の輪郭を示し、右側が実際の断面を示している。図3(A)及び3(C)は、レンズLxの中心部付近(つまり、光軸OA付近)の断面であり、図3(B)及び3(D)は、レンズLxの周辺部付近の断面である。また、図3(A)及び3(B)において、レンズ部54の基準面53からの突出量の最大値dは同じとなっている。図3(C)及び3(D)は、図3(A)及び3(B)よりも突出量の最大値dを大きくしたものである。図3(A)及び3(B)から、レンズLxの周辺部でも隣接するレンズ部54が繋がっており、基準面53が露出しにくいことがわかる。また、図3(C)及び3(D)から、レンズLxの基準面53からの突出量を増加分Tだけ大きくしても、レンズLxの中心部と周辺部とで見た目の凸量Ua,Ua’が大きく変化しないことがわかる。つまり、dc≒Ua≒Ua’という関係性であるため、レンズLxの中心部と周辺部とでレンズ部54のパワーが大きく変化しないといえる。説明を省略するが、これは、凹状の基準面に凹状のレンズ部を設けた場合も同様である。
次に、比較例として、複数のレンズ部64の凹凸の向きと基準面63の凹凸の向きとが逆になる場合のレンズ面61について説明する。図4(A)〜4(D)は、凸状の基準面63に設けた凹状のレンズ部64の断面を説明するものであり、左側が基準面63及びレンズ部64の設計上の輪郭を示し、右側が実際の断面を示している。図4(A)及び4(C)は、レンズの中心部付近(つまり、光軸OA付近)の断面であり、図4(B)及び4(D)は、レンズの周辺部付近の断面である。また、図4(A)及び4(B)において、レンズ部64の基準面63からの陥没量の最大値dは同じとなっている。図4(C)及び4(D)は、図4(A)及び4(B)よりも陥没量の最大値dを大きくしたものである。図4(A)及び4(B)から、レンズの中心部では基準面63の露出が見られなくても、レンズの周辺部において隣接するレンズ部64が繋がっておらず、基準面63の露出が多く見られることがわかる。また、図4(C)及び4(D)から、レンズの基準面63からの陥没量を増加分Tだけ大きくすることで、レンズの周辺部付近において基準面63の露出が見られなくなるが、レンズの中心部と周辺部とで見た目の凹量Ub,Ub’が大きく変化することがわかる。つまり、dc≒Ub<Ub’という関係性になるため、レンズの中心部と周辺部とでレンズ部64のパワーが大きく変化することとなる。
以上のことから、既に説明したように、アレイ形成領域AR1内で略同一の効果を得るためには、複数のレンズ部54の凹凸の向きと基準面53の凹凸の向きとを一致させる必要があることがわかる。
図2に戻って、レンズLxの基準面53の非球面式の2階微分値は、アレイ形成領域AR1内において−0.02以上及び0.02以下のいずれか一方を満足する。つまり、2階微分値が−0.02以上である場合、基準面53は巨視的に見て凸形状となっている。また、2階微分値が0.02以下である場合、基準面53は巨視的に見て凹形状となっている。ここで、アレイ形成領域AR1とは、基準面53において、レンズアレイ52が配置されている領域である。アレイ形成領域AR1内では、複数のレンズ部54が2次元的に配列されて密集した状態となっている。アレイ形成領域AR1は、レンズ面51に対応する基準面53の全体又は一部に設定されており、少なくともレンズLxの有効径領域を含む。つまり、アレイ形成領域AR1は、有効径領域と同じであってもよいし、有効径領域より大きくても小さくてもよい。なお、アレイ形成領域AR1の周縁においてレンズ部54の一部が欠けた状態でレンズ部54が配置されていてもよい。図2はあくまで一例であるため、光軸OA付近にレンズアレイ52が形成されず、有効径領域内のどこか一部に形成される場合も想定される。
また、レンズLxは、以下の条件式を満足する。
0<Ra/Rb<1 … (1)
4d・Ra≦Dx+Dy≦8d・Ra … (2)
ただし、値Raはレンズ部54の曲率半径の絶対値であり、値Rbは基準面53の近軸曲率半径の絶対値であり、値Dxはレンズ部54のX方向のアレイピッチであり、値Dyはレンズ部54のY方向のアレイピッチであり、値dはレンズ部54の基準面53からの突出量及び陥没量のいずれか一方の最大値である。なお、各レンズ部54の曲率半径は、アレイ形成領域AR1内で同一となっている。
条件式(1)は、レンズ部54の曲率半径が基準面53の近軸曲率半径より小さいことを規定する。
条件式(2)は、隣接するレンズ部54の配置状態を規定する。条件式(2)を満たすことにより、基準面53が非球面であっても、レンズ部54は略隙間なく並び、連続的に繋がる構造となる。これにより、所望の光学特性を得ることができる。条件式(2)の下限値を上回ることにより、レンズ部54が隙間なく繋がるために必要な最低限又は密度の個数の2倍以上にならず、レンズアレイ52の加工性及び成形性を良好に維持することができる。
図5(A)及び5(B)は、条件式(2)を説明する図であり、図5(A)は、レンズアレイ52の部分拡大図であり、図5(B)は、条件式(2)に関連して、基準面53の凹凸の向きとレンズ部54の凹凸の向きとの関係を説明する図である。図5(A)に示すように、基準面53が平面の場合、レンズ部54同士が隙間なく繋がる条件は、以下の計算で求められ、条件式(2)の上限値としている。
√(Dx+Dy)=2・√(Ra−(Ra−d)
Dx+Dy=4(Ra−(Ra−d)
=4Ra(1−(1−d/Ra)
≒4Ra・2d/Ra=8d・Ra
値8d・Raは、値d/Raを1より十分小さいものとして近似した結果であり、値d/Raは、後述する条件式(3)を満たすことが好ましい。なお、条件式(2)の下限値4d・Raは、加工性又は成形性を考慮して設定している。
レンズ部54の凹凸の向きと基準面53の凹凸の向きとが一致する場合、図5(B)に一致基準面53aとして示すように、アレイピッチDaは平面の基準面53bの場合のアレイピッチDbよりも大きくなる。そのため、条件式(2)を満たせばレンズ部54同士が隙間なく繋がる。一方、レンズ部54の凹凸と基準面53の凹凸とが逆の場合、図5(B)に反対基準面53cとして示すように、アレイピッチDcは平面の基準面53bの場合のアレイピッチDbよりも小さくなる。そのため、条件式(2)を満たしてもレンズ部54同士が隙間なく繋がらない可能性がある。
複数のレンズ部54は、有効径領域において、少なくとも1000個以上配置される。レンズ部54を少なくとも1000個以上配置することにより、基準面53の形状がポリゴン面のように粗くなることを防ぎ、基準面53が本来有する光学作用を維持することができる。なお、複数のレンズ部54は、有効径領域において、少なくとも2000個以上配置されることがより好ましい。
また、レンズLxは、以下の条件式を満足する。
0<d/Ra<0.02 … (3)
条件式(3)は、レンズ部54の基準面53からの突出量又は陥没量とレンズ部54の曲率半径との関係を規定する。条件式(3)の上限値を下回ることにより、レンズ部54の曲率半径に対してレンズ部54の突出量又は陥没量が大きくなりすぎず、レンズアレイ52の加工又は成形を容易にすることができる。例えば、レンズLxを成形型を用いて成形する場合、成形型から成形品であるレンズLxを離型できなくなる等の不具合を防ぐことができる。
なお、条件式(3)は、以下の式を満足することがより好ましい。
0<d/Ra<0.01 … (3)’
また、レンズLxは、は、以下の条件式を満足する。
d≦50μm … (4)
条件式(4)は、レンズ部54の基準面53からの突出量又は陥没量を規定する。条件式(4)を満たすことにより、レンズアレイ52の加工又は成形を容易にすることができる。また、レンズLxの芯厚を適切なものとすることができ、レンズLxの本来の光学特性を維持することができる。
なお、条件式(4)は、以下の式を満足することがより好ましい。
d≦25μm … (4)’
図1(A)に戻って、鏡胴12は、照明用光学系11を収納し保持するものである。鏡胴12は、光源22側からの光束を入射させるレンズ開口部13aと、照明用光学系11を通過した光束を出射させるレンズ開口部13bとを有する。
アレイ光源20は、基板21と複数の光源22とを有する。光源22は、光軸OAに垂直な方向に配置されている。つまり、光源22は、基板21の面上にアレイ状に配置されている。複数の光源22として、例えば複数のLEDチップその他の固体光源がある。図1(B)に示すように、複数の光源22は、例えば2次元状に配列されている。各光源22は、略正方形の輪郭を有し、同一サイズとなっている。隣接する光源22間には、細い線状の隙間GAが形成されている。アレイ光源20の全体としては、個々の光源22が集合した矩形領域RRが照射面上の明領域に対応する発光領域となっている。照明用光学系11は、その2次元状に配列された複数の光源22の像を投影する。この場合、隙間GAに対応する暗線の発生を防ぎつつ明領域外縁において明暗の境界を明確にした2次元状の照明とすることができる。隣接する光源22の隙間GAの距離Ldは100μm以下となっている。光源22の隙間GAの距離Ldは、第3レンズL3のレンズアレイ52のアレイピッチDx,Dyに対応したものとなっており、X方向の長さWxがY方向の長さWyと同じでもよいし、異なっていてもよい。アレイ光源20は、例えば同色のLEDチップで構成してもよいし、異なる色のLEDチップで構成してもよい。
制御装置30は、アレイ光源20の動作を駆動するものである。制御装置30は、アレイ光源20を構成する各光源22の点灯状態を制御する。例えば、制御装置30は、光源22であるLEDチップの1つ1つと配線で繋がっており、LEDチップは間欠的に又は連続的に点灯する。特定の光源22のみを選択的に点灯することによって所望の点灯パターンを形成することもできる。制御装置30は、オペレーターの操作によって動作してもよいし、プログラムによって動作してもよい。
以下、照明装置100の使用状態の一例について説明する。まず、オペレーター又はプログラムによって制御装置30を動作させアレイ光源20のうち点灯される光源22が選択される。次に、制御装置30を動作させ選択された光源22が点灯する。光源22から放出された光線は、照明用光学ユニット10に入射し、照明用の出射光に変換される。照明用光学ユニット10を通過した光線は、被照明物体SBに照明される。被照明物体SBの照射面上には、アレイ光源20の明暗に対応した像が照明強度の高い状態で投影される。この際、点灯された光源22の群に対応する明領域の外縁において明暗の境界が明確な状態とできる。
以上説明した光学素子は、非球面の基準面53にレンズアレイ52を設けることにより、照射強度を確保しつつ強度分布を均一化できる。非球面では局所的に凹凸が変化する場合があるが、基準面53の非球面式の2階微分値がアレイ形成領域内において−0.02以上又は0.02以下であれば、基準面53に急激な凹凸変化はない。また、レンズ部54の凹凸の向きと基準面53の凹凸の向きとが一致するため、光学素子のアレイ形成領域AR1内でレンズ部54のパワーに大きな変化は生じない。レンズアレイ52のアレイピッチDx,Dyを変えることにより、X方向及びY方向における光のぼかし量や発散角を容易に調整させることができる。また、アレイピッチDx,Dyやレンズ部54の突出量又は陥没量の最大値dが略一定であり、条件式(2)を満たすことにより隣接するレンズ部54が連続的に繋がる構造となるため、レンズアレイ52の加工又は成形が容易となる。また、光学素子であるレンズLxの非球面(すなわちレンズ面51)にレンズアレイ52を設けるため、別途レンズアレイを有する平板を組み合わせる必要がなく、部品点数を削減し、コストダウンを図ることができる。
また、照明用光学ユニット及び照明装置は、上述の光学素子であるレンズLxを照明用光学系11に組み込むことにより、照射強度を確保しつつ強度分布を均一化できる。そのため、光源と光学手段である照明用光学ユニット10等との組み立て誤差や温度等の外乱の影響に強くなる。また、照射面上での個々の光源22からの放射光の強度が確保できるため、特定の領域を照らさない場合、あるいは文字や形を模る場合において、明領域内に光源22間の隙間GAに対応する暗線が生じることを防ぎつつ明領域外縁において明暗の境界を明確にすることができる。
〔実施例〕
以下、本発明に係る光学素子等の実施例を示す。各実施例に使用する記号は下記の通りである。
Ra:レンズ部54の曲率半径の絶対値
Rb:基準面53の近軸曲率半径の絶対値
Dx:レンズ部54のX方向のアレイピッチ
Dy:レンズ部54のY方向のアレイピッチ
d:レンズ部54の基準面53からの突出量及び陥没量のいずれか一方の最大値
〔実施例1〕
図6(A)に実施例1の光学素子であるレンズLxのレンズアレイ52の部分拡大図を示す。実施例1のレンズLxは、凸状の基準面53に複数の凸状のレンズ部54を配置している。実施例1のレンズLxの基準面53上のレンズアレイ52の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.016mm
Dx2+Dy2:1.28
実施例1のレンズLxは、条件式(1)〜(4)のすべてを満たす。図6(A)に示すように、実施例1のレンズLxにおいて、隣接するレンズ部54同士が繋がっており、基準面53が露出していない。
〔実施例2〕
図6(B)に実施例2の光学素子であるレンズLxのレンズアレイ52の部分拡大図を示す。実施例2のレンズLxは、凹状の基準面53に複数の凹状のレンズ部54を配置している。実施例2のレンズLxの基準面53上のレンズアレイ52の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.016mm
Dx2+Dy2:1.28
実施例2のレンズLxは、条件式(1)〜(4)のすべてを満たす。図6(B)に示すように、実施例2のレンズLxにおいて、隣接するレンズ部54同士が繋がっており、基準面53が露出していない。
〔比較例1〕
図7(A)に比較例1の光学素子であるレンズのレンズアレイ62の部分拡大図を示す。比較例1のレンズは、凸状の基準面63に複数の凹状のレンズ部64を配置している。比較例1のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.016mm
Dx2+Dy2:1.28
図7(A)に示すように、比較例1のレンズは、条件式(1)〜(4)を満たすものの、基準面63とレンズ部64とで凹凸の向きが異なるため、隣接するレンズ部64同士が繋がらない部分が生じる。そのため、レンズ部64の境界に基準面63の一部が露出する。
〔比較例2〕
図7(B)に比較例2の光学素子であるレンズのレンズアレイ62の部分拡大図を示す。比較例2のレンズは、凹状の基準面63に複数の凸状のレンズ部64を配置している。比較例2のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.016mm
Dx2+Dy2:1.28
図7(B)に示すように、比較例2のレンズは、条件式(1)〜(4)を満たすものの、基準面63とレンズ部64とで凹凸の向きが異なるため、隣接するレンズ部64同士が繋がらない部分が生じる。そのため、レンズ部64の境界に基準面63の一部が露出する。
〔比較例3〕
図7(C)に比較例3の光学素子であるレンズのレンズアレイ62の部分拡大図を示す。比較例3のレンズは、凸状の基準面63に複数の凸状のレンズ部64を配置している。比較例3のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。
Ra:6mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.016mm
Dx2+Dy2:1.28
図7(C)に示すように、比較例3のレンズは、基準面63とレンズ部64の凹凸の向きが一致するものの、条件式(2)を満たさないため、隣接するレンズ部64同士が繋がらない部分が生じる。そのため、レンズ部64の境界に基準面63の一部が露出する。
〔比較例4〕
図7(D)に比較例4の光学素子であるレンズのレンズアレイ62の部分拡大図を示す。比較例4のレンズは、凸状の基準面63に複数の凸状のレンズ部64を配置している。比較例4のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:0.8mm
Dy:0.8mm
d:0.010mm
Dx2+Dy2:1.28
図7(D)に示すように、比較例4のレンズは、基準面63とレンズ部64の凹凸の向きが一致するものの、条件式(2)を満たさないため、隣接するレンズ部64同士が繋がらない部分が生じる。そのため、レンズ部64の境界に基準面63の一部が露出する。
〔比較例5〕
図7(E)に比較例5の光学素子であるレンズのレンズアレイ62の部分拡大図を示す。比較例5のレンズは、凸状の基準面63に複数の凸状のレンズ部64を配置している。比較例5のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。
Ra:10mm
Rb:50mm
Dx:1.0mm
Dy:1.0mm
d:0.016mm
Dx2+Dy2:2.0
図7(E)に示すように、比較例5のレンズは、基準面63とレンズ部64の凹凸の向きが一致するものの、条件式(2)を満たさないため、隣接するレンズ部64同士が繋がらない部分が生じる。そのため、レンズ部64の境界に基準面63の一部が露出する。
〔実施例3〕
以下、本発明に係る照明用光学ユニット等の実施例を示す。各実施例に使用する記号は下記の通りである。
R:近軸曲率半径
D:軸上面間隔
n:レンズ材料のd線に対する屈折率
eff.dia.:レンズの有効半径
その他、記号Surf.Nは、面番号を意味し、記号INFは、無限大又は∞を意味し、記号P-Sは、出射側面又は照射面を意味し、記号L-Sは、光源側面又はアレイ光源20の表面Iを意味し、記号STOPは、開口絞りSを意味する。
実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にZ軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure 2017161562
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
また、面番号の後に「**」が記載されている面は、レンズアレイ52を有する面である。
実施例3の光学素子であるレンズLxは、凹状の基準面53に複数の凹状のレンズ部54を配置している。実施例3のレンズLxの基準面53上のレンズアレイ52の寸法等を以下に示す。実施例3において、アレイ形成領域AR1はレンズLxの有効半径となっている。
Ra:20mm
Rb:59.4525mm
Dx:0.83mm
Dy:0.34mm
d:0.006mm
Dx2+Dy2:0.80
4d・Ra:0.48
8d・Ra:0.96
第3レンズL3の光源22側のレンズ面S32の有効半径:18.3mm
レンズ部54の個数:3728個
実施例3のレンズLxは、条件式(1)〜(4)のすべてを満たす。
実施例3の照明用光学系11のレンズ面等のデータを以下の表1に示す。
〔表1〕
Surf.N R(mm) D(mm) n eff.dia.(mm)
P-S INF INF
1* 31.149 18.59 1.4884 27.9
2* -49.675 4.17 27.0
3* -32.646 9.00 1.5788 24.3
4* 26.185 12.32 19.9
5(STOP) INF 1.00 19.7
6* 24.876 18.00 1.4884 19.5
7** -59.453 6.97 18.3
8 14.563 11.00 1.5935 12.5
9 34.853 7.28 10.4
L-S INF 0
実施例3の照明用光学系11の非球面係数を以下の表2に示す。ここで、10のべき乗数(例えば2.5×10−02)をE(例えば2.5E−02)を用いて表すものとする。
〔表2〕
第1面
R=31.149, κ=0.0648, A4=-3.6516E-06, A6=-4.8218E-09,
A8=-4.4050E-12, A10=1.2085E-14, A12=-2.4491E-17
第2面
R=-49.675, κ=0.3844, A4=1.4182E-05, A6=-6.3292E-09,
A8=-1.0251E-11, A10=6.8499E-15, A12=0.0000E+00
第3面
R=-32.646, κ=-0.5577, A4=4.8451E-05, A6=-9.8981E-08,
A8=1.1597E-10, A10=-7.1092E-14, A12=2.4753E-17
第4面
R=26.185, κ=-5.3391, A4=7.1172E-05, A6=-1.8300E-07,
A8=1.3042E-10, A10=-4.1816E-15, A12=0.0000E+00
第6面
R=24.876, κ=-0.8924, A4=5.9151E-06, A6=-2.2352E-08,
A8=1.7724E-10, A10=-4.1860E-13, A12=0.0000E+00
第7面
R=-59.453, κ=0.7735, A4=-4.4668E-07, A6=1.3195E-07,
A8=-4.4771E-10, A10=3.9284E-13, A12=0.0000E+00
図1(A)は、実施例3の照明用光学ユニット10等の断面図である。照明用光学ユニット10は、4枚のレンズで構成されており、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4とを有する。第1レンズL1側が出射側又は照射面側であり、第4レンズL4側が光源22側となっている。照明用光学系11のうち第3レンズL3は、光源33側のレンズ面S32にレンズアレイ52を有するレンズLxとなっている。第2レンズL2と第3レンズL3との間には、開口絞りSが設けられている。なお、符号Iは、アレイ光源20の表面を示す。
図8(A)及び8(B)は、実施例3のシミュレーション結果を示す。本シミュレーションでは、図8(C)に示すように、3行3列の光源22を配列したアレイ光源20を想定したものとなっている。個々の光源22は、一辺の長さVが0.3mmの正方形である。また、光源22の隙間GAの距離Ldに関しては、X方向の長さWxが0.065mmであり、Y方向の長さWyが0.01mmである。
図8(A)は、実施例3における2次元配列の光源22の点灯例である。図8(B)は、被照明物体SB側に投射される照明用光学ユニット10の照明光の配向特性を説明する図である。図8(B)において、横軸は角度(単位:°)を示し、縦軸は光度(単位:カンデラ)を示す。また、実線M1は図8(A)のX方向の光度プロファイルを示し、実線M2は図8(A)のY方向の光度プロファイルを示す。なお、照明光の配向特性に関する評価方法は、以降の比較例6〜8においても同様である。図8(A)に示すように、照明強度(光度)を確保しつつ、照明光が適度に均一化されて明領域外縁において明暗の境界が明確であり、かつ明領域内に光源22間の隙間GAに対応する暗線が見えない状態となっている。つまり、図8(B)に示すように、光度曲線の周辺部において、曲線の立ち上がり及び立ち下がりが急激にゼロとなるため、図8(A)に示すように、照明光にノイズがほとんど見られない。
〔比較例6〕
比較例6では、実施例3の照明用光学ユニット10と略同様の構成であるが、レンズアレイ52を有する光学素子を備えていない。アレイ光源20の構成は実施例3と同様である。
図9(A)及び9(B)は、比較例6のシミュレーション結果を示す。本シミュレーションの条件は実施例3と同様である。図9(A)は、比較例6における2次元配列の光源22の点灯例である。この場合、照明強度は強いものの、暗線がはっきり見えた状態となっている。
〔比較例7〕
比較例7では、実施例3の照明用光学ユニット10と略同様の構成であるが、照明用光学系11の第3レンズL3の光源22側のレンズ面S32において、凸状の基準面63に複数の凹状のレンズ部64を配置している。比較例7のレンズの基準面63上のレンズアレイ62の寸法等を以下に示す。アレイ光源20の構成は実施例3と同様である。
Ra:30mm
Rb:59.4525mm
Dx:0.75mm
Dy:0.50mm
d:0.004mm
Dx2+Dy2:0.81
4d・Ra:0.48
8d・Ra:0.96
第3レンズL3の光源22側のレンズ面S32の有効半径:18.3mm
レンズ部64の個数:2806個
比較例7のレンズは、条件式(1)〜(4)を満たすが、基準面63とレンズ部64の凹凸の向きが一致していない。
図9(C)及び9(D)は、比較例7のシミュレーション結果を示す。本シミュレーションの条件は実施例3と同様である。図9(C)は、比較例7における2次元配列の光源22の点灯例である。図9(C)に示すように、暗線は見えないものの、明領域外縁において明暗の境界がぼやけた状態となっている。これは、後述するように、レンズの中心部と周辺部とでレンズ部のパワーが変化する、すなわちレンズの中心部と周辺部とで光の発散角が変化していることに起因したノイズである。図9(D)の点線CNで囲った部分を参照すると、光度曲線の立ち上がり及び立ち下がりが緩やかであり、照明光にノイズが発生していることがわかる。
以下、比較例7の照明用光学ユニットで発生するノイズについて考察するために、単一光源での光度プロファイルを評価した。図10(A)はレンズの中心部の照明光の配向特性を示し、図10(B)はレンズの周辺部の照明光の配向特性を示し、図10(C)はレンズの中心部及び周辺部(つまり、アレイ形成領域全体)の照明光の配向特性を示す。
図10(A)及び10(B)に示すように、レンズの中心部と周辺部とでレンズ部のパワーが変化することで、レンズの中心部と周辺部の光の発散角に差が生じるため、レンズの周辺部では照明光にノイズが発生し(点線CNで囲った部分を参照)、図10(C)に示すように、レンズのアレイ形成領域全体でもノイズが残留した状態となる(点線CNで囲った部分を参照)。
〔比較例8〕
比較例8では、実施例3の照明用光学ユニット10と略同様の構成であるが、照明用光学系11の第3レンズL3の光源22側のレンズ面S32において、凸状の基準面63に複数の凹状のレンズ部64を配置している。比較例8の光学素子の基準面63上のレンズアレイ62の寸法等を以下に示す。アレイ光源20の構成は実施例3と同様である。
Ra:20mm
Rb:59.4525mm
Dx:0.53mm
Dy:0.30mm
d:0.003mm
Dx2+Dy2:0.37
4d・Ra:0.24
8d・Ra:0.48
第3レンズL3の光源22側のレンズ面S32の有効半径:18.3mm
レンズ部64の個数:6617個
図9(E)及び9(F)は、比較例8のシミュレーション結果を示す。本シミュレーションの条件は実施例3と同様である。図9(E)は、比較例8における2次元配列の光源22の点灯例である。図9(E)に示すように、暗線は見えないものの、明領域外縁において明暗の境界がぼやけた状態となっている。図9(F)の点線CNで囲った部分を参照すると、光度曲線の立ち上がり及び立ち下がりが緩やかであり、光にノイズが発生していることがわかる。比較例8のレンズは、比較例7のレンズよりもレンズ部64の数が多いため、比較例7と比べてノイズ成分としては小さくなっているが、実施例3と同程度の効果は得られていない。
〔第2実施形態〕
以下、第2実施形態の光学素子等について説明する。第2実施形態の光学素子等は、第1実施形態の光学素子等を部分的に変更したものであり、特に説明しない事項は、第1実施形態の光学素子等と同様である。
本実施形態の光学素子であるレンズLxは、第1実施形態のレンズLxと異なり、基準面が非球面ではなく、球面となっている。これにより、レンズLxは、条件式(2)ではなく、以下の条件式(5)を満足するものとなる。
4d・Ra/(1−Ra/Rb)≦Dx+Dy≦8d・Ra/(1−Ra/Rb) … (5)
ここで、1/(1−Ra/Rb)は、基準面が球面のときにのみ必要な補正係数である。
レンズLxの複数のレンズ部54は、基準面53上に規定されるアレイ形成領域AR1を光軸OAに垂直なXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置される。また、レンズ部54の基準面53からの突出量又は陥没量の最大値dは、基準面53の法線NVに沿って略一定の値になるように設定される。また、レンズ部54の凹凸の向きと基準面53の凹凸の向きとは一致している。また、レンズLxは、既に説明した条件式(1)、(3)及び(4)を満足する。
以上、実施形態に係る照明用光学ユニット及び照明装置について説明したが、本発明に係る照明用光学ユニット等は、上記例示のものには限られない。例えば、上記実施形態において、照明用光学ユニット10の出射側に折り曲げミラーを設けてもよい。
また、上記実施形態において、照明用光学系11のうち第3レンズL3の光源22側のレンズ面S32にレンズアレイ52を設けたが、上述した基準面53の条件を満たせば、光学系の設計に応じて他のレンズのレンズ面に設けることもできる。また、レンズLxの片方のレンズ面だけでなく、両方のレンズ面にレンズアレイ52を設けてもよい。また、レンズアレイ52を付与したレンズLxを2枚以上設けてもよい。
上記実施形態において、アレイ光源20を2次元配列の光源22で構成したが、光源22を直線状に配列してもよい。
上記実施形態において、アレイ形成領域AR1を基準面53の一部に設定した場合、照射する領域をシャッター等で切り替えて制御してもよい。この場合、照明光の強度分布を均一化する場合にレンズLxのレンズアレイ52部分を開放し、均一化しない場合にレンズアレイ52部分を遮光する。
10…照明用光学ユニット、 11…照明用光学系、 12…鏡胴、 13a…レンズ開口部、 13b…レンズ開口部、 20…アレイ光源、 21…基板、 22…光源、 30…制御装置、 51,S32…レンズ面、 52…レンズアレイ、 53…基準面、 54…レンズ部、 100…照明装置、 AR1…アレイ形成領域、 GA…隙間、 L1〜Ln,Lx…レンズ、 NV…法線、 OA…光軸、 P1…頂点、 P2…境界、 SB…被照明物体

Claims (10)

  1. 複数のレンズ部を有するレンズアレイが非球面の基準面上に配置された光学素子であって、
    前記複数のレンズ部は、前記基準面上に規定されるアレイ形成領域を光軸に垂直なXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置され、
    前記レンズ部の前記基準面からの突出量及び陥没量のいずれか一方の最大値は、前記基準面の法線に沿って略一定の値になるように設定され、
    近軸において、前記複数のレンズ部の凹凸の向きと前記基準面の凹凸の向きとが一致しており、かつ前記基準面の非球面式の2階微分値が前記アレイ形成領域内において−0.02以上及び0.02以下のいずれか一方であり、
    以下の条件式を満足することを特徴とする光学素子。
    0<Ra/Rb<1 … (1)
    4d・Ra≦Dx+Dy≦8d・Ra … (2)
    ただし、
    Ra:前記レンズ部の曲率半径の絶対値
    Rb:前記基準面の近軸曲率半径の絶対値
    Dx:前記レンズ部のX方向のアレイピッチ
    Dy:前記レンズ部のY方向のアレイピッチ
    d:前記レンズ部の前記基準面からの突出量及び陥没量のいずれか一方の最大値
  2. 複数のレンズ部を有するレンズアレイが球面の基準面上に配置された光学素子であって、
    前記複数のレンズ部は、前記基準面上に規定されるアレイ形成領域を光軸に垂直なXY平面に関して分割して、X方向に等間隔で配置され、かつY方向に等間隔で配置され、
    前記レンズ部の前記基準面からの突出量及び陥没量のいずれか一方の最大値は、前記基準面の法線に沿って略一定の値になるように設定され、
    前記レンズ部の凹凸の向きと前記基準面の凹凸の向きとが一致しており、
    以下の条件式を満足することを特徴とする光学素子。
    0<Ra/Rb<1 … (1)
    4d・Ra/(1−Ra/Rb)<Dx+Dy<8d・Ra/(1−Ra/Rb) … (5)
    ただし、
    Ra:前記レンズ部の曲率半径の絶対値
    Rb:前記基準面の近軸曲率半径の絶対値
    Dx:前記レンズ部のX方向のアレイピッチ
    Dy:前記レンズ部のY方向のアレイピッチ
    d:前記レンズ部の前記基準面からの突出量及び陥没量のいずれか一方の最大値
  3. 前記アレイ形成領域は、有効径の全領域であることを特徴とする請求項1及び2のいずれか一項に記載の光学素子。
  4. 前記有効径領域において、複数のレンズ部は、少なくとも1000個以上配置されることを特徴とする請求項3に記載の光学素子。
  5. 前記アレイ形成領域は、有効径の一部の領域であることを特徴とする請求項1及び2のいずれか一項に記載の光学素子。
  6. 以下の条件式を満足することを特徴とする請求項1から5までのいずれか一項に記載の光学素子。
    0<d/Ra<0.02 … (3)
  7. 以下の条件式を満足することを特徴とする請求項1から6までのいずれか一項に記載の光学素子。
    d≦50μm … (4)
  8. 光軸方向に配列された複数の光学素子を有し、前記光軸に垂直な方向に配置された複数の光源からの入射光を照明用の出射光に変換する照明用光学系を備え、
    前記複数の光学素子のうち少なくとも1つは、請求項1から7までのいずれか一項に記載の光学素子であることを特徴とする照明用光学ユニット。
  9. 請求項8に記載の照明用光学ユニットと、
    前記複数の光源を有するアレイ光源と、
    を備えることを特徴とする照明装置。
  10. 前記光源はLEDチップであることを特徴とする請求項9に記載の照明装置。
JP2016043073A 2016-03-07 2016-03-07 光学素子、照明用光学ユニット及び照明装置 Pending JP2017161562A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043073A JP2017161562A (ja) 2016-03-07 2016-03-07 光学素子、照明用光学ユニット及び照明装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043073A JP2017161562A (ja) 2016-03-07 2016-03-07 光学素子、照明用光学ユニット及び照明装置

Publications (1)

Publication Number Publication Date
JP2017161562A true JP2017161562A (ja) 2017-09-14

Family

ID=59856939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043073A Pending JP2017161562A (ja) 2016-03-07 2016-03-07 光学素子、照明用光学ユニット及び照明装置

Country Status (1)

Country Link
JP (1) JP2017161562A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908391B2 (en) 2018-07-12 2021-02-02 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
CN113310027A (zh) * 2020-02-27 2021-08-27 扬明光学股份有限公司 车用的镜头、车灯装置和可用于交通工具的镜头及其制造方法
CN114992575A (zh) * 2021-03-02 2022-09-02 扬明光学股份有限公司 用于交通工具的头灯及投影装置
WO2024066634A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 投影镜头、投影装置及车辆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908391B2 (en) 2018-07-12 2021-02-02 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US11822056B2 (en) 2018-07-12 2023-11-21 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
CN113310027A (zh) * 2020-02-27 2021-08-27 扬明光学股份有限公司 车用的镜头、车灯装置和可用于交通工具的镜头及其制造方法
CN113310027B (zh) * 2020-02-27 2024-01-23 扬明光学股份有限公司 车用的镜头、车灯装置和可用于交通工具的镜头及其制造方法
CN114992575A (zh) * 2021-03-02 2022-09-02 扬明光学股份有限公司 用于交通工具的头灯及投影装置
WO2024066634A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 投影镜头、投影装置及车辆

Similar Documents

Publication Publication Date Title
US5894539A (en) Line light source having light pipe with rectangular cross-section
JP6635111B2 (ja) 照明用光学ユニット及び照明装置
JP5747196B2 (ja) 光学素子、該光学素子を含む照明装置及び該照明装置を使用した照明モジュール
US7988340B2 (en) Prism sheet and backlight module
US10120118B2 (en) Backlight module having quantum dot and manufacturing method thereof
JP2017161562A (ja) 光学素子、照明用光学ユニット及び照明装置
KR20140008425A (ko) 헤드업 디스플레이 장치
JP2006031941A (ja) 面状光源ユニット
JP2017009778A (ja) 照明用光学ユニット及び照明装置
JP2011014434A5 (ja)
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
JP2010123295A (ja) 照明ユニットと同ユニットを用いた照明装置
KR20110109793A (ko) 광 조사 장치
WO2018225376A1 (ja) 照明ユニット
JP4833973B2 (ja) 視差を縮小し、輝度を維持する拡散体
WO2012132872A1 (ja) 照明装置
WO2021185299A1 (zh) 显示设备
CN111599835B (zh) 一种显示面板及其制备方法
WO2015005424A1 (ja) 光学素子及び該光学素子を含む照明装置
JP5703180B2 (ja) レンズ光学素子及び表示装置
KR102002546B1 (ko) 화상생성장치용 백라이트 유닛
US20190391450A1 (en) Planar lighting device
JP7060932B2 (ja) Led照明装置
CN114791683A (zh) 发光模组、显示模组及显示装置
JP2007163615A (ja) 面発光装置、輝度均一化方法及び液晶表示装置