JP2017161450A - Terahertz wave imaging device - Google Patents

Terahertz wave imaging device Download PDF

Info

Publication number
JP2017161450A
JP2017161450A JP2016048305A JP2016048305A JP2017161450A JP 2017161450 A JP2017161450 A JP 2017161450A JP 2016048305 A JP2016048305 A JP 2016048305A JP 2016048305 A JP2016048305 A JP 2016048305A JP 2017161450 A JP2017161450 A JP 2017161450A
Authority
JP
Japan
Prior art keywords
frequency
transmission
signal
terahertz
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048305A
Other languages
Japanese (ja)
Other versions
JP6706790B2 (en
Inventor
佳徳 鵜澤
Keitoku Uzawa
佳徳 鵜澤
木内 等
Hitoshi Kiuchi
等 木内
崇文 小嶋
Takafumi Kojima
崇文 小嶋
川瀬 晃道
Akimichi Kawase
晃道 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
National Institute of Information and Communications Technology
National Institute of Natural Sciences
Original Assignee
Nagoya University NUC
National Institute of Information and Communications Technology
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, National Institute of Information and Communications Technology, National Institute of Natural Sciences filed Critical Nagoya University NUC
Priority to JP2016048305A priority Critical patent/JP6706790B2/en
Publication of JP2017161450A publication Critical patent/JP2017161450A/en
Application granted granted Critical
Publication of JP6706790B2 publication Critical patent/JP6706790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a terahertz wave imaging device that can obtain an image of a subject easily with a simple structure.SOLUTION: A signal with a terahertz band containing a plurality of frequency components with frequency intervals f1 is generated in a first com generator 11. The terahertz waves with the frequencies are guided selectively to first to n-th transmission antennas 13a to 13n. The terahertz waves with the frequencies are delivered to different portions of a subject 100. The terahertz wave is received by a reception antenna 14. A signal with a terahertz band containing a plurality of frequency components with frequency intervals f2, which is a little different from the frequency intervals f1, is generated in a second com generator 16. The signal is mixed with a reception signal with a terahertz band in mixing means 15a to be converted into a signal with a low-frequency band. Image processing means 18 having received the resulting signal generates an image of the subject 100 from the relation between sensing information corresponding to each frequency component (for example, signal intensity in which the transmission intensity is reflected) and the sensed portion of the subject 100.SELECTED DRAWING: Figure 1

Description

本発明は、テラヘルツ帯の電磁波を用いて被写体のイメージ像を取得するテラヘルツ波イメージング装置に関する。   The present invention relates to a terahertz wave imaging apparatus that acquires an image of a subject using electromagnetic waves in a terahertz band.

近年、テラヘルツ(THz)波とは、約0.1〜10THz(波長3mm〜30μm)の電磁周波数帯を指し、この周波数帯域は電波と光波の中間に位置している。そして、テラヘルツ波は、電波のように、紙、プラスチック、ビニール、繊維、半導体、脂肪、粉体、氷など様々な物質を透過できるとともに、光波のようにレンズやミラーで空間を自由に取り回すことができる。また、テラヘルツ波は電波帯に比べて波長が短いため、様々なイメージング用途に適した空間分解能を有している。   In recent years, a terahertz (THz) wave refers to an electromagnetic frequency band of about 0.1 to 10 THz (wavelength 3 mm to 30 μm), and this frequency band is located between radio waves and light waves. And terahertz waves can pass through various substances such as paper, plastic, vinyl, fiber, semiconductor, fat, powder, ice like radio waves, and freely surround the space with lenses and mirrors like light waves be able to. In addition, since the terahertz wave has a shorter wavelength than the radio wave band, it has a spatial resolution suitable for various imaging applications.

上述したようなテラヘルツ波の特性を利用することで、非接触・非破壊で被写体のイメージ像を得るテラヘルツ波イメージング装置が提案されている。例えば、2波長のテラヘルツ波を被写体に照射し、テラヘルツ波の吸収に波長依存性のある被写体であれば、波長による透過率の差分から被写体の透過イメージ像を得ることができるイメージング装置がある(特許文献1を参照)。   There has been proposed a terahertz wave imaging apparatus that obtains an image of a subject in a non-contact / non-destructive manner by utilizing the characteristics of the terahertz wave as described above. For example, there is an imaging apparatus that can obtain a transmission image of a subject from a difference in transmittance depending on the wavelength if the subject is irradiated with two-wavelength terahertz waves and the absorption of terahertz waves is wavelength-dependent. (See Patent Document 1).

特開2004−108905号公報JP 2004-108905 A

しかしながら、上記特許文献1に記載された発明では、2波長のテラヘルツ波を被写体に照射しなければならないので、手順が煩雑で、画像取得に要する時間が長くなってしまう。しかも、特許文献1に記載の発明では、生成したテラヘルツ波を被写体に照射する計測光と強度参照用の参照光とに分光し、計測光と参照光を同時に強度計測器へ導入する光学系が必要であるため、それだけ装置構造が複雑になるという問題もある。   However, in the invention described in Patent Document 1, since the subject must be irradiated with terahertz waves of two wavelengths, the procedure is complicated and the time required for image acquisition becomes long. In addition, in the invention described in Patent Document 1, an optical system that splits the generated terahertz wave into measurement light for irradiating the subject and reference light for intensity reference, and simultaneously introduces the measurement light and the reference light to the intensity measuring instrument. Since it is necessary, there is a problem that the structure of the apparatus becomes complicated accordingly.

そこで、本発明は、簡素な構造で簡便に被写体のイメージ像を取得できるテラヘルツ波イメージング装置の提供を目的とする。   Therefore, an object of the present invention is to provide a terahertz wave imaging apparatus that can easily acquire an image of a subject with a simple structure.

前記課題を解決するために、請求項1に係る発明は、テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部と、前記送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部と、前記受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部と、を備える。   In order to solve the above-described problem, the invention according to claim 1 is directed to a transmission unit that irradiates a subject with a transmission wave including a plurality of frequencies in the terahertz band, and a signal that the transmission wave has reached through the subject. The receiving unit that receives signals transmitted through different paths for each of the signals, and the transmission path for each frequency component received by the receiving unit correspond to the detection part of the space including the subject, and each reception information of each frequency component is detected. An image image acquisition unit that maps the pixel information of the part.

また、請求項2に係る発明は、前記請求項1に記載のテラヘルツ波イメージング装置において、前記送信部は、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、前記送信側多周波信号生成手段により生成された各周波数成分と対応付けられる複数の送信アンテナを一次元もしくは二次元に配列して構成される送信手段と、前記送信側多周波信号生成手段により生成された各周波数成分の信号を、各々対応付けられた送信アンテナへ選択的に導く送信波伝送手段と、を含み、前記受信部は、前記被写体を経て到達した全ての周波数成分の信号を受信可能な位置に配置された受信アンテナを有する受信手段と、前記受信アンテナで受信した全ての信号を導く受信波伝送手段と、を含み、前記イメージ像取得部は、前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する送信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の送信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、を含むことを特徴とする。   The invention according to claim 2 is the terahertz wave imaging apparatus according to claim 1, wherein the transmission unit generates transmission-side multifrequency signal generation means for generating a terahertz band signal including a plurality of frequency components; Transmitting means configured by arranging a plurality of transmitting antennas associated with each frequency component generated by the transmitting-side multifrequency signal generating means in one or two dimensions, and generated by the transmitting-side multifrequency signal generating means A transmission wave transmission means for selectively guiding each frequency component signal to the corresponding transmission antenna, and the reception unit can receive all frequency component signals reached through the subject. Receiving means having receiving antennas arranged at various positions, and receiving wave transmission means for guiding all signals received by the receiving antennas, and obtaining the image Receiving side multi-frequency signal generating means for generating a terahertz band signal including a plurality of frequency components each having a different low frequency difference frequency from each frequency generated by the transmitting side multi-frequency signal generating means, Included in the low frequency signal obtained from the mixing means for mixing the multifrequency signal generated by the receiving side multifrequency signal generating means as a local oscillation wave with the signal of the multifrequency component received by the receiving section An image for determining the pixel information of the detection part by using each frequency component as reception information of the detection part by the corresponding transmission antenna and creating a one-dimensional or two-dimensional image image in which the plurality of transmission antennas are arranged. And a processing means.

また、請求項3に係る発明は、前記請求項1に記載のテラヘルツ波イメージング装置において、前記送信部は、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、前記送信側多周波信号生成手段により生成された各周波数成分が含まれる信号を送信する送信アンテナを有する送信手段と、前記送信側多周波信号生成手段により生成された各周波数成分の信号の伝送タイミングを合わせて、前記送信アンテナへ導く送信波伝送手段と、を含み、前記受信部は、前記被写体を経て到達した信号を受信可能な位置へ、一次元もしくは二次元に配列された複数の受信アンテナで構成される受信手段と、前記受信手段の各受信アンテナで受信した信号から、各受信アンテナに対応させて設定した周波数成分のみを選択的に導く受信波伝送手段と、を含み、前記イメージ像取得部は、前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する受信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の受信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、を含むことを特徴とする。   The invention according to claim 3 is the terahertz wave imaging apparatus according to claim 1, wherein the transmission unit generates transmission-side multifrequency signal generation means for generating a terahertz band signal including a plurality of frequency components; Transmission means having a transmission antenna for transmitting a signal including each frequency component generated by the transmission-side multifrequency signal generation means, and transmission timing of each frequency component signal generated by the transmission-side multifrequency signal generation means A plurality of receiving antennas arranged one-dimensionally or two-dimensionally to a position where signals received via the subject can be received. And only the frequency component set corresponding to each receiving antenna is selected from the signals received by each receiving antenna of the receiving means. Receiving image transmission means for guiding the image, and the image image acquisition unit includes a plurality of frequency components having different low frequencies that are different from the frequencies generated by the transmission-side multifrequency signal generation means. Receiving-side multifrequency signal generating means for generating a terahertz band signal, and mixing the multifrequency signal generated by the receiving-side multifrequency signal generating means with a signal of a multifrequency component received by the receiving section as a local oscillation wave And a plurality of reception units that determine the pixel information of the detection part by using each of the frequency components included in the low-frequency signal obtained from the mixing part as reception information of the detection part by the corresponding reception antenna. And image processing means for creating a one-dimensional or two-dimensional image image in which antennas are arranged.

また、請求項4に係る発明は、前記請求項1に記載のテラヘルツ波イメージング装置において、前記送信部は、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、前記送信側多周波信号生成手段により生成された各周波数成分と対応付けられる複数の送信アンテナを一次元もしくは二次元に配列して構成される送信手段と、前記送信側多周波信号生成手段により生成された各周波数成分の信号を、各々対応付けられた送信アンテナへ選択的に導く送信波伝送手段と、を含み、前記受信部は、前記送信手段の各送信アンテナと対向状に配置された複数の受信アンテナを有する受信手段と、前記受信手段の各受信アンテナで受信した信号から、各受信アンテナが対向する送信アンテナの送信した周波数成分のみを選択的に導く受信波伝送手段と、を含み、前記イメージ像取得部は、前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する受信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の送信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、を含むことを特徴とする。   According to a fourth aspect of the present invention, in the terahertz wave imaging apparatus according to the first aspect, the transmitting unit generates a transmission-side multifrequency signal generating unit that generates a terahertz band signal including a plurality of frequency components; Transmitting means configured by arranging a plurality of transmitting antennas associated with each frequency component generated by the transmitting-side multifrequency signal generating means in one or two dimensions, and generated by the transmitting-side multifrequency signal generating means Transmission wave transmission means for selectively guiding the signal of each frequency component to the corresponding transmission antenna, and the reception unit is a plurality of antennas arranged opposite to each transmission antenna of the transmission means. Of the frequency components transmitted by the transmitting antennas facing each receiving antenna from the receiving means having the receiving antennas of Received wave transmission means for selectively guiding the image, the image image acquisition unit is a plurality of frequency components having different low frequencies different from each frequency generated by the transmission side multi-frequency signal generation means Receiving side multi-frequency signal generating means for generating a terahertz band signal including the multi-frequency signal generated by the receiving side multi-frequency signal generating means as a local oscillation wave signal of the multi-frequency component received by the receiving part Mixing means for mixing, and each frequency component included in the low frequency signal obtained from the mixing means is used as reception information of the detection part by the corresponding receiving antenna, thereby determining pixel information of the detection part, And an image processing means for creating a one-dimensional or two-dimensional image image in which the transmission antennas are arranged.

また、請求項5に係る発明は、前記請求項1に記載のテラヘルツ波イメージング装置において、前記送信部は、複数の周波数の光波を含む光信号を発生させる多周波光生成手段と、ポンプ光で励起させた非線形光学結晶に角度位相整合条件が満たされる角度でシード光を注入することで、ノンコリニア位相整合条件を満たす方向にアイドラー光が発生し、各シード光に対応した周波数のテラヘルツ光が出射面より照射される光パラメトリック発生器と、前記多周波光生成手段にて生成した複数の周波数の光信号をシード光とし、それぞれの角度位相整合条件を満たす角度で同時に前記光パラメトリック発生器へ注入するアクロマティック光注入光学系と、前記光パラメトリック発生器の光出射面に形成され、各周波数のテラヘルツ光を夫々異なる角度へ放射させるモノリシックグレーティングカプラーと、前記モノシリックグレーティングカプラーより異なる角度で放射された全てのテラヘルツ光を受け、被写体の配置空部を介して受信部に結像させる結像光学系と、を含み、前記受信部および前記イメージ像取得部は、前記送信部からのテラヘルツ光を非線形光学結晶の入射面で受け、ポンプ光で励起された非線形光学結晶に各周波数のテラヘルツ光が入射することで、各テラヘルツ光の周波数に対応する波長のアイドラー光が、角度位相整合条件を満たす方向にそれぞれ発生する光パラメトリック検出器と、前記光パラメトリック検出器のアイドラー光出射面に配置され、各アイドラー光の輝点を画素情報とするイメージ像を取得する撮像手段と、を含むことを特徴とする。   According to a fifth aspect of the present invention, in the terahertz wave imaging apparatus according to the first aspect, the transmission unit includes a multi-frequency light generation unit that generates an optical signal including light waves of a plurality of frequencies, and pump light. By injecting seed light into the excited nonlinear optical crystal at an angle that satisfies the angle phase matching condition, idler light is generated in a direction that satisfies the non-collinear phase matching condition, and terahertz light having a frequency corresponding to each seed light is emitted. An optical parametric generator irradiated from the surface and optical signals of a plurality of frequencies generated by the multi-frequency light generating means are used as seed light, and simultaneously injected into the optical parametric generator at angles satisfying the respective angle phase matching conditions. Formed on the light exit surface of the achromatic light injection optical system and the optical parametric generator, and the terahertz light of each frequency is different. A monolithic grating coupler that emits light at a certain angle, and an imaging optical system that receives all the terahertz light emitted from the monolithic grating coupler at different angles and forms an image on the receiving part through the arrangement space of the subject. The reception unit and the image image acquisition unit receive the terahertz light from the transmission unit at the incident surface of the nonlinear optical crystal, and the terahertz light of each frequency is incident on the nonlinear optical crystal excited by the pump light. An idler light having a wavelength corresponding to the frequency of each terahertz light is disposed on the optical parametric detector that generates in the direction satisfying the angle phase matching condition, and the idler light exit surface of the optical parametric detector. Imaging means for acquiring an image having a point as pixel information.

本発明に係るテラヘルツ波イメージング装置によれば、テラヘルツ帯の複数の周波数が、被写体を含む空間の検知部位に対応するので、各周波数成分の受信情報を各検知部位の画素情報としてマッピングすれば被写体のイメージ像を得ることができる。従って、簡素な構造で簡便に被写体のイメージ像を取得することが可能となる。   According to the terahertz wave imaging apparatus according to the present invention, since a plurality of frequencies in the terahertz band correspond to detection parts in a space including the subject, if the reception information of each frequency component is mapped as pixel information of each detection part, the subject Can be obtained. Accordingly, it is possible to easily obtain an image of the subject with a simple structure.

本発明に係るテラヘルツ波イメージング装置の第1実施形態の概略構成図である。1 is a schematic configuration diagram of a first embodiment of a terahertz wave imaging apparatus according to the present invention. 図1に示すテラヘルツ波イメージング装置の各部における周波数スペクトルである。It is a frequency spectrum in each part of the terahertz wave imaging apparatus shown in FIG. 本発明に係るテラヘルツ波イメージング装置の第2実施形態の概略構成図である。It is a schematic block diagram of 2nd Embodiment of the terahertz wave imaging device which concerns on this invention. 本発明に係るテラヘルツ波イメージング装置の第3実施形態の概略構成図である。It is a schematic block diagram of 3rd Embodiment of the terahertz wave imaging device which concerns on this invention. 本発明に係るテラヘルツ波イメージング装置の第4実施形態の概略構成図である。It is a schematic block diagram of 4th Embodiment of the terahertz wave imaging device which concerns on this invention.

次に、添付図面に基づいて、本発明に係るテラヘルツ波イメージング装置の実施形態につき説明する。   Next, an embodiment of a terahertz wave imaging apparatus according to the present invention will be described based on the attached drawings.

図1に示すのは、第1実施形態に係るテラヘルツ波イメージング装置10の概略構成である。第1コム発生器11、送信波伝送手段12、一次元若しくは二次元に配列したn個の受信アンテナ(第1受信アンテナ13a、第2受信アンテナ13b、第3受信アンテナ13c、第4受信アンテナ13d、…、第n−2受信アンテナ13n−2、第n−1受信13n−1、第n受信アンテナ13n)によって、「テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部」を構成する。   FIG. 1 shows a schematic configuration of a terahertz wave imaging apparatus 10 according to the first embodiment. 1st comb generator 11, transmission wave transmission means 12, n receiving antennas arranged in one or two dimensions (first receiving antenna 13a, second receiving antenna 13b, third receiving antenna 13c, fourth receiving antenna 13d ,..., "Transmitting unit that irradiates a subject with a transmission wave including a plurality of frequencies in the terahertz band" by the (n-2) th receiving antenna 13n-2, the (n-1) th receiving 13n-1, and the nth receiving antenna 13n) Configure.

また、受信アンテナ14、受信信号処理部15によって、「送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部」を構成する。また、受信信号処理部15内の混合手段15a、第2コム発生器16、アンプ17を介して混合手段15aからの低周波信号(後に詳述)を受ける画像処理手段18によって、「受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部」を構成する。   Further, the reception antenna 14 and the reception signal processing unit 15 constitute a “reception unit that receives a signal in which a transmission wave arrives through a subject as a signal transmitted through a different path for each frequency component”. Further, the image processing means 18 that receives the low frequency signal (detailed later) from the mixing means 15a via the mixing means 15a, the second comb generator 16 and the amplifier 17 in the received signal processing section 15 " The transmission path for each received frequency component is made to correspond to the detection part of the space including the subject, and an image image acquisition unit that maps reception information of each frequency component as pixel information of each detection part is configured.

第1コム発生器11は、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段であり、発生する周波数の間隔はf1で一定である。第1コム発生器11は、周波数既知のレーザ光を離散的な多数のスペクトルに変換するものであり、図2(a)に示すように、周波数間隔f1で離散的な周波数を得ることができる。なお、既存のコム発生器の各波長の出力は、中心波長から離れるにしたがって減衰してしまうので、各波長出力を均一化した信号を用いるようにしても良い。また、送信側多周波信号生成手段として、周波数逓倍器を用いても良い。   The first comb generator 11 is a transmission-side multi-frequency signal generating unit that generates a terahertz band signal including a plurality of frequency components, and the frequency interval of the generated frequency is constant at f1. The first comb generator 11 converts laser light of known frequency into a large number of discrete spectra, and can obtain discrete frequencies at a frequency interval f1, as shown in FIG. 2 (a). . In addition, since the output of each wavelength of the existing comb generator will attenuate | damp as it leaves | separates from a center wavelength, you may make it use the signal which made each wavelength output uniform. Further, a frequency multiplier may be used as the transmission-side multifrequency signal generating means.

送信信号伝送手段12は、フィルターバンク構造の伝送路で構成することにより、各周波数の信号を第1〜第n送信アンテナ13a〜13nへ選択的に導くことができる。例えば、基準周波数f0よりもf1だけ高い周波数成分(f0+f1)のテラヘルツ波は第1アンテナ13aへ、f0+2f1のテラヘルツ波は第2アンテナ13bへ、f0+3f1のテラヘルツ波は第3アンテナ13cへ、f0+4f1のテラヘルツ波は第4アンテナ13dへ、…、f0+(n−2)f1のテラヘルツ波は第n−2アンテナ13n−2へ、f0+(n−1)f1のテラヘルツ波は第n−1アンテナ13n−1へ、f0+nf1のテラヘルツ波は第nアンテナ13nへ、それぞれ選択的に導かれる。   The transmission signal transmission means 12 can be selectively guided to the first to nth transmission antennas 13a to 13n by being configured with a transmission line having a filter bank structure. For example, a terahertz wave having a frequency component (f0 + f1) higher by f1 than the reference frequency f0 is sent to the first antenna 13a, a terahertz wave of f0 + 2f1 is sent to the second antenna 13b, a terahertz wave of f0 + 3f1 is sent to the third antenna 13c, and a terahertz wave of f0 + 4f1 The wave is transmitted to the fourth antenna 13d,..., The terahertz wave of f0 + (n−2) f1 is transmitted to the n−2th antenna 13n−2, and the terahertz wave of f0 + (n−1) f1 is transmitted to the n−1th antenna 13n−1. The f0 + nf1 terahertz waves are selectively guided to the nth antenna 13n.

第1〜第nアンテナ13a〜13nは、一次元もしくは二次元に配列した高指向性のアンテナであり、少なくとも、被写体100の配置領域を通過するまで、第1〜第nアンテナ13a〜13nから放射された各周波数のテラヘルツ波は、隣接する周波数のテラヘルツ波と混信することがないようにする。斯くすれば、第1〜第nアンテナ13a〜13nより被写体100へ向けて放射された各周波数のテラヘルツ波は、何れも被写体100の異なる部位へ照射されることとなり、被写体100を経て受信部の受信アンテナ14へ到達した各周波数のテラヘルツ波には、被写体100の各部におけるテラヘルツ波の吸収・反射・透過率を反映した情報(振幅や位相の変化)が含まれる。   The first to n-th antennas 13a to 13n are highly directional antennas arranged one-dimensionally or two-dimensionally, and radiate from the first to n-th antennas 13a to 13n at least until they pass through the arrangement area of the subject 100. The terahertz wave having each frequency is prevented from interfering with a terahertz wave having an adjacent frequency. In this case, the terahertz waves of each frequency radiated from the first to n-th antennas 13a to 13n toward the subject 100 are all irradiated to different parts of the subject 100, and pass through the subject 100 to the receiving unit. The terahertz wave of each frequency that reaches the receiving antenna 14 includes information (amplitude and phase change) reflecting the absorption, reflection, and transmittance of the terahertz wave in each part of the subject 100.

例えば、テラヘルツ帯の電磁波に対して透明(透過率が高い)素材の被写体100にf0+(n−1)f1のテラヘルツ波が照射される部位に不透過領域100aが存在している場合、f0+(n−1)f1のテラヘルツ波は不透過領域100aで反射させられて受信部へ到達できないか、減衰させられて極端な強度低下が生じた状態となる。しかしながら、他の周波数のテラヘルツ波は、被写体100を透過しても極端な減衰は無く、適度な強度を保持したまま受信部へ到達できる。従って、各周波数のテラヘルツ波が透過した被写体100の各部位が透明か不透明かを、受信強度から推定できるのである。実際には、透明な被写体100であっても透過減衰が生じるので、透明な被写体100もイメージ像として得ることは可能であるが、説明を簡単にするため、以下では、異物混入などで生じた不透明領域100aの有無を判定できる二値化イメージ像を得るものとする。   For example, when the non-transparent region 100a exists at a site where the object 100 made of a material transparent (high in transmittance) to the terahertz band electromagnetic wave is irradiated with the t0 hertz wave of f0 + (n−1) f1, f0 + ( n-1) The t1 hertz wave of f1 is reflected by the non-transmissive region 100a and cannot reach the receiving unit, or is attenuated and is in a state where an extreme decrease in intensity occurs. However, terahertz waves of other frequencies are not extremely attenuated even when transmitted through the subject 100, and can reach the receiving unit while maintaining an appropriate intensity. Therefore, it is possible to estimate from the received intensity whether each part of the subject 100 through which the terahertz wave of each frequency is transmitted is transparent or opaque. Actually, transmission attenuation occurs even in the case of the transparent subject 100, and thus it is possible to obtain the transparent subject 100 as an image image. It is assumed that a binary image that can determine the presence or absence of the opaque region 100a is obtained.

なお、第1〜第nアンテナ13a〜13nが二次元に配列されている場合は、一回のテラヘルツ波照射で被写体100の全体像を得られるものの、全体の画素数はn個に制限されるため、十分な解像度が得られない場合もある。一方、第1〜第nアンテナ13a〜13nが一次元に配列されている場合は、一列にn個の画素を割り当てられるので、イメージ像を高解像度化できる反面、第1〜第nアンテナ13a〜13nより照射されるテラヘルツ波の照射列を少しずつ移動させて被写体100を満遍なく走査しなければならないため、走査機構が複雑になる上にイメージングにかかる時間も長くなってしまう。よって、第1〜第nアンテナ13a〜13nを一次元に配列するか、二次元に配列するかは、被写体のサイズや目的に応じて適宜に選択すれば良い。また、第1〜第nアンテナ13a〜13nから照射したテラヘルツ波が、被写体100の各検知部をシャープに透過できない場合は、適宜な光学系を用いて各周波数のテラヘルツ波を収束させ、被写体100へ照射するようにしても良い。   When the first to nth antennas 13a to 13n are two-dimensionally arranged, the entire image of the subject 100 can be obtained by one-time terahertz wave irradiation, but the total number of pixels is limited to n. For this reason, sufficient resolution may not be obtained. On the other hand, when the first to n-th antennas 13a to 13n are arranged one-dimensionally, n pixels can be assigned to one row, so that the resolution of the image can be increased, but the first to n-th antennas 13a to 13n Since the irradiation sequence of terahertz waves irradiated from 13n must be moved little by little to scan the subject 100 evenly, the scanning mechanism becomes complicated and the time required for imaging also becomes longer. Therefore, whether the first to nth antennas 13a to 13n are arranged one-dimensionally or two-dimensionally may be appropriately selected according to the size and purpose of the subject. In addition, when the terahertz waves irradiated from the first to nth antennas 13a to 13n cannot be transmitted sharply through each detection unit of the subject 100, the terahertz waves of each frequency are converged using an appropriate optical system, and the subject 100 May be irradiated.

上記のようにして、被写体100を経て受信部へ到達した各周波数のテラヘルツ波は、受信アンテナ14によって一括受信される。受信信号処理部15では、f0+f1、f0+2f1、f0+3f1、f0+4f1、…、f0+(n−2)f1、f0+(n−1)f1、f0+nfの周波数成分を含む受信信号を、受信波伝送手段15bを介して混合手段15aへ導く。この混合手段15aには、第2コム発生器16から周波数間隔f2である複数の周波数成分を含むテラヘルツ帯の信号が入力される。   As described above, the terahertz waves of the respective frequencies that have reached the receiving unit through the subject 100 are collectively received by the receiving antenna 14. In the reception signal processing unit 15, a reception signal including frequency components of f0 + f1, f0 + 2f1, f0 + 3f1, f0 + 4f1,..., F0 + (n−2) f1, f0 + (n−1) f1, and f0 + nf is received via the reception wave transmission unit 15b. To the mixing means 15a. A terahertz band signal including a plurality of frequency components having a frequency interval f2 is input from the second comb generator 16 to the mixing means 15a.

第2コム発生器16は、周波数間隔f1とは僅かに異なる周波数間隔f2である複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段であり、発生する周波数の間隔はf2で一定である。第2コム発生器16は、前述した第1コム発生器11と同様に、周波数既知のレーザ光を離散的な多数のスペクトルに変換するものであり、図2(b)に示すように、周波数間隔f2で離散的な周波数を得ることができる。なお、周波数間隔f1とf2を僅かに異ならせるのは、周波数差に応じた低い周波数にダウンコンバートするためである。よって、f1とf2の差周波数からnf1とnf2の差周波数までが低周波数帯(テラヘルツ帯に比べて低い周波数帯であり、例えばRF帯、IF帯、AF帯など任意の周波数帯)になるよう、周波数間隔f2を設定しておく。   The second comb generator 16 is a receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components having a frequency interval f2 slightly different from the frequency interval f1, and the generated frequency interval is It is constant at f2. Similar to the first comb generator 11, the second comb generator 16 converts laser light having a known frequency into a large number of discrete spectra. As shown in FIG. A discrete frequency can be obtained at the interval f2. The reason why the frequency intervals f1 and f2 are slightly different is to down-convert to a low frequency corresponding to the frequency difference. Therefore, the difference frequency between f1 and f2 to the difference frequency between nf1 and nf2 is a low frequency band (a frequency band lower than the terahertz band, for example, an arbitrary frequency band such as an RF band, an IF band, an AF band). The frequency interval f2 is set in advance.

混合手段15aには、テラヘルツ帯の受信信号と、第2コム発生器16で生成したテラヘルツ帯の複数周波数信号が入力され(図2(c)を参照)、高感度なスーパーヘテロダイン方式による周波数変換で、低周波数帯(例えば、IF帯)の信号として出力される(図2(d)を参照)。ここで、|f2−f1|=Δfとすると、Δfの周波数にはテラヘルツ波f0+f1の被写体検知情報が、2Δfの周波数にはテラヘルツ波f0+2f1の被写体検知情報が、3Δfの周波数にはテラヘルツ波f0+3f1の検知情報が、4Δfの周波数にはテラヘルツ波f0+4f1の被写体検知情報が、…、(n−2)Δfの周波数にはテラヘルツ波f0+(n−2)f1の被写体検知情報が、(n−1)Δfの周波数にはテラヘルツ波f0+(n−1)f1の被写体検知情報が、nΔfの周波数にはテラヘルツ波f0+nfの被写体検知情報がそれぞれ反映されている。例えば、不透過領域100aが透過経路となっているテラヘルツ波f0+(n−1)f1に対応する(n−1)Δfの周波数では、強度がほぼゼロである。   The terahertz band reception signal and the terahertz band multi-frequency signal generated by the second comb generator 16 are input to the mixing unit 15a (see FIG. 2C), and frequency conversion by a highly sensitive superheterodyne method is performed. Thus, it is output as a signal in a low frequency band (for example, IF band) (see FIG. 2D). If | f2-f1 | = Δf, subject detection information of terahertz wave f0 + f1 is at the frequency of Δf, subject detection information of terahertz wave f0 + 2f1 is at the frequency of 2Δf, and terahertz wave f0 + 3f1 is at the frequency of 3Δf. The detection information is the terahertz wave f0 + 4f1 subject detection information at the frequency of 4Δf, and the (n−2) Δf frequency is the terahertz wave f0 + (n−2) f1 subject detection information (n−1). The frequency of Δf reflects subject detection information of terahertz wave f0 + (n−1) f1, and the frequency of nΔf reflects subject detection information of terahertz wave f0 + nf. For example, the intensity is almost zero at the frequency of (n−1) Δf corresponding to the terahertz wave f0 + (n−1) f1 in which the non-transparent region 100a is a transmission path.

上記のようにして混合手段15aで得られた低周波数帯の信号(低周波信号)は、アンプ17で適宜増幅され、画像処理手段18へ供給される。この画像処理手段18は、低周波信号に含まれる各周波数成分を、該当する送信アンテナ13による検知部位の受信情報として用いることにより、検知部位の画素情報を決定する。   The low frequency band signal (low frequency signal) obtained by the mixing unit 15 a as described above is appropriately amplified by the amplifier 17 and supplied to the image processing unit 18. This image processing means 18 determines the pixel information of the detection part by using each frequency component included in the low frequency signal as the reception information of the detection part by the corresponding transmission antenna 13.

例えば、図1中、受信アンテナ14から被写体100に向かって一番左側の検知部位が第1画素で、第1送信アンテナ13aのテラヘルツ波f0+f1の被写体検知情報に対応し、その右側の検知部位が第2画素で、第2送信アンテナ13bのテラヘルツ波f0+2f1の被写体検知情報に対応し、その右側の検知部位が第3画素で、第3送信アンテナ13cのテラヘルツ波f0+3f1の被写体検知情報に対応し、…、その右側の検知部位が第n−1画素で、第n−1送信アンテナ13n−1のテラヘルツ波f0+(n−1)f1の被写体検知情報に対応し、その右側の検知部位が第n画素で、第n送信アンテナ13nのテラヘルツ波f0+nf1の被写体検知情報に対応する場合、画像処理手段18は、第n−1画素のみ非透過領域で黒、ほかの画素は全て透過領域で白とした一次元のイメージ像を作成できる。無論、前述したように、各周波数の検知情報から得られる透過減衰を考慮して、白と黒の間を多段階調で表したグレースケール像を作成するようにしても良い。   For example, in FIG. 1, the leftmost detection part from the receiving antenna 14 toward the subject 100 is the first pixel, which corresponds to the subject detection information of the terahertz wave f0 + f1 of the first transmission antenna 13a, and the right detection part is The second pixel corresponds to the subject detection information of the terahertz wave f0 + 2f1 of the second transmission antenna 13b, the detection portion on the right side thereof corresponds to the subject detection information of the terahertz wave f0 + 3f1 of the third transmission antenna 13c, ..., the detection part on the right side is the (n-1) th pixel, corresponding to the subject detection information of the terahertz wave f0 + (n-1) f1 of the (n-1) th transmission antenna 13n-1, and the detection part on the right side is the nth pixel. When the pixel corresponds to the subject detection information of the terahertz wave f0 + nf1 of the nth transmitting antenna 13n, the image processing means 18 is black only in the non-transparent area in the n−1th pixel. Other pixels may create one-dimensional image image was white in all transmission regions. Of course, as described above, in consideration of transmission attenuation obtained from detection information of each frequency, a gray scale image in which white and black are expressed in a multi-level tone may be created.

なお、上述した第1実施形態のテラヘルツ波イメージング装置10においては、送信部に複数の周波数を等間隔で発生させる第1コム発生器11を用いたが、送信部より放射する複数のテラヘルツ波は等間隔で発生させなくても良く、各周波数成分が分離可能な程度に離れていれば良い。例えば、周波数間隔が規則性をもって変化してゆくような複数周波数を使っても良いし、周波数間隔がランダムに変化する複数周波数を用いても良い。但し、受信部では、受信したテラヘルツ波の各周波数をそれぞれ異なる低周波数に変換できる周波数をそれぞれ発生させる機能が必要になるため、送信部で発生させる周波数と受信部で発生させる周波数とを高精度に対応付けるような調整が必要となり、煩雑である。これに対して、第1実施形態のように、第1コム発生器11と第2コム発生器16とを用いて、送信部および受信部で発生させる複数周波数の間隔をf1とf2に定める手法によれば、簡便で高精度なダウンコンバートを実現できるという利点がある。   In the terahertz wave imaging apparatus 10 of the first embodiment described above, the first comb generator 11 that generates a plurality of frequencies at equal intervals in the transmission unit is used. However, the plurality of terahertz waves radiated from the transmission unit are It does not have to be generated at regular intervals, and it is only necessary that the frequency components are separated to a degree that can be separated. For example, a plurality of frequencies whose frequency intervals change with regularity may be used, or a plurality of frequencies whose frequency intervals change randomly may be used. However, since the receiving unit needs to have a function for generating a frequency that can convert each frequency of the received terahertz wave to a different low frequency, the frequency generated by the transmitting unit and the frequency generated by the receiving unit are highly accurate. It is necessary to make adjustments that correspond to the above, which is complicated. On the other hand, as in the first embodiment, the first comb generator 11 and the second comb generator 16 are used to determine the intervals between the multiple frequencies generated by the transmitter and the receiver as f1 and f2. Therefore, there is an advantage that a simple and highly accurate down-conversion can be realized.

図3に示すのは、第2実施形態に係るテラヘルツ波イメージング装置20の概略構成である。第1コム発生器21、送信波伝送手段22、受信アンテナ23によって、「テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部」を構成する。   FIG. 3 shows a schematic configuration of the terahertz wave imaging apparatus 20 according to the second embodiment. The first comb generator 21, the transmission wave transmission means 22, and the reception antenna 23 constitute a “transmission unit that irradiates a subject with transmission waves including a plurality of frequencies in the terahertz band”.

また、被写体100を経て到達したテラヘルツ帯の信号を受信可能な位置へ、一次元もしくは二次元に配列された複数の受信アンテナ(例えば、第1受信アンテナ24a、第2受信アンテナ24b、第3受信アンテナ24c、…、第n−1受信アンテナ24n−1、第n受信アンテナ24n)、受信信号処理部25によって、「送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部」を構成する。また、受信信号処理部25内の混合手段25a、第2コム発生器26、アンプ27を介して混合手段25aからの低周波信号を受ける画像処理手段28によって、「受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部」を構成する。   In addition, a plurality of receiving antennas (for example, a first receiving antenna 24a, a second receiving antenna 24b, and a third receiving antenna) arranged one-dimensionally or two-dimensionally to a position where a terahertz band signal that has reached through the subject 100 can be received. The antenna 24c,..., The (n−1) th receiving antenna 24n−1, the nth receiving antenna 24n), and the received signal processing unit 25 are configured to transmit “the signal that the transmitted wave has reached through the subject is transmitted through a different path for each frequency component A reception unit that receives the received signal as a signal. The image processing means 28 that receives the low-frequency signal from the mixing means 25a through the mixing means 25a, the second comb generator 26, and the amplifier 27 in the reception signal processing section 25, “each frequency component received by the receiving section”. Is configured to correspond to the detection part of the space including the subject, and the reception information of each frequency component is mapped as pixel information of each detection part.

第1コム発生器21は、第1実施形態の第1コム発生器11と同じで、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段であり、発生する周波数の間隔はf1で一定である。   The first comb generator 21 is the same as the first comb generator 11 of the first embodiment, and is transmission-side multifrequency signal generation means for generating a terahertz band signal including a plurality of frequency components. The interval is constant at f1.

送信信号伝送手段22は、第1コム発生器21で生成した全ての周波数信号(f0+f1、f0+2f1、f0+3f1、…、f0+(n−1)f1、f0+nf1のテラヘルツ波)を送信アンテナ23へ導く。   The transmission signal transmission means 22 guides all the frequency signals (f0 + f1, f0 + 2f1, f0 + 3f1,..., F0 + (n−1) f1, f0 + nf1 terahertz waves) generated by the first comb generator 21 to the transmission antenna 23.

一方、受信部にて、一次元もしくは二次元に配列された第1〜第n受信アンテナ24a〜24nは、いずれも被写体100の各検知部位を経て到達した信号を受信できる。ただし、これら第1〜第n受信アンテナ24a〜24nでは、送信アンテナ23から放射された全ての周波数を含んだ信号を受信することとなる。そこで、受信信号処理部25の受信波伝送手段25bには、第1〜第n受信アンテナ24a〜24nに対応するフィルターバンクを設けて、第1〜第n受信アンテナ24a〜24nに対応させて設定した周波数成分のみを選択的に混合手段25aへ導くものとした。   On the other hand, the first to nth receiving antennas 24 a to 24 n arranged one-dimensionally or two-dimensionally at the receiving unit can receive signals that have arrived through the detection parts of the subject 100. However, these first to nth receiving antennas 24a to 24n receive signals including all frequencies radiated from the transmitting antenna 23. Therefore, the received wave transmission means 25b of the received signal processing unit 25 is provided with a filter bank corresponding to the first to nth receiving antennas 24a to 24n, and is set corresponding to the first to nth receiving antennas 24a to 24n. Only the frequency component thus obtained is selectively guided to the mixing means 25a.

例えば、第1受信アンテナ24aからはf0+f1のテラヘルツ信号のみが、第2受信アンテナ24bからはf0+2f1のテラヘルツ信号のみが、第3受信アンテナ24cからはf0+3f1のテラヘルツ信号のみが、…、第n−1受信アンテナ24n−1からはf0+(n−1)f1のテラヘルツ信号のみが、第n受信アンテナ24nからはf0+nf1のテラヘルツ信号のみが、それぞれ混合手段25aに供給される。   For example, only the f0 + f1 terahertz signal from the first receiving antenna 24a, only the f0 + 2f1 terahertz signal from the second receiving antenna 24b, only the f0 + 3f1 terahertz signal from the third receiving antenna 24c, ..., n-1 Only the f0 + (n−1) f1 terahertz signal is supplied from the receiving antenna 24n−1, and only the f0 + nf1 terahertz signal is supplied from the nth receiving antenna 24n to the mixing unit 25a.

第2コム発生器26は、周波数間隔f1とは僅かに異なる周波数間隔f2である複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段であり、発生する周波数の間隔はf2で一定である。なお、送信部からの複数周波数が等間隔で無い場合には、各送信周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる機能を、受信側多周波信号生成手段に持たせればよい。   The second comb generator 26 is a receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components having a frequency interval f2 slightly different from the frequency interval f1, and the generated frequency interval is It is constant at f2. When the multiple frequencies from the transmitter are not equally spaced, the receiving side has a function of generating a terahertz band signal including a plurality of frequency components each having a different low frequency from the transmission frequency. The frequency signal generation means may be provided.

混合手段25aには、テラヘルツ帯の受信信号と、第2コム発生器26で生成したテラヘルツ帯の複数周波数信号が入力され、高感度なスーパーヘテロダイン方式による周波数変換で、低周波数帯(例えば、IF帯)の信号として出力される。   The terahertz band reception signal and the terahertz band multi-frequency signal generated by the second comb generator 26 are input to the mixing unit 25a, and the low frequency band (for example, IF Band) signal.

上記のようにして混合手段25aで得られた低周波数帯の信号(低周波信号)は、アンプ27で適宜増幅され、画像処理手段28へ供給される。この画像処理手段28は、低周波信号に含まれる各周波数成分を、該当する受信アンテナ24による検知部位の受信情報として用いることにより、検知部位の画素情報を決定する。   The low frequency band signal (low frequency signal) obtained by the mixing unit 25 a as described above is appropriately amplified by the amplifier 27 and supplied to the image processing unit 28. The image processing unit 28 determines pixel information of the detection part by using each frequency component included in the low frequency signal as reception information of the detection part by the corresponding reception antenna 24.

例えば、図3中、第1受信アンテナ24aが被写体100に臨む一番左側の第1検知部位が第1画素で、テラヘルツ波f0+f1の被写体検知情報に対応し、第2受信アンテナ24bが被写体100に臨む第2検知部位が第2画素で、テラヘルツ波f0+2f1の被写体検知情報に対応し、…、第n−1受信アンテナ24n−1が被写体100に臨む第n−1検知部位が第n−1画素で、テラヘルツ波f0+(n−1)f1の被写体検知情報に対応し、第n受信アンテナ24nが被写体100に臨む第n検知部位が第n画素で、第n受信アンテナ23nの被写体検知情報に対応する場合、画像処理手段28は、第n−1画素のみ非透過領域で黒、ほかの画素は全て透過領域で白とした一次元のイメージ像を作成できる。   For example, in FIG. 3, the leftmost first detection portion where the first receiving antenna 24a faces the subject 100 is the first pixel, which corresponds to the subject detection information of the terahertz wave f0 + f1, and the second receiving antenna 24b is located on the subject 100. The second detection region facing the second pixel corresponds to the subject detection information of the terahertz wave f0 + 2f1,..., The n−1th detection region where the n−1th receiving antenna 24n−1 faces the subject 100 is the n−1th pixel. Thus, it corresponds to the subject detection information of the terahertz wave f0 + (n−1) f1, the nth detection portion where the nth reception antenna 24n faces the subject 100 is the nth pixel, and corresponds to the subject detection information of the nth reception antenna 23n. In this case, the image processing means 28 can create a one-dimensional image image in which only the (n-1) th pixel is black in the non-transparent area and all other pixels are white in the transmissive area.

図4に示すのは、第3実施形態に係るテラヘルツ波イメージング装置30の概略構成である。第1コム発生器31、送信波伝送手段32、一次元若しくは二次元に配列したn個の受信アンテナ(第1受信アンテナ33a、第2受信アンテナ33b、第3受信アンテナ33c、…、第n−1受信33n−1、第n受信アンテナ33n)によって、「テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部」を構成する。   FIG. 4 shows a schematic configuration of a terahertz wave imaging apparatus 30 according to the third embodiment. First comb generator 31, transmission wave transmission means 32, n receiving antennas arranged in one or two dimensions (first receiving antenna 33a, second receiving antenna 33b, third receiving antenna 33c,..., N− 1 reception 33n-1 and nth reception antenna 33n) constitute a "transmission unit that irradiates a subject with a transmission wave including a plurality of frequencies in the terahertz band".

また、第1〜第n送信アンテナ33a〜33nと対向状に配置された複数の受信アンテナ(第1受信アンテナ34a、第2受信アンテナ34b、第3受信アンテナ34c、…、第n−1受信アンテナ34n−1、第n受信アンテナ34n)、受信信号処理部35によって、「送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部」を構成する。また、受信信号処理部35内の混合手段35a、第2コム発生器36、アンプ37を介して混合手段35aからの低周波信号を受ける画像処理手段38によって、「受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部」を構成する。   Also, a plurality of receiving antennas (first receiving antenna 34a, second receiving antenna 34b, third receiving antenna 34c,..., N−1th receiving antenna) arranged to face the first to nth transmitting antennas 33a to 33n. 34n-1 and the nth receiving antenna 34n) and the reception signal processing unit 35 constitute a "reception unit that receives a signal transmitted through a subject as a signal transmitted through a different path for each frequency component". . The image processing means 38 that receives the low-frequency signal from the mixing means 35a via the mixing means 35a, the second comb generator 36, and the amplifier 37 in the reception signal processing section 35 provides "every frequency component received by the receiving section". Is configured to correspond to the detection part of the space including the subject, and the reception information of each frequency component is mapped as pixel information of each detection part.

第1コム発生器31は、第1,第2実施形態の第1コム発生器11,21と同様に、複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段であり、発生する周波数の間隔はf1で一定である。   The first comb generator 31 is a transmission-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components, like the first comb generators 11 and 21 of the first and second embodiments. The generated frequency interval is constant at f1.

送信信号伝送手段32は、フィルターバンク構造の伝送路で構成することにより、各周波数の信号を第1〜第n送信アンテナ33a〜33nへ選択的に導くことができる。例えば、基準周波数f0よりもf1だけ高い周波数成分(f0+f1)のテラヘルツ波は第1アンテナ33aへ、f0+2f1のテラヘルツ波は第2アンテナ33bへ、f0+3f1のテラヘルツ波は第3アンテナ33cへ、…、f0+(n−1)f1のテラヘルツ波は第n−1アンテナ33n−1へ、f0+nf1のテラヘルツ波は第nアンテナ33nへ、それぞれ選択的に導かれる。   The transmission signal transmission means 32 can be selectively guided to the first to n-th transmission antennas 33a to 33n by being configured with a transmission line having a filter bank structure. For example, a terahertz wave having a frequency component (f0 + f1) higher by f1 than the reference frequency f0 is sent to the first antenna 33a, a terahertz wave of f0 + 2f1 is sent to the second antenna 33b, a terahertz wave of f0 + 3f1 is sent to the third antenna 33c,. (N-1) The f1 terahertz wave is selectively guided to the (n-1) th antenna 33n-1, and the f0 + nf1 terahertz wave is selectively guided to the nth antenna 33n.

第1〜第nアンテナ33a〜33nは、一次元もしくは二次元に配列した高指向性のアンテナであり、少なくとも、被写体100の配置領域を通過するまで、第1〜第nアンテナ33a〜33nから放射された各周波数のテラヘルツ波は、隣接する周波数のテラヘルツ波と混信することがないようにする。斯くすれば、第1〜第nアンテナ33a〜33nより被写体100へ向けて放射された各周波数のテラヘルツ波は、何れも被写体100の異なる部位へ照射されることとなり、被写体100を経て受信部の第1〜第n受信アンテナ34a〜34nへそれぞれ到達した各周波数のテラヘルツ波には、被写体100の各部におけるテラヘルツ波の吸収・反射・透過率を反映した情報(振幅や位相の変化)が含まれる。   The first to n-th antennas 33 a to 33 n are highly directional antennas arranged one-dimensionally or two-dimensionally, and radiate from the first to n-th antennas 33 a to 33 n at least until they pass through the arrangement area of the subject 100. The terahertz wave having each frequency is prevented from interfering with a terahertz wave having an adjacent frequency. In this case, the terahertz waves of each frequency radiated from the first to n-th antennas 33a to 33n toward the subject 100 are all irradiated to different parts of the subject 100, and pass through the subject 100 to the receiving unit. The terahertz waves of the respective frequencies reaching the first to nth receiving antennas 34a to 34n include information (amplitude and phase change) reflecting the absorption, reflection, and transmittance of the terahertz waves in each part of the subject 100. .

一方、受信部にて、第1〜第n送信アンテナ33a〜33nと対向状に配置された第1〜第n受信アンテナ34a〜34nは、いずれも被写体100の各検知部位を経て到達した信号を受信できる。しかも、これら第1〜第n受信アンテナ34a〜34nでは、対応する第1〜第n送信アンテナ33a〜33nから放射された周波数のテラヘルツ波のみを受信することができる。とはいえ、被写体100を透過した後に、各周波数のテラヘルツ波が拡散してしまい、対応する第1〜第n受信アンテナ34a〜34nとは異なるアンテナで受信されてしまう可能性もある。そこで、受信信号処理部35の受信波伝送手段35bには、第1〜第n受信アンテナ34a〜34nに対応するフィルターバンクを設けて、第1〜第n受信アンテナ34a〜34nに対応させて設定した周波数成分のみを選択的に混合手段25aへ導くものとした。   On the other hand, in the receiving unit, the first to nth receiving antennas 34a to 34n arranged to face the first to nth transmitting antennas 33a to 33n all receive signals that have arrived through the detection parts of the subject 100. Can receive. Moreover, these first to nth receiving antennas 34a to 34n can receive only the terahertz waves having the frequencies radiated from the corresponding first to nth transmitting antennas 33a to 33n. However, after passing through the subject 100, the terahertz wave of each frequency is diffused and may be received by an antenna different from the corresponding first to nth receiving antennas 34a to 34n. Therefore, the reception wave transmission means 35b of the reception signal processing unit 35 is provided with a filter bank corresponding to the first to nth reception antennas 34a to 34n, and is set corresponding to the first to nth reception antennas 34a to 34n. Only the frequency component thus obtained is selectively guided to the mixing means 25a.

例えば、第1受信アンテナ34aからはf0+f1のテラヘルツ信号のみが、第2受信アンテナ34bからはf0+2f1のテラヘルツ信号のみが、第3受信アンテナ34cからはf0+3f1のテラヘルツ信号のみが、…、第n−1受信アンテナ34n−1からはf0+(n−1)f1のテラヘルツ信号のみが、第n受信アンテナ34nからはf0+nf1のテラヘルツ信号のみが、それぞれ混合手段35aに供給される。   For example, only the f0 + f1 terahertz signal from the first receiving antenna 34a, only the f0 + 2f1 terahertz signal from the second receiving antenna 34b, only the f0 + 3f1 terahertz signal from the third receiving antenna 34c, ..., n-1 Only the f0 + (n-1) f1 terahertz signal is supplied from the receiving antenna 34n-1 and only the f0 + nf1 terahertz signal is supplied from the nth receiving antenna 34n to the mixing unit 35a.

第2コム発生器36は、周波数間隔f1とは僅かに異なる周波数間隔f2である複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段であり、発生する周波数の間隔はf2で一定である。なお、送信部からの複数周波数が等間隔で無い場合には、各送信周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる機能を、受信側多周波信号生成手段に持たせればよい。   The second comb generator 36 is a receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components having a frequency interval f2 slightly different from the frequency interval f1, and the generated frequency interval is It is constant at f2. When the multiple frequencies from the transmitter are not equally spaced, the receiving side has a function of generating a terahertz band signal including a plurality of frequency components each having a different low frequency from the transmission frequency. The frequency signal generation means may be provided.

混合手段35aには、テラヘルツ帯の受信信号と、第2コム発生器36で生成したテラヘルツ帯の複数周波数信号が入力され、高感度なスーパーヘテロダイン方式による周波数変換で、低周波数帯(例えば、IF帯)の信号として出力される。   The terahertz band reception signal and the terahertz band multi-frequency signal generated by the second comb generator 36 are input to the mixing unit 35a, and a low frequency band (for example, IF Band) signal.

上記のようにして混合手段35aで得られた低周波数帯の信号(低周波信号)は、アンプ37で適宜増幅され、画像処理手段38へ供給される。この画像処理手段38は、低周波信号に含まれる各周波数成分を、該当する受信アンテナ34a〜34bによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定する。   The low frequency band signal (low frequency signal) obtained by the mixing unit 35 a as described above is appropriately amplified by the amplifier 37 and supplied to the image processing unit 38. This image processing means 38 determines the pixel information of the detection part by using each frequency component included in the low frequency signal as reception information of the detection part by the corresponding receiving antennas 34a to 34b.

例えば、図4中、第1受信アンテナ34aが被写体100に臨む一番左側の第1検知部位が第1画素で、テラヘルツ波f0+f1の被写体検知情報に対応し、第2受信アンテナ34bが被写体100に臨む第2検知部位が第2画素で、テラヘルツ波f0+2f1の被写体検知情報に対応し、…、第n−1受信アンテナ34n−1が被写体100に臨む第n−1検知部位が第n−1画素で、テラヘルツ波f0+(n−1)f1の被写体検知情報に対応し、第n受信アンテナ34nが被写体100に臨む第n検知部位が第n画素で、第n受信アンテナ34nの被写体検知情報に対応する場合、画像処理手段38は、第n−1画素のみ非透過領域で黒、ほかの画素は全て透過領域で白とした一次元のイメージ像を作成できる。   For example, in FIG. 4, the leftmost first detection part where the first receiving antenna 34a faces the subject 100 is the first pixel, which corresponds to the subject detection information of the terahertz wave f0 + f1, and the second receiving antenna 34b is located on the subject 100. The second detection region facing the second pixel corresponds to the subject detection information of the terahertz wave f0 + 2f1,..., The n−1th detection region where the n−1th reception antenna 34n−1 faces the subject 100 is the n−1th pixel. Therefore, it corresponds to the subject detection information of the terahertz wave f0 + (n−1) f1, the nth detection portion where the nth reception antenna 34n faces the subject 100 is the nth pixel, and corresponds to the subject detection information of the nth reception antenna 34n. In this case, the image processing means 38 can create a one-dimensional image image in which only the (n-1) th pixel is black in the non-transparent area and all other pixels are white in the transmissive area.

上述した第1〜第3実施形態に係るテラヘルツ波イメージング装置10〜30は、何れの送信部も、第1コム発生器11〜31で発生させた複数周波数のテラヘルツ波を各送信アンテナ13〜33へ導くものであったが、送信部の構成はこれらに限定されるものではない。例えば、複数の周波数を異なった角度へ向けて放射できる周波数走査型アンテナを送信部として用いることもできる。なお、第1,第3実施形態に係るテラヘルツ波イメージング装置10,30は、送信部より照射した複数の周波数が被写体100の異なる部位を透過することで、各部位の検知情報を得るものであったが、適宜な光学系を用いて複数の周波数のテラヘルツ波を被写体100の一点に照射すれば、被写体100における検知部位(照射部位)の分光情報を得ることができるので、スペクトロスコピー装置へ転用できるという利点もある。   In the terahertz wave imaging apparatuses 10 to 30 according to the first to third embodiments described above, each of the transmission units generates a plurality of frequency terahertz waves generated by the first comb generators 11 to 31. However, the configuration of the transmission unit is not limited to these. For example, a frequency scanning antenna that can radiate a plurality of frequencies toward different angles can be used as the transmitter. The terahertz wave imaging apparatuses 10 and 30 according to the first and third embodiments obtain detection information of each part by transmitting a plurality of frequencies irradiated from the transmission unit through different parts of the subject 100. However, if terahertz waves of a plurality of frequencies are irradiated to one point of the subject 100 using an appropriate optical system, spectral information of a detection site (irradiation site) in the subject 100 can be obtained, and thus it is diverted to a spectroscopy apparatus. There is also an advantage of being able to do it.

また、上述した第1〜第3実施形態に係るテラヘルツ波イメージング装置10〜30は、何れもテラヘルツ波の電波的性質を利用して被写体のイメージ像を取得するものであったが、テラヘルツ波(例えば、1THz以上の帯域)の光波的性質を利用して被写体のイメージ像を取得することも可能である。以下の説明では、便宜上、テラヘルツ波を光と呼ぶ場合もある。   In addition, the terahertz wave imaging apparatuses 10 to 30 according to the first to third embodiments described above all acquire an image of a subject using the radio wave property of the terahertz wave. For example, it is also possible to acquire an image of a subject using the light wave property of a band of 1 THz or more. In the following description, for convenience, the terahertz wave may be referred to as light.

図5に示すのは、第4実施形態に係るテラヘルツ波イメージング装置40の概略構成である。図示を省略した光波源(複数の周波数の光波を含む光信号を発生させる多周波光生成手段)、光注入型テラヘルツ波パラメトリック発生器41、結像光学系42によって、「テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部」を構成する。   FIG. 5 shows a schematic configuration of a terahertz wave imaging apparatus 40 according to the fourth embodiment. A light wave source (multi-frequency light generating means for generating an optical signal including light waves having a plurality of frequencies), a light injection type terahertz wave parametric generator 41, and an imaging optical system 42 are used to generate a "multi-frequency terahertz band. A “transmission unit that irradiates the subject with the included transmission waves” is configured.

また、送信部の結像光学系からの照射光が被写体100の配置空部を経て到達する部位に配置される光注入型テラヘルツ波パラメトリック検出器43は、「送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部」としての機能を備え、また、この光注入型テラヘルツ波パラメトリック検出器43とCCDカメラ等の撮像手段44とが協働することで、「受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部」を構成する。   In addition, the light injection type terahertz wave parametric detector 43 arranged at a part where the irradiation light from the imaging optical system of the transmission unit reaches through the arrangement space of the subject 100 is “the signal that the transmission wave has reached through the subject”. As a signal that is received as a signal transmitted through a different path for each frequency component ", and the light injection type terahertz wave parametric detector 43 and the imaging means 44 such as a CCD camera cooperate. Thus, "the image image acquisition unit that maps the transmission path for each frequency component received by the reception unit to the detection part of the space including the subject and maps the reception information of each frequency component as pixel information of each detection part" Configure.

光注入型テラヘルツ波パラメトリック発生器41は、ポンプ光によって励起される非線形光学結晶(例えば、ニオブ酸リチウム結晶)を用いた光パラメトリック発生器と、この光パラメトリック発生器へシード光を注入する角度を調整するアクロマティック光注入光学系と、光パラメトリック発生器の光出射面に形成されたモノリシックグレーティングカプラーよりなる。すなわち、光注入型テラヘルツ波パラメトリック発生器41によって、複数の周波数のテラヘルツ波を発生させると共に、周波数毎の異なる角度で放射することができるのである。なお、光注入型テラヘルツ波パラメトリック発生器41へ入射するシード光となる多周波の光信号は、光コム発生器等を用いることができる。   The light injection type terahertz wave parametric generator 41 has an optical parametric generator using a nonlinear optical crystal (for example, lithium niobate crystal) excited by pump light, and an angle at which seed light is injected into the optical parametric generator. It comprises an achromatic light injection optical system to be adjusted and a monolithic grating coupler formed on the light exit surface of the optical parametric generator. That is, the light injection type terahertz wave parametric generator 41 can generate terahertz waves of a plurality of frequencies and radiate them at different angles for each frequency. In addition, an optical comb generator etc. can be used for the multifrequency optical signal used as the seed light which injects into the light injection type terahertz wave parametric generator 41.

光パラメトリック発生器は、ポンプ光で励起させた非線形光学結晶に角度位相整合条件が満たされる角度でシード光を注入することで、ノンコリニア位相整合条件を満たす方向にアイドラー光が発生し、シード光に対応した周波数のテラヘルツ光が出射面より照射される。この光パラメトリック発生器へ多波長のシード光を入射させるとき、各周波数の光がそれぞれの角度位相整合条件を満たす角度で同時に入射させるために必要となるのが、アクロマティック光注入光学系である。このアクロマティック光注入光学系とは、シード光の周波数(波長)が変わると回折角も変わることから、その回折角の変化をレンズ系でさらに調整し、必要な角度位相整合条件を満たすように、非線形光学結晶への入射角度をシード光の周波数毎に制御する光学系である。   The optical parametric generator injects seed light into the nonlinear optical crystal excited with pump light at an angle that satisfies the angle phase matching condition, thereby generating idler light in a direction that satisfies the non-collinear phase matching condition. Corresponding frequency terahertz light is emitted from the exit surface. When a multi-wavelength seed beam is incident on this optical parametric generator, an achromatic light injection optical system is required in order for light of each frequency to be incident simultaneously at an angle satisfying each angle phase matching condition. . In this achromatic light injection optical system, the diffraction angle also changes when the frequency (wavelength) of the seed light changes. Therefore, the change in the diffraction angle is further adjusted by the lens system so that the required angle phase matching condition is satisfied. The optical system controls the incident angle to the nonlinear optical crystal for each frequency of the seed light.

例えば、多周波光生成手段によって異なる50波長のシード光(例えば、1068.0nm,1068.1nm,1068.2nm,…,1072.7nm,1072.8nm,1072.9nm)を、アクロマティック光注入光学系を介してそれぞれの角度位相整合条件が満たされる角度で同時に非線形光学結晶に注入すると、異なる50周波数(1.056THz,1.082THz,1.109THz,…,2.287THz,2.313THz,2.339THz)のテラヘルツ波が同時に発生する。   For example, 50 wavelengths of seed light (for example, 1068.0 nm, 1068.1 nm, 1068.2 nm,..., 1072.7 nm, 1072.8 nm, 1072.9 nm), which differ depending on the multi-frequency light generating means, are used for achromatic light injection optics. When injected into the nonlinear optical crystal simultaneously at an angle satisfying the respective angle phase matching conditions through the system, 50 different frequencies (1.056 THz, 1.082 THz, 1.109 THz,..., 2.287 THz, 2.313 THz, 2 .339 THz) are generated at the same time.

モノリシックグレーティングカプラーは、上記のように非線形光学結晶内で発生させた各周波数のテラヘルツ波を夫々異なる角度へ放射させるように、非線形光学結晶の光出射面に直接溝を彫って形成するものである。このモノリシックグレーティングカプラーを備えることで、複数の異なる周波数のテラヘルツ波は、周波数毎に異なる角度へ放射されることとなる。   The monolithic grating coupler is formed by carving a groove directly on the light emitting surface of the nonlinear optical crystal so that the terahertz wave of each frequency generated in the nonlinear optical crystal as described above is emitted at different angles. . By providing this monolithic grating coupler, a plurality of terahertz waves having different frequencies are radiated at different angles for each frequency.

上記のようにして周波数毎に異なる角度へ放射されたテラヘルツ波は、結像光学系42によって集光され、被写体100の配置空部を介して受信部に結像する。すなわち、放射角度の異なる各周波数のテラヘルツ波は、それぞれ被写体100の異なる位置を通って受信部へ到達するので、被写体100を経て受信部へそれぞれ到達した各周波数のテラヘルツ波には、被写体100の各部におけるテラヘルツ波の吸収・反射・透過率を反映した情報(振幅や位相の変化)が含まれる。   The terahertz waves radiated at different angles for each frequency as described above are collected by the imaging optical system 42 and imaged on the receiving unit via the arrangement space of the subject 100. In other words, the terahertz waves of different frequencies with different radiation angles reach the receiving unit through different positions of the subject 100, so the terahertz waves of the respective frequencies that reach the receiving unit through the subject 100 are Information (amplitude and phase change) reflecting the absorption, reflection, and transmittance of terahertz waves in each part is included.

例えば、図5中、角度θ1で放射されたテラヘルツ波f0+f1の被写体検知情報を第1画素に対応させ、角度θ2で放射されたテラヘルツ波f0+2f1の被写体検知情報を第2画素に対応させ、角度θ3で放射されたテラヘルツ波f0+3f1の被写体検知情報を第3画素に対応させ、…、角度θn−1で放射されたテラヘルツ波f0+(n−1)f1の被写体検知情報を第n−1画素に対応させ、角度θnで放射されたテラヘルツ波f0+nf1の被写体検知情報を第n画素に対応させるのである。   For example, in FIG. 5, the subject detection information of the terahertz wave f0 + f1 radiated at the angle θ1 is associated with the first pixel, the subject detection information of the terahertz wave f0 + 2f1 radiated at the angle θ2 is associated with the second pixel, and the angle θ3 The object detection information of the terahertz wave f0 + 3f1 radiated at 1 corresponds to the third pixel,..., The object detection information of the terahertz wave f0 + (n−1) f1 radiated at the angle θn−1 corresponds to the n−1th pixel. The object detection information of the terahertz wave f0 + nf1 emitted at the angle θn is made to correspond to the nth pixel.

上記のようにして被写体100の配置部位を経た各テラヘルツ波は、受信部の光注入型テラヘルツ波パラメトリック検出器43へ至る。この光注入型テラヘルツ波パラメトリック検出器43は、前述した光注入型テラヘルツ波パラメトリック発生器41の光パラメトリック発生器と同様な構成の光パラメトリック検出器(非線形光学結晶を含む)を備え、この光パラメトリック検出器によって、被写体検知情報を持った各周波数のテラヘルツ波からアイドラー光を発生させ、これらのアイドラー光を各検知部位の画素情報として使うのである。   Each terahertz wave that has passed through the portion where the subject 100 is arranged as described above reaches the light injection type terahertz wave parametric detector 43 of the receiving unit. The optical injection type terahertz wave parametric detector 43 includes an optical parametric detector (including a nonlinear optical crystal) having the same configuration as the optical parametric generator of the optical injection type terahertz wave parametric generator 41 described above. The detector generates idler light from the terahertz wave of each frequency having subject detection information, and uses the idler light as pixel information of each detection part.

すなわち、ポンプ光で励起された非線形光学結晶の入射面(ポンプ光の入射面に直交する何れかの面)より複数の周波数のテラヘルツ波が入射すると、非線形光学結晶内で、各周波数に対応したアイドラー光(例えば、近赤外光)がそれぞれ角度位相整合条件を満たす方向に発生し、ポンプ光入射面と対向する面(アイドラー光出射面)よりアイドラー光が出射され、各アイドラー光は被写体100の検知部位に対応して整列し、各アイドラー光の輝度が被写体100の各検知部位における透過強度として反映される。   That is, when terahertz waves having a plurality of frequencies are incident from the incident surface of the nonlinear optical crystal excited by pump light (any surface orthogonal to the incident surface of the pump light), each frequency corresponds to each frequency in the nonlinear optical crystal. Idler light (for example, near-infrared light) is generated in a direction that satisfies the angle phase matching condition, and idler light is emitted from a surface (idler light emission surface) opposite to the pump light incident surface. The brightness of each idler light is reflected as the transmission intensity at each detection part of the subject 100.

よって、光注入型テラヘルツ波パラメトリック検出器43より射出された赤外領域のアイドラー光を、赤外線カメラ等の撮像手段44で撮れば、被写体100のイメージ像を得ることができる。なお、可視光領域のアイドラー光を発生させれば、光注入型テラヘルツ波パラメトリック検出器43より出射されたアイドラー光をスクリーン等に投影することで可視化できる。また、結像光学系42から被写体100に照射される多周波のテラヘルツ光が一次元に配列されている場合は、光注入型テラヘルツ波パラメトリック検出器43より一列分のイメージ像しか出力されないが、例えば結像光学系42によって被写体100に対する照射位置を変えながら順次走査してゆき、光注入型テラヘルツ波パラメトリック検出器43より時系列に出力されるイメージ像を一括して同一平面上に投影すれば、二次元のイメージ像を得ることができる。   Therefore, if the idler light in the infrared region emitted from the light injection type terahertz wave parametric detector 43 is taken by the imaging means 44 such as an infrared camera, an image image of the subject 100 can be obtained. If idler light in the visible light region is generated, it can be visualized by projecting the idler light emitted from the light injection type terahertz wave parametric detector 43 onto a screen or the like. Further, when the multi-frequency terahertz light emitted from the imaging optical system 42 to the subject 100 is one-dimensionally arranged, only the image image for one column is output from the light injection type terahertz wave parametric detector 43. For example, if the imaging optical system 42 sequentially scans while changing the irradiation position with respect to the subject 100, and the image images output in time series from the light injection type terahertz wave parametric detector 43 are projected onto the same plane at once. A two-dimensional image can be obtained.

以上、本発明に係るテラヘルツ波イメージング装置をいくつかの実施形態に基づき説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全てのテラヘルツ波イメージング装置を権利範囲として包摂するものである。   As described above, the terahertz wave imaging apparatus according to the present invention has been described based on some embodiments. However, the present invention is not limited to these embodiments, and unless the configuration described in the scope of claims is changed. All the terahertz imaging devices that can be realized in are included in the scope of rights.

10 テラヘルツ波イメージング装置(第1実施形態)
11 第1コム発生器
12 送信波伝送手段
13a〜13n 第1〜第n送信アンテナ
14 受信アンテナ
15 受信信号処理部
15a 受信波伝送手段
15b 混合手段
16 第2コム発生器
18 画像処理手段
100 被写体
100a 不透過領域
10 Terahertz wave imaging apparatus (first embodiment)
DESCRIPTION OF SYMBOLS 11 1st comb generator 12 Transmission wave transmission means 13a-13n 1st-nth transmission antenna 14 Reception antenna 15 Reception signal processing part 15a Reception wave transmission means 15b Mixing means 16 2nd comb generator 18 Image processing means 100 Subject 100a Impervious area

Claims (5)

テラヘルツ帯の複数周波数が含まれる送信波を、被写体に照射する送信部と、
前記送信波が被写体を経て到達した信号を、周波数成分毎に異なる経路で送信された信号として受信する受信部と、
前記受信部が受信した周波数成分毎の送信経路を、被写体を含む空間の検知部位に対応させ、各周波数成分の受信情報を各検知部位の画素情報としてマッピングするイメージ像取得部と、
を備えるテラヘルツ波イメージング装置。
A transmitter that irradiates a subject with a transmission wave including a plurality of frequencies in the terahertz band;
A receiver that receives the signal that the transmitted wave has reached through the subject as a signal that is transmitted through a different path for each frequency component;
An image image acquisition unit that maps a transmission path for each frequency component received by the reception unit to a detection part of a space including a subject, and maps reception information of each frequency component as pixel information of each detection part;
A terahertz wave imaging apparatus.
前記送信部は、
複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、
前記送信側多周波信号生成手段により生成された各周波数成分と対応付けられる複数の送信アンテナを一次元もしくは二次元に配列して構成される送信手段と、
前記送信側多周波信号生成手段により生成された各周波数成分の信号を、各々対応付けられた送信アンテナへ選択的に導く送信波伝送手段と、
を含み、
前記受信部は、
前記被写体を経て到達した全ての周波数成分の信号を受信可能な位置に配置された受信アンテナを有する受信手段と、
前記受信アンテナで受信した全ての信号を導く受信波伝送手段と、
を含み、
前記イメージ像取得部は、
前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、
前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、
前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する送信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の送信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、
を含むことを特徴とする請求項1に記載のテラヘルツ波イメージング装置。
The transmitter is
Transmitting-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components;
A transmission unit configured by arranging a plurality of transmission antennas associated with each frequency component generated by the transmission-side multifrequency signal generation unit in one or two dimensions;
Transmission wave transmission means for selectively guiding the signal of each frequency component generated by the transmission-side multifrequency signal generation means to a corresponding transmission antenna;
Including
The receiver is
A receiving means having a receiving antenna disposed at a position capable of receiving signals of all frequency components reached through the subject;
Received wave transmission means for guiding all signals received by the receiving antenna;
Including
The image image acquisition unit
A receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components each having a different low frequency difference from each frequency generated by the transmitting-side multifrequency signal generating means;
A mixing means for mixing the multifrequency signal generated by the receiving-side multifrequency signal generating means as a local oscillation wave with a multifrequency component signal received by the receiving section;
By using each frequency component included in the low-frequency signal obtained from the mixing means as reception information of the detection part by the corresponding transmission antenna, pixel information of the detection part is determined, and the plurality of transmission antennas are arranged Image processing means for creating a one-dimensional or two-dimensional image,
The terahertz wave imaging apparatus according to claim 1, comprising:
前記送信部は、
複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、
前記送信側多周波信号生成手段により生成された各周波数成分が含まれる信号を送信する送信アンテナを有する送信手段と、
前記送信側多周波信号生成手段により生成された各周波数成分の信号の伝送タイミングを合わせて、前記送信アンテナへ導く送信波伝送手段と、
を含み、
前記受信部は、
前記被写体を経て到達した信号を受信可能な位置へ、一次元もしくは二次元に配列された複数の受信アンテナで構成される受信手段と、
前記受信手段の各受信アンテナで受信した信号から、各受信アンテナに対応させて設定した周波数成分のみを選択的に導く受信波伝送手段と、
を含み、
前記イメージ像取得部は、
前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、
前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、
前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する受信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の受信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、
を含むことを特徴とする請求項1に記載のテラヘルツ波イメージング装置。
The transmitter is
Transmitting-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components;
A transmission means having a transmission antenna for transmitting a signal including each frequency component generated by the transmission-side multifrequency signal generation means;
In accordance with the transmission timing of each frequency component signal generated by the transmission-side multifrequency signal generation means, transmission wave transmission means for guiding to the transmission antenna,
Including
The receiver is
A receiving means comprising a plurality of receiving antennas arranged one-dimensionally or two-dimensionally at a position where a signal that has reached through the subject can be received;
Received wave transmission means for selectively deriving only frequency components set corresponding to each reception antenna from signals received by each reception antenna of the reception means;
Including
The image image acquisition unit
A receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components each having a different low frequency difference from each frequency generated by the transmitting-side multifrequency signal generating means;
A mixing means for mixing the multifrequency signal generated by the receiving-side multifrequency signal generating means as a local oscillation wave with a multifrequency component signal received by the receiving section;
By using each frequency component included in the low frequency signal obtained from the mixing means as reception information of the detection part by the corresponding reception antenna, pixel information of the detection part is determined, and the plurality of reception antennas are arranged Image processing means for creating a one-dimensional or two-dimensional image,
The terahertz wave imaging apparatus according to claim 1, comprising:
前記送信部は、
複数の周波数成分を含むテラヘルツ帯の信号を発生させる送信側多周波信号生成手段と、
前記送信側多周波信号生成手段により生成された各周波数成分と対応付けられる複数の送信アンテナを一次元もしくは二次元に配列して構成される送信手段と、
前記送信側多周波信号生成手段により生成された各周波数成分の信号を、各々対応付けられた送信アンテナへ選択的に導く送信波伝送手段と、
を含み、
前記受信部は、
前記送信手段の各送信アンテナと対向状に配置された複数の受信アンテナを有する受信手段と、
前記受信手段の各受信アンテナで受信した信号から、各受信アンテナが対向する送信アンテナの送信した周波数成分のみを選択的に導く受信波伝送手段と、
を含み、
前記イメージ像取得部は、
前記送信側多周波信号生成手段が発生させた各周波数との差周波数が各々異なる低周波数となる複数の周波数成分を含むテラヘルツ帯の信号を発生させる受信側多周波信号生成手段と、
前記受信側多周波信号生成手段により発生させた多周波信号を局部発振波として、前記受信部で受信した多周波成分の信号と混合させる混合手段と、
前記混合手段から得られる低周波信号に含まれる各周波数成分を、該当する受信アンテナによる検知部位の受信情報として用いることにより、検知部位の画素情報を決定し、前記複数の送信アンテナが配列された一次元もしくは二次元のイメージ像を作成する画像処理手段と、
を含むことを特徴とする請求項1に記載のテラヘルツ波イメージング装置。
The transmitter is
Transmitting-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components;
A transmission unit configured by arranging a plurality of transmission antennas associated with each frequency component generated by the transmission-side multifrequency signal generation unit in one or two dimensions;
Transmission wave transmission means for selectively guiding the signal of each frequency component generated by the transmission-side multifrequency signal generation means to a corresponding transmission antenna;
Including
The receiver is
Receiving means having a plurality of receiving antennas arranged opposite to each transmitting antenna of the transmitting means;
Received wave transmission means for selectively deriving only frequency components transmitted by transmission antennas facing each reception antenna from signals received by each reception antenna of the reception means;
Including
The image image acquisition unit
A receiving-side multifrequency signal generating means for generating a terahertz band signal including a plurality of frequency components each having a different low frequency difference from each frequency generated by the transmitting-side multifrequency signal generating means;
A mixing means for mixing the multifrequency signal generated by the receiving-side multifrequency signal generating means as a local oscillation wave with a multifrequency component signal received by the receiving section;
By using each frequency component included in the low frequency signal obtained from the mixing means as reception information of the detection part by the corresponding reception antenna, pixel information of the detection part is determined, and the plurality of transmission antennas are arranged Image processing means for creating a one-dimensional or two-dimensional image,
The terahertz wave imaging apparatus according to claim 1, comprising:
前記送信部は、
複数の周波数の光波を含む光信号を発生させる多周波光生成手段と、
ポンプ光で励起させた非線形光学結晶に角度位相整合条件が満たされる角度でシード光を注入することで、ノンコリニア位相整合条件を満たす方向にアイドラー光が発生し、各シード光に対応した周波数のテラヘルツ光が出射面より照射される光パラメトリック発生器と、
前記多周波光生成手段にて生成した複数の周波数の光信号をシード光とし、それぞれの角度位相整合条件を満たす角度で同時に前記光パラメトリック発生器へ注入するアクロマティック光注入光学系と、
前記光パラメトリック発生器の光出射面に形成され、各周波数のテラヘルツ光を夫々異なる角度へ放射させるモノリシックグレーティングカプラーと、
前記モノシリックグレーティングカプラーより異なる角度で放射された全てのテラヘルツ光を受け、被写体の配置空部を介して受信部に結像させる結像光学系と、
を含み、
前記受信部および前記イメージ像取得部は、
前記送信部からのテラヘルツ光を非線形光学結晶の入射面で受け、ポンプ光で励起された非線形光学結晶に各周波数のテラヘルツ光が入射することで、各テラヘルツ光の周波数に対応する波長のアイドラー光が、角度位相整合条件を満たす方向にそれぞれ発生する光パラメトリック検出器と、
前記光パラメトリック検出器のアイドラー光出射面に配置され、各アイドラー光の輝点を画素情報とするイメージ像を取得する撮像手段と、
を含むことを特徴とする請求項1に記載のテラヘルツ波イメージング装置。
The transmitter is
Multi-frequency light generating means for generating an optical signal including light waves of a plurality of frequencies;
By injecting seed light into the nonlinear optical crystal excited with pump light at an angle that satisfies the angle phase matching condition, idler light is generated in a direction that satisfies the non-collinear phase matching condition, and the terahertz frequency corresponding to each seed light is generated. An optical parametric generator in which light is emitted from the exit surface;
An achromatic light injection optical system for injecting into the optical parametric generator at the same time at an angle satisfying the respective angle phase matching conditions, using the optical signals of a plurality of frequencies generated by the multi-frequency light generation means as seed light;
A monolithic grating coupler that is formed on the light exit surface of the optical parametric generator and emits terahertz light of each frequency to different angles;
An imaging optical system that receives all the terahertz light emitted at different angles from the monolithic grating coupler and forms an image on the receiving unit through the arrangement space of the subject;
Including
The receiving unit and the image image acquiring unit are
The terahertz light from the transmitter is received by the incident surface of the nonlinear optical crystal, and the terahertz light of each frequency is incident on the nonlinear optical crystal excited by the pump light, so that the idler light having a wavelength corresponding to the frequency of each terahertz light. Optical parametric detectors respectively generated in directions that satisfy the angle phase matching condition;
An imaging unit that is disposed on an idler light exit surface of the optical parametric detector, and that obtains an image image having a bright spot of each idler light as pixel information;
The terahertz wave imaging apparatus according to claim 1, comprising:
JP2016048305A 2016-03-11 2016-03-11 Terahertz wave imaging device Active JP6706790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048305A JP6706790B2 (en) 2016-03-11 2016-03-11 Terahertz wave imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048305A JP6706790B2 (en) 2016-03-11 2016-03-11 Terahertz wave imaging device

Publications (2)

Publication Number Publication Date
JP2017161450A true JP2017161450A (en) 2017-09-14
JP6706790B2 JP6706790B2 (en) 2020-06-10

Family

ID=59856835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048305A Active JP6706790B2 (en) 2016-03-11 2016-03-11 Terahertz wave imaging device

Country Status (1)

Country Link
JP (1) JP6706790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940996A (en) * 2019-12-11 2020-03-31 西安交通大学 Terahertz and visible light based imaging device, monitoring system and imaging method
WO2020119106A1 (en) * 2018-12-13 2020-06-18 北京遥测技术研究所 Terahertz multimode real-time imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058310A (en) * 2007-08-31 2009-03-19 Canon Inc Inspection device and inspection method using electromagnetic wave
US20100213375A1 (en) * 2007-06-01 2010-08-26 Johann Wolfgang Goethe-Universitat Frankfurt A.M. DEVICE AND METHOD FOR GENERATING AND DETECTING COHERENT ELECTROMAGNETIC RADIATION IN THE THz FREQUENCY RANGE
JP2012222303A (en) * 2011-04-13 2012-11-12 Seiko Epson Corp Terahertz wave generator, camera, imaging apparatus, and measuring apparatus
JP2015111138A (en) * 2010-02-12 2015-06-18 アドバンスト フュージョン システムズ エルエルシー Method and system for detecting substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213375A1 (en) * 2007-06-01 2010-08-26 Johann Wolfgang Goethe-Universitat Frankfurt A.M. DEVICE AND METHOD FOR GENERATING AND DETECTING COHERENT ELECTROMAGNETIC RADIATION IN THE THz FREQUENCY RANGE
JP2009058310A (en) * 2007-08-31 2009-03-19 Canon Inc Inspection device and inspection method using electromagnetic wave
JP2015111138A (en) * 2010-02-12 2015-06-18 アドバンスト フュージョン システムズ エルエルシー Method and system for detecting substance
JP2012222303A (en) * 2011-04-13 2012-11-12 Seiko Epson Corp Terahertz wave generator, camera, imaging apparatus, and measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020119106A1 (en) * 2018-12-13 2020-06-18 北京遥测技术研究所 Terahertz multimode real-time imaging system
CN110940996A (en) * 2019-12-11 2020-03-31 西安交通大学 Terahertz and visible light based imaging device, monitoring system and imaging method

Also Published As

Publication number Publication date
JP6706790B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US9200959B2 (en) Terahertz sensing system and method
CN105765370B (en) The system and method that high contrast, near real-time for Terahertz image acquire
EP3001179B1 (en) Mid-infrared scanning imaging system
EP4220227A1 (en) Array coherent ranging chip and system thereof
Bandyopadhyay et al. Terahertz interferometric and synthetic aperture imaging
Li et al. A liquid crystal tunable filter-based hyperspectral LiDAR system and its application on vegetation red edge detection
AU2015327741B2 (en) Cavity enhanced spectroscopy using off-axis paths
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
KR20220043907A (en) Method And Apparatus for Detecting Gases Based on Quantum Technology
JP6706790B2 (en) Terahertz wave imaging device
Sasaki et al. Reflection-type CW-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor
CN102998261B (en) Terahertz wave pseudo heat light source-based imaging device
AU2011231932A1 (en) Apparatus and method for detecting skin cancer using THz radiation
US10727952B1 (en) Heterodyne starring array active imager with spread spectrum illuminator
JP6789049B2 (en) Inspection equipment and inspection method
CN111194415B (en) Method for providing a detection signal for an object to be detected
RU2540451C1 (en) Laser location system
JP5243358B2 (en) Terahertz spectroscopy system and substance identification method
RU2584185C1 (en) Laser receiver
CN108732124B (en) Three-dimensional tomography system and method
CN110231299B (en) Optical measuring device and optical measuring method
US20240027582A1 (en) Array coherent ranging chip and system thereof
RU2575766C1 (en) Laser locator
Serita et al. Development of laser scanning terahertz imaging system using organic nonlinear optical crystal
KR102320418B1 (en) Method and apparatus for measuring an object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6706790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250