JP2017161003A - Slide mechanism and manufacturing method of slide member - Google Patents

Slide mechanism and manufacturing method of slide member Download PDF

Info

Publication number
JP2017161003A
JP2017161003A JP2016046708A JP2016046708A JP2017161003A JP 2017161003 A JP2017161003 A JP 2017161003A JP 2016046708 A JP2016046708 A JP 2016046708A JP 2016046708 A JP2016046708 A JP 2016046708A JP 2017161003 A JP2017161003 A JP 2017161003A
Authority
JP
Japan
Prior art keywords
sliding
slide
bearing pin
sliding surface
peak height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016046708A
Other languages
Japanese (ja)
Other versions
JP6824563B2 (en
Inventor
高橋 寛明
Hiroaki Takahashi
寛明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2016046708A priority Critical patent/JP6824563B2/en
Publication of JP2017161003A publication Critical patent/JP2017161003A/en
Application granted granted Critical
Publication of JP6824563B2 publication Critical patent/JP6824563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/246Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to wear, e.g. sensors for measuring wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness

Abstract

PROBLEM TO BE SOLVED: To provide a slide mechanism excellent in a frictional wear characteristic by defining the surface roughness of a slide face by an evaluation index highly affecting the frictional wear characteristic.SOLUTION: One of a first member and a second member is slid with respect to the other with their slide faces facing each other. A height Rpk of a protruding peak of the slide face of the second member is 0.09 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、摺動機構、及び摺動機構に用いられる摺動部材の製造方法に関する。   The present invention relates to a sliding mechanism and a method for manufacturing a sliding member used in the sliding mechanism.

摺動面の機械加工や表面処理を行う場合、最終仕上げの要求条件は、通常、算術平均粗さRaにより指定される(例えば、特許文献1)。ところが、算術平均粗さRaは、粗さ曲線の振幅の平均であるため、摩擦摩耗特性に特に影響を与える凸部の形状を適切に表現しているとはいえない。そのため、要求条件として算術平均粗さRaのみの指定では、加工業者によって、摩擦摩耗特性に特に影響を与える表面形状に違いが生じる。   When machining or surface treatment of the sliding surface is performed, the final finishing requirement is usually specified by the arithmetic average roughness Ra (for example, Patent Document 1). However, since the arithmetic average roughness Ra is an average of the amplitudes of the roughness curves, it cannot be said that the shape of the convex portion that particularly affects the frictional wear characteristics is appropriately expressed. Therefore, when only the arithmetic average roughness Ra is specified as a requirement, the surface shape that particularly affects the friction and wear characteristics varies depending on the processor.

ブラスト処理により、摺動面のなじみに必要な適度な凸部と、潤滑性を高める凹部を付与することができる。   By blasting, it is possible to provide moderate convex portions necessary for conforming the sliding surface and concave portions that improve lubricity.

特開2013−204807号公報JP 2013-204807 A

摺動面の表面処理にブラスト処理を適用すると、摺動面の加工直後の表面粗さにばらつきが生じやすい。このばらつきは、なじみの再現性に影響を与える。なじみの再現性の低下を防止するために、ブラスト処理によって形成された摺動面の表面形状を定量的に評価する方法が望まれる。ところが、算術平均粗さRaによる評価は、上述のように、摩擦摩耗特性に特に影響を与える凸部の形状を適切に表現しているとはいえない。   When blasting is applied to the surface treatment of the sliding surface, the surface roughness immediately after the processing of the sliding surface tends to vary. This variation affects the reproducibility of familiarity. In order to prevent deterioration in reproducibility of familiarity, a method for quantitatively evaluating the surface shape of the sliding surface formed by blasting is desired. However, the evaluation based on the arithmetic average roughness Ra cannot be said to appropriately express the shape of the convex part that particularly affects the frictional wear characteristics as described above.

本発明の目的は、摩擦摩耗特性に大きな影響を与える評価指標によって摺動面の表面粗さを規定することにより、摩擦摩耗特性に優れた摺動機構を提供することである。本発明の他の目的は、この摺動機構に用いられる摺動部材の製造方法を提供することである。   An object of the present invention is to provide a sliding mechanism having excellent frictional wear characteristics by defining the surface roughness of the sliding surface by an evaluation index that greatly affects the frictional wear characteristics. Another object of the present invention is to provide a method for manufacturing a sliding member used in this sliding mechanism.

本発明の一観点によると、
摺動面同士を対向させて一方が他方に対して摺動する第1の部材及び第2の部材を有し、前記第2の部材の前記摺動面の突出山部高さRpkが0.09μm未満である摺動機構が提供される。
According to one aspect of the invention,
The sliding member has a first member and a second member that face each other with the sliding surfaces facing each other, and the protruding mountain height Rpk of the sliding surface of the second member is 0. A sliding mechanism is provided that is less than 09 μm.

本発明の他の観点によると、
摺動面を有する摺動部材を準備する工程と、
前記摺動面に対して、突出山部高さRpkが0.09μm未満になる加工条件でブラスト処理を行う工程と
を有する摺動部材の製造方法が提供される。
According to another aspect of the invention,
Preparing a sliding member having a sliding surface;
There is provided a method for manufacturing a sliding member, which includes a step of performing a blasting process on the sliding surface under a processing condition such that the protruding peak height Rpk is less than 0.09 μm.

第2の部材の前記摺動面の突出山部高さRpkが0.09μm未満にすることにより、良好な摩擦摩耗特性が得られる。 By setting the protruding peak height Rpk of the sliding surface of the second member to be less than 0.09 μm, good frictional wear characteristics can be obtained.

図1Aは、実施例による摺動機構の断面図であり、図1Bは、図1Aの一点鎖線1B−1Bにおける断面図である。1A is a cross-sectional view of a sliding mechanism according to an embodiment, and FIG. 1B is a cross-sectional view taken along one-dot chain line 1B-1B in FIG. 1A. 図2Aは、ブッシュのビッカース硬度Hvが730の場合の滑り軸受用ピンの摺動面の突出山部高さRpkと摩擦係数との関係を示すグラフであり、図2Bは、ブッシュのビッカース硬度Hvが730の場合の滑り軸受用ピンの摺動面の突出山部高さRpkと、相手材(ブッシュ)の比摩耗量との関係を示すグラフである。FIG. 2A is a graph showing the relationship between the protrusion height Rpk of the sliding surface of the sliding bearing pin and the friction coefficient when the Vickers hardness Hv of the bush is 730, and FIG. 2B shows the Vickers hardness Hv of the bush. Is a graph showing the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin and the specific wear amount of the mating member (bush) in the case of 730. 図3Aは、ブッシュのビッカース硬度Hvが730の場合の突出山部高さRpkと、複合二乗平均平方根粗さの初期値に対する変化率Δσとの関係を示すグラフであり、図3Bは、突出山部高さRpkと、評価実験後の複合二乗平均平方根粗さσとの関係を示すグラフである。FIG. 3A is a graph showing the relationship between the protruding peak height Rpk when the Vickers hardness Hv of the bush is 730 and the rate of change Δσ with respect to the initial value of the composite root mean square roughness, and FIG. It is a graph which shows the relationship between part height Rpk and the composite root mean square roughness (sigma) after evaluation experiment. 図4Aは、ブッシュのビッカース硬度Hvが330の場合の滑り軸受用ピンの摺動面の突出山部高さRpkと摩擦係数との関係を示すグラフであり、図4Bは、ブッシュのビッカース硬度Hvが330の場合の滑り軸受用ピンの摺動面の突出山部高さRpkと、相手材(ブッシュ)の比摩耗量との関係を示すグラフである。FIG. 4A is a graph showing the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin and the friction coefficient when the Vickers hardness Hv of the bush is 330, and FIG. 4B shows the Vickers hardness Hv of the bush. Is a graph showing the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin and the specific wear amount of the mating member (bush) in the case of 330. 図5は、他の実施例によるショベルの側面図である。FIG. 5 is a side view of an excavator according to another embodiment. 図6は、さらに他の実施例による成形機の型締装置の概略図である。FIG. 6 is a schematic view of a mold clamping device of a molding machine according to still another embodiment. 図7は、さらに他の実施例による射出成形機の概略図である。FIG. 7 is a schematic view of an injection molding machine according to still another embodiment. 図8は、さらに他の実施例による鍛造プレス機の概略図である。FIG. 8 is a schematic view of a forging press according to still another embodiment.

図1A〜図4Bを参照して、実施例による摺動機構について説明する。
図1Aに実施例による摺動機構の断面図を示す。本実施例による摺動機構は、ブッシュ(第1の部材)11及び滑り軸受用ピン(第2の部材)12を含む滑り軸受に適用される。図1Bに、図1Aの一点鎖線1B−1Bにおける断面図を示す。図1Bの一点鎖線1A−1Aにおける断面図が図1Aに相当する。図1Aに示した断面図は、回転中心を含み、図1Bに示した断面図は回転中心に対して垂直である。
The sliding mechanism according to the embodiment will be described with reference to FIGS. 1A to 4B.
FIG. 1A shows a sectional view of a sliding mechanism according to the embodiment. The sliding mechanism according to this embodiment is applied to a sliding bearing including a bush (first member) 11 and a sliding bearing pin (second member) 12. FIG. 1B is a cross-sectional view taken along one-dot chain line 1B-1B in FIG. 1A. A cross-sectional view taken along one-dot chain line 1A-1A in FIG. 1B corresponds to FIG. 1A. The cross-sectional view shown in FIG. 1A includes the center of rotation, and the cross-sectional view shown in FIG. 1B is perpendicular to the center of rotation.

滑り軸受用ピン12が一対のブッシュ11に挿入されており、ブッシュ11に対して回転可能に支持されている。滑り軸受用ピン12は、ブッシュ11の内面(摺動面、相手面)に対して摺動する摺動面(側面)を含む。ブッシュ11は可動部材10に固定されている。図1Aでは、2個の同一形状のブッシュ11が可動部材10に取り付けられている例を示しているが、ブッシュ11の個数は1個でもよいし、3個以上でもよい。滑り軸受用ピン12は、その両端において支持部材13に支持されている。また、滑り軸受用ピン12は、その一方の端部14において支持部材13に対して回転不能に固定されている。支持部材13に対して可動部材10が回転すると、滑り軸受用ピン12の摺動面に対してブッシュ11の摺動面が摺動する。   A slide bearing pin 12 is inserted into the pair of bushes 11 and is rotatably supported by the bushes 11. The sliding bearing pin 12 includes a sliding surface (side surface) that slides on the inner surface (sliding surface, mating surface) of the bush 11. The bush 11 is fixed to the movable member 10. Although FIG. 1A shows an example in which two bushes 11 having the same shape are attached to the movable member 10, the number of the bushes 11 may be one or three or more. The slide bearing pin 12 is supported by support members 13 at both ends thereof. Further, the sliding bearing pin 12 is fixed to the support member 13 so as not to rotate at one end portion 14 thereof. When the movable member 10 rotates with respect to the support member 13, the sliding surface of the bush 11 slides with respect to the sliding surface of the sliding bearing pin 12.

なお、ブッシュ11に対して滑り軸受用ピン12が回転する機構としてもよい。本実施例による摺動機構においては、滑り軸受用ピン12とブッシュ11とが、摺動面同士を対向させて、一方が他方に対して摺動する。   In addition, it is good also as a mechanism in which the pin 12 for sliding bearings rotates with respect to the bush 11. FIG. In the sliding mechanism according to the present embodiment, the sliding bearing pin 12 and the bush 11 face the sliding surfaces, and one slides with respect to the other.

摺動面の表面粗さが異なる複数の滑り軸受用ピン12を作製し、摩擦摩耗特性の評価を行なった。以下、この評価実験の結果について説明する。   A plurality of slide bearing pins 12 having different sliding surface roughness were produced, and the friction and wear characteristics were evaluated. Hereinafter, the results of this evaluation experiment will be described.

評価実験では、滑り軸受用ピン12及びブッシュ11の材料として、クロムモリブデン鋼(SCM)を用いた。より具体的には、滑り軸受用ピン12としてSCM415を用い、ブッシュ11としてSCM415及びSCM440を用いた。SCM415のビッカース硬度は730であり、SCM440のビッカース硬度は330である。   In the evaluation experiment, chromium molybdenum steel (SCM) was used as a material for the sliding bearing pin 12 and the bush 11. More specifically, SCM415 was used as the sliding bearing pin 12, and SCM415 and SCM440 were used as the bush 11. The SCM415 has a Vickers hardness of 730, and the SCM440 has a Vickers hardness of 330.

次に、評価実験で用いた滑り軸受用ピン12の製造方法について説明する。まず摺動面(側面)を、算術平均粗さRaが約0.01μm〜0.1μmになるまで研削した。その後、エアブラスト処理を行うことにより、摺動面の突出山部高さRpkが約0.03μm〜0.33μmの範囲の複数の滑り軸受用ピン12を作製した。表面処理としてブラスト処理を用いる場合には、突出山部高さRpkと、表面粗さ曲線の周波数との間には相関がある。このため、評価実験に用いた滑り軸受用ピン12の摺動面の表面粗さ曲線の周波数については特に規定していない。表面粗さを規定する指数の算出に際し、短波長閾値2.5μm、長波長閾値0.8mmのガウシアンフィルタを適用した。   Next, a method for manufacturing the sliding bearing pin 12 used in the evaluation experiment will be described. First, the sliding surface (side surface) was ground until the arithmetic average roughness Ra was about 0.01 μm to 0.1 μm. Thereafter, by performing an air blast treatment, a plurality of sliding bearing pins 12 having a protruding peak portion height Rpk of the sliding surface in the range of about 0.03 μm to 0.33 μm were produced. When blasting is used as the surface treatment, there is a correlation between the protruding peak height Rpk and the frequency of the surface roughness curve. For this reason, the frequency of the surface roughness curve of the sliding surface of the sliding bearing pin 12 used in the evaluation experiment is not particularly specified. A Gaussian filter having a short wavelength threshold value of 2.5 μm and a long wavelength threshold value of 0.8 mm was applied in calculating the index defining the surface roughness.

評価実験で用いたブッシュ11は、摺動面の算術平均粗さRaが0.1μmになるように研削したものである。   The bush 11 used in the evaluation experiment is ground so that the arithmetic average roughness Ra of the sliding surface is 0.1 μm.

評価実験においては、荷重を5kNとし、速度を0.9cm/sとし、ヘルツの最大接触応力を187MPaとし、軸受幅を10mmとし、ピン/ブッシュ径を60mm/64mmとし、潤滑剤として極圧剤入りグリスを用いた。   In the evaluation experiment, the load is 5 kN, the speed is 0.9 cm / s, the maximum contact stress of Hertz is 187 MPa, the bearing width is 10 mm, the pin / bush diameter is 60 mm / 64 mm, and the extreme pressure agent is used as a lubricant. Filled grease was used.

図2Aに、ブッシュ11としてビッカース硬度Hvが730のSCM415を用いた場合の滑り軸受用ピン12の摺動面の突出山部高さRpkと摩擦係数との関係を示す。横軸は、滑り軸受用ピン12の摺動面の突出山部高さRpkを単位「μm」で表し、縦軸は摩擦係数を表す。   FIG. 2A shows the relationship between the protrusion ridge height Rpk of the sliding surface of the sliding bearing pin 12 and the friction coefficient when an SCM415 having a Vickers hardness Hv of 730 is used as the bush 11. The horizontal axis represents the protruding peak height Rpk of the sliding surface of the slide bearing pin 12 in the unit of “μm”, and the vertical axis represents the friction coefficient.

突出山部高さRpkの値が0.09μmを境として、その上下で、摩擦係数に大きな違いがあることがわかる。突出山部高さRpkが0.09μmより大きい範囲では、摩擦係数が0.07よりも大きく、突出山部高さRpkが0.09未満の範囲では、摩擦係数が0.03よりも小さい。突出山部高さRpkが0.09μmの極近傍では、摩擦係数が0.04〜0.06の範囲に分布する。   It can be seen that there is a large difference in the coefficient of friction at the top and bottom of the protruding peak height Rpk value of 0.09 μm. The friction coefficient is larger than 0.07 when the protruding peak height Rpk is larger than 0.09 μm, and the friction coefficient is smaller than 0.03 when the protruding peak height Rpk is less than 0.09. In the very vicinity of the protruding peak height Rpk of 0.09 μm, the friction coefficient is distributed in the range of 0.04 to 0.06.

滑り軸受用ピン12と、ブッシュ11との硬さが同一である場合、摩擦係数を小さくするために、滑り軸受用ピン12の摺動面の突出山部高さRpkを0.09μm未満にすることが好ましい。突出山部高さRpkの好ましい範囲の下限値は、例えば0.02μmである。   When the hardness of the slide bearing pin 12 and the bush 11 is the same, in order to reduce the coefficient of friction, the protruding peak height Rpk of the sliding surface of the slide bearing pin 12 is set to less than 0.09 μm. It is preferable. The lower limit value of the preferable range of the protruding peak height Rpk is, for example, 0.02 μm.

図2Bに、ブッシュ11のビッカース硬度Hvが730の場合の滑り軸受用ピン12の摺動面の突出山部高さRpkと、相手材(ブッシュ11)の比摩耗量との関係を示す。横軸は、滑り軸受用ピン12の摺動面の突出山部高さRpkを単位「μm」で表し、縦軸は相手材の比摩耗量を単位「mm/N」で表す。 FIG. 2B shows the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 when the Vickers hardness Hv of the bush 11 is 730 and the specific wear amount of the mating member (bush 11). The horizontal axis represents the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 in the unit “μm”, and the vertical axis represents the specific wear amount of the mating member in the unit “mm 2 / N”.

相手材の比摩耗量と、滑り軸受用ピン12の摺動面の突出山部高さRpkとの間には、明確な相関関係は見出されない。   There is no clear correlation between the specific wear amount of the mating member and the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12.

図3Aに、ブッシュ11のビッカース硬度Hvが730の場合の突出山部高さRpkと、複合二乗平均平方根粗さの初期値に対する変化率Δσとの関係を示す。横軸は、突出山部高さRpkを単位「μm」で表し、縦軸は変化率Δσを単位「%」で表す。複合二乗平均平方根粗さσは、滑り軸受用ピン12の摺動面の二乗平均平方根粗さと、ブッシュの摺動面の二乗平均平方根粗さとを二乗平均して平方根を取ったものである。   FIG. 3A shows the relationship between the protruding peak height Rpk when the Vickers hardness Hv of the bush 11 is 730 and the rate of change Δσ with respect to the initial value of the composite root mean square roughness. The horizontal axis represents the protruding peak height Rpk in the unit “μm”, and the vertical axis represents the change rate Δσ in the unit “%”. The composite root mean square roughness σ is obtained by taking the root mean square of the root mean square roughness of the sliding surface of the sliding bearing pin 12 and the root mean square roughness of the sliding surface of the bush.

突出山部高さRpkが0.09μm未満の試料においては、突出山部高さRpkが0.09μm以上の試料に比べて、評価実験により、複合二乗平均平方根粗さσが大きく低下していることがわかる。これは、ブッシュ11と滑り軸受用ピン12との摺動面同士がよくなじんでいることを示している。摺動面のなじみ性が向上することにより、低摩擦係数が得られる。   In the sample having the protruding peak height Rpk of less than 0.09 μm, the composite root mean square roughness σ is greatly reduced by the evaluation experiment as compared with the sample having the protruding peak height Rpk of 0.09 μm or more. I understand that. This indicates that the sliding surfaces of the bush 11 and the sliding bearing pin 12 are well adapted to each other. A low friction coefficient can be obtained by improving the conformability of the sliding surface.

図3Bに、突出山部高さRpkと、評価実験後の複合二乗平均平方根粗さσとの関係を示す。横軸は、突出山部高さRpkを単位「μm」で表し、縦軸は複合二乗平均平方根粗さσを単位「μm」で表す。   FIG. 3B shows a relationship between the protruding peak height Rpk and the composite root mean square roughness σ after the evaluation experiment. The horizontal axis represents the protruding peak height Rpk in the unit “μm”, and the vertical axis represents the composite root mean square roughness σ in the unit “μm”.

突出山部高さRpkが0.09μm未満の試料においては、突出山部高さRpkが0.09μm以上の試料に比べて、評価実験後の複合二乗平均平方根粗さσが小さいことがわかる。油膜厚は実験条件で決まるため、いずれの試料においても同一である。従って、複合二乗平均平方根粗さσが小さいことは、複合二乗平均平方根粗さσに対する油膜厚の比が大きいことを意味する。この膜厚比が大きいため、低摩擦係数が得られる。   It can be seen that in the sample having the protruding peak height Rpk of less than 0.09 μm, the composite root mean square roughness σ after the evaluation experiment is smaller than that of the sample having the protruding peak height Rpk of 0.09 μm or more. Since the oil film thickness is determined by experimental conditions, it is the same for all samples. Therefore, a small composite root mean square roughness σ means that the ratio of the oil film thickness to the composite root mean square roughness σ is large. Since this film thickness ratio is large, a low friction coefficient can be obtained.

図2A、図2B、図3A及び図3Bに示した実験結果から、滑り軸受用ピン12とブッシュ11との硬さが同一である場合、滑り軸受用ピン12の摺動面の突出山部高さRpkを0.09μm未満にすることにより、摩擦係数が小さく、摺動面のなじみ性の高い摺動機構が得られることがわかる。言い換えると、摩擦係数が小さく、摺動面のなじみ性の高い摺動機構を実現するために、滑り軸受用ピン12の摺動面の突出山部高さRpkを0.09μm未満にすることが好ましい。   From the experimental results shown in FIGS. 2A, 2B, 3A and 3B, when the hardness of the sliding bearing pin 12 and the bush 11 is the same, the height of the protruding ridge portion of the sliding surface of the sliding bearing pin 12 is It can be seen that by setting the thickness Rpk to less than 0.09 μm, a sliding mechanism having a small friction coefficient and high conformability of the sliding surface can be obtained. In other words, in order to realize a sliding mechanism having a small coefficient of friction and high conformability of the sliding surface, the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 may be less than 0.09 μm. preferable.

図2A及び図2Bでは、滑り軸受用ピン12とブッシュ11との硬さが同一であったが、両者の硬さが厳密に同一である必要はない。例えば、ブッシュ11のビッカース硬度が滑り軸受用ピン12のビッカース硬度の0.9倍以上1.1倍以下であれば、実質的に、両者の硬さが同一であると言える。   In FIGS. 2A and 2B, the hardness of the sliding bearing pin 12 and the bush 11 is the same, but it is not necessary that the hardness of both is exactly the same. For example, if the Vickers hardness of the bush 11 is 0.9 to 1.1 times the Vickers hardness of the sliding bearing pin 12, it can be said that the hardness of both is substantially the same.

図4Aに、ブッシュ11のビッカース硬度Hvが330の場合の滑り軸受用ピン12の摺動面の突出山部高さRpkと摩擦係数との関係を示す。すなわち、ブッシュ11が滑り軸受用ピン12よりも柔らかい。横軸は、滑り軸受用ピン12の摺動面の突出山部高さRpkを単位「μm」で表し、縦軸は摩擦係数を表す。   FIG. 4A shows the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 and the friction coefficient when the Vickers hardness Hv of the bush 11 is 330. That is, the bush 11 is softer than the sliding bearing pin 12. The horizontal axis represents the protruding peak height Rpk of the sliding surface of the slide bearing pin 12 in the unit of “μm”, and the vertical axis represents the friction coefficient.

突出山部高さRpkが0.03μmから0.33μmまでの範囲で大きくなるに従って、摩擦係数も大きくなる傾向を示す。ただし、図2Aに示した場合のように、摩擦係数が急峻に変化するような明確な境界を特定することはできない。   As the protruding peak height Rpk increases in a range from 0.03 μm to 0.33 μm, the friction coefficient tends to increase. However, as in the case shown in FIG. 2A, a clear boundary where the friction coefficient changes sharply cannot be specified.

図4Bに、ブッシュ11のビッカース硬度Hvが330の場合の滑り軸受用ピン12の摺動面の突出山部高さRpkと、相手材(ブッシュ11)の比摩耗量との関係を示す。横軸は、滑り軸受用ピン12の摺動面の突出山部高さRpkを単位「μm」で表し、縦軸は相手材の比摩耗量を単位「mm/N」で表す。 FIG. 4B shows the relationship between the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 when the Vickers hardness Hv of the bush 11 is 330 and the specific wear amount of the mating member (bush 11). The horizontal axis represents the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 in the unit “μm”, and the vertical axis represents the specific wear amount of the mating member in the unit “mm 2 / N”.

突出山部高さRpkの値が0.08μmを境界として、その上下で、相手材の比摩耗量に大きな違いがあることが分かる。突出山部高さRpkが0.08μmより大きい範囲では、相手材の比摩耗量が6×10−10mm/Nより大きく、突出山部高さRpkが0.08μm未満の範囲では、相手材の比摩耗量が1×10−10mm/Nよりも小さい。突出山部高さRpkが0.08μmの極近傍では、相手材の比摩耗量が2×10−10mm/N〜5×10−10mm/Nの範囲に分布する。 It can be seen that there is a large difference in the specific wear amount of the mating material on the upper and lower sides of the protruding ridge height Rpk at the boundary of 0.08 μm. In the range where the protruding peak height Rpk is larger than 0.08 μm, the specific wear amount of the counterpart material is larger than 6 × 10 −10 mm 2 / N, and in the range where the protruding peak height Rpk is less than 0.08 μm, the counterpart The specific wear amount of the material is smaller than 1 × 10 −10 mm 2 / N. Height of the projecting peak portions Rpk is in close proximity to the 0.08 .mu.m, the specific wear rate of the counterpart material is distributed in the range of 2 × 10 -10 mm 2 / N~5 × 10 -10 mm 2 / N.

ブッシュ11が滑り軸受用ピン12よりも柔らかい場合、ブッシュ11の摩耗量を小さくするために、滑り軸受用ピン12の摺動面の突出山部高さRpkを0.08μm未満にすることが好ましい。突出山部高さRpkの好ましい範囲の下限値は、例えば0.02μmである。   When the bush 11 is softer than the sliding bearing pin 12, it is preferable that the protruding peak height Rpk of the sliding surface of the sliding bearing pin 12 is less than 0.08 μm in order to reduce the amount of wear of the bush 11. . The lower limit value of the preferable range of the protruding peak height Rpk is, for example, 0.02 μm.

図4A及び図4Bに示した評価実験では、滑り軸受用ピン12のビッカース硬度が730であり、ブッシュ11のビッカース硬度が330であった。上述の効果を得るためには、一般的には、ブッシュ11のビッカース硬度が滑り軸受用ピン12のビッカース硬度の1/2倍以下であることが一つの基準となる。   In the evaluation experiment shown in FIGS. 4A and 4B, the Vickers hardness of the sliding bearing pin 12 was 730, and the Vickers hardness of the bush 11 was 330. In order to obtain the above-described effect, generally, one standard is that the Vickers hardness of the bush 11 is 1/2 times or less than the Vickers hardness of the sliding bearing pin 12.

上記評価実験では、滑り軸受用ピン12の摺動面の仕上げ処理にエアブラスト処理を用いたが、ウェットブラスト処理を用いてもよい。摺動面の突出山部高さRpkを0.09μm未満、または0.08μm未満にするためには、投射材として粒径50μm以下のものを用いることが好ましい。さらに、投射材として、角を丸めた粒子を用いることが好ましい。   In the evaluation experiment, air blasting is used for finishing the sliding surface of the sliding bearing pin 12, but wet blasting may be used. In order to make the protruding peak height Rpk of the sliding surface less than 0.09 μm or less than 0.08 μm, it is preferable to use a projection material having a particle size of 50 μm or less. Furthermore, it is preferable to use particles with rounded corners as the projection material.

また、投射材が硬すぎると、摺動面の突出山部高さRpkを0.09μm未満、または0.08μm未満にすることが困難である。投射材の材質として、ブラスト処理対象の摺動面と同一か、摺動面より柔らかいものを用いることが好ましい。   If the projection material is too hard, it is difficult to make the protruding peak height Rpk of the sliding surface less than 0.09 μm or less than 0.08 μm. As the material of the projection material, it is preferable to use a material that is the same as or softer than the sliding surface to be blasted.

投射材の投射エネルギを大きくし過ぎると、摺動面の突出山部高さRpkが0.09μmより大きくなってしまう。一般的なエアブラスト処理で用いられる投射エネルギで表面処理を行うと、摺動面の突出山部高さRpkが0.09μmより大きくなる。突出山部高さRpkを0.09μm未満、または0.08μm未満にするためには、投射材の投射エネルギを、一般的なエアブラスト処理で用いられる投射エネルギよりも小さくすることが好ましい。   If the projection energy of the projection material is increased too much, the protruding peak height Rpk of the sliding surface becomes larger than 0.09 μm. When the surface treatment is performed with the projection energy used in the general air blast treatment, the protruding peak height Rpk of the sliding surface becomes larger than 0.09 μm. In order to make the protruding peak height Rpk less than 0.09 μm or less than 0.08 μm, it is preferable that the projection energy of the projection material is smaller than the projection energy used in general air blasting.

上記実施例では、摺動機構の例として滑り軸受を取り上げた。滑り軸受は、相互に対向する摺動面が円筒形状を有する。上述のブラスト処理で作製された摺動面は、その他の摺動機構にも適用することが可能である。例えば、平面状の摺動面を持つ一対の摺動部材が、摺動面同士を対向させて摺動する摺動機構にも適用することが可能である。   In the above embodiment, the sliding bearing is taken up as an example of the sliding mechanism. In the sliding bearing, sliding surfaces facing each other have a cylindrical shape. The sliding surface produced by the blasting process described above can be applied to other sliding mechanisms. For example, the present invention can be applied to a sliding mechanism in which a pair of sliding members having a planar sliding surface slide with the sliding surfaces facing each other.

次に、図5〜図8を参照して、上述の摺動機構が適用される複数の他の実施例について説明する。   Next, a plurality of other embodiments to which the above-described sliding mechanism is applied will be described with reference to FIGS.

図5に、他の実施例によるショベルの側面図を示す。下部走行体20に上部旋回体21が旋回可能に搭載されている。上部旋回体21に、ブーム22、アーム23、及びバケット24が連結されている。油圧シリンダ25、26、27が、それぞれブーム22、アーム23、及びバケット24を駆動する。油圧シリンダ27とバケット24とは、リンク機構28を介して接続されている。ブーム22と上部旋回体21との関節部31、ブーム22とアーム23との関節部32、アーム23とバケット24との関節部33、各油圧シリンダ25、26、27と、各作業要素との関節部34、及びリンク機構28の関節部に、図1A及び図1Bに示した実施例による滑り軸受用ピン12が用いられる。   FIG. 5 shows a side view of an excavator according to another embodiment. An upper turning body 21 is mounted on the lower traveling body 20 so as to be turnable. A boom 22, an arm 23, and a bucket 24 are connected to the upper swing body 21. Hydraulic cylinders 25, 26, and 27 drive the boom 22, the arm 23, and the bucket 24, respectively. The hydraulic cylinder 27 and the bucket 24 are connected via a link mechanism 28. The joint portion 31 of the boom 22 and the upper swing body 21, the joint portion 32 of the boom 22 and the arm 23, the joint portion 33 of the arm 23 and the bucket 24, the hydraulic cylinders 25, 26, and 27, and the work elements The slide bearing pin 12 according to the embodiment shown in FIGS. 1A and 1B is used for the joint portion 34 and the joint portion of the link mechanism 28.

上記実施例による滑り軸受用ピン12を、ショベルの関節部に適用することにより、摩擦係数低減、なじみ性の向上という効果が得られる。または、ブッシュ11(図1A、図1B)の摩耗量の低減という効果が得られる。   By applying the slide bearing pin 12 according to the above embodiment to the joint portion of the excavator, the effects of reducing the friction coefficient and improving the conformability can be obtained. Alternatively, an effect of reducing the wear amount of the bush 11 (FIGS. 1A and 1B) can be obtained.

図6に、さらに他の実施例による成形機の型締装置の概略図を示す。固定プラテン40及びトグルサポート41が、相互に距離をおいてフレームに固定されている。固定プラテン40とトグルサポート41との間に複数のタイバー42が架設されている。   FIG. 6 shows a schematic view of a mold clamping device of a molding machine according to still another embodiment. The stationary platen 40 and the toggle support 41 are fixed to the frame at a distance from each other. A plurality of tie bars 42 are installed between the fixed platen 40 and the toggle support 41.

可動プラテン43が、タイバー42に案内されて、固定プラテン40に対して進退可能に支持されている。固定プラテン40の金型取付面と可動プラテン43の金型取付面とが対向している。固定プラテン40の金型取付面に固定金型45が取り付けられており、可動プラテン43の金型取付面に可動金型46が取り付けられている。   The movable platen 43 is supported by the tie bar 42 so as to be able to advance and retreat relative to the fixed platen 40. The mold mounting surface of the fixed platen 40 and the mold mounting surface of the movable platen 43 are opposed to each other. A fixed mold 45 is mounted on the mold mounting surface of the fixed platen 40, and a movable mold 46 is mounted on the mold mounting surface of the movable platen 43.

可動プラテン43とトグルサポート41との間にトグル機構50が配置されている。トグルサポート41の背面(可動プラテン43とは反対側を向く面)に、駆動装置47が取り付けられている。駆動装置47から、トグルサポート41を貫通して可動プラテン43に向かって連結ロッド51が延びる。駆動装置47は、連結ロッド51を軸方向に移動させる。   A toggle mechanism 50 is disposed between the movable platen 43 and the toggle support 41. A driving device 47 is attached to the back surface of the toggle support 41 (the surface facing the side opposite to the movable platen 43). A connecting rod 51 extends from the driving device 47 through the toggle support 41 toward the movable platen 43. The drive device 47 moves the connecting rod 51 in the axial direction.

連結ロッド51の先端にクロスヘッド52が取り付けられている。クロスヘッド52に、一対の小トグルレバー53の各々の一端が、滑り軸受用ピン61を介して取り付けられている。一対の大トグルレバー54の一端が、滑り軸受用ピン62を介してトグルサポート41に取り付けられている。小トグルレバー53の他端が、滑り軸受用ピン63を介して大トグルレバー54の中間位置に取り付けられている。大トグルレバー54の他端が、滑り軸受用ピン64を介してトグルアーム55の一端に取り付けられている。トグルアーム55の他端は、滑り軸受用ピン65を介して可動プラテン43に取り付けられている。   A cross head 52 is attached to the tip of the connecting rod 51. One end of each of the pair of small toggle levers 53 is attached to the cross head 52 via a slide bearing pin 61. One end of the pair of large toggle levers 54 is attached to the toggle support 41 via a slide bearing pin 62. The other end of the small toggle lever 53 is attached to an intermediate position of the large toggle lever 54 via a slide bearing pin 63. The other end of the large toggle lever 54 is attached to one end of the toggle arm 55 via a slide bearing pin 64. The other end of the toggle arm 55 is attached to the movable platen 43 via a sliding bearing pin 65.

駆動装置47が連結ロッド51を軸方向に移動させることによって、トグル機構50を動作させることができる。滑り軸受用ピン61、62、63、64、65の摺動面(側面)の加工に、図1A、図1Bに示した滑り軸受用ピン12の摺動面に対するブラスト処理を適用することができる。これにより、摩擦係数低減、なじみ性の向上という効果が得られる。または、滑り軸受用ピン61、62、63、64、65の相手面の摩耗量の低減という効果が得られる。   The toggle mechanism 50 can be operated by the drive device 47 moving the connecting rod 51 in the axial direction. For processing the sliding surfaces (side surfaces) of the sliding bearing pins 61, 62, 63, 64, 65, the blasting process for the sliding surface of the sliding bearing pin 12 shown in FIGS. 1A and 1B can be applied. . As a result, the effects of reducing the friction coefficient and improving the conformability can be obtained. Alternatively, the effect of reducing the wear amount of the mating surfaces of the sliding bearing pins 61, 62, 63, 64, 65 can be obtained.

図7に、さらに他の実施例による射出成形機の概略図を示す。固定プラテン70とトグルサポート71との間にトグル機構72が配置されている。トグル機構72により、固定プラテン70に対してトグルサポート71が上下に移動する。トグルサポート71から上方に向かって延びる3本のタイバー73が、固定プラテン70を貫通して、さらに上方に延びる。図7には、2本のタイバー73が示されている。タイバー73の上端に、固定用ナット76を用いて可動プラテン75が固定されている。トグル機構72を動作させてトグルサポート71を下方に移動させると、可動プラテン75が固定プラテン70に近づく。   FIG. 7 shows a schematic view of an injection molding machine according to still another embodiment. A toggle mechanism 72 is disposed between the fixed platen 70 and the toggle support 71. The toggle support 71 moves up and down with respect to the fixed platen 70 by the toggle mechanism 72. Three tie bars 73 extending upward from the toggle support 71 extend through the fixed platen 70 and further upward. In FIG. 7, two tie bars 73 are shown. A movable platen 75 is fixed to the upper end of the tie bar 73 using a fixing nut 76. When the toggle mechanism 72 is operated to move the toggle support 71 downward, the movable platen 75 approaches the fixed platen 70.

固定プラテン70の上に、2枚の滑りプレート80a、80bが固定されている。ロータリテーブル77が、回転軸受78を介して1本のタイバー73に対して回転可能に支持されるとともに、滑りプレート80a、80bにより下方から支持されている。2枚の滑りプレート80a、80bは、ロータリテーブル77の回転中心に関して点対称の位置に配置される。回転駆動機構79がロータリテーブル77を回転させる。   Two sliding plates 80 a and 80 b are fixed on the fixed platen 70. A rotary table 77 is rotatably supported with respect to one tie bar 73 via a rotary bearing 78, and is supported from below by sliding plates 80a and 80b. The two sliding plates 80 a and 80 b are arranged at point-symmetrical positions with respect to the rotation center of the rotary table 77. A rotation drive mechanism 79 rotates the rotary table 77.

ロータリテーブル77の上に、2つの下側金型82a、82bが支持されている。一方の下側金型82aが一方の滑りプレート80aの真上に位置するとき、他方の下側金型82bは他方の滑りプレート80bの真上に位置する。図7は、下側金型82aが滑りプレート80aの真上に位置する状態を示している。   Two lower molds 82 a and 82 b are supported on the rotary table 77. When one lower mold 82a is positioned right above one sliding plate 80a, the other lower mold 82b is positioned right above the other sliding plate 80b. FIG. 7 shows a state in which the lower mold 82a is positioned directly above the sliding plate 80a.

可動プラテン75の下方を向く面に上側金型83が取り付けられている。上側金型83は、一方の滑りプレート80aの真上に配置されている。ロータリテーブル77を回転させることにより、下側金型82a及び82bの一方を上側金型83の下に配置して成形品を作製し、他方から、作製された成形品を取り出すことができる。   An upper mold 83 is attached to the surface facing the lower side of the movable platen 75. The upper mold 83 is disposed immediately above one sliding plate 80a. By rotating the rotary table 77, one of the lower molds 82a and 82b can be arranged under the upper mold 83 to produce a molded product, and the produced molded product can be taken out from the other.

射出成型を行うときには、固定プラテン70と可動プラテン75との間隔が狭まり、ロータリテーブル77の一部、具体的には滑りプレート80aの真上の位置に、下方を向く荷重が加わる。滑りプレート80aは、ロータリテーブル77に加わる荷重を支える。   When injection molding is performed, the distance between the fixed platen 70 and the movable platen 75 is narrowed, and a downward load is applied to a part of the rotary table 77, specifically, a position directly above the sliding plate 80a. The sliding plate 80 a supports a load applied to the rotary table 77.

滑りプレート80a、80bの上面と、ロータリテーブル77の下面とが、一対の摺動面を構成する。ロータリテーブル77が回転すると、ロータリテーブル77の下面(摺動面)と、滑りプレート80a、80bの上面(摺動面)とが摺動する。滑りプレート80a、80bの上面の加工に、図1A及び図1Bに示した滑り軸受用ピン12の摺動面に対するブラスト処理を適用することができる。   The upper surfaces of the sliding plates 80a and 80b and the lower surface of the rotary table 77 constitute a pair of sliding surfaces. When the rotary table 77 rotates, the lower surface (sliding surface) of the rotary table 77 and the upper surfaces (sliding surfaces) of the sliding plates 80a and 80b slide. The blasting process for the sliding surface of the sliding bearing pin 12 shown in FIGS. 1A and 1B can be applied to processing the upper surfaces of the sliding plates 80a and 80b.

滑りプレート80a、80bの上面の加工に、図1A及び図1Bに示した滑り軸受用ピン12の摺動面のブラスト処理を適用することにより、摩擦係数低減、なじみ性の向上という効果が得られる。または、滑りプレート80a、80bの相手面、すなわちロータリテーブル77の下面の摩耗量の低減という効果が得られる。   By applying the blasting of the sliding surface of the sliding bearing pin 12 shown in FIGS. 1A and 1B to the processing of the upper surfaces of the sliding plates 80a and 80b, the effects of reducing the friction coefficient and improving the conformability can be obtained. . Alternatively, an effect of reducing the wear amount of the mating surfaces of the sliding plates 80a and 80b, that is, the lower surface of the rotary table 77 can be obtained.

図8に、さらに他の実施例による鍛造プレス機の概略図を示す。ベッド90の四隅から上方に向かってコラム92が延び、コラム92の上端にクラウン91が固定されている。クラウン91に、水平方向に架け渡された偏心軸95が回転可能に支持されている。駆動源96が偏心軸95を回転させる。偏心軸95の下方に、スライド98がコンロッド97を介して連結されている。   FIG. 8 shows a schematic view of a forging press according to still another embodiment. A column 92 extends upward from the four corners of the bed 90, and a crown 91 is fixed to the upper end of the column 92. An eccentric shaft 95 spanned in the horizontal direction is rotatably supported on the crown 91. A drive source 96 rotates the eccentric shaft 95. A slide 98 is connected below the eccentric shaft 95 via a connecting rod 97.

コラム92に、それぞれスライドギブ100が取り付けられている。スライドギブ100は鉛直方向に延びる案内面を含む。スライド98は、被案内面をスライドギブ100の案内面に対向させて、上下方向に案内される。偏心軸95を回転させることにより、スライド98を上下方向に往復運動させることができる。   A slide give 100 is attached to each column 92. The slide give 100 includes a guide surface extending in the vertical direction. The slide 98 is guided in the vertical direction with the guided surface facing the guide surface of the slide give 100. By rotating the eccentric shaft 95, the slide 98 can be reciprocated in the vertical direction.

ベッド90の上に、下側ダイホルダ105が取り付けられている。下側ダイホルダ105に下側金型106が保持される。スライド98の下面に上側ダイホルダ107が取り付けられている。上側ダイホルダ107に上側金型108が保持される。   A lower die holder 105 is attached on the bed 90. The lower die 106 is held by the lower die holder 105. An upper die holder 107 is attached to the lower surface of the slide 98. The upper die 108 is held by the upper die holder 107.

スライドギブ100の案内面には、例えば銅合金製のライナー材を用いることができる。スライド98の被案内面の加工に、図1A及び図1Bに示した滑り軸受用ピン12の摺動面のブラスト処理を適用することができる。その逆に、スライド98の被案内面に、例えば銅合金製のライナー材を用い、スライドギブ100の案内面の加工に、図1A及び図1Bに示した滑り軸受用ピン12の摺動面のブラスト処理を適用してもよい。   For example, a liner material made of a copper alloy can be used for the guide surface of the slide give 100. The blasting of the sliding surface of the sliding bearing pin 12 shown in FIGS. 1A and 1B can be applied to the processing of the guided surface of the slide 98. On the contrary, for example, a copper alloy liner material is used for the guided surface of the slide 98, and the sliding surface of the sliding bearing pin 12 shown in FIGS. Blasting may be applied.

スライドギブ100の案内面、及びスライド98の被案内面の一方の加工に、図1A及び図1Bに示した滑り軸受用ピン12の摺動面のブラスト処理を適用することにより、摩擦係数低減、なじみ性の向上という効果が得られる。または、スライドギブ100の案内面、及びスライド98の被案内面の他方の摩耗量の低減という効果が得られる。   By applying the blasting of the sliding surface of the sliding bearing pin 12 shown in FIGS. 1A and 1B to one of the guide surface of the slide give 100 and the guided surface of the slide 98, the friction coefficient is reduced. The effect of improving the compatibility is obtained. Alternatively, an effect of reducing the amount of wear of the other of the guide surface of the slide give 100 and the guided surface of the slide 98 can be obtained.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

10 固定部材
11 ブッシュ
12 滑り軸受用ピン
13 可動部材
14 滑り軸受用ピンの端部
20 下部走行体
21 上部旋回体
22 ブーム
23 アーム
24 バケット
25、26、27 油圧シリンダ
28 リンク機構
31、32、33、34 関節部
40 固定プラテン
41 トグルサポート
42 タイバー
43 可動プラテン
45 固定金型
46 可動金型
47 駆動装置
50 トグル機構
51 連結ロッド
52 クロスヘッド
53 小トグルレバー
54 大トグルレバー
55 トグルアーム
61、62、63、64、65 滑り軸受用ピン
70 固定プラテン
71 トグルサポート
72 トグル機構
73 タイバー
75 可動プラテン
76 固定用ナット
77 ロータリテーブル
78 回転軸受
79 回転駆動機構
80a、80b 滑りプレート
82a、82b 下側金型
83 上側金型
90 ベッド
91 クラウン
92 コラム
95 偏心軸
96 駆動源
97 コンロッド
98 スライド
100 スライドギブ
105 下側ダイホルダ
106 下側金型
107 上側ダイホルダ
108 上側金型
DESCRIPTION OF SYMBOLS 10 Fixed member 11 Bush 12 Sliding bearing pin 13 Movable member 14 End part 20 of sliding bearing pin Lower traveling body 21 Upper turning body 22 Boom 23 Arm 24 Bucket 25, 26, 27 Hydraulic cylinder 28 Link mechanism 31, 32, 33 , 34 Joint 40 Fixed platen 41 Toggle support 42 Tie bar 43 Movable platen 45 Fixed mold 46 Movable mold 47 Drive device 50 Toggle mechanism 51 Connecting rod 52 Cross head 53 Small toggle lever 54 Large toggle lever 55 Toggle arms 61, 62, 63, 64, 65 Slide bearing pin 70 Fixed platen 71 Toggle support 72 Toggle mechanism 73 Tie bar 75 Movable platen 76 Fixing nut 77 Rotary table 78 Rotating bearing 79 Rotating drive mechanism 80a, 80b Sliding plate 82a, 82b Lower mold 83 Upper side Type 90 bed 91 Crown 92 column 95 the eccentric shaft 96 the drive source 97 connecting rod 98 slides 100 slide gib 105 lower die holder 106 lower mold 107 the upper die holder 108 upper mold

Claims (9)

摺動面同士を対向させて一方が他方に対して摺動する第1の部材及び第2の部材を有し、前記第2の部材の摺動面の突出山部高さRpkが0.09μm未満である摺動機構。   A sliding member has a first member and a second member that face each other with the sliding surfaces facing each other, and the protruding peak height Rpk of the sliding surface of the second member is 0.09 μm. Sliding mechanism that is less than. 前記第2の部材の前記摺動面の突出山部高さRpkが0.08μm未満である請求項1に記載の摺動機構。   2. The sliding mechanism according to claim 1, wherein a protrusion peak height Rpk of the sliding surface of the second member is less than 0.08 μm. 前記第1の部材が前記第2の部材より柔らかい請求項1または2に記載の摺動機構。   The sliding mechanism according to claim 1, wherein the first member is softer than the second member. 前記第2の部材のビッカース硬さが、前記第1の部材のビッカース硬さの1/2倍以下である請求項3に記載の摺動機構。   The sliding mechanism according to claim 3, wherein the second member has a Vickers hardness of ½ times or less of the Vickers hardness of the first member. 前記第1の部材がブッシュであり、前記第2の部材が前記ブッシュに挿入されて回転する滑り軸受用ピンである請求項1乃至4のいずれか1項に記載の摺動機構。   The sliding mechanism according to any one of claims 1 to 4, wherein the first member is a bush, and the second member is a sliding bearing pin that is inserted into the bush and rotates. 前記第1の部材が、垂直な回転軸に対して回転可能に支持され、下方を向く摺動面を持つロータリテーブルであり、
前記第2の部材が、前記ロータリテーブルの下に配置され、前記ロータリテーブルの摺動面に対向する摺動面を持つ滑りプレートであり、
前記ロータリテーブルが回転することにより、前記滑りプレートの摺動面に対して前記ロータリテーブルの摺動面が摺動し、
前記滑りプレートは、前記ロータリテーブルに加わる荷重を支える請求項1乃至4のいずれか1項に記載の摺動機構。
The first member is a rotary table that is rotatably supported with respect to a vertical rotation axis and has a sliding surface facing downward;
The second member is a sliding plate disposed under the rotary table and having a sliding surface facing the sliding surface of the rotary table;
By rotating the rotary table, the sliding surface of the rotary table slides with respect to the sliding surface of the sliding plate,
The sliding mechanism according to claim 1, wherein the sliding plate supports a load applied to the rotary table.
前記第1の部材及び前記第2の部材の一方が、鉛直方向に延びる案内面を含むスライドギブであり、
前記第1の部材及び前記第2の部材の他方が、前記スライドギブの前記案内面に被案内面を対向させて上下方向に移動するスライドであり、
前記スライドが上下に移動することにより、前記スライドの前記被案内面が、前記スライドギブの前記案内面に対して摺動する請求項1乃至4のいずれか1項に記載の摺動機構。
One of the first member and the second member is a slide giving including a guide surface extending in the vertical direction,
The other of the first member and the second member is a slide that moves in a vertical direction with a guided surface facing the guide surface of the slide give,
The sliding mechanism according to any one of claims 1 to 4, wherein the guided surface of the slide slides with respect to the guide surface of the slide give as the slide moves up and down.
摺動面を有する摺動部材を準備する工程と、
前記摺動面に対して、突出山部高さRpkが0.09μm未満になる加工条件でブラスト処理を行う工程と
を有する摺動部材の製造方法。
Preparing a sliding member having a sliding surface;
And a step of performing a blasting process on the sliding surface under a processing condition such that the protruding peak height Rpk is less than 0.09 μm.
前記ブラスト処理を行なう工程における前記加工条件を、突出山部高さRpkが0.08μm未満になる条件とする請求項8に記載の摺動部材の製造方法。   The manufacturing method of the sliding member according to claim 8, wherein the processing condition in the step of performing the blasting process is a condition in which the protruding ridge height Rpk is less than 0.08 µm.
JP2016046708A 2016-03-10 2016-03-10 Sliding mechanism Active JP6824563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016046708A JP6824563B2 (en) 2016-03-10 2016-03-10 Sliding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046708A JP6824563B2 (en) 2016-03-10 2016-03-10 Sliding mechanism

Publications (2)

Publication Number Publication Date
JP2017161003A true JP2017161003A (en) 2017-09-14
JP6824563B2 JP6824563B2 (en) 2021-02-03

Family

ID=59853957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046708A Active JP6824563B2 (en) 2016-03-10 2016-03-10 Sliding mechanism

Country Status (1)

Country Link
JP (1) JP6824563B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133653A (en) * 2019-02-13 2020-08-31 住友重機械工業株式会社 Eccentric oscillation type speed reducer
EP4130498A1 (en) * 2021-08-02 2023-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sliding member and method for driving sliding member
EP4130500A1 (en) * 2021-08-02 2023-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bearing device and method for driving bearing device
EP4141276A4 (en) * 2019-04-26 2024-01-17 Nsk Ltd Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554821U (en) * 1978-06-23 1980-01-12
JP2000280062A (en) * 1999-03-30 2000-10-10 Toyoda Mach Works Ltd High hardness material part integral jointed casting, and its manufacture
JP2005069871A (en) * 2003-08-25 2005-03-17 Ntn Corp Turntable device
JP2006144100A (en) * 2004-11-24 2006-06-08 Nissan Motor Co Ltd Sliding member for automobile engine
JP2006183095A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method for producing gear excellent in fatigue strength on tooth surface
JP2007232026A (en) * 2006-02-28 2007-09-13 Riken Corp Sliding member
JP2013083322A (en) * 2011-10-11 2013-05-09 Toyota Motor Corp Toothed wheel and transmission
JP2014152373A (en) * 2013-02-12 2014-08-25 Kayaba Ind Co Ltd Slide member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554821U (en) * 1978-06-23 1980-01-12
JP2000280062A (en) * 1999-03-30 2000-10-10 Toyoda Mach Works Ltd High hardness material part integral jointed casting, and its manufacture
JP2005069871A (en) * 2003-08-25 2005-03-17 Ntn Corp Turntable device
JP2006144100A (en) * 2004-11-24 2006-06-08 Nissan Motor Co Ltd Sliding member for automobile engine
JP2006183095A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method for producing gear excellent in fatigue strength on tooth surface
JP2007232026A (en) * 2006-02-28 2007-09-13 Riken Corp Sliding member
JP2013083322A (en) * 2011-10-11 2013-05-09 Toyota Motor Corp Toothed wheel and transmission
JP2014152373A (en) * 2013-02-12 2014-08-25 Kayaba Ind Co Ltd Slide member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133653A (en) * 2019-02-13 2020-08-31 住友重機械工業株式会社 Eccentric oscillation type speed reducer
EP4141276A4 (en) * 2019-04-26 2024-01-17 Nsk Ltd Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism
EP4130498A1 (en) * 2021-08-02 2023-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sliding member and method for driving sliding member
EP4130500A1 (en) * 2021-08-02 2023-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bearing device and method for driving bearing device

Also Published As

Publication number Publication date
JP6824563B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6824563B2 (en) Sliding mechanism
JP7320365B2 (en) Sintered metal connecting rod and manufacturing method thereof
WO2013155884A1 (en) Machine hinge vertical compression mould clamping mechanism
CN203641278U (en) Solid lubricating bearing with copper-alloy graphite groove
CN106166577A (en) A kind of nickel-base alloy complex forging close trim mould and processing method thereof
CN101704043B (en) Hydraulic bending machine
JP2003097552A (en) Friction applying device and linear motion guide
JP2017217657A (en) Gradual molding method and gradual molding device
KR20120083283A (en) Forging die apparatus for steering racks
WO2016143741A1 (en) Sliding member, sliding mechanism, and method for manufacturing sliding member
JP2011224632A (en) Slide guide device of press machine
CN208866345U (en) A kind of monoblock type compressor crank shaft blank casting pattern
CN105689466A (en) Roller adjusting device, adjusting method and application of device and bending machine comprising device
CN104533739B (en) Hydraulic pump swash plate and its processing method
US20240058859A1 (en) Multidirectional Synchronous Punch-forming Forging Machine
CN108160895B (en) Horizontal method for forging and molding and mold for forming of the long axis class with shaft shoulder forging
JP6276361B1 (en) Crank press machine
CN109747127B (en) Pull or push rod or lock nut for forming machine
JP2850730B2 (en) Toggle type mold clamping device
DE112014006913B4 (en) Device for producing a metal part
CN204371571U (en) Oil hydraulic pump swash plate
JP2002178087A (en) Heading forming machine
JPS6277145A (en) Oscillating forging device
CN206206408U (en) A kind of anti-wear sleeve structure in hydraulic valve
CN220497518U (en) Quick positioner of spare part mould

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6824563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150