JP2017160790A - Power generating facility using nh3 as fuel - Google Patents

Power generating facility using nh3 as fuel Download PDF

Info

Publication number
JP2017160790A
JP2017160790A JP2016043118A JP2016043118A JP2017160790A JP 2017160790 A JP2017160790 A JP 2017160790A JP 2016043118 A JP2016043118 A JP 2016043118A JP 2016043118 A JP2016043118 A JP 2016043118A JP 2017160790 A JP2017160790 A JP 2017160790A
Authority
JP
Japan
Prior art keywords
fuel
power generation
combustor
unburned
generation facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016043118A
Other languages
Japanese (ja)
Other versions
JP6717538B2 (en
Inventor
長谷川 武治
Takeji Hasegawa
武治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2016043118A priority Critical patent/JP6717538B2/en
Publication of JP2017160790A publication Critical patent/JP2017160790A/en
Application granted granted Critical
Publication of JP6717538B2 publication Critical patent/JP6717538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To eliminate the need of denitration equipment even when using NHas fuel, and significantly suppress discharge of unburned NHand NOwithout a decline in power generation efficiency.SOLUTION: A power generating facility includes regenerating means 25 for oxidizing and decomposing unburned NHinto Nin an exhaust passage 21. The regenerating means 25 decomposes unburned NHinto Nto reduce the unburned NHeven when burning fuel containing NHby a combustor 3.SELECTED DRAWING: Figure 1

Description

本発明は、NHを燃料とした発電設備に関する。 The present invention relates to a power generation facility using NH 3 as a fuel.

従来、燃料の燃焼によりガスタービンの動力を得る発電設備が知られている。例えば、天然ガスを燃料として燃焼ガスを得て、燃焼ガスをガスタービンで膨張させることで発電動力を得る発電設備が知られている(例えば、特許文献1参照)。一方、Hの輸送・貯蔵媒体(キャリア)としてNHが適用されており、Hに変換することなく発電設備の燃料としてNHを直接用いることができれば、熱効率の大幅な向上が期待できる。 2. Description of the Related Art Conventionally, power generation equipment that obtains power from a gas turbine by burning fuel is known. For example, a power generation facility is known in which combustion gas is obtained using natural gas as fuel, and power is generated by expanding the combustion gas with a gas turbine (see, for example, Patent Document 1). On the other hand, H NH 3 is applied as the second transportation and storage media (carriers), if it is possible to use NH 3 directly as a fuel for power generation equipment without converting the H 2, a significant improvement in thermal efficiency can be expected .

しかし、NHは着火しにくく、燃焼速度が遅く、燃焼過程でNOが生成される等の問題があった。このため、未燃のNHの扱いや、NOの処理などを行うために、特別な制御や特別な機器が必要となり、NHを燃料にした発電設備は実用化には至っていないのが現状であった。 However, NH 3 is difficult to ignite, the combustion speed is slow, and NO X is generated in the combustion process. For this reason, special control and special equipment are required to handle unburned NH 3 , NO X treatment, etc., and power generation facilities using NH 3 as fuel have not been put into practical use. It was the current situation.

特開2006−348755号公報JP 2006-348755 A

本発明は上記状況に鑑みてなされたもので、NHを燃料として使用しても、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することができるNHを燃料とした発電設備を提供することを目的とする。 The present invention has been made in view of the above situation, and even if NH 3 is used as a fuel, it is possible to significantly suppress the emission of unburned NH 3 and NO X without reducing the power generation efficiency. An object is to provide a power generation facility using NH 3 as a fuel.

上記目的を達成するための請求項1に係る本発明のNHを燃料とした発電設備は、O含有ガス、及び、NH燃料を含む燃料を燃焼させて燃焼ガスを得る燃焼器と、前記燃焼器で得られた前記燃焼ガスを膨張させて動力を得るガスタービンと、未燃状態のNHを酸化させてNに分解する酸化手段とを備えたことを特徴とする。 In order to achieve the above object, a power generation facility using NH 3 as a fuel of the present invention according to claim 1 according to the present invention comprises an O 2 containing gas and a combustor for obtaining a combustion gas by burning a fuel containing NH 3 fuel, A gas turbine that obtains power by expanding the combustion gas obtained by the combustor, and an oxidizing means that oxidizes unburned NH 3 to decompose it into N 2 are provided.

請求項1に係る本発明では、未燃状態のNHを酸化させてNに分解する酸化手段を備えたので、NHを含む燃料を燃焼器で燃焼させても、未燃状態のNHをNに分解することができる。このため、未燃状態のNHを減少させることができ、NHを燃料として使用しても、脱硝設備が不要になり、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 In the present invention according to claim 1, since the oxidation means for oxidizing the unburned NH 3 and decomposing it into N 2 is provided, even if the fuel containing NH 3 is burned in the combustor, the unburned NH 3 3 can be decomposed into N 2 . For this reason, unburned NH 3 can be reduced, and even if NH 3 is used as fuel, denitration equipment is not required, and unburned NH 3 and NO are not reduced without reducing power generation efficiency. X emission can be greatly suppressed.

因みに、特開2015−94496号公報には、多段の燃焼器の後段側にNHを投入するガスタービン発電装置が開示されている。特許文献に開示された技術は、NHを燃焼器に供給しているが、NHを燃料として燃焼器に供給する技術ではない。即ち、NHを含まない燃料で燃焼ガスを得る技術であり、燃焼器の後段側にNHを供給することで、燃焼時に生成されたNOを低減する技術である。このため、請求項1に係る本願発明は、NHを含む燃料を燃焼させて燃焼ガスを得る燃焼器を備えた設備であり、特許文献とは異なる技術である。 Incidentally, Japanese Patent Laying-Open No. 2015-94496 discloses a gas turbine power generator in which NH 3 is introduced to the rear stage side of a multistage combustor. The technology disclosed in the patent document supplies NH 3 to the combustor, but is not a technology that supplies NH 3 to the combustor as fuel. That is, this is a technique for obtaining combustion gas with a fuel that does not contain NH 3 , and a technique for reducing NO X generated during combustion by supplying NH 3 to the rear stage side of the combustor. For this reason, the present invention according to claim 1 is a facility including a combustor that burns a fuel containing NH 3 to obtain combustion gas, and is a technique different from the patent literature.

そして、請求項2に係る本発明のNHを燃料とした発電設備は、請求項1に記載のNHを燃料とした発電設備において、前記酸化手段は、前記ガスタービンの排気系統に備えられ、排気ガス中の未燃状態のNHが、NOと反応して分解される再生手段であることを特徴とする。 The power generating plant of NH 3 of the present invention according to claim 2 as fuel in the power generating plant in which the NH 3 according to the fuel to claim 1, wherein the oxidation means is provided in an exhaust system of the gas turbine Further, it is a regenerating means in which unburned NH 3 in the exhaust gas reacts with NO X and is decomposed.

請求項2に係る本発明では、ガスタービンの排気系統で、排気ガス中の未燃状態のNHが、NOと反応して分解される。 In the present invention according to claim 2, unburned NH 3 in the exhaust gas reacts with NO X and is decomposed in the exhaust system of the gas turbine.

また、請求項3に係る本発明のNHを燃料とした発電設備は、請求項2に記載のNHを燃料とした発電設備において、前記再生手段にO含有ガスを供給する酸化剤供給手段を備えたことを特徴とする。 Also, power generating plant and NH 3 of the present invention according to claim 3 as fuel is the power generating plant in which the NH 3 according to the fuel to claim 2, oxidant supply for supplying an O 2 containing gas to said reproducing means Means are provided.

請求項3に係る本発明では、酸化剤供給手段から再生手段にO含有ガスを供給することで、Oの共存下で未燃状態のNHとNOを反応させることができる。燃焼条件等により、Oの量が減少するので、もしくは、Oがゼロになるので、酸化剤供給手段からO含有ガスを供給し、Oの共存下で未燃状態のNHとNOを反応させることができる。 With the present invention according to claim 3, by supplying O 2 containing gas to the reproducing means from the oxidizing agent supply unit, it can be reacted with NH 3 and NO X in the unburned state in the presence of O 2. Since the amount of O 2 decreases due to combustion conditions or the like, or O 2 becomes zero, an O 2 -containing gas is supplied from the oxidant supply means, and NH 3 in an unburned state in the presence of O 2 NO X can be reacted.

また、請求項4に係る本発明のNHを燃料とした発電設備は、請求項3に記載のNHを燃料とした発電設備において、前記O含有ガスを得る圧縮機を備え、前記酸化剤供給手段は、前記圧縮機で得られたO含有ガスの一部を供給する手段であることを特徴とする。 According to a fourth aspect of the present invention, there is provided a power generation facility using NH 3 as a fuel of the present invention. The power generation facility using NH 3 as a fuel according to the third aspect includes a compressor for obtaining the O 2 -containing gas, and the oxidation The agent supply means is a means for supplying a part of the O 2 -containing gas obtained by the compressor.

請求項4に係る本発明では、発電設備の系内の圧縮機で得られたO含有ガスの一部を再生手段に供給することができる。 In the present invention according to claim 4, a part of the O 2 containing gas obtained by the compressor in the system of the power generation facility can be supplied to the regeneration means.

また、請求項5に係る本発明のNHを燃料とした発電設備は、請求項1に記載のNHを燃料とした発電設備において、前記酸化手段は、前記燃焼器を複数段に構成し、後段側の燃焼器で、前段側での燃焼が行われない未燃状態のNHが、NOと反応して分解されることを特徴とする。 Further, the NH 3 of the present invention power plant was fueled according to claim 5, the power generating plant in which the NH 3 according to the fuel to claim 1, wherein the oxidation means constitutes the combustor in a plurality of stages In the combustor at the rear stage, unburned NH 3 that is not combusted at the front stage reacts with NO X and is decomposed.

請求項5に係る本発明では、ガスタービンの燃焼器の系統で、燃焼ガス中の未燃状態のNHが、NOと反応して分解される。 In the present invention according to claim 5, unburned NH 3 in the combustion gas is decomposed by reacting with NO X in the system of the combustor of the gas turbine.

また、請求項6に係る本発明のNHを燃料とした発電設備は、請求項5に記載のNHを燃料とした発電設備において、複数段に構成された前記燃焼器に、O含有ガスを供給する酸化剤供給手段を備えたことを特徴とする。 Further, the NH 3 of the present invention power plant was fueled according to claim 6, the power generating plant in which the NH 3 according to the fuel to claim 5, said combustor configured in a plurality of stages, O 2 content An oxidant supply means for supplying a gas is provided.

請求項6に係る本発明では、酸化剤供給手段から複数段に構成された燃焼器にO含有ガスを供給することで、Oの共存下で未燃状態のNHとNOを反応させることができる。燃焼条件等により、Oの量が減少するので、もしくは、Oがゼロになるので、例えば、量論比燃焼が実施される場合、酸化剤供給手段からO含有ガスが供給される状態になり、Oの共存下で未燃状態のNHとNOを反応させることができる。 In the present invention according to claim 6, unburned NH 3 and NO X are reacted in the coexistence of O 2 by supplying an O 2 -containing gas from an oxidant supply means to a combustor configured in multiple stages. Can be made. Since the amount of O 2 decreases due to combustion conditions or the like, or O 2 becomes zero, for example, when stoichiometric combustion is performed, a state in which an O 2 -containing gas is supplied from the oxidant supply means Thus, NH 3 and NO X in an unburned state can be reacted in the presence of O 2 .

また、請求項7に係る本発明のNHを燃料とした発電設備は、請求項6に記載のNHを燃料とした発電設備において、前記O含有ガスを得る圧縮機を備え、前記酸化剤供給手段は、前記圧縮機で得られたO含有ガスの一部を供給する手段であることを特徴とする。 Also, power generating plant and NH 3 as fuel of the present invention according to claim 7, the power generating plant in which the NH 3 according to the fuel to claim 6, comprising a compressor for obtaining the O 2 containing gas, said oxidation The agent supply means is a means for supplying a part of the O 2 -containing gas obtained by the compressor.

請求項7に係る本発明では、発電設備の系内の圧縮機で得られたO含有ガスの一部を複数段に構成された燃焼器に供給することができる。 With the present invention according to claim 7, it can be supplied to the combustor configured in a plurality of stages a part of the O 2 containing gas obtained in the compressor in the system of power generation equipment.

また、請求項8に係る本発明のNHを燃料とした発電設備は、請求項5もしくは請求項6のいずれか一項に記載のNHを燃料とした発電設備において、複数段に構成された前記燃焼器に、NHを供給するNH供給手段を備えたことを特徴とする。 The power generation facility using NH 3 as fuel according to the present invention according to claim 8 is configured in a plurality of stages in the power generation facility using NH 3 as fuel according to any one of claim 5 or claim 6. in said combustor, characterized by comprising a NH 3 supply means for supplying NH 3.

請求項8に係る本発明では、NH供給手段から、複数段に構成された燃焼器にNHを供給することができ、NOの量が多くなっても(未燃状態のNHが相対的に減少しても)NOを分解することができる。 In the present invention according to claim 8, the NH 3 supply unit, a plurality stages NH 3 can be supplied to the combustor configured to, even if a lot amount of NO X (NH 3 unburned NO X can be decomposed (even if relatively reduced).

また、請求項9に係る本発明のNHを燃料とした発電設備は、請求項8に記載のNHを燃料とした発電設備において、前記NH供給手段は、燃焼ガスを得るためのNH燃料の一部を供給する手段であることを特徴とする。 Also, power generating plant and NH 3 as fuel of the present invention according to claim 9, the power generating plant which NH 3 was a fuel according to claim 8, wherein the NH 3 supply means, NH for obtaining combustion gases 3 A means for supplying a part of fuel.

請求項9に係る本発明では、発電設備の系内のNH燃料の供給手段から、複数段に構成された燃焼器にNHを供給することができる。 In the present invention according to claim 9, the supply means of NH 3 fuel in the system of power generation equipment, it is possible to supply NH 3 to combustor configured in a plurality of stages.

本発明のNHを燃料とした発電設備は、NHを燃料として使用しても、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 Power generating plant and NH 3 of the present invention is used as a fuel, the use of NH 3 as fuel, power generation without reducing the efficiency of the unburned NH 3, and, is possible to significantly suppress the emission of the NO X It becomes possible.

本発明の第1実施例に係るNHを燃料とした発電設備の概略図である。1 is a schematic view of a power generation facility using NH 3 as a fuel according to a first embodiment of the present invention. 本発明の第2実施例に係るNHを燃料とした発電設備の概略図である。The NH 3 according to the second embodiment of the present invention is a schematic diagram of a power generation plant as fuel. 本発明の第3実施例に係るNHを燃料とした発電設備の概略図である。It is the schematic of the power generation equipment which used NH3 as the fuel which concerns on 3rd Example of this invention. 本発明の第4実施例に係るNHを燃料とした発電設備の概略図である。The NH 3 according to the fourth embodiment of the present invention is a schematic diagram of a power generation plant as fuel.

図1から図4に基づいて本発明の第1実施例から第4実施例を説明する。図1から図4には、本発明の第1実施例から第4実施例に係るNHを燃料とした発電設備の概略系統を示してある。 The first to fourth embodiments of the present invention will be described with reference to FIGS. 1 to 4 show a schematic system of power generation equipment using NH 3 as fuel according to first to fourth embodiments of the present invention.

(第1実施例)
図1に基づいて、本発明の第1実施例に係るNHを燃料とした発電設備(以下「発電プラント」と記す)を説明する。図1に示すように、発電プラント1は、圧縮機2、燃焼器3、タービン4(ガスタービン)を備えたガスタービン設備5を備えている。ガスタービン設備5には発電機6が同軸状に設けられている。燃焼器3には圧縮機2で圧縮された圧縮空気(O含有ガス)と、天然ガス等の燃料が供給される。そして、燃焼器3には、天然ガスに加えて、NH燃料タンク7からのNHが燃料として供給される。
(First embodiment)
Based on FIG. 1, a power generation facility using NH 3 as fuel (hereinafter referred to as “power generation plant”) according to a first embodiment of the present invention will be described. As shown in FIG. 1, the power plant 1 is provided with the gas turbine equipment 5 provided with the compressor 2, the combustor 3, and the turbine 4 (gas turbine). The gas turbine facility 5 is provided with a generator 6 coaxially. The combustor 3 is supplied with compressed air (O 2 -containing gas) compressed by the compressor 2 and fuel such as natural gas. Then, in the combustor 3, in addition to natural gas, the NH 3 from the NH 3 fuel tank 7 is supplied as a fuel.

圧縮機2からの圧縮空気(HA1)、天然ガス等の燃料、NH燃料タンク7からのNHが燃焼器3で燃焼されて燃焼ガスが得られ、燃焼ガスはタービン4で膨張されて動力が得られ、発電機6で発電が実施される。つまり、発電プラント1は、O含有ガスによりNH燃料を含む燃料を燃焼させて燃焼ガスを得る燃焼器3と、燃焼器3で得られた燃焼ガスを膨張させて動力を得るタービン4(ガスタービン)とを備えている。 Compressed air (HA 1) from the compressor 2, fuel such as natural gas, and NH 3 from the NH 3 fuel tank 7 are combusted in the combustor 3 to obtain combustion gas, and the combustion gas is expanded by the turbine 4 to drive power. Is obtained, and power generation is performed by the generator 6. That is, the power plant 1 combusts a fuel containing NH 3 fuel with an O 2 containing gas to obtain combustion gas, and a turbine 4 to obtain power by expanding the combustion gas obtained by the combustor 3 ( Gas turbine).

天然ガスの燃料供給系統には第1開閉弁11が設けられ、NH燃料タンク7からの燃料供給系統には第2開閉弁12が設けられている。第1開閉弁11、及び、第2開閉弁12の開閉はバルブ制御手段13の指令により制御され、バルブ制御手段13は負荷制御手段14からの情報に基づいて第1開閉弁11、及び、第2開閉弁12に開閉指令を出力する。負荷制御手段14には、負荷指令手段15からの要求負荷の情報、及び、発電機6からの出力情報が入力され、所望の負荷の出力が得られる燃料状況になるように、バルブ制御手段13に情報が送られる。 The natural gas fuel supply system is provided with a first on-off valve 11, and the fuel supply system from the NH 3 fuel tank 7 is provided with a second on-off valve 12. Opening / closing of the first on-off valve 11 and the second on-off valve 12 is controlled by a command of the valve control means 13, and the valve control means 13 is controlled based on information from the load control means 14. 2 An open / close command is output to the open / close valve 12. The load control means 14 receives the required load information from the load command means 15 and the output information from the generator 6, and the valve control means 13 so as to obtain a fuel condition in which a desired load output can be obtained. Information is sent to.

タービン4で仕事を終えた排気ガスは、排気経路21を通って浄化処理された後、大気に放出される。例えば、排気経路21にはSCR22が備えられ、NO等が浄化処理される。 The exhaust gas that has finished work in the turbine 4 is purified through the exhaust path 21 and then released to the atmosphere. For example, the exhaust path 21 is provided with an SCR 22, and NO X or the like is purified.

上述した本実施例の発電プラント1は、NHを燃焼器3に燃料として供給している。そして、排気経路21には、未燃状態のNHを酸化させてNに分解する酸化手段としての再生手段(再燃・再生手段)25が備えられている。再生手段25には、圧縮機2からの圧縮空気(O含有ガス)の一部(HA2)が、酸化剤供給経路26(酸化剤供給手段)を介して送られる。また、再生手段25には、NH燃料タンク7からのNHの一部が、NH供給経路27(NH供給手段)を介して送られる。 The power plant 1 of the present embodiment described above supplies NH 3 as a fuel to the combustor 3. The exhaust passage 21 is provided with a regeneration means (reburning / regeneration means) 25 as an oxidation means that oxidizes unburned NH 3 and decomposes it into N 2 . A part (HA2) of compressed air (O 2 -containing gas) from the compressor 2 is sent to the regenerating unit 25 via an oxidant supply path 26 (oxidant supply unit). In addition, a part of NH 3 from the NH 3 fuel tank 7 is sent to the regeneration means 25 via the NH 3 supply path 27 (NH 3 supply means).

酸化剤供給経路26には酸化剤の流量を制御する第3開閉弁18が設けられ、NH供給経路27にはNHの流量を制御する第4開閉弁19が設けられている。再生手段25とSCR22の間の排気経路21には排ガス組成検出手段28が備えられ、排ガス組成検出手段28で検出された排ガス組成の情報に基づいて第3開閉弁18、第4開閉弁19の開閉が制御される。つまり、排ガス組成の情報に基づいて、再生手段25に供給される酸化剤の量、NHの量が制御される。 The oxidant supply path 26 is provided with a third on-off valve 18 that controls the flow rate of the oxidant, and the NH 3 supply path 27 is provided with a fourth on-off valve 19 that controls the flow rate of NH 3 . Exhaust gas composition detection means 28 is provided in the exhaust path 21 between the regeneration means 25 and the SCR 22, and based on the information of the exhaust gas composition detected by the exhaust gas composition detection means 28, the third on-off valve 18 and the fourth on-off valve 19 Opening and closing is controlled. That is, based on the information on the exhaust gas composition, the amount of oxidant and NH 3 supplied to the regeneration means 25 are controlled.

尚、SCR22の後流側の排気経路21に排ガス組成検出手段28を備えることも可能である。また、再生手段25には、酸化剤供給経路26、及び、NH供給経路27が接続されているが、酸化剤供給経路26、及び、NH供給経路27いずれか一方のみを設け、O含有ガスの一部、もしくは、NHを再生手段25に供給する構成にすることも可能である。 It is also possible to provide the exhaust gas composition detection means 28 in the exhaust path 21 on the downstream side of the SCR 22. Further, the reproducing means 25, the oxidizing agent supply path 26 and, although NH 3 supply path 27 is connected, the oxidant supply path 26, and, one NH 3 supply path 27 one only provided, O 2 A configuration in which a part of the contained gas or NH 3 is supplied to the regeneration means 25 is also possible.

上記構成の再生手段25では、未燃状態で排出されたNHと燃焼の過程で生成されたNOとを反応させ、未燃状態のNHをNに分解している。例えば、反応を適正に実施するため、再燃手段を備えたり、通路面積を広くして容積部を形成したりすることができる。 In the regeneration means 25 having the above-described configuration, NH 3 discharged in an unburned state reacts with NO X generated in the course of combustion to decompose the unburned NH 3 into N 2 . For example, in order to carry out the reaction properly, it is possible to provide a reburning means or to widen the passage area to form a volume portion.

未燃状態のNHをNに分解する再生手段25を備えたので、NHを含む燃料を燃焼器3で燃焼させても、未燃状態のNHをNOと反応させてNに分解する(HOとN)ことができる。このため、未燃状態のNHを減少させることができ、NHを燃料として使用しても、脱硝設備が不要になり、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 Since the regeneration means 25 for decomposing unburned NH 3 into N 2 is provided, even if the fuel containing NH 3 is burned in the combustor 3, the unburned NH 3 is reacted with NO X to react with N 2. Can be decomposed into (H 2 O and N 2 ). For this reason, unburned NH 3 can be reduced, and even if NH 3 is used as fuel, denitration equipment is not required, and unburned NH 3 and NO are not reduced without reducing power generation efficiency. X emission can be greatly suppressed.

上述した発電プラント1における具体的な運転状況の例を説明する。   The example of the specific driving | running condition in the power plant 1 mentioned above is demonstrated.

燃焼器3で酸化剤(空気)が過剰な状態で燃焼ガスを得る運転の場合、未燃のNHは少量で、生成されるNOは多くなる。 In the operation of obtaining combustion gas with the oxidizer (air) being excessive in the combustor 3, the amount of unburned NH 3 is small and the amount of NO X produced is large.

再生手段25への酸化剤供給経路26からの圧縮空気(O含有ガス)の一部(HA2)の供給を停止し、再生手段25で、O共存下で未燃のNHとNOを反応させてNに分解する(HOとN)。排ガス組成検出手段28で排ガスにNOが多く含まれていることが検出された場合、NH供給経路27からNHを再生手段25に供給し、NOの分解反応を補う。このため、脱硝設備が不要になり、熱効率を向上させることができる。 The supply of a part (HA2) of compressed air (O 2 -containing gas) from the oxidant supply path 26 to the regeneration means 25 is stopped, and the regeneration means 25 removes unburned NH 3 and NO in the presence of O 2. React to decompose to N 2 (H 2 O and N 2 ). When the exhaust gas composition detection means 28 detects that the exhaust gas contains a large amount of NO X , NH 3 is supplied from the NH 3 supply path 27 to the regeneration means 25 to supplement the NO decomposition reaction. For this reason, a denitration facility becomes unnecessary, and thermal efficiency can be improved.

一方、Oが残らない量論比で燃焼ガスを得る運転の場合、未燃のNHは多くなり、生成されるNOはやや多くなる。 On the other hand, in the operation of obtaining the combustion gas at a stoichiometric ratio in which no O 2 remains, unburned NH 3 increases and NO X produced slightly increases.

酸化剤供給経路26から圧縮空気(O含有ガス)の一部(HA2)を再生手段25に供給し、O共存下で未燃のNHとNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、熱効率を向上させることができる。 Some of the compressed air from the oxidant supply path 26 (O 2 containing gas) (HA2) was supplied to the reproduction unit 25, decomposing the N 2 by reacting NH 3 and NO unburned in O 2 presence ( H 2 O and N 2). For this reason, a denitration facility becomes unnecessary, and thermal efficiency can be improved.

(第2実施例)
図2に基づいて、本発明の第2実施例に係るNHを燃料とした発電設備(以下「発電プラント」と記す)を説明する。第1実施例の発電プラント1と同一構成部材には同一符号を付して具体的な説明は省略してある。
(Second embodiment)
A power generation facility using NH 3 as fuel (hereinafter referred to as “power generation plant”) according to a second embodiment of the present invention will be described with reference to FIG. The same reference numerals are given to the same components as those of the power plant 1 of the first embodiment, and a specific description is omitted.

図2に示した発電プラント30は、酸化手段として、複数段(2段)の燃焼器を備えている。即ち、圧縮機2で圧縮された圧縮空気(O含有ガス)と、天然ガス等の燃料が供給される前段燃焼器31が備えられ、前段燃焼器31には、天然ガスに加えて、NH燃料タンク7からのNHが燃料として供給される。 The power plant 30 shown in FIG. 2 includes a plurality of (two-stage) combustors as oxidizing means. That is, a pre-stage combustor 31 to which compressed air (O 2 -containing gas) compressed by the compressor 2 and fuel such as natural gas are supplied is provided. The pre-stage combustor 31 includes NH in addition to natural gas. 3 NH 3 from the fuel tank 7 is supplied as fuel.

そして、前段燃焼器31からの燃焼ガスが送られる後段燃焼器32が備えられ、後段燃焼器32には、圧縮機2からの圧縮空気(O含有ガス)の一部(HA2)が、酸化剤供給経路33(酸化剤供給手段)を介して送られる。酸化剤供給経路33には酸化剤の流量を制御する第3開閉弁18が設けられ、第3開閉弁18はバルブ制御手段13の指令により開閉される。SCR22の下流側の排気経路21には排ガス組成検出手段28が備えられ、バルブ制御手段13には、排ガス組成検出手段28で検出された排ガス組成の情報が送られる。 A rear stage combustor 32 to which the combustion gas from the front stage combustor 31 is sent is provided, and a part (HA2) of the compressed air (O 2 -containing gas) from the compressor 2 is oxidized in the rear stage combustor 32. It is sent via the agent supply path 33 (oxidant supply means). The oxidant supply path 33 is provided with a third on-off valve 18 for controlling the flow rate of the oxidant, and the third on-off valve 18 is opened and closed according to a command from the valve control means 13. Exhaust gas composition detection means 28 is provided in the exhaust passage 21 downstream of the SCR 22, and information on the exhaust gas composition detected by the exhaust gas composition detection means 28 is sent to the valve control means 13.

尚、排ガス組成検出手段28をSCR22の上流側の排気経路21に設けることも可能である。   It is also possible to provide the exhaust gas composition detection means 28 in the exhaust passage 21 upstream of the SCR 22.

上記構成の前段燃焼器31、後段燃焼器32を備えた燃焼器では、酸化剤供給経路33から後段燃焼器32にO含有ガスを供給することで、Oの共存下で未燃状態のNHとNOを反応させることができる。 In the combustor including the front-stage combustor 31 and the rear-stage combustor 32 having the above-described configuration, the O 2 -containing gas is supplied from the oxidant supply path 33 to the rear-stage combustor 32, so that the unburned state is present in the presence of O 2 . NH 3 and NO X can be reacted.

後段燃焼器32で、未燃状態のNHをNに分解するので、NHを含む燃料を燃焼器で燃焼させても、未燃状態のNHをNOと反応させてNに分解する(HOとN)ことができる。このため、未燃状態のNHを減少させることができ、NHを燃料として使用しても、脱硝設備が不要になり、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 Since the unburned NH 3 is decomposed into N 2 in the post-stage combustor 32, even if the fuel containing NH 3 is burned in the combustor, the unburned NH 3 is reacted with NO X to become N 2 . Can decompose (H 2 O and N 2 ). For this reason, unburned NH 3 can be reduced, and even if NH 3 is used as fuel, denitration equipment is not required, and unburned NH 3 and NO are not reduced without reducing power generation efficiency. X emission can be greatly suppressed.

上述した発電プラント30における具体的な運転状況の例を説明する。   The example of the specific driving | running condition in the power plant 30 mentioned above is demonstrated.

前段燃焼器31で酸化剤(空気)が過剰な状態で(HA1a:多)、後段燃焼器32で酸化剤(空気)が過剰な状態で(HA1b:多)、燃焼ガスを得る運転の場合、前段燃焼器31、後段燃焼器32では未燃のNHは少量で、生成されるNOはやや多くなる。 In the case of an operation in which combustion gas is obtained with the oxidant (air) being excessive in the front stage combustor 31 (HA1a: many) and the oxidant (air) being excessive in the rear stage combustor 32 (HA1b: many), In the front-stage combustor 31 and the rear-stage combustor 32, the amount of unburned NH 3 is small, and the generated NO X is slightly increased.

後段燃焼器32への酸化剤供給経路33からの圧縮空気(O含有ガス)の一部(HA2)の供給を停止し、後段燃焼器32で、O共存下で未燃のNHとNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、燃焼器での完全燃焼が可能になる。 Supply of a portion (HA2) of compressed air (O 2 -containing gas) from the oxidant supply path 33 to the post-stage combustor 32 is stopped, and unburned NH 3 and O 3 coexist in the post-stage combustor 32 in the presence of O 2. NO is reacted to decompose into N 2 (H 2 O and N 2 ). This eliminates the need for denitration equipment and enables complete combustion in the combustor.

前段燃焼器31で酸化剤(空気)が不足する還元状態で(HA1a:少)、後段燃焼器32で酸化剤(空気)が過剰な状態で(HA1b:多)、燃焼ガスを得る運転の場合、前段燃焼器31では未燃のNHが多くて生成されるNOが少なく、後段燃焼器32では未燃のNHが少なくて生成されるNOが多くなる。 In the reduction state where the oxidant (air) is insufficient in the front stage combustor 31 (HA1a: low), and in the state where the oxidant (air) is excessive (HA1b: high) in the rear stage combustor 32, the combustion gas is obtained. The front-stage combustor 31 generates a large amount of unburned NH 3 and generates less NO X , and the rear-stage combustor 32 generates a larger amount of unburned NH 3 and generated NO X.

後段燃焼器32への酸化剤供給経路33からの圧縮空気(O含有ガス)の一部(HA2)の供給を停止し、前段燃焼器31から送られる未燃のNHとNOに加え、後段燃焼器32で生成されるNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、燃焼器での完全燃焼が可能になる。 The supply of a part (HA2) of compressed air (O 2 -containing gas) from the oxidant supply path 33 to the post-stage combustor 32 is stopped, and in addition to unburned NH 3 and NO sent from the pre-stage combustor 31, NO X produced in the post-stage combustor 32 is reacted and decomposed into N 2 (H 2 O and N 2 ). This eliminates the need for denitration equipment and enables complete combustion in the combustor.

前段燃焼器31で酸化剤(空気)が不足する還元状態で(HA1a:少)、後段燃焼器32でOが残らない量論比で燃焼ガスを得る運転の場合、前段燃焼器31では未燃のNHが多くて生成されるNOがやや多く、排ガス中のOがゼロになり、後段燃焼器32では未燃のNHが多くて生成されるNOが少なくなり、後段燃焼器32に酸化剤が供給され(量論比の燃焼のためHA1bが多く供給される)、前段燃焼器31から送られる未燃のNHとNOに加え、後段燃焼器32で生成されるNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、燃焼器での完全燃焼が可能になる。 In a reduction state where the oxidizer (air) is insufficient in the pre-stage combustor 31 (HA1a: low), and in the operation of obtaining combustion gas at a stoichiometric ratio in which O 2 does not remain in the post-stage combustor 32, the pre-stage combustor 31 does not little is NO X produced by a number of NH 3 combustion often results in O 2 is zero in the exhaust gas, NO X which is a subsequent stage combustor 32 in unburned NH 3 of which produced many fewer, subsequent combustion In addition to unburned NH 3 and NO sent from the pre-stage combustor 31, the oxidizer is supplied to the combustor 32 (more HA 1 b is supplied for stoichiometric combustion), and NO produced in the post-stage combustor 32 X is reacted to decompose into N 2 (H 2 O and N 2 ). This eliminates the need for denitration equipment and enables complete combustion in the combustor.

尚、第2実施例の構成に加え、第1実施例で示した再生手段25(図1参照)を追加し、圧縮機2からの圧縮空気(O含有ガス)の一部、または(及び)、NH燃料タンク7からのNHの一部を再生手段(再燃・再生手段)25に供給することも可能である。 In addition to the configuration of the second embodiment, the regeneration means 25 (see FIG. 1) shown in the first embodiment is added, and a part of the compressed air (O 2 containing gas) from the compressor 2 or (and It is also possible to supply a part of NH 3 from the NH 3 fuel tank 7 to the regeneration means (reburning / regeneration means) 25.

(第3実施例)
図3に基づいて、本発明の第3実施例に係るNHを燃料とした発電設備(以下「発電プラント」と記す)を説明する。第1実施例、第2実施例の発電プラント1、30と同一構成部材には同一符号を付して具体的な説明は省略してある。
(Third embodiment)
Based on FIG. 3, a power generation facility using NH 3 as fuel (hereinafter referred to as “power generation plant”) according to a third embodiment of the present invention will be described. The same components as those of the power plants 1 and 30 of the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示した発電プラント40は、第2実施例と同様に、酸化手段として、複数段(2段)の燃焼器を備えている。即ち、圧縮機2で圧縮された圧縮空気(O含有ガス)と、天然ガス等の燃料が供給される前段燃焼器31が備えられ、前段燃焼器31には、天然ガスに加えて、NH燃料タンク7からのNHが燃料F1として供給される。 As in the second embodiment, the power plant 40 shown in FIG. 3 includes a plurality of stages (two stages) of combustors as the oxidizing means. That is, a pre-stage combustor 31 to which compressed air (O 2 -containing gas) compressed by the compressor 2 and fuel such as natural gas are supplied is provided. The pre-stage combustor 31 includes NH in addition to natural gas. 3 NH 3 from the fuel tank 7 is supplied as the fuel F1.

そして、前段燃焼器31からの燃焼ガスが送られる後段燃焼器32が備えられ、後段燃焼器32には、NH燃料タンク7からのNHが燃料F2として送られる(NH供給手段)。燃料F1、燃料F2の流量の制御は、第2開閉弁12、及び、第5開閉弁20の開閉により制御される。 Then, a post-stage combustor 32 to which combustion gas from the pre-stage combustor 31 is sent is provided, and NH 3 from the NH 3 fuel tank 7 is sent to the post-stage combustor 32 as fuel F2 (NH 3 supply means). Control of the flow rates of the fuel F1 and the fuel F2 is controlled by opening and closing the second on-off valve 12 and the fifth on-off valve 20.

第2開閉弁12、及び、第5開閉弁20はバルブ制御手段13の指令により開閉される。SCR22の下流側の排気経路21には排ガス組成検出手段28が備えられ、バルブ制御手段13には、排ガス組成検出手段28で検出された排ガス組成の情報が送られる。   The second on-off valve 12 and the fifth on-off valve 20 are opened and closed according to a command from the valve control means 13. Exhaust gas composition detection means 28 is provided in the exhaust passage 21 downstream of the SCR 22, and information on the exhaust gas composition detected by the exhaust gas composition detection means 28 is sent to the valve control means 13.

尚、排ガス組成検出手段28をSCR22の上流側の排気経路21に設けることも可能である。   It is also possible to provide the exhaust gas composition detection means 28 in the exhaust passage 21 upstream of the SCR 22.

上記構成の前段燃焼器31、後段燃焼器32を備えた燃焼器では、前段燃焼器31からの燃焼ガスが送られる後段燃焼器32が備えられ、NH燃料タンク7からのNHが燃料F2として送られるので、Oの共存下で未燃状態のNHとNOを反応させることができる。 The combustor including the front stage combustor 31 and the rear stage combustor 32 having the above configuration includes the rear stage combustor 32 to which the combustion gas from the front stage combustor 31 is sent, and NH 3 from the NH 3 fuel tank 7 is used as the fuel F2. Therefore, unburned NH 3 and NO X can be reacted in the presence of O 2 .

後段燃焼器32で、未燃状態のNHをNに分解するので、NHを含む燃料を燃焼器で燃焼させても、未燃状態のNHをNOと反応させてNに分解する(HOとN)ことができる。このため、未燃状態のNHを減少させることができ、NHを燃料として使用しても、脱硝設備が不要になり、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 Since the unburned NH 3 is decomposed into N 2 in the post-stage combustor 32, even if the fuel containing NH 3 is burned in the combustor, the unburned NH 3 is reacted with NO X to become N 2 . Can decompose (H 2 O and N 2 ). For this reason, unburned NH 3 can be reduced, and even if NH 3 is used as fuel, denitration equipment is not required, and unburned NH 3 and NO are not reduced without reducing power generation efficiency. X emission can be greatly suppressed.

上述した発電プラント40における具体的な運転状況の例を説明する。   The example of the specific driving | running condition in the power plant 40 mentioned above is demonstrated.

前段燃焼器31で酸化剤(空気)が過剰な状態で、且つ、後段燃焼器32で酸化剤(空気)が過剰な状態で、燃焼ガスを得る運転の場合、前段燃焼器31、後段燃焼器32では未燃のNHは少量で、生成されるNOはやや多くなる。 In the case of an operation in which combustion gas is obtained in a state where the oxidant (air) is excessive in the front stage combustor 31 and in a state where the oxidant (air) is excessive in the rear stage combustor 32, the front stage combustor 31 and the rear stage combustor In 32, the amount of unburned NH 3 is small, and the amount of NO x produced is slightly increased.

後段燃焼器32では、前段燃焼器31から送られる未燃のNHとNOに加え、後段燃焼器32で生成されるNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、燃焼器での完全燃焼が可能になる。 In the post-stage combustor 32, in addition to unburned NH 3 and NO sent from the pre-stage combustor 31, NO X generated in the post-stage combustor 32 is reacted to decompose into N 2 (H 2 O and N 2 ). . This eliminates the need for denitration equipment and enables complete combustion in the combustor.

前段燃焼器31で酸化剤(空気)が過剰な状態で、後段燃焼器32でOが残らない量論比で燃焼ガスを得る運転の場合、前段燃焼器31では未燃のNHが少なくて生成されるNOがやや多く、後段燃焼器32では未燃のNHが多くて生成されるNOが少なくなり、後段燃焼器32では、前段燃焼器31から送られる未燃のNHとNOに加え、後段燃焼器32で生成されるNOを反応させてNに分解する(HOとN)。このため、脱硝設備が不要になり、燃焼器での完全燃焼が可能になる。 In an operation in which combustion gas is obtained at a stoichiometric ratio in which O 2 does not remain in the post-stage combustor 32 in a state where the oxidizer (air) is excessive in the pre-stage combustor 31, the unburned NH 3 is small in the pre-stage combustor 31. NO X is slightly more generated Te, NO X which is a subsequent stage combustor 32 in unburned NH 3 of which produced many fewer, the subsequent combustor 32, the unburned sent from the previous stage combustor 31 NH 3 In addition to NO, NO X produced in the post-combustor 32 is reacted to decompose into N 2 (H 2 O and N 2 ). This eliminates the need for denitration equipment and enables complete combustion in the combustor.

尚、第3実施例の構成に加え、第1実施例で示した再生手段25(図1参照)を追加し、圧縮機2からの圧縮空気(O含有ガス)の一部、または(及び)、NH燃料タンク7からのNHの一部を再生手段(再燃・再生手段)25に供給することも可能である。 In addition to the configuration of the third embodiment, the regeneration means 25 (see FIG. 1) shown in the first embodiment is added, and a part of the compressed air (O 2 containing gas) from the compressor 2 or (and It is also possible to supply a part of NH 3 from the NH 3 fuel tank 7 to the regeneration means (reburning / regeneration means) 25.

また、第3実施例の発電プラント40に対し、第2実施例の発電プラント30に備えられたHA1a、HA1b、HA2の圧縮空気の経路を追加することも可能である。この場合も、第1実施例で示した再生手段25(図1参照)を追加し、圧縮機2からの圧縮空気(O含有ガス)の一部、または(及び)、NH燃料タンク7からのNHの一部を再生手段(再燃・再生手段)25に供給することも可能である。 Moreover, it is also possible to add the compressed air path of HA1a, HA1b, HA2 provided in the power plant 30 of the second embodiment to the power plant 40 of the third embodiment. Also in this case, the regeneration means 25 (see FIG. 1) shown in the first embodiment is added, and a part of compressed air (O 2 -containing gas) from the compressor 2 or (and) the NH 3 fuel tank 7 It is also possible to supply a part of NH 3 to the regeneration means (reburning / regeneration means) 25.

(第4実施例)
図4に基づいて、本発明の第4実施例に係るNHを燃料とした発電設備(以下「発電プラント」と記す)を説明する。第3実施例の発電プラント40と同一構成部材には同一符号を付して具体的な説明は省略してある。
(Fourth embodiment)
Based on FIG. 4, a power generation facility using NH 3 as fuel (hereinafter referred to as “power generation plant”) according to a fourth embodiment of the present invention will be described. The same components as those of the power plant 40 of the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示した発電プラント50は、前段燃焼器31と後段燃焼器32の間、後段燃焼器32の後側にそれぞれタービン(膨張タービン)51、52を配設してタービン設備としたものである。膨張タービンを2段とすることで、燃焼ガスの温度を高くすることができ、熱効率を一層高めることが可能になる。   The power plant 50 shown in FIG. 4 is a turbine facility in which turbines (expansion turbines) 51 and 52 are disposed between the front-stage combustor 31 and the rear-stage combustor 32 and on the rear side of the rear-stage combustor 32, respectively. is there. By setting the expansion turbine to two stages, the temperature of the combustion gas can be increased, and the thermal efficiency can be further increased.

尚、燃焼器を3段以上の複数段で構成した場合、膨張タービンも燃焼器の段数に合わせて複数段に構成することが可能である。   When the combustor is composed of a plurality of stages including three or more stages, the expansion turbine can be composed of a plurality of stages in accordance with the number of stages of the combustor.

また、第4実施例の構成に加え、第1実施例で示した再生手段25(図1参照)を追加し、圧縮機2からの圧縮空気(O含有ガス)の一部、または(及び)、NH燃料タンク7からのNHの一部を再生手段(再燃・再生手段)25に供給することも可能である。 Further, in addition to the configuration of the fourth embodiment, the regeneration means 25 (see FIG. 1) shown in the first embodiment is added, and a part of the compressed air (O 2 containing gas) from the compressor 2 or (and It is also possible to supply a part of NH 3 from the NH 3 fuel tank 7 to the regeneration means (reburning / regeneration means) 25.

以上実施例を挙げて説明したように、本発明のNHを燃料とした発電設備は、NHを燃料として使用しても、発電効率を低下させることなく、未燃のNH、及び、NOの排出を大幅に抑制することが可能になる。 As described by way of above embodiments, the power generation equipment and NH 3 as fuel of the present invention, be used NH 3 as fuel, power generation without reducing the efficiency of the unburned NH 3 and, it is possible to greatly suppress the emission of NO X.

本発明は、NHを燃料とした発電設備の産業分野で利用することができる。 The present invention can be used in the industrial field of power generation facilities using NH 3 as fuel.

1、30、40、50 NHを燃料とした発電設備(発電プラント)
2 圧縮機
3 燃焼器
4、51、52 タービン
5 タービン設備
6 発電機
7 NH燃料タンク
11 第1開閉弁
12 第2開閉弁
13 バルブ制御手段
14 負荷制御手段
15 負荷指令手段
18 第3開閉弁
19 第4開閉弁
20 第5開閉弁
21 排気経路
22 SCR
25 再生手段(再燃・再生手段)
26、33 酸化剤供給経路
27 NH供給経路
28 排ガス組成検出手段
31 前段燃焼器
32 後段燃焼器
33 酸化剤供給経路
1, 30 , 40, 50 Power generation facility using NH 3 as fuel (power generation plant)
2 compressor 3 combustor 4,51,52 turbine 5 turbine equipment 6 generator 7 NH 3 fuel tank 11 first on-off valve 12 second on-off valve 13 the valve control means 14 The load control means 15 load command means 18 third on-off valve 19 4th on-off valve 20 5th on-off valve 21 Exhaust path 22 SCR
25 Regeneration means (reburning / regeneration means)
26, 33 Oxidant supply path 27 NH 3 supply path 28 Exhaust gas composition detection means 31 Pre-stage combustor 32 Post-stage combustor 33 Oxidant supply path

Claims (9)

含有ガス、及び、NH燃料を含む燃料を燃焼させて燃焼ガスを得る燃焼器と、
前記燃焼器で得られた前記燃焼ガスを膨張させて動力を得るガスタービンと、
未燃状態のNHを酸化させてNに分解する酸化手段とを備えた
ことを特徴とするNHを燃料とした発電設備。
A combustor for obtaining a combustion gas by burning a fuel containing an O 2 -containing gas and NH 3 fuel;
A gas turbine that obtains power by expanding the combustion gas obtained in the combustor;
And an oxidizing means for oxidizing unburned NH 3 to decompose it into N 2. A power generation facility using NH 3 as fuel.
請求項1に記載のNHを燃料とした発電設備において、
前記酸化手段は、
前記ガスタービンの排気系統に備えられ、排気ガス中の未燃状態のNHが、NOと反応して分解される再生手段である
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 1,
The oxidizing means includes
A power generation facility using NH 3 as fuel, which is provided in the exhaust system of the gas turbine and is a regenerating means in which unburned NH 3 in the exhaust gas reacts with NO X to be decomposed.
請求項2に記載のNHを燃料とした発電設備において、
前記再生手段にO含有ガスを供給する酸化剤供給手段を備えた
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 2,
A power generation facility using NH 3 as fuel, comprising an oxidant supply means for supplying an O 2 -containing gas to the regeneration means.
請求項3に記載のNHを燃料とした発電設備において、
前記O含有ガスを得る圧縮機を備え、
前記酸化剤供給手段は、
前記圧縮機で得られたO含有ガスの一部を供給する手段である
ことを特徴とするNHを燃料とした発電設備。
In the power generation facility using NH 3 as a fuel according to claim 3,
A compressor for obtaining the O 2 -containing gas;
The oxidizing agent supply means includes
A power generation facility using NH 3 as fuel, which is means for supplying a part of the O 2 -containing gas obtained by the compressor.
請求項1に記載のNHを燃料とした発電設備において、
前記酸化手段は、
前記燃焼器を複数段に構成し、後段側の燃焼器で、前段側での燃焼が行われない未燃状態のNHが、NOと反応して分解される
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 1,
The oxidizing means includes
Constitute the combustor in a plurality of stages, in the subsequent stage of the combustor, NH 3 which is NH 3 unburned combustion is not performed in the preceding stage, characterized in that it is decomposed by reacting with NO X Power generation equipment using fuel.
請求項5に記載のNHを燃料とした発電設備において、
複数段に構成された前記燃焼器に、O含有ガスを供給する酸化剤供給手段を備えた
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 5,
An oxidant supply means for supplying an O 2 -containing gas to the combustor configured in a plurality of stages is provided. A power generation facility using NH 3 as fuel.
請求項6に記載のNHを燃料とした発電設備において、
前記O含有ガスを得る圧縮機を備え、
前記酸化剤供給手段は、
前記圧縮機で得られたO含有ガスの一部を供給する手段である
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 6,
A compressor for obtaining the O 2 -containing gas;
The oxidizing agent supply means includes
A power generation facility using NH 3 as fuel, which is means for supplying a part of the O 2 -containing gas obtained by the compressor.
請求項5もしくは請求項6のいずれか一項に記載のNHを燃料とした発電設備において、
複数段に構成された前記燃焼器に、NHを供給するNH供給手段を備えた
ことを特徴とするNHを燃料とした発電設備。
In the power generation facility using NH 3 as a fuel according to any one of claims 5 and 6,
The combustor configured in a plurality of stages, power generating plant with NH 3, characterized in that it comprises a NH 3 supply means for supplying NH 3 as fuel.
請求項8に記載のNHを燃料とした発電設備において、
前記NH供給手段は、
燃焼ガスを得るためのNH燃料の一部を供給する手段である
ことを特徴とするNHを燃料とした発電設備。
The power generation facility using NH 3 as a fuel according to claim 8,
The NH 3 supply means includes
A power generation facility using NH 3 as fuel, which is means for supplying a part of NH 3 fuel for obtaining combustion gas.
JP2016043118A 2016-03-07 2016-03-07 Power generation facility using NH3 as fuel Active JP6717538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043118A JP6717538B2 (en) 2016-03-07 2016-03-07 Power generation facility using NH3 as fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043118A JP6717538B2 (en) 2016-03-07 2016-03-07 Power generation facility using NH3 as fuel

Publications (2)

Publication Number Publication Date
JP2017160790A true JP2017160790A (en) 2017-09-14
JP6717538B2 JP6717538B2 (en) 2020-07-01

Family

ID=59857699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043118A Active JP6717538B2 (en) 2016-03-07 2016-03-07 Power generation facility using NH3 as fuel

Country Status (1)

Country Link
JP (1) JP6717538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902163A (en) * 2021-03-08 2021-06-04 山东大学 Hydrogen-doped low-nitrogen combustion system and method based on ammonia decomposition
CN115614778A (en) * 2022-11-04 2023-01-17 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275821A (en) * 1988-09-08 1990-03-15 Toshiba Corp Gas-turbine burner
JPH05195757A (en) * 1991-08-27 1993-08-03 Osaka Gas Co Ltd Natural gas cogeneration system
WO2010082360A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
JP2014134369A (en) * 2013-01-11 2014-07-24 Central Research Institute Of Electric Power Industry Combustion method of gas turbine combustion system and gas turbine combustion system
JP2015031215A (en) * 2013-08-02 2015-02-16 一般財団法人電力中央研究所 Reheating type ammonia gas turbine
JP2015094496A (en) * 2013-11-11 2015-05-18 株式会社Ihi Combustion system, gas turbine, and power generation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275821A (en) * 1988-09-08 1990-03-15 Toshiba Corp Gas-turbine burner
JPH05195757A (en) * 1991-08-27 1993-08-03 Osaka Gas Co Ltd Natural gas cogeneration system
WO2010082360A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
JP2014134369A (en) * 2013-01-11 2014-07-24 Central Research Institute Of Electric Power Industry Combustion method of gas turbine combustion system and gas turbine combustion system
JP2015031215A (en) * 2013-08-02 2015-02-16 一般財団法人電力中央研究所 Reheating type ammonia gas turbine
JP2015094496A (en) * 2013-11-11 2015-05-18 株式会社Ihi Combustion system, gas turbine, and power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902163A (en) * 2021-03-08 2021-06-04 山东大学 Hydrogen-doped low-nitrogen combustion system and method based on ammonia decomposition
CN115614778A (en) * 2022-11-04 2023-01-17 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method
CN115614778B (en) * 2022-11-04 2023-08-15 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method

Also Published As

Publication number Publication date
JP6717538B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US8397482B2 (en) Dry 3-way catalytic reduction of gas turbine NOx
JP3924150B2 (en) Gas combustion treatment method and apparatus
JP6255923B2 (en) Combustion device, gas turbine, and power generation device
JP6153163B2 (en) Reheat type ammonia gas turbine
BR0209224A (en) Oxygen fuel combustion system, furnace, combustion method, methods for operating an oven, and for recovering aluminum from aluminum mixed with other than aluminum materials, salt-free method for separating aluminum from aluminum loaded with drosse, incinerator waste, and method for incinerating waste
CN101451711A (en) Incineration process for processing ammine containing exhaust gas and system thereof
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
JP2006312143A (en) Method for decomposing low-concentration methane
JP6717538B2 (en) Power generation facility using NH3 as fuel
US9719038B2 (en) Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
KR20150035449A (en) Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly
US20120102951A1 (en) Apparatus for reducing emissions and method of assembly
JP2010145028A (en) Boiler device
JP3078513B2 (en) Method for reducing NOx and dioxin in combustion exhaust gas
JP2005291524A (en) Combustion equipment and method of biomass fuel
FI128631B (en) Method for heat production in a power plant
US20170183585A1 (en) Gasification unit, integrated gasification combined cycle facility, and method for starting gasification unit
JP2002066230A (en) Ammonia decompsotion processing device of gasified fuel and ammonia decomposition processing system provided with the same
KR102458302B1 (en) Combined cycle power plant for reducing air pollutants and Method of reducing air pollutants in combined cycle power plant
WO2023234428A1 (en) Ammonia combustion furnace
JPS62288420A (en) Catalytic burner
JP2020090949A (en) Combustion system
KR20220109618A (en) Method for removing nitrogen oxides in thermal power plants
JP2781684B2 (en) Two-stage combustion method
JPH05264040A (en) Discharging gas recombustion type complex power generating plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6717538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250