JP2017160891A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2017160891A
JP2017160891A JP2016048764A JP2016048764A JP2017160891A JP 2017160891 A JP2017160891 A JP 2017160891A JP 2016048764 A JP2016048764 A JP 2016048764A JP 2016048764 A JP2016048764 A JP 2016048764A JP 2017160891 A JP2017160891 A JP 2017160891A
Authority
JP
Japan
Prior art keywords
vehicle
state
lib
battery
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016048764A
Other languages
Japanese (ja)
Inventor
雅臣 小島
Masaomi Kojima
雅臣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016048764A priority Critical patent/JP2017160891A/en
Publication of JP2017160891A publication Critical patent/JP2017160891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device for a vehicle which can start a vehicle drive system without waiting for charge to an auxiliary battery.SOLUTION: A starting battery unit 20 comprises: a lithium-ion battery (LIB) 21; a microcontroller 23 which is operable with a lead battery 5 mounted to a vehicle or the LIB 21 as a power supply; and a changeover circuit 22 which can switch an electricity-carrying state between an electric apparatus E and the LIB 21, and an electricity-carrying state between the microcontroller 23 and the LIB 21. The microcontroller 23 controls the changeover circuit 22 so as to be switched to a first state that the LIB 21 and the microcontroller 23 are carried with electricity when the power of the lead battery 5 is shorted, and controls the changeover circuit 22 so as to be switched to a second state that the electric apparatus E and the LIB 21 are carried with electricity in response to simultaneous operations of a brake pedal BP and a start switch 12 in the first state.SELECTED DRAWING: Figure 1

Description

本発明は、ハイブリッド車両や電気自動車等の車両を駆動するための車両駆動システムに適用される車両用電源装置に関する。   The present invention relates to a vehicle power supply device applied to a vehicle drive system for driving a vehicle such as a hybrid vehicle or an electric vehicle.

鉛バッテリとリチウムイオンバッテリとを備え、車両駆動システムに用いられる車両用電源装置として、鉛バッテリでのシステムの始動に失敗した場合にリチウムイオンバッテリを使って鉛バッテリの充電を開始し、所定時間後に運転者へシステムの再始動を促すものが知られている(特許文献1参照)。   A lead-acid battery and a lithium-ion battery, and as a vehicle power supply device used in a vehicle drive system, when the lead-acid battery system fails to start, the lithium-ion battery is used to start charging the lead battery for a predetermined time. One that prompts the driver to restart the system later is known (see Patent Document 1).

特開2008−180207号公報JP 2008-180207 A

特許文献1の装置は、鉛バッテリの充電を開始してから車両駆動システムの再始動までに時間を要するので改善の余地がある。   The device of Patent Document 1 has room for improvement because it takes time from the start of charging the lead battery to the restart of the vehicle drive system.

そこで、本発明は、補機バッテリへの充電を待つことなく車両駆動システムを始動できる車両用電源装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a vehicle power supply device that can start a vehicle drive system without waiting for charging of an auxiliary battery.

本発明の車両用電源装置は、車両駆動システムの始動時に利用される電気機器に電気的に接続された補機バッテリを含む車両に適用される車両用電源装置おいて、補助バッテリと、前記補機バッテリ又は前記補助バッテリを電源として動作可能な制御手段と、前記電気機器と前記補助バッテリとの通電状態及び前記制御手段と前記補助バッテリとの通電状態をそれぞれ切替可能な切替手段と、を備え、前記制御手段は、前記補機バッテリの電力が不足した場合に前記補助バッテリと前記制御手段とが通電する第1状態に切り替わるように前記切替手段を制御するとともに、前記第1状態で始動に関するユーザの特定操作に応答して前記電気機器と前記補助バッテリとが通電する第2状態に切り替わるように前記切替手段を制御するものである。   The vehicle power supply device of the present invention is a vehicle power supply device applied to a vehicle including an auxiliary battery electrically connected to an electric device used when starting the vehicle drive system. Control means operable with a machine battery or the auxiliary battery as a power source, and switching means capable of switching between an energization state between the electric device and the auxiliary battery and an energization state between the control means and the auxiliary battery, respectively. The control means controls the switching means to switch to a first state in which the auxiliary battery and the control means are energized when the power of the auxiliary battery is insufficient, and relates to starting in the first state. The switching means is controlled to switch to a second state in which the electric device and the auxiliary battery are energized in response to a user's specific operation.

本発明の車両用電源装置によれば、補機バッテリの電力が不足した場合には制御手段と補助バッテリとが通電する第1状態に切り替わることにより、制御手段の電源が確保される。そして、第1状態で、始動に関するユーザの特定操作に応答して電気機器と補助バッテリとが通電する第2状態に切り替わり、補助バッテリが車両駆動システムの始動に利用される電気機器の電源となる。したがって、補機バッテリの電力が不足した段階で補助バッテリによって電気機器の動作が確保されるので、補機バッテリへの充電を待つことなく車両駆動システムの始動が可能となる。   According to the vehicle power supply device of the present invention, when the power of the auxiliary battery is insufficient, the power of the control means is ensured by switching to the first state in which the control means and the auxiliary battery are energized. Then, in the first state, the electric device and the auxiliary battery are switched to the second state in response to the user's specific operation related to the start, and the auxiliary battery becomes a power source of the electric device used for starting the vehicle drive system. . Therefore, since the operation of the electric device is ensured by the auxiliary battery when the power of the auxiliary battery is insufficient, the vehicle drive system can be started without waiting for charging of the auxiliary battery.

本発明の一形態である車両用電源装置が適用された車両の電気系統の要部を模式的に示した図。The figure which showed typically the principal part of the electric system of the vehicle to which the power supply device for vehicles which is one form of this invention was applied. 車両用電源装置の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of the power supply device for vehicles. 車両放置時における各バッテリの電圧の時間的変化を示した図。The figure which showed the time change of the voltage of each battery at the time of vehicle leaving.

図1は車両の一例としてのハイブリッド車両の電気系統を示している。ハイブリッド車両はモータ・ジェネレータ(不図示)の電源等として用いられるHVメインバッテリ1を備えている。HVメインバッテリ1はシステムメインリレー2を介してDCDCコンバータ3に電気的に接続されている。それにより、HVメインバッテリ1から電力供給されるDCDCコンバータ3は補機電源回路Cを介して鉛バッテリ5の充電にも使用される。なお、以下の説明では特に断らない限り「接続」は電気的な接続を意味する。また、図1の太い実線は電源供給される配線を意味し、細い矢印線は電気信号の入出力を意味する。   FIG. 1 shows an electric system of a hybrid vehicle as an example of the vehicle. The hybrid vehicle includes an HV main battery 1 used as a power source for a motor / generator (not shown). The HV main battery 1 is electrically connected to a DCDC converter 3 via a system main relay 2. Accordingly, the DCDC converter 3 supplied with power from the HV main battery 1 is also used for charging the lead battery 5 via the auxiliary power supply circuit C. In the following description, “connection” means electrical connection unless otherwise specified. In addition, a thick solid line in FIG. 1 means a power supply wiring, and a thin arrow line means an input / output of an electric signal.

DCDCコンバータ3には補機電源回路Cが接続されている。補機電源回路Cには補機バッテリとしての鉛バッテリ5が接続されるとともに、ハイブリッド車両に搭載される不図示の内燃機関やモータ・ジェネレータを含む車両駆動システムの始動に利用される各種の電気機器Eが接続される。電気機器Eには、システムメインリレー2を制御するとともにハイブリッド車両を包括的に制御するHVECU6、盗難防止のためのアクセスキーの照合等を行うIDコードボックス7、盗難防止用のステアリングロック装置を制御するステアリングロックECU8、これらの機器6〜8との間で電気信号がやり取りされる照合ECU9、及びその他の機器10を含む。ハイブリッド車両には、ユーザにて操作されるブレーキペダルBPの動作と連動してON・OFFされるストップランプスイッチ11と、ユーザにて操作されるスタートスイッチ12とが設けられており、これらのスイッチ11、12の出力信号は照合ECU9に入力される。   An auxiliary power supply circuit C is connected to the DCDC converter 3. A lead battery 5 as an auxiliary battery is connected to the auxiliary power circuit C, and various types of electricity used for starting a vehicle drive system including an internal combustion engine (not shown) and a motor / generator mounted on the hybrid vehicle. Device E is connected. The electrical equipment E controls the system main relay 2 and the HVECU 6 that comprehensively controls the hybrid vehicle, the ID code box 7 that performs access key verification for theft prevention, and the anti-theft steering lock device. A steering lock ECU 8, a verification ECU 9 that exchanges electrical signals with these devices 6 to 8, and other devices 10. The hybrid vehicle is provided with a stop lamp switch 11 that is turned ON / OFF in conjunction with the operation of the brake pedal BP operated by the user, and a start switch 12 that is operated by the user. The output signals of 11 and 12 are input to the verification ECU 9.

また、補機電源回路Cには車両用電源装置としての起動用バッテリユニット20が接続されている。起動用バッテリユニット20は、補助バッテリとしてのリチウムイオンバッテリ(以下LIBという。)21と、切替手段としての切替回路22と、制御手段としてのマイクロコントローラ(以下MCという。)23とを備えている。LIB21は、例えば18650型の電池セルが4本組み合わされて構成されている。切替回路22は、補機電源回路Cへの電源供給とMC23への電源供給とをそれぞれ切り替えるため、電気機器EとLIB21との通電状態を切り替えるラッチングタイプのリレーAと、MC23とLIB21との通電状態を切り替えるラッチングタイプのリレーBとを含んでいる。   The auxiliary power supply circuit C is connected to a starting battery unit 20 as a vehicle power supply device. The starting battery unit 20 includes a lithium ion battery (hereinafter referred to as LIB) 21 as an auxiliary battery, a switching circuit 22 as switching means, and a microcontroller (hereinafter referred to as MC) 23 as control means. . The LIB 21 is configured by combining, for example, four 18650 type battery cells. The switching circuit 22 switches between the power supply to the auxiliary machine power circuit C and the power supply to the MC 23, so that the latching type relay A for switching the energization state between the electric equipment E and the LIB 21 and the energization between the MC 23 and the LIB 21 are switched. And a latching type relay B for switching the state.

MC23は上記仕様のLIB21でも十分な期間に亘って当該LIB21を監視できる程度の小電力、例えば平均消費電流が0.1mA程度に設計されている。また、MC23はハイブリッド車両の始動限界電圧(例えば8.5V)よりも低い電圧(例えば5V)までを駆動保証電圧として駆動が保証されている(図3参照)。   The MC 23 is designed so that the LIB 21 having the above specifications can monitor the LIB 21 for a sufficient period of time, for example, the average current consumption is about 0.1 mA. Further, the driving of the MC 23 is guaranteed up to a voltage (for example, 5 V) lower than the starting limit voltage (for example, 8.5 V) of the hybrid vehicle (see FIG. 3).

MC23は所定のロジックで動作するように構成されている。詳しい動作は後述するが、MC23は補機電源回路Cの電圧が上記駆動保証電圧付近まで低下すると、つまり鉛バッテリ5の電力が不足すると、自身の電源供給をLIB21からも得られるようにリレーBを図示のOFFの状態からONの状態に制御することにより、MC23とLIB21とが通電する第1状態に切り替える。また、MC23は、この第1状態において、始動に関するユーザによる特定操作であるブレーキペダルBPの踏み込み操作とスタートスイッチ12のON操作との同時操作に応答してストップランプスイッチ11及びスタートスイッチ12の各出力信号が入力されると、リレーAを図示のOFFの状態からONの状態に制御することにより、電気機器EとLIB21とが通電する第2状態に切り替える。   The MC 23 is configured to operate with a predetermined logic. Although the detailed operation will be described later, the MC 23 is connected to the relay B so that its power supply can be obtained from the LIB 21 when the voltage of the auxiliary power circuit C decreases to near the above drive guarantee voltage, that is, when the power of the lead battery 5 is insufficient. Is switched from the OFF state shown in the drawing to the ON state to switch to the first state in which the MC 23 and the LIB 21 are energized. Further, in this first state, the MC 23 responds to the simultaneous operation of the depression operation of the brake pedal BP and the ON operation of the start switch 12 which is a specific operation by the user regarding the start, and each of the stop lamp switch 11 and the start switch 12. When the output signal is input, the relay A is switched from the OFF state shown to the ON state to switch to the second state in which the electric device E and the LIB 21 are energized.

MC23の動作の詳細は図2のフローチャートの通りである。なお、図2のフローチャートの開始時にはリレーA及びリレーBはともにOFFになっているものとして説明する。図2に示すように、ステップS1において、MC23は、補機電源回路Cの電圧(補機電圧)とDCDCコンバータ3の稼動による充電電圧とを比較して、DCDCコンバータ3が停止中か否かを判定する。DCDCコンバータ3が停止中の場合はステップS2に進み、そうでない場合はステップS8に進む。DCDCコンバータ3が停止中の場合は車両が駐車中の状況とほぼ同じ状況である。   Details of the operation of the MC 23 are as shown in the flowchart of FIG. Note that the relay A and the relay B are both assumed to be OFF at the start of the flowchart of FIG. As shown in FIG. 2, in step S <b> 1, the MC 23 compares the voltage of the auxiliary power circuit C (auxiliary voltage) with the charging voltage due to the operation of the DCDC converter 3 to determine whether or not the DCDC converter 3 is stopped. Determine. If the DCDC converter 3 is stopped, the process proceeds to step S2, and if not, the process proceeds to step S8. When the DCDC converter 3 is stopped, the situation is almost the same as that when the vehicle is parked.

ステップS2において、MC23は、補機電圧VaがMC23の駆動保証電圧Vc未満であるか否かを判断し、ステップS2の処理を続行して補機電圧の監視を続ける。補機電圧が駆動保証電圧未満の場合はステップS3に進む。補機電圧が駆動保証電圧未満の場合は鉛バッテリ5の電力が不足した場合に相当する。   In step S2, the MC 23 determines whether or not the auxiliary machine voltage Va is less than the drive guarantee voltage Vc of the MC 23, and continues the process of step S2 to continue monitoring the auxiliary machine voltage. If the auxiliary voltage is less than the drive guarantee voltage, the process proceeds to step S3. The case where the auxiliary machine voltage is less than the drive guarantee voltage corresponds to the case where the power of the lead battery 5 is insufficient.

ステップS3において、MC23は、切替回路22のリレーBに電力供給してリレーAをOFFの状態に、リレーBをONの状態にそれぞれ制御する。これにより、MC23とLIB21との通電が遮断されている状態からMC23とLIB21とが通電する第1状態に切り替わる。   In step S3, the MC 23 supplies power to the relay B of the switching circuit 22 and controls the relay A to be in an OFF state and the relay B to be in an ON state. As a result, the state in which the energization between the MC 23 and the LIB 21 is cut off is switched to the first state in which the MC 23 and the LIB 21 are energized.

ステップS4において、MC23は、始動に関するユーザの特定操作としてのブレーキペダルBPの踏み込み操作及びスタートスイッチ12のON操作の同時操作の有無を、ストップランプスイッチ11の出力信号とスタートスイッチ12の出力信号とを検出することにより判断し、この処理を続行して上記特定操作の有無を監視する。ユーザによる特定操作があった場合はステップS5に進む。   In step S4, the MC 23 determines whether or not the brake pedal BP is depressed and the start switch 12 is turned on as the user's specific operation related to the start. Is detected, and this process is continued to monitor the presence or absence of the specific operation. If there is a specific operation by the user, the process proceeds to step S5.

ステップS5において、MC23は、切替回路22のリレーAに電力供給してリレーA及びリレーBをともにONの状態に制御する。これにより、リレーA及びリレーBがともにONの状態で、LIB21と補機電源回路Cとが通電する第2状態に切り替わる。第2状態に切り替わることで、車両駆動システムの始動に利用される電気機器Eに電源供給され通常の車両駆動システムの始動操作がHVECU6等による行われる。   In step S5, the MC 23 supplies power to the relay A of the switching circuit 22 and controls both the relay A and the relay B to be in an ON state. As a result, the relay A and the relay B are both in the ON state, and the LIB 21 and the auxiliary power supply circuit C are switched to the second state in which power is supplied. By switching to the second state, power is supplied to the electric equipment E used for starting the vehicle drive system, and the normal start operation of the vehicle drive system is performed by the HVECU 6 or the like.

ステップS6において、MC23は、ステップS1と同様に補機電圧と充電電圧とを比較してDCDCコンバータ3が稼働中か否かを判断する。DCDCコンバータ3が稼働中の場合は車両駆動システムの始動に成功したものと判断できるのでルーチンを終了する。一方、DCDCコンバータ3が停止中の場合は、電気機器Eに十分に電力を供給できずに車両駆動システムの始動が失敗したものと判断できるのでステップS7に進む。   In step S6, the MC 23 compares the auxiliary machine voltage and the charging voltage as in step S1, and determines whether or not the DCDC converter 3 is in operation. If the DCDC converter 3 is in operation, it can be determined that the vehicle drive system has been successfully started, and the routine is terminated. On the other hand, when the DCDC converter 3 is stopped, it can be determined that the start of the vehicle drive system has failed because the electric power E cannot be sufficiently supplied, and the process proceeds to step S7.

ステップS7において、MC23は、切替回路22のリレーAを一旦ONの状態からOFFの状態に制御して処理をステップS4に戻し、ステップS6で車両駆動システムの始動の成功が確認できるまでステップS4〜ステップS6の処理を繰り返し実行する。   In step S7, the MC 23 once controls the relay A of the switching circuit 22 from the ON state to the OFF state, and returns the process to step S4. In step S6, the MC 23 confirms the successful start of the vehicle drive system. The process of step S6 is repeatedly executed.

ステップS8において、MC23は、補機電圧VaがLIB21の電圧Vbよりも低いか否かを判断し、補機電圧VaがLIB21の電圧Vbよりも低い場合はステップS9に進み、切替回路22のリレーA及びリレーBがともにOFFの状態に制御して処理をステップS1に戻す。一方、補機電圧VaがLIB21の電圧Vb以上の場合は切替回路22のリレーA及びリレーBをともにONの状態に制御してLIB21の充電を実施して処理をステップS1に戻す。   In step S8, the MC 23 determines whether or not the auxiliary machine voltage Va is lower than the voltage Vb of the LIB 21. If the auxiliary machine voltage Va is lower than the voltage Vb of the LIB 21, the process proceeds to step S9, where the relay of the switching circuit 22 is relayed. Both A and relay B are controlled to be in an OFF state, and the process returns to step S1. On the other hand, if the auxiliary machine voltage Va is equal to or higher than the voltage Vb of the LIB 21, both the relay A and the relay B of the switching circuit 22 are controlled to be turned on, the LIB 21 is charged, and the process returns to step S1.

次に、図3を参照しながら、本形態のハイブリッド車両の車両放置時における動作例を説明する。なお、実際には放電量によって電圧低下は時間と比例関係にないが、動作の理解を助けるため図3では電圧を線形変化で表現している。図3に示すように、車両放置時において、鉛バッテリ5の自己放電、暗電流、及び劣化等により、鉛バッテリ5の電圧が低下して時刻t1でMC23の駆動保証電圧Vcに至ると、MC23とLIB21とが通電する第1状態に切り替わり、MC23の電源がLIB21に切り替わる。これにより、LIB21の電圧は、その自己放電及びMC23の駆動による蓄電率の減少によって緩やかに低下していくが、ハイブリッド車両の始動限界電圧Vpに到達する時刻t2まではMC23及び電気機器Eの駆動が可能な状態に保つことができる。LIB21の自己放電は1年あたり電圧が1%減程度である。一方、鉛バッテリ5のみを搭載しLIB21を搭載していない車両を想定すると、その車両の場合は鉛バッテリ5の電圧が始動限界電圧Vpに達した時刻t0の時点で電気機器Eの動作が確保できずに車両駆動システムの始動が不可能となる。したがって、本形態のハイブリッド車両の場合、鉛バッテリ5のみを搭載した車両に比べて車両駆動システムの始動可能な時間が大幅に伸びる。   Next, an example of operation when the hybrid vehicle of this embodiment is left unattended will be described with reference to FIG. Actually, the voltage drop is not proportional to the time depending on the discharge amount, but in order to help understanding of the operation, the voltage is expressed by a linear change in FIG. As shown in FIG. 3, when the vehicle is left unattended, when the voltage of the lead battery 5 decreases due to self-discharge, dark current, deterioration, etc. of the lead battery 5 and reaches the drive guarantee voltage Vc of the MC 23 at time t1, MC23 And the first state in which the LIB 21 is energized, and the power source of the MC 23 is switched to the LIB 21. As a result, the voltage of the LIB 21 gradually decreases due to the self-discharge and the decrease in the power storage rate due to the driving of the MC 23, but the driving of the MC 23 and the electric device E until the time t2 when the hybrid vehicle starting limit voltage Vp is reached. Can be kept in a possible state. The self-discharge of LIB 21 is about a 1% decrease in voltage per year. On the other hand, assuming a vehicle with only the lead battery 5 and no LIB 21, in that case, the operation of the electric device E is ensured at the time t0 when the voltage of the lead battery 5 reaches the start limit voltage Vp. Otherwise, the vehicle drive system cannot be started. Therefore, in the case of the hybrid vehicle of this embodiment, the time for which the vehicle drive system can be started is greatly increased as compared with a vehicle equipped with only the lead battery 5.

本形態によれば、補機電圧が駆動保証電圧未満となって鉛バッテリ5の電力が不足した場合にはMC23とLIB21とが通電する第1状態に切り替わることにより、MC23の電源が確保される。そして、第1状態で、始動に関するブレーキペダルBPの踏み込み操作及びスタートスイッチ12のON操作の同時操作に応答して電気機器EとLIB21とが通電する第2状態に切り替わり、LIB21が電気機器Eの電源となる。したがって鉛バッテリ5の電力が不足した段階で、LIB21による鉛バッテリ5への充電を待つことなく電気機器Eの動作が確保されるので車両駆動システムの始動が可能となる。   According to the present embodiment, when the auxiliary machine voltage is less than the drive guarantee voltage and the power of the lead battery 5 is insufficient, the MC 23 and the LIB 21 are switched to the first state in which power is supplied, thereby securing the power source of the MC 23. . Then, in the first state, the electric device E and the LIB 21 are switched to a second state in which the electric device E and the LIB 21 are energized in response to the simultaneous depression of the brake pedal BP for starting and the ON operation of the start switch 12. Power source. Therefore, when the electric power of the lead battery 5 is insufficient, the operation of the electric device E is ensured without waiting for the LIB 21 to charge the lead battery 5, so that the vehicle drive system can be started.

本発明は上記形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。上記形態では補機バッテリとして鉛バッテリが、補助バッテリとしてリチウムイオンバッテリが設けられているが、これら以外の種類のバッテリを採用した車両に適用することも可能である。また、上記形態は、車両用電源装置として、LIB21、切替回路22、及びMC23が組み合わされた起動用バッテリユニット20が設けられていて、既存車両等への取り付け等や交換が容易になっているが、本発明は必ずしもこれらがユニット化されて実施される必要はない。例えば、これらの構成が分散して車両に配置されている形態で本発明を実施することも可能である。   This invention is not limited to the said form, It can implement with a various form within the range of the summary of this invention. In the above embodiment, a lead battery is provided as an auxiliary battery and a lithium ion battery is provided as an auxiliary battery. However, the present invention can also be applied to a vehicle employing other types of batteries. Moreover, the said form is provided with the starting battery unit 20 which LIB21, the switching circuit 22, and MC23 were combined as a vehicle power supply device, and the attachment etc. to an existing vehicle etc. are easy to replace | exchange. However, the present invention does not necessarily have to be implemented in units. For example, the present invention can be implemented in a form in which these configurations are distributed and arranged in a vehicle.

上記形態は本発明がハイブリッド車両に適用されたものであるが、内燃機関の他に走行用駆動源を持たないコンベンショナル車両、電気自動車、プラグインハイブリッド車両、燃料電池自動車等の各種車両を駆動するための車両駆動システムに適用された形態で本発明を実施することもできる。   In the above embodiment, the present invention is applied to a hybrid vehicle. In addition to the internal combustion engine, various vehicles such as a conventional vehicle having no traveling drive source, an electric vehicle, a plug-in hybrid vehicle, and a fuel cell vehicle are driven. The present invention can also be implemented in a form applied to the vehicle drive system for

5 鉛バッテリ(補機バッテリ)
20 起動用バッテリユニット(車両用電源装置)
21 リチウムイオンバッテリ(補助バッテリ)
22 切替回路(切替手段)
23 マイクロコントローラ(制御手段)
E 電気機器
5 Lead battery (auxiliary battery)
20 Start-up battery unit (vehicle power supply)
21 Lithium ion battery (auxiliary battery)
22 Switching circuit (switching means)
23 Microcontroller (control means)
E Electrical equipment

Claims (1)

車両駆動システムの始動時に利用される電気機器に電気的に接続された補機バッテリを含む車両に適用される車両用電源装置おいて、
補助バッテリと、
前記補機バッテリ又は前記補助バッテリを電源として動作可能な制御手段と、
前記電気機器と前記補助バッテリとの通電状態及び前記制御手段と前記補助バッテリとの通電状態をそれぞれ切替可能な切替手段と、
を備え、
前記制御手段は、前記補機バッテリの電力が不足した場合に前記補助バッテリと前記制御手段とが通電する第1状態に切り替わるように前記切替手段を制御するとともに、前記第1状態で始動に関するユーザの特定操作に応答して前記電気機器と前記補助バッテリとが通電する第2状態に切り替わるように前記切替手段を制御する車両用電源装置。
In a vehicle power supply device applied to a vehicle including an auxiliary battery electrically connected to an electric device used at the start of a vehicle drive system,
An auxiliary battery;
Control means operable with the auxiliary battery or the auxiliary battery as a power source;
Switching means capable of switching between the energized state of the electrical device and the auxiliary battery and the energized state of the control means and the auxiliary battery, and
With
The control means controls the switching means so as to switch to a first state in which the auxiliary battery and the control means are energized when the power of the auxiliary battery is insufficient, and a user related to starting in the first state. A vehicle power supply device that controls the switching means so as to switch to a second state in which the electric device and the auxiliary battery are energized in response to the specific operation.
JP2016048764A 2016-03-11 2016-03-11 Power supply device for vehicle Pending JP2017160891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048764A JP2017160891A (en) 2016-03-11 2016-03-11 Power supply device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048764A JP2017160891A (en) 2016-03-11 2016-03-11 Power supply device for vehicle

Publications (1)

Publication Number Publication Date
JP2017160891A true JP2017160891A (en) 2017-09-14

Family

ID=59856696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048764A Pending JP2017160891A (en) 2016-03-11 2016-03-11 Power supply device for vehicle

Country Status (1)

Country Link
JP (1) JP2017160891A (en)

Similar Documents

Publication Publication Date Title
JP5201273B2 (en) Power management device
US7816804B2 (en) Power supply device and control method of the power supply device
JP6371791B2 (en) Vehicle power supply
JP5741635B2 (en) Auxiliary battery power supply device
US20150336474A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
CN105324274A (en) Vehicular power source system
JP2015217919A (en) Vehicle power supply device and vehicle regenerative system
JP2010239850A (en) Charging system, charger, electric vehicle, and charging completion method at power failure
CN107919723B (en) System and method for controlling relay of auxiliary battery
JP2011087408A (en) Power supply system of vehicle
JP2018166380A (en) Vehicle power supply device
JP2015196447A (en) Power supply system for vehicle
KR20130069001A (en) Electric vehicle and control method thereof
JP2014050116A (en) Charge/discharge system
JP2015050894A (en) Feeding vehicle and feeding system
JP6595785B2 (en) Vehicle power supply
JP2014068490A (en) Power supply system
JP2019088141A (en) Electric power system for vehicle
JP2005251579A (en) Fuel cell system
CN110832729B (en) Power supply control device and battery unit
US7839014B2 (en) Pulse-width modulation rectifier having an emergency generator operating mode
WO2011158088A2 (en) Electric power supply apparatus for vehicle, and control method thereof
JP2018057179A (en) Power supply system, and battery unit
JP6007876B2 (en) Power supply vehicle and power supply system
JP2012085403A (en) Controller and control method of vehicle