JP2015031215A - Reheating type ammonia gas turbine - Google Patents

Reheating type ammonia gas turbine Download PDF

Info

Publication number
JP2015031215A
JP2015031215A JP2013161797A JP2013161797A JP2015031215A JP 2015031215 A JP2015031215 A JP 2015031215A JP 2013161797 A JP2013161797 A JP 2013161797A JP 2013161797 A JP2013161797 A JP 2013161797A JP 2015031215 A JP2015031215 A JP 2015031215A
Authority
JP
Japan
Prior art keywords
gas turbine
ammonia
combustion
catalyst
reheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013161797A
Other languages
Japanese (ja)
Other versions
JP6153163B2 (en
Inventor
靖 小沢
Yasushi Ozawa
靖 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2013161797A priority Critical patent/JP6153163B2/en
Publication of JP2015031215A publication Critical patent/JP2015031215A/en
Application granted granted Critical
Publication of JP6153163B2 publication Critical patent/JP6153163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reheating type ammonia gas turbine capable of curbing emission of unburnt ammonia and NOas much as possible.SOLUTION: A reheating type ammonia gas turbine I comprises: a gas turbine 3 which is driven by combustion gas obtained by supplying ammonia as fuel together with air compressed by a compressor 1 to a main combustor 2 and burning the ammonia; and a reheating gas turbine 5 which is driven by the combustion gas obtained by supplying the ammonia together with exhaust gas of the gas turbine 3 to a reheating device 4 and burning the ammonia. The reheating device 4 has a denitration catalyst 4A and a combustion catalyst 4B arranged in this order from an upstream side. The denitration catalyst 4A is supplied with the exhaust gas and a portion of the ammonia as the fuel separated from the same supplied to the main combustor 2.

Description

本発明は再熱型アンモニアガスタービンに関し、特にアンモニアを燃料としてタービンを駆動する場合に適用して有用なものである。   The present invention relates to a reheat-type ammonia gas turbine, and is particularly useful when applied to driving a turbine using ammonia as a fuel.

ガスタービンの燃料として化石燃料を用いると、地球温暖化の原因となる二酸化炭素(CO)を発生する。そのため、水を、太陽エネルギーなどの自然エネルギーを用いて分解して得る水素(H)を燃料に使用したガスタービンが検討されている。しかしながら、表1に示すように、水素ガスはエネルギー密度が低く、液化も、沸点が低く液化のために大量のエネルギーを消費するため効率的な輸送・貯蔵ができない。 When fossil fuel is used as the fuel for the gas turbine, carbon dioxide (CO 2 ) that causes global warming is generated. Therefore, a gas turbine using hydrogen (H 2 ) obtained by decomposing water using natural energy such as solar energy as a fuel has been studied. However, as shown in Table 1, hydrogen gas has a low energy density, and liquefaction has a low boiling point and consumes a large amount of energy for liquefaction, and thus cannot be efficiently transported and stored.

そこで、HをNと反応させて、容易に液化できるアンモニア(NH)に転換し、輸送・貯蔵を行うとともに、ガスタービンの燃料として使用する検討が行われている。 Therefore, studies have been made to react H 2 with N 2 to convert it into ammonia (NH 3 ) that can be easily liquefied for transportation and storage, and as a fuel for gas turbines.

なお、NHを燃料として機械的動力を得る装置を開示する公知文献として特許文献1がある。特許文献1に記載するエンジンは、排気通路内にNO選択還元触媒を配置するとともに、排気通路内に燃料とは別にアンモニアを供給し、排気ガス中に含まれるNOを還元するようにしたものである。 Note that there is Patent Document 1 as a publicly known document disclosing a device for obtaining mechanical power using NH 3 as a fuel. The engine described in Patent Document 1 has a NO X selective reduction catalyst disposed in the exhaust passage and supplies ammonia separately from the fuel into the exhaust passage to reduce NO X contained in the exhaust gas. Is.

特許第5024460号公報Japanese Patent No. 5024460

しかしながら、燃料としてのNHは燃焼性が悪く(表1の引火点参照)、またガスタービンから未燃のNHが排出されるばかりでなく、NHを燃焼させると多量のNOを発生するおそれがある。 However, NH 3 as a fuel has poor flammability (see flash point in Table 1), and not only unburned NH 3 is discharged from the gas turbine, but also a large amount of NO X is generated when NH 3 is burned. There is a risk.

すなわち、各種のガスに関して、各温度における平衡組成を表2の条件で計算した結果を示す特性図である図3に明示するように、高温域でNOの平衡組成が高いことから、燃焼器内の高温域でNOを生成する可能性がある。ちなみに、特許文献1では、燃焼器で多量にNOを生成し、これを処理するために高価なNO選択還元触媒が多量に必要になる。 That is, as shown in FIG. 3, which is a characteristic diagram showing the results of calculation of the equilibrium composition at each temperature under the conditions shown in Table 2 for various gases, the equilibrium composition of NO is high in the high temperature region. There is a possibility of generating NO in the high temperature range. Incidentally, in Patent Document 1, a large amount of NO X is generated in the combustor, and a large amount of expensive NO X selective reduction catalyst is required to process this.

本発明は、上記従来技術に鑑み、未燃のアンモニアの排出およびNOの排出を可及的に抑制することができる再熱型アンモニアガスタービンを提供することを目的とする。 An object of the present invention is to provide a reheat-type ammonia gas turbine that can suppress unburned ammonia emission and NO X emission as much as possible in view of the above-described prior art.

上記目的を達成する本発明の第1の態様は、
圧縮機で圧縮された空気とともに燃料であるアンモニアを主燃焼器に供給し、アンモニアを燃焼させて得る燃焼ガスによりガスタービンを駆動するとともに、前記ガスタービンの排ガスとともにアンモニアを再熱器に供給し、アンモニアを燃焼させて得る燃焼ガスにより再熱ガスタービンを駆動するように構成した再熱型アンモニアガスタービンであって、
前記再熱器は、上流側から順次配設された脱硝触媒および燃焼触媒を有するとともに、
前記脱硝触媒には、前記排ガスとともに、前記主燃焼器に供給する燃料であるアンモニアを分流させて供給するように構成したことを特徴とする再熱型アンモニアガスタービンにある。
The first aspect of the present invention for achieving the above object is as follows:
Ammonia as fuel is supplied to the main combustor together with air compressed by the compressor, and the gas turbine is driven by combustion gas obtained by burning ammonia, and ammonia is supplied to the reheater together with the exhaust gas of the gas turbine. A reheat-type ammonia gas turbine configured to drive a reheat gas turbine with combustion gas obtained by burning ammonia,
The reheater has a denitration catalyst and a combustion catalyst sequentially arranged from the upstream side,
In the reheat type ammonia gas turbine, the denitration catalyst is configured to supply ammonia as a fuel to be supplied to the main combustor together with the exhaust gas.

本態様によれば、主燃焼器から排出されるNOと再熱器に供給される燃料のNHとを反応させてNに転換する。また、燃焼触媒では、NOxが生成する局所的高温域を発生することなく、主燃焼器から排出される未反応のNHとOおよび再熱器に供給される燃料のNHとを反応させて、NHをNとHOに転換することができる。 According to this aspect, the NO X discharged from the main combustor reacts with the fuel NH 3 supplied to the reheater to be converted into N 2 . Further, in the combustion catalyst, unreacted NH 3 discharged from the main combustor reacts with O 2 and the fuel NH 3 supplied to the reheater without generating a local high temperature region where NOx is generated. And NH 3 can be converted to N 2 and H 2 O.

本発明の第2の態様は、
第1の態様に記載する再熱型アンモニアガスタービンにおいて、
前記再熱器は、前記燃焼触媒の下流側に空間部を設けたものであることを特徴とする再熱型アンモニアガスタービンにある。
The second aspect of the present invention is:
In the reheat type ammonia gas turbine described in the first aspect,
The reheater is a reheat type ammonia gas turbine characterized in that a space is provided on the downstream side of the combustion catalyst.

本態様によれば、燃焼触媒でNHの一部を燃焼し、燃焼触媒出口のガス温度を気相燃焼が可能な温度に上昇させ、燃焼触媒出口の空間部で残りのNHを気相燃焼することができる。このように、気相燃焼を行なわせることにより、空間部出口でNHの完全燃焼を達成させながら、触媒の温度を、例えば1500℃程度の高温にすることなく、より低温で使用できるので、触媒の劣化を抑制することができる。ちなみに、触媒は高温になるほどシンタリング等の劣化が促進される。 According to this aspect, a part of NH 3 is combusted by the combustion catalyst, the gas temperature at the outlet of the combustion catalyst is increased to a temperature at which gas phase combustion is possible, and the remaining NH 3 is gas-phased in the space at the outlet of the combustion catalyst Can burn. Thus, by performing vapor phase combustion, while achieving complete combustion of NH 3 at the space portion outlet, the temperature of the catalyst can be used at a lower temperature without increasing the temperature to about 1500 ° C., for example. Deterioration of the catalyst can be suppressed. Incidentally, deterioration such as sintering is promoted as the temperature of the catalyst increases.

本発明の第3の態様は、
第1または第2の態様に記載する再熱型アンモニアガスタービンにおいて、
前記再熱器の入口温度は500〜800℃で、かつ前記再熱器の出口温度は1500℃以下となるようにしたことを特徴とする再熱型アンモニアガスタービンにある。
The third aspect of the present invention is:
In the reheat type ammonia gas turbine described in the first or second aspect,
The reheat type ammonia gas turbine is characterized in that an inlet temperature of the reheater is 500 to 800 ° C and an outlet temperature of the reheater is 1500 ° C or less.

本態様によれば、再熱器の入口温度を500〜800℃にすることで、脱硝触媒において脱硝反応が好適に促進され、かつ、脱硝触媒後流の燃焼触媒において触媒燃焼が好適に促進されるとともに、再熱器の出口温度を1500℃以下にすることでNO生成反応が好適に抑制され、さらにガスタービンの効率も向上させることができる。 According to this aspect, by setting the inlet temperature of the reheater to 500 to 800 ° C., the denitration reaction is favorably promoted in the denitration catalyst, and catalytic combustion is favorably promoted in the combustion catalyst downstream of the denitration catalyst. In addition, the NO x generation reaction is suitably suppressed by setting the outlet temperature of the reheater to 1500 ° C. or lower, and further the efficiency of the gas turbine can be improved.

本発明によれば、NHを燃料とするガスタービンの排ガスを、脱硝触媒と燃焼触媒とを有する再熱器に燃料であるNHとともに供給しているので、主燃焼器から排出されるNOと再熱器に供給される燃料のNHとが反応してNに転換される。この結果、NOとNHとを除去することができる。また、燃焼触媒で、主燃焼器から排出される未反応のNHとOおよび再熱器に供給される燃料のNHとを反応させて、NとHOに転換することができ、かかる燃焼触媒の下で所定の反応を行い、高温となった排ガスは再熱ガスタービンに供給されて機械動力に転換される。さらに、再熱器では触媒燃焼または触媒燃焼と気相燃焼の組み合わせにより局所的高温域が発生せず、NO生成反応が抑制される。なお、再熱型にすることにより、タービン入口温度を著しく上昇させることなく、高い燃料/空気比で燃焼できるので、燃焼温度の低減によりNOxの生成を抑制するとともに、燃焼用空気量を減少させて圧縮機の動力を減少することもでき、結果として高効率化も可能になる。 According to the present invention, since the exhaust gas of the gas turbine using NH 3 as fuel is supplied to the reheater having the denitration catalyst and the combustion catalyst together with NH 3 as the fuel, NO exhausted from the main combustor X and the fuel NH 3 supplied to the reheater react to be converted to N 2 . As a result, NO X and NH 3 can be removed. Further, the combustion catalyst can react unreacted NH 3 and O 2 discharged from the main combustor and NH 3 of the fuel supplied to the reheater to convert them into N 2 and H 2 O. Then, a predetermined reaction is performed under such a combustion catalyst, and the exhaust gas that has reached a high temperature is supplied to a reheat gas turbine to be converted into mechanical power. Furthermore, in the reheater, a local high temperature region does not occur due to catalytic combustion or a combination of catalytic combustion and gas phase combustion, and the NO X generation reaction is suppressed. By adopting the reheat type, combustion can be performed at a high fuel / air ratio without significantly increasing the turbine inlet temperature, so that the generation of NOx is suppressed by reducing the combustion temperature and the amount of combustion air is reduced. Thus, the power of the compressor can be reduced, and as a result, high efficiency can be achieved.

ここで、再熱ガスタービンから排出される排ガスは、相当程度の熱エネルギーを有するので、この排ガスを、さらに排熱ボイラに供給して熱回収を行うこともできる。   Here, since the exhaust gas discharged from the reheat gas turbine has a considerable degree of thermal energy, the exhaust gas can be further supplied to an exhaust heat boiler to perform heat recovery.

本発明の実施の形態に係る再熱型アンモニアガスタービンを示すブロック図である。It is a block diagram showing a reheat type ammonia gas turbine concerning an embodiment of the invention. 本発明の他の実施の形態に係る再熱型アンモニアガスタービンを示すブロック図である。It is a block diagram which shows the reheat type ammonia gas turbine which concerns on other embodiment of this invention. 各種のガスに関して、各温度における平衡組成を計算した結果を示す特性図である。It is a characteristic view which shows the result of having calculated the equilibrium composition in each temperature regarding various gas.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る再熱型アンモニアガスタービンを示すブロック図である。同図に示すように、本形態に係る再熱型アンモニアガスタービンIは、圧縮機1で圧縮された空気とともに燃料であるアンモニア(NH)を主燃焼器2に供給し、前記空気中の酸素(O)で前記NHを燃焼させて得る燃焼ガスによりガスタービン3を駆動するとともに、ガスタービン3の排ガスとともにNHを再熱器4に供給し、前記排ガス中のOで前記NHおよび前記排ガス中の未燃NHを燃焼させて得る燃焼ガスにより再熱ガスタービン5を駆動するように構成してある。 FIG. 1 is a block diagram showing a reheat-type ammonia gas turbine according to an embodiment of the present invention. As shown in the figure, the reheat-type ammonia gas turbine I according to the present embodiment supplies ammonia (NH 3 ), which is fuel, together with the air compressed by the compressor 1 to the main combustor 2, oxygen (O 2) to drive the gas turbine 3 by combustion gas obtained by burning the NH 3 in, together with the exhaust gas of gas turbine 3 supplies NH 3 to the reheater 4, wherein an O 2 in the flue gas NH 3 and is arranged to drive the reheat gas turbine 5 by combustion gas obtained unburnt NH 3 is burned in the exhaust gas.

再熱器4は、上流側から順次配設された脱硝触媒4Aおよび燃焼触媒4Bを有する。主燃焼器2および再熱器4の脱硝触媒4Aには、燃料であるNHが、流量調整弁6A,6Bで流量を調整されてそれぞれ供給される。かくして、脱硝触媒4Aには、ガスタービン3の排ガスとともに、主燃焼器2に供給する燃料であるNHを分流させて供給するように構成してある。なお、図示していないが、排ガスと燃料のNHを混合して脱硝触媒4Aに供給するために、脱硝触媒4Aの上流に空間部または混合器などの混合手段が配設される。 The reheater 4 includes a denitration catalyst 4A and a combustion catalyst 4B that are sequentially arranged from the upstream side. NH 3 as a fuel is supplied to the denitration catalyst 4A of the main combustor 2 and the reheater 4 with the flow rate adjusted by the flow rate adjusting valves 6A and 6B, respectively. Thus, the denitration catalyst 4 </ b> A is configured to supply the NH 3 , which is the fuel supplied to the main combustor 2, together with the exhaust gas from the gas turbine 3. Although not shown, mixing means such as a space or a mixer is disposed upstream of the denitration catalyst 4A in order to mix the exhaust gas and the NH 3 of the fuel and supply them to the denitration catalyst 4A.

本形態における脱硝触媒4A、燃焼触媒4Bとしては、既知の触媒の適用が可能(アクチノイドを除く遷移元素のうち少なくとも1種の元素を含む触媒(原子番号21〜29、39〜47、57〜79))である。また、再熱器4の入口温度は、脱硝反応および触媒燃焼が促進され、NO生成反応が抑制され、かつガスタービン3の効率が向上する500〜800℃が好ましい。さらに、再熱器4の出口温度は、NとHOの生成反応が促進され、NO生成反応が抑制され、かつ再熱ガスタービン5の効率が向上する1500℃以下が好ましい。 As the denitration catalyst 4A and the combustion catalyst 4B in this embodiment, a known catalyst can be applied (a catalyst containing at least one element among transition elements excluding actinoids (atomic numbers 21 to 29, 39 to 47, 57 to 79). )). Further, the inlet temperature of the reheater 4 is preferably 500 to 800 ° C. in which the denitration reaction and catalytic combustion are promoted, the NO x generation reaction is suppressed, and the efficiency of the gas turbine 3 is improved. Furthermore, the outlet temperature of the reheater 4 is preferably 1500 ° C. or less at which the N 2 and H 2 O production reaction is promoted, the NO x production reaction is suppressed, and the efficiency of the reheat gas turbine 5 is improved.

なお、再熱器を有しない、特許文献1の場合等においては、効率を上げるためには燃焼温度を高温にする必要があるが、この場合には高温雰囲気で多量のNOが発生する。これに対し、本形態のように再熱器4を有する場合には燃焼温度が比較的低温域にあっても所望の効率を得ることができる。したがって、その分NOの発生量も抑制することができる。 Note that no reheater, in such case of Patent Document 1, in order to increase the efficiency, it is necessary to the combustion temperature to a high temperature, a large amount of the NO X occurs at a high temperature atmosphere in this case. On the other hand, when the reheater 4 is provided as in the present embodiment, a desired efficiency can be obtained even when the combustion temperature is in a relatively low temperature range. Therefore, it is possible to suppress generation of correspondingly NO X.

上述の如き再熱型アンモニアガスタービンIにおける主燃焼器2では、燃料のNHからNOが生成され、その処理が必要になるが、再熱器4として脱硝触媒4Aおよび燃焼触媒4Bからなる触媒反応装置を配置するとともに、燃料のNHを主燃焼器2と再熱器4に分割供給している。この結果、燃焼触媒4Bの上流側に配設した脱硝触媒4Aでは、主燃焼器2から排出される排気ガス中のNOと、再熱器4に供給される燃料のNHとを反応させてNに転換し、NOとNHとを除去することができる。 In the main combustor 2 in the reheat-type ammonia gas turbine I as described above, NO X is generated from the fuel NH 3 and needs to be processed. The reheater 4 includes a denitration catalyst 4A and a combustion catalyst 4B. A catalytic reactor is arranged, and fuel NH 3 is divided and supplied to the main combustor 2 and the reheater 4. As a result, in the NOx removal catalyst 4A disposed upstream of the combustion catalyst 4B, NO X in the exhaust gas discharged from the main combustor 2 reacts with the fuel NH 3 supplied to the reheater 4. Can be converted to N 2 to remove NO X and NH 3 .

その後、燃焼触媒4Bで、主燃焼器2から排出される未反応のNHとOおよび再熱器4に供給される燃料のNHとを反応させて、NとHOに転換する。 Thereafter, in the combustion catalyst 4B, the unreacted NH 3 discharged from the main combustor 2 and O 2 and the fuel NH 3 supplied to the reheater 4 are reacted to convert to N 2 and H 2 O. To do.

すなわち、主燃焼器2、脱硝触媒4A、燃焼触媒4Bでは、それぞれ以下の反応式で示される反応が生起される。   That is, in the main combustor 2, the denitration catalyst 4A, and the combustion catalyst 4B, reactions shown by the following reaction formulas are caused.

主燃焼器2での反応式:NH+(5/4)・O→NO+(3/2)・H
脱硝触媒4Aでの反応式:NO+NH+(1/4)・O→N+(3/2)・H
燃焼触媒4Bでの反応式:NH+(3/4)・O→(1/2)・N+(3/2)・H
Reaction formula in the main combustor 2: NH 3 + (5/4) · O 2 → NO + (3/2) · H 2 O
Reaction formula in the denitration catalyst 4A: NO + NH 3 + (1/4) · O 2 → N 2 + (3/2) · H 2 O
Reaction formula in the combustion catalyst 4B: NH 3 + (3/4) · O 2 → (1/2) · N 2 + (3/2) · H 2 O

図2は、本発明の他の実施の形態に係る再熱型アンモニアガスタービンを示すブロック図である。同図に示すように、本形態に係る再熱型アンモニアガスタービンIIは、図1に示す再熱型アンモニアガスタービンIに対し、再熱器14の構成が異なる。本形態における再熱器14は、上流側から順に脱硝触媒14A、燃焼触媒14Bに続き、空間部14Cが形成されている。その他の構成は、図1に示す再熱型アンモニアガスタービンIと同構成である。したがって、本形態でも再熱型アンモニアガスタービンIと同様の作用・効果を得ることができるが、本形態によれば、さらに、燃焼触媒14BでNHの一部を燃焼し、燃焼触媒出口のガス温度を気相燃焼が可能な温度に上昇させ、燃焼触媒出口の空間部14Cで残りのNHを気相燃焼することができる。かかる気相燃焼を行なわせることにより、空間部出口でNHの完全燃焼を達成させながら、触媒の温度を、例えば1500℃程度の高温にすることなく、より低温で使用できる。したがって、触媒の劣化を抑制することができる。ちなみに、触媒は高温になるほどシンタリング等の劣化が促進される。 FIG. 2 is a block diagram showing a reheat-type ammonia gas turbine according to another embodiment of the present invention. As shown in the figure, the reheat type ammonia gas turbine II according to this embodiment is different from the reheat type ammonia gas turbine I shown in FIG. In the present embodiment, the reheater 14 has a space 14 </ b> C following the denitration catalyst 14 </ b> A and the combustion catalyst 14 </ b> B in order from the upstream side. Other configurations are the same as those of the reheat-type ammonia gas turbine I shown in FIG. Therefore, in this embodiment, the same operation and effect as the reheat type ammonia gas turbine I can be obtained. However, according to this embodiment, a part of NH 3 is further combusted by the combustion catalyst 14B, and the combustion catalyst outlet The gas temperature is raised to a temperature at which gas phase combustion is possible, and the remaining NH 3 can be vapor-phase combusted in the space 14C at the combustion catalyst outlet. By performing such gas phase combustion, the catalyst can be used at a lower temperature without achieving a high temperature of about 1500 ° C., for example, while achieving complete combustion of NH 3 at the space portion outlet. Therefore, deterioration of the catalyst can be suppressed. Incidentally, deterioration such as sintering is promoted as the temperature of the catalyst increases.

本発明はタービン動力を利用すると同時に、NO排出およびCO排出を抑制する必要がある、例えば発電等の産業分野に有効に適用し得る。 The present invention simultaneously utilizes the turbine power, it is necessary to suppress the NO X emissions and CO 2 emissions, it can be effectively applied to industrial fields, for example power generation or the like.

I、II 再熱型アンモニアガスタービン
1 圧縮機
2 主燃焼器
3 ガスタービン
4 再熱器
4A 脱硝触媒
4B 燃焼触媒
5 再熱ガスタービン
14 再熱器
14A 脱硝触媒
14B 燃焼触媒
I, II Reheat type ammonia gas turbine 1 Compressor 2 Main combustor 3 Gas turbine 4 Reheater 4A Denitration catalyst 4B Combustion catalyst 5 Reheat gas turbine 14 Reheater 14A Denitration catalyst 14B Combustion catalyst

Claims (3)

圧縮機で圧縮された空気とともに燃料であるアンモニアを主燃焼器に供給し、アンモニアを燃焼させて得る燃焼ガスによりガスタービンを駆動するとともに、前記ガスタービンの排ガスとともにアンモニアを再熱器に供給し、アンモニアを燃焼させて得る燃焼ガスにより再熱ガスタービンを駆動するように構成した再熱型アンモニアガスタービンであって、
前記再熱器は、上流側から順次配設された脱硝触媒および燃焼触媒を有するともに、
前記脱硝触媒には、前記排ガスとともに、前記主燃焼器に供給する燃料であるアンモニアを分流させて供給するように構成したことを特徴とする再熱型アンモニアガスタービン。
Ammonia as fuel is supplied to the main combustor together with air compressed by the compressor, and the gas turbine is driven by combustion gas obtained by burning ammonia, and ammonia is supplied to the reheater together with the exhaust gas of the gas turbine. A reheat-type ammonia gas turbine configured to drive a reheat gas turbine with combustion gas obtained by burning ammonia,
The reheater has a denitration catalyst and a combustion catalyst sequentially arranged from the upstream side,
A reheat-type ammonia gas turbine configured to supply the denitration catalyst with ammonia, which is fuel supplied to the main combustor, together with the exhaust gas.
請求項1に記載する再熱型アンモニアガスタービンにおいて、
前記再熱器は、前記燃焼触媒の下流側に空間部を設けたものであることを特徴とする再熱型アンモニアガスタービン。
In the reheat type ammonia gas turbine according to claim 1,
The reheater is a reheat type ammonia gas turbine characterized in that a space is provided on the downstream side of the combustion catalyst.
請求項1または請求項2に記載する再熱型アンモニアガスタービンにおいて、
前記再熱器の入口温度は500〜800℃で、かつ前記再熱器の出口温度は1500℃以下となるようにしたことを特徴とする再熱型アンモニアガスタービン。
In the reheat type ammonia gas turbine according to claim 1 or 2,
An inlet temperature of the reheater is 500 to 800 ° C., and an outlet temperature of the reheater is 1500 ° C. or less.
JP2013161797A 2013-08-02 2013-08-02 Reheat type ammonia gas turbine Active JP6153163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013161797A JP6153163B2 (en) 2013-08-02 2013-08-02 Reheat type ammonia gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013161797A JP6153163B2 (en) 2013-08-02 2013-08-02 Reheat type ammonia gas turbine

Publications (2)

Publication Number Publication Date
JP2015031215A true JP2015031215A (en) 2015-02-16
JP6153163B2 JP6153163B2 (en) 2017-06-28

Family

ID=52516745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013161797A Active JP6153163B2 (en) 2013-08-02 2013-08-02 Reheat type ammonia gas turbine

Country Status (1)

Country Link
JP (1) JP6153163B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191507A (en) * 2015-03-31 2016-11-10 株式会社Ihi Combustion device, gas turbine and power generation device
GB2539667A (en) * 2015-06-23 2016-12-28 Siemens Ag Method and equipment for combustion of ammonia
WO2017084876A1 (en) * 2015-11-20 2017-05-26 Siemens Aktiengesellschaft A gas turbine system
WO2017140595A1 (en) * 2016-02-15 2017-08-24 Siemens Aktiengesellschaft Method and equipment for combustion of ammonia
JP2017160790A (en) * 2016-03-07 2017-09-14 一般財団法人電力中央研究所 Power generating facility using nh3 as fuel
WO2018180984A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
WO2018180773A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
WO2018181002A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
CN113944940A (en) * 2021-10-12 2022-01-18 中国矿业大学 Ammonia combustion utilization system
US11959417B2 (en) 2020-05-18 2024-04-16 Tohoku University Ammonia-fueled gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003294A (en) * 2003-06-12 2005-01-06 Central Res Inst Of Electric Power Ind Catalytic combustion type reheater and reheater type gas turbine
JP2010019195A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Drive control device for gas turbine
JP5024460B2 (en) * 2009-01-14 2012-09-12 トヨタ自動車株式会社 engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003294A (en) * 2003-06-12 2005-01-06 Central Res Inst Of Electric Power Ind Catalytic combustion type reheater and reheater type gas turbine
JP2010019195A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Drive control device for gas turbine
JP5024460B2 (en) * 2009-01-14 2012-09-12 トヨタ自動車株式会社 engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191507A (en) * 2015-03-31 2016-11-10 株式会社Ihi Combustion device, gas turbine and power generation device
US10767855B2 (en) 2015-06-23 2020-09-08 Siemens Aktiengesellschaft Method and equipment for combustion of ammonia
GB2539667A (en) * 2015-06-23 2016-12-28 Siemens Ag Method and equipment for combustion of ammonia
AU2016284752B2 (en) * 2015-06-23 2020-01-16 Siemens Energy Global GmbH & Co. KG Method and equipment for combustion of ammonia
CN107810365B (en) * 2015-06-23 2020-03-27 西门子股份公司 Method and apparatus for burning ammonia
GB2539667B (en) * 2015-06-23 2018-04-04 Siemens Ag Method and equipment for combustion of ammonia
KR20180021097A (en) * 2015-06-23 2018-02-28 지멘스 악티엔게젤샤프트 Methods and equipment for the combustion of ammonia
WO2016207117A1 (en) * 2015-06-23 2016-12-29 Siemens Aktiengesellschaft Method and equipment for combustion of ammonia
CN107810365A (en) * 2015-06-23 2018-03-16 西门子股份公司 Method and equipment for burnt ammonia
KR102524994B1 (en) * 2015-06-23 2023-04-21 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 Methods and Equipment for Combustion of Ammonia
JP2018524544A (en) * 2015-06-23 2018-08-30 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method and apparatus for combustion of ammonia
KR20180084051A (en) * 2015-11-20 2018-07-24 지멘스 악티엔게젤샤프트 Gas turbine system
AU2016356598B2 (en) * 2015-11-20 2020-09-10 Siemens Energy Global GmbH & Co. KG A gas turbine system
US10753276B2 (en) 2015-11-20 2020-08-25 Siemens Aktiengesellschaft Gas turbine system
KR102622896B1 (en) * 2015-11-20 2024-01-08 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 gas turbine system
WO2017084876A1 (en) * 2015-11-20 2017-05-26 Siemens Aktiengesellschaft A gas turbine system
JP2018535355A (en) * 2015-11-20 2018-11-29 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Gas turbine system
CN108700288A (en) * 2016-02-15 2018-10-23 西门子股份公司 Method and apparatus for ammonia burning
CN108700288B (en) * 2016-02-15 2020-07-31 西门子股份公司 Method and apparatus for ammonia combustion
WO2017140595A1 (en) * 2016-02-15 2017-08-24 Siemens Aktiengesellschaft Method and equipment for combustion of ammonia
JP2019510953A (en) * 2016-02-15 2019-04-18 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Ammonia combustion method and apparatus
US10767556B2 (en) 2016-02-15 2020-09-08 Siemens Aktiengesellschaft Method and equipment for combustion of ammonia
KR20180112015A (en) * 2016-02-15 2018-10-11 지멘스 악티엔게젤샤프트 Methods and equipment for the combustion of ammonia
KR102096259B1 (en) 2016-02-15 2020-04-02 지멘스 악티엔게젤샤프트 Methods and equipment for the combustion of ammonia
JP2017160790A (en) * 2016-03-07 2017-09-14 一般財団法人電力中央研究所 Power generating facility using nh3 as fuel
WO2018180773A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
US11053845B2 (en) 2017-03-27 2021-07-06 Ihi Corporation Combustion device and gas turbine
JP2018162936A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine
JP2018162939A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine
WO2018180984A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
EP3604929A4 (en) * 2017-03-27 2020-12-16 IHI Corporation Combustion device and gas turbine
AU2018245202B2 (en) * 2017-03-27 2021-06-03 Ihi Corporation Combustion device and gas turbine
WO2018181002A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
JP2018162723A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine
US11300047B2 (en) 2017-03-27 2022-04-12 Ihi Corporation Combustion device and gas turbine
CN110312898A (en) * 2017-03-27 2019-10-08 株式会社Ihi Burner and gas turbine
US11959417B2 (en) 2020-05-18 2024-04-16 Tohoku University Ammonia-fueled gas turbine
CN113944940A (en) * 2021-10-12 2022-01-18 中国矿业大学 Ammonia combustion utilization system
CN113944940B (en) * 2021-10-12 2024-06-07 中国矿业大学 Ammonia gas combustion utilization system

Also Published As

Publication number Publication date
JP6153163B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6153163B2 (en) Reheat type ammonia gas turbine
JP5674281B2 (en) Dry three-way catalytic reduction method for gas turbine NOx
JP6169840B2 (en) Method for separating CO2 from N2 and O2 in a turbine engine system
JP6520309B2 (en) Combustion device, gas turbine and power generation device
JP2015190466A (en) Combustion device, gas turbine and power generation device
JP2010196708A (en) Method and apparatus for operation of co/voc oxidation catalyst to reduce no2 formation for gas turbine
JP7221262B2 (en) Exhaust system for power plant
AU2016284752B2 (en) Method and equipment for combustion of ammonia
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
JP2018076985A (en) Thermal power generation plant, boiler, and method for modifying the boiler
US20120102913A1 (en) Apparatus for reducing emissions and method of assembly
US20120102951A1 (en) Apparatus for reducing emissions and method of assembly
EP2686525B1 (en) Cogeneration power plant
Hassan et al. Parametric and exergetic analysis of a power plant with CO2 and capture using chemical looping combustion
JP5013414B2 (en) Gas turbine system and power generation system
JP2020090949A (en) Combustion system
JP6153162B2 (en) CO2 recovery type closed cycle gasification power generation system
JP2014134370A (en) Combustion method of combustion system and combustion system
JP2012145110A (en) Fuel reformer system for turbomachine system
JPH0392510A (en) Power plant
JP2014134369A (en) Combustion method of gas turbine combustion system and gas turbine combustion system
Anand et al. Dry 3-way catalytic reduction of gas turbine NO X
Kraemer et al. Dry 3-way catalytic reduction of gas turbine NO x
JP2013092276A (en) NOx REDUCTION THERMAL POWER GENERATION SYSTEM

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6153163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250