JP2017160521A - Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability - Google Patents

Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability Download PDF

Info

Publication number
JP2017160521A
JP2017160521A JP2016048850A JP2016048850A JP2017160521A JP 2017160521 A JP2017160521 A JP 2017160521A JP 2016048850 A JP2016048850 A JP 2016048850A JP 2016048850 A JP2016048850 A JP 2016048850A JP 2017160521 A JP2017160521 A JP 2017160521A
Authority
JP
Japan
Prior art keywords
aluminum alloy
anisotropy
rolling
neck
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048850A
Other languages
Japanese (ja)
Other versions
JP6718701B2 (en
Inventor
齊藤 充
Mitsuru Saito
充 齊藤
黒木 俊博
Toshihiro Kuroki
俊博 黒木
原田 俊宏
Toshihiro Harada
俊宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016048850A priority Critical patent/JP6718701B2/en
Publication of JP2017160521A publication Critical patent/JP2017160521A/en
Application granted granted Critical
Publication of JP6718701B2 publication Critical patent/JP6718701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum alloy sheet for a beverage can body excellent in anisotropy and neck moldability.SOLUTION: The invention include conducting a homogenization treatment on an ingot obtained by smelting an aluminum alloy containing, by mass%, Si, Fe, Cu, Mn, Mg of defined amounts and semi-continuously casing the same at 555 to 605°C for 4 to 10 hours, conducting a heat treatment at 500 to 555°C for 1 hour or longer, then conducting hot rough rolling at an outlet side temperature of 400 to 460°C, hot finishing rolling under a condition of at a first path outlet side temperature of 380°C or less, a second path outlet side temperature of 340°C or less and a third path outlet side temperature of 250 to 310°C and then conducting first cold rolling with rolling reduction rate of 10 to 20%, a first intermediate annealing under a condition of a retention temperature of 460 to 540°C and retention time of 5 to 60 sec. by using a continuous annealing device, and conducting a second cold rolling with rolling reduction rate of 80 to 95% to obtain an aluminum alloy sheet having sheet thickness of 0.210 to 0.47 mm and bearing force after galling of 230 to 320 N/mm.SELECTED DRAWING: Figure 1

Description

本発明は、異方性とネック成形性に優れた飲料缶ボディ用、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法に関する。   The present invention relates to a beverage can body excellent in anisotropy and neck formability, and a method for producing an aluminum alloy plate for a bottle can body excellent in anisotropy and bottleneck formability.

飲料用アルミニウム缶の缶ボディには、JIS3004(AA3004)またはJIS3104合金などの、Al−Mn−Mg系合金硬質板が用いられている。同合金硬質板には、容器として使用するために必要な強度や耐食性、美麗な外観、優れた成形性などが要求される。
前記合金硬質板は、一般的なアルミニウム合金板と同様に、溶解・鋳造・均質化・熱間圧延・冷間圧延等の工程を経て製造される。そして通常、缶ボディ各部の強度や成形性のバランスが最適な3/4硬質〜特硬質に調質されている。即ち、アルミニウム合金板を圧延途中に一旦再結晶させ、軟質状態とした後、圧下率50〜90%程度の冷間圧延を行い、主として加工硬化により適度な強度としている。
Al-Mn-Mg based alloy hard plates such as JIS3004 (AA3004) or JIS3104 alloy are used for the can body of aluminum beverage cans. The alloy hard plate is required to have strength and corrosion resistance necessary for use as a container, a beautiful appearance, and excellent formability.
The said alloy hard plate is manufactured through processes, such as melting | dissolving, casting, homogenization, hot rolling, cold rolling, like a general aluminum alloy plate. In general, the balance of strength and formability of each part of the can body is tempered from 3/4 hard to special hard. That is, the aluminum alloy plate is recrystallized once in the course of rolling to be in a soft state, and then cold-rolled with a reduction rate of about 50 to 90% to obtain an appropriate strength mainly by work hardening.

最近の工業的な冷間圧延機を用いてアルミニウム合金板を圧延した場合、圧延による発熱で材料温度が高くなるため、圧延のままでも十分な延性が得られる。従って、通常、アルミニウム合金板は圧延のままの調質(H16〜H19)で用いられる。アルミニウム合金板の圧延速度が遅い場合など十分な延性が得られない場合には、安定化焼鈍を施して、H3X調質でアルミニウム合金板を用いることも考えられる。
しかし、アルミニウム合金の圧延板の機械的性質に異方性があると、缶ボディを成形する際の成形性を阻害したり、成形後の缶ボディの対称性が低下したり、材料の使用歩留まりが低下するなどの問題がある。圧延板の異方性は、結晶粒の方位分布(集合組織)に依存する。そこで、冷間圧延による集合組織の変化を考慮し、冷間圧延前の再結晶で生じる集合組織を制御することにより、アルミニウム合金圧延板の異方性を低減することが可能になると考えられる。
When an aluminum alloy sheet is rolled using a recent industrial cold rolling mill, the material temperature becomes high due to heat generated by rolling, so that sufficient ductility can be obtained even with rolling. Therefore, the aluminum alloy sheet is usually used in a tempered condition (H16 to H19) as it is rolled. When sufficient ductility cannot be obtained, for example, when the rolling speed of the aluminum alloy plate is slow, it is conceivable that the aluminum alloy plate is used with H3X refining by performing stabilization annealing.
However, if the mechanical properties of the aluminum alloy rolled plate are anisotropic, the formability when forming the can body is hindered, the symmetry of the can body after forming is reduced, and the material usage yield is reduced. There are problems such as lowering. The anisotropy of the rolled sheet depends on the crystal grain orientation distribution (texture). Therefore, it is considered that the anisotropy of the rolled aluminum alloy sheet can be reduced by taking into account the change in texture due to cold rolling and controlling the texture that occurs during recrystallization before cold rolling.

上述の観点から、アルミニウム合金圧延板の異方性を制御するために、冷間圧延前の再結晶をどのように制御するかが重要であり、この観点から、アルミニウムの缶ボディ材の製造方法は、以下の3種に分類することができる。
(1)熱間圧延→再結晶→最終冷延
第1の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、熱間圧延後、コイルに巻取った状態でそのまま再結晶させ、あるいは、人工的に焼鈍を施して再結晶させた後、冷間圧延を行う方法である。
(2)熱間圧延→低圧下冷延→再結晶→最終冷延
第2の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、その後比較的低圧下の、例えば以下の特許文献1に記載のように、アルミニウム合金板材に6〜15%の冷間圧延を行った後、焼鈍を施し、最後に圧下率90%程度の最終冷間圧延を実施する方法である。
(3)熱間圧延→冷間圧延→連続焼鈍炉を用いた再結晶→比較的低圧下の最終冷延
第3の方法は、アルミニウム合金板材の熱間圧延後、第一冷間圧延を行い、その後、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する焼鈍を行い、最後に比較的低圧下率の例えば60%程度の冷間圧延を行う方法である。
From the above viewpoint, in order to control the anisotropy of the aluminum alloy rolled sheet, it is important how to control recrystallization before cold rolling. From this viewpoint, a method for producing an aluminum can body material Can be classified into the following three types.
(1) Hot rolling → Recrystallization → Final cold rolling In the first method, hot rolling is performed to a relatively thin aluminum alloy sheet of, for example, 3 mm or less, and after hot rolling, it is wound on a coil. This is a method in which recrystallization is performed as it is, or after artificial annealing and recrystallization, and then cold rolling.
(2) Hot rolling → low-pressure cold rolling → recrystallization → final cold rolling The second method is hot rolling to a relatively thin-walled aluminum alloy sheet of, for example, 3 mm or less, and then under a relatively low pressure. For example, as described in the following Patent Document 1, after performing cold rolling of 6 to 15% on an aluminum alloy sheet, annealing is performed, and finally the final cold rolling with a reduction rate of about 90% is performed. is there.
(3) Hot rolling → cold rolling → recrystallization using a continuous annealing furnace → final cold rolling at a relatively low pressure The third method is to perform first cold rolling after hot rolling of an aluminum alloy sheet. Thereafter, using a continuous annealing furnace, annealing is performed by rapid heating to a relatively high temperature, followed by rapid cooling, and finally cold rolling at a relatively low pressure reduction rate of, for example, about 60%.

特許第3644819号公報Japanese Patent No. 3644819

ところで、アルミニウム缶に対する低価格化の要求は厳しく、このため材料使用量を出来るだけ低減する試みが、続けられている。しかし、素材板厚を薄くすると、成形性と異方性をバランスさせることが難しくなるので、成形性と異方性を良好にバランスさせるという要望が高くなっている。
例えば、アルミニウム合金板の異方性を制御するには、タンデム式の熱間仕上げ圧延機を用いることが有効であり、シングルミルリバース式の熱間仕上げ圧延機では十分な立方晶方位を得ることが容易ではなく、異方性の制御が難しいという問題がある。
By the way, the demand for lower prices for aluminum cans is severe, and therefore, attempts to reduce the amount of material used as much as possible continue. However, since it becomes difficult to balance formability and anisotropy when the material plate thickness is reduced, there is an increasing demand for a good balance between formability and anisotropy.
For example, to control the anisotropy of an aluminum alloy sheet, it is effective to use a tandem hot finish rolling mill. A single mill reverse hot finish rolling mill can obtain sufficient cubic orientation. However, it is difficult to control the anisotropy.

また、先に記載の(1)の方法と(2)の方法を比較すると、(2)に記載の方法では、(1)に記載の方法に比べて比較的低圧下の冷間圧延という処理が追加されるが、この冷間圧延処理により焼鈍時の立方体集合組織の発達を促進できる利点を有する。
本発明者らは、シングルミルリバース式の熱間仕上げ圧延機を用いて飲料用のアルミニウム缶を製造する条件について種々研究を重ねた結果、冷間圧延前に十分な立方体方位を形成することができ、飲料缶用アルミニウム合金板の異方性の制御を実現できる製造方法を見出し、本願発明に到達した。
Further, when the method (1) described above is compared with the method (2), the method described in (2) is a process of cold rolling under a relatively low pressure compared to the method described in (1). However, this cold rolling process has the advantage that the development of the cube texture during annealing can be promoted.
As a result of repeated studies on the conditions for producing aluminum cans for beverages using a single mill reverse hot finish rolling mill, the present inventors can form a sufficient cubic orientation before cold rolling. The manufacturing method which can implement | achieve and control the anisotropy of the aluminum alloy plate for drink cans was discovered, and it reached this invention.

本発明は、上述の問題を解決するためになされたものであり、異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の提供を目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing an aluminum alloy plate for a beverage can body having excellent anisotropy and neck formability.

本発明の缶ボディ用アルミニウム合金板の製造方法は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て熱間粗圧延を行って25〜16mmの熱間粗圧延板とした後、続いて1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を250〜310℃とする、熱間仕上げ圧延を行った後、圧下率を10〜20%とする第1冷間圧延を行い、その後、連続焼鈍装置を用いて保持温度460〜540℃、保持時間5〜60秒の条件で第1中間焼鈍を行い、続いて圧下率80〜95%で第2冷間圧延を行って、板厚0.210〜0.47mm、焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とする。 The manufacturing method of the aluminum alloy plate for can bodies of this invention is mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: An ingot obtained by melting an aluminum alloy having a composition containing 0.8 to 1.15%, Mg: 0.60 to 1.60%, the balance being Al and inevitable impurities, and semi-continuously casting Hot rough rolling is performed through homogenization treatment and soaking treatment to obtain a hot rough rolled plate of 25 to 16 mm, and then the first pass first-side temperature is 380 ° C. or lower, and the second pass first-side temperature is 340 ° C. Hereinafter, after performing hot finish rolling with a third pass exit side finishing temperature of 250 to 310 ° C., first cold rolling with a reduction rate of 10 to 20% is performed, and then a continuous annealing apparatus is used. The first intermediate annealing is performed under the conditions of a holding temperature of 460 to 540 ° C. and a holding time of 5 to 60 seconds, There performing secondary cold rolling at a reduction rate of 80% to 95%, the thickness 0.210~0.47Mm, characterized in that to obtain an aluminum alloy plate strength 230~320N / mm 2 after baking.

本発明の缶ボディ用アルミニウム合金板の製造方法において、前記鋳塊に対して行なう均質化処理は、555〜605℃で4〜10時間の条件で行ない、続いて行なう均熱処理は500〜555℃で1時間以上加熱する条件で行うことが好ましい。
本発明の缶ボディ用アルミニウム合金板の製造方法において、前記熱間粗圧延の最終パス出側材料温度は400〜460℃であることが好ましい。
In the method for producing an aluminum alloy plate for a can body of the present invention, the homogenization treatment performed on the ingot is performed at 555 to 605 ° C. for 4 to 10 hours, and the subsequent soaking is performed at 500 to 555 ° C. It is preferable to carry out under the conditions of heating for 1 hour or longer.
In the method for producing an aluminum alloy plate for a can body according to the present invention, the material temperature on the final pass outlet side of the hot rough rolling is preferably 400 to 460 ° C.

本発明の缶ボディ用アルミニウム合金板の製造方法において、前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることができる。
本発明の缶ボディ用アルミニウム合金板の製造方法において、第2冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で最終安定化焼鈍を行うことが好ましい。
In the method for producing an aluminum alloy plate for a can body according to the present invention, at least one of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less is further added to the composition. Alternatively, an aluminum alloy containing two or more kinds can be used.
In the method for producing an aluminum alloy sheet for a can body according to the present invention, it is preferable that after the second cold rolling, final stabilization annealing is performed under conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 to 4 hours.

本発明の缶ボディ用アルミニウム合金板の製造方法は、SiとFeとCuとMnとMgを特定範囲含有した組成のアルミニウム合金を溶製し、熱間粗圧延後、1〜3パスを規定の出側温度に制御する熱間仕上げ圧延を施し、圧下率10〜20%の冷間圧延を施し、特定条件の連続焼鈍を施し、圧下率80〜95%の最終冷間圧延を施すことにより、異方性とネック成形性の両方に優れた飲料缶ボディ用およびボトル缶ボディ用のアルミニウム合金板を提供することができる。
また、最終冷間圧延後に保持温度、保持時間を制御した安定化焼鈍を行うことにより、異方性とネック成形性に更に優れた飲料缶ボディ用およびボトル缶ボディ用のアルミニウム合金板を提供できる。
The method for producing an aluminum alloy plate for a can body according to the present invention is prepared by melting an aluminum alloy having a specific range of Si, Fe, Cu, Mn, and Mg, and specifying 1-3 passes after hot rough rolling. By performing hot finish rolling to control the outlet side temperature, subjecting to cold rolling with a reduction rate of 10 to 20%, subjecting to continuous annealing under specific conditions, and subjecting to final cold rolling with a reduction rate of 80 to 95%, It is possible to provide an aluminum alloy plate for a beverage can body and a bottle can body excellent in both anisotropy and neck formability.
In addition, by performing stabilized annealing with controlled holding temperature and holding time after the final cold rolling, it is possible to provide aluminum alloy plates for beverage can bodies and bottle can bodies that are further superior in anisotropy and neck formability. .

本発明に係る製造方法を実施する際に、熱間圧延工程において用いる装置と工程を示す説明図。Explanatory drawing which shows the apparatus and process which are used in a hot rolling process, when implementing the manufacturing method which concerns on this invention. 本発明に係る製造方法の実施に用いる連続焼鈍装置の一例を示す概略構成図。The schematic block diagram which shows an example of the continuous annealing apparatus used for implementation of the manufacturing method which concerns on this invention. DI缶の製造方法の一例を示す工程図。Process drawing which shows an example of the manufacturing method of DI can. DI缶の一例を示す部分断面図。The fragmentary sectional view which shows an example of DI can.

以下、本発明に係る異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の各実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
初めに、本実施形態で用いる缶ボディ用アルミニウム合金板の組成について説明する。
本実施形態の缶ボディ用アルミニウム合金板は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.80〜1.15%、Mg:0.60〜1.60%以下を含有し、残部が不可避的不純物を含むAlからなる組成のアルミニウム合金からなる。また、前記組成比のアルミニウム合金に、更に、Cr:0.05%以下、Zn:0.25%、Ti:0.10%以下のうち、1種または2種以上を含有するアルミニウム合金を用いても良い。
以下、本実施形態で使用するアルミニウム合金の組成限定理由について説明する。
なお、本明細書において記載する各元素の含有量は、特に限定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。例えば0.35〜0.55%とする表記は0.35%以上0.55%以下を意味する。
Hereinafter, although each embodiment of the manufacturing method of the aluminum alloy plate for drink can bodies excellent in anisotropy and neck formability concerning the present invention is described, the present invention is not limited to the embodiment described below. Absent.
First, the composition of the aluminum alloy plate for can bodies used in the present embodiment will be described.
The aluminum alloy plate for a can body of the present embodiment is, by mass%, Si: 0.35% or less, Fe: 0.35 to 0.55%, Cu: 0.15 to 0.48%, Mn: 0.00. It is made of an aluminum alloy having a composition of Al containing 80 to 1.15%, Mg: 0.60 to 1.60% or less and the balance containing inevitable impurities. In addition, an aluminum alloy containing one or more of Cr: 0.05% or less, Zn: 0.25%, Ti: 0.10% or less is used for the aluminum alloy having the above composition ratio. May be.
Hereinafter, the reasons for limiting the composition of the aluminum alloy used in this embodiment will be described.
In addition, content of each element described in this specification is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. For example, the notation of 0.35 to 0.55% means 0.35% or more and 0.55% or less.

「Si:0.35%以下」
Siは、同時に含有するMgと化合物を形成し易く、固溶硬化作用、分散硬化作用および析出硬化作用を有する他、Al、Mn、Feなどと化合物を形成し、成形時のダイスに対する焼付きを防止する効果がある。Siの含有量は、0.35質量%を越えると加工性が劣化して不都合である。
「Fe:0.35〜0.55%」
Feは、結晶の微細化および成形時のダイスに対する焼付きを防止する効果がある。Feの含有量は、0.35質量%未満では所望の効果が得られず、0.55質量%を越えると加工性を劣化させる。
"Si: 0.35% or less"
Si easily forms a compound with Mg contained at the same time, has a solid solution hardening action, a dispersion hardening action and a precipitation hardening action, and forms a compound with Al, Mn, Fe, etc., and seizes the die during molding. There is an effect to prevent. If the Si content exceeds 0.35% by mass, workability deteriorates, which is inconvenient.
"Fe: 0.35-0.55%"
Fe has the effect of preventing crystal fineness and seizure to a die during molding. If the Fe content is less than 0.35% by mass, the desired effect cannot be obtained, and if it exceeds 0.55% by mass, the workability deteriorates.

「Cu:0.15〜0.48%」
Cuは、Mgと化合物を形成し易く、固溶硬化、分散硬化および析出硬化に寄与する。
Cuの含有量は、0.15質量%未満では所望の効果が得られず、0.48質量%を越えると加工性を劣化させる。
「Mn:0.8〜1.15%」
Mnは、Fe、Si、Alなどと化合物を形成し易く、晶出相および分散相となって分散硬化作用を現すと共に成形時のダイスに対する焼付きを防止する効果がある。Mnの含有量は、0.8質量%未満では所望の硬化特性が得られず、1.15質量%を越えると加工性が劣化する。
「Mg:0.60〜1.60%」
Mgは、固溶体強化作用を有し、圧延による加工硬化性を高めるとともに、前記Siや前記Cuと共存することによって分散硬化と析出硬化作用を現す。Mgの含有量は、0.60質量%未満では所望の効果が得られず、1.60質量%を越えると加工性を劣化させるようになる。
"Cu: 0.15-0.48%"
Cu easily forms a compound with Mg, and contributes to solid solution hardening, dispersion hardening, and precipitation hardening.
If the Cu content is less than 0.15% by mass, the desired effect cannot be obtained, and if it exceeds 0.48% by mass, the workability deteriorates.
“Mn: 0.8 to 1.15%”
Mn is easy to form a compound with Fe, Si, Al, etc., becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and has an effect of preventing seizure to a die during molding. If the Mn content is less than 0.8% by mass, desired curing characteristics cannot be obtained, and if it exceeds 1.15% by mass, the workability deteriorates.
“Mg: 0.60 to 1.60%”
Mg has a solid solution strengthening action, enhances work hardening by rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. If the Mg content is less than 0.60% by mass, the desired effect cannot be obtained, and if it exceeds 1.60% by mass, the workability deteriorates.

本実施形態で用いるアルミニウム合金において、前記Si、Fe、Cu、Mn、Mgの主要成分に加え、以下のCr、Zn、Tiのいずれか1種または2種以上を含有しても良い。
「Cr:0.05%以下」
Crは結晶の微細化と成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Crの含有量は、0.05質量%を越えると脆くなり加工性が劣化する。
In the aluminum alloy used in the present embodiment, in addition to the main components of Si, Fe, Cu, Mn, and Mg, one or more of the following Cr, Zn, and Ti may be contained.
"Cr: 0.05% or less"
Cr exhibits the effect of preventing seizure on the die during crystal refinement and molding. If the Cr content exceeds 0.05% by mass, it becomes brittle and the workability deteriorates.

「Zn:0.25%以下」
ZnはMg、Si、Cuの析出物を微細化する作用を有する。Znの含有量は、0.25質量%を越えると加工性と耐食性を劣化させる。
「Ti:0.10%以下」
Tiは、結晶粒を微細化して加工性を改善する効果がある。ただし、Tiの含有量は0.10質量%を越えると粗大な化合物を生成し、逆に加工性を劣化させる。
“Zn: 0.25% or less”
Zn has the effect of refining Mg, Si and Cu precipitates. If the Zn content exceeds 0.25% by mass, workability and corrosion resistance are deteriorated.
“Ti: 0.10% or less”
Ti has the effect of improving the workability by refining crystal grains. However, if the Ti content exceeds 0.10% by mass, a coarse compound is formed, and conversely, workability is deteriorated.

<異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法>
次に、本実施形態に係る異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の実施の形態について説明する。
本実施形態の飲料缶ボディ用アルミニウム合金板の製造方法においては、前記組成のアルミニウム合金を溶製し、鋳造して得た鋳塊に対して均質化処理、均熱処理を施した後、熱間粗圧延およびそれに続く熱間仕上げ圧延による熱間圧延を行い、圧下率の低い第1冷間圧延を施し、第1中間焼鈍を施し、さらに最終冷間圧延を行うことにより所望の板厚の缶ボディ用アルミニウム合金板を得る。
更に、前記の工程に加え、保持温度120〜140℃、保持時間2〜4時間の条件で安定化焼鈍を行うこともできる。
以下、本実施形態の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法について工程順に説明する。
<Method for producing aluminum alloy plate for beverage can body having excellent anisotropy and neck formability>
Next, an embodiment of a method for producing an aluminum alloy plate for a beverage can body excellent in anisotropy and neck formability according to this embodiment will be described.
In the method for producing an aluminum alloy plate for a beverage can body of the present embodiment, the aluminum alloy having the above composition is melted and subjected to homogenization treatment and soaking treatment on the ingot obtained by casting. Hot rolling by rough rolling and subsequent hot finish rolling, first cold rolling with a low rolling reduction, first intermediate annealing, and final cold rolling to obtain a can having a desired thickness Obtain an aluminum alloy sheet for the body.
Furthermore, in addition to the above-mentioned steps, stabilization annealing can be performed under the conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 to 4 hours.
Hereinafter, the manufacturing method of the aluminum alloy plate for beverage can bodies excellent in anisotropy and neck formability of this embodiment will be described in the order of steps.

「鋳造」
前記組成のアルミニウム合金を溶解後、常法に従ってアルミニウム合金溶湯から鋳塊を鋳造するが、鋳造に先立ち、アルミニウム合金を溶製した際に、水素ガスや酸化物などの介在物を除去し、半連続鋳造法により鋳塊を得る。
このときの凝固速度は通常、5〜20℃/秒とされる。鋳造された鋳塊の厚さは、例えば500〜600mm程度とすることができる。
次に、面削を行い、鋳塊の表面を1〜25mm程度切削し、面削体を作製する。なお面削は後述する均質化処理の後に行っても良い。
"casting"
After the aluminum alloy having the above composition is melted, an ingot is cast from the molten aluminum alloy according to a conventional method. When the aluminum alloy is melted prior to casting, inclusions such as hydrogen gas and oxide are removed, An ingot is obtained by a continuous casting method.
The solidification rate at this time is usually 5 to 20 ° C./second. The thickness of the cast ingot can be about 500 to 600 mm, for example.
Next, chamfering is performed, and the surface of the ingot is cut by about 1 to 25 mm to produce a chamfered body. The chamfering may be performed after a homogenization process described later.

「均質化処理」
次に、作製した面削体に均質化処理を施す。均質化処理は一般に、溶湯の凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、凝固によって形成された準安定相の平衡相への転移などのために行われる。
均質化処理においては、均質化温度を555〜605℃の範囲内とすることが重要である。均質化温度が555℃未満では後述の連続焼鈍の効果が得られず、後述の熱間圧延工程や第1冷間圧延工程においてクラックが発生し易く、最終板材の耳率が高くなる。また、均質化温度が605℃を超えると、鋳塊が溶融するおそれがある。
"Homogenization treatment"
Next, a homogenization process is performed on the manufactured face cut body. The homogenization treatment is generally performed for homogenization of microsegregation generated by solidification of the molten metal, precipitation of supersaturated solid solution elements, transition of a metastable phase formed by solidification to an equilibrium phase, and the like.
In the homogenization treatment, it is important that the homogenization temperature is in the range of 555 to 605 ° C. If the homogenization temperature is less than 555 ° C., the effect of continuous annealing described later cannot be obtained, cracks are likely to occur in the hot rolling process and the first cold rolling process described later, and the ear rate of the final plate material is increased. Further, if the homogenization temperature exceeds 605 ° C, the ingot may be melted.

均質化処理において、面削体は100℃/時以下の加熱速度で均質化温度まで加熱することが好ましい。加熱速度が100℃/時を超えると、部分的に溶融を生じるおそれがある。
また、均質化処理において、均質化温度に保持する時間(均質化時間)は4時間以上10時間以下とすることが好ましい。均質化時間が4時間未満では、均質化が充分に進行しない場合がある。しかし、均質化時間が長すぎても効果はなく生産効率が低下する。以上の観点から、好ましい均質化時間は4〜10時間の範囲内である。この均質化処理は、均質化時間が比較的長いので、通常、バッチ方式の炉中に置くことで行われる。
本実施形態において、均質化処理の後さらに面削体を500〜555℃まで冷却し、所定時間保持する均熱処理後、熱間圧延を開始する。500〜555℃の温度範囲での保持時間(均熱時間)は、1時間以上行うことができる。
In the homogenization treatment, it is preferable to heat the face milling body to a homogenization temperature at a heating rate of 100 ° C./hour or less. If the heating rate exceeds 100 ° C./hour, melting may occur partially.
In the homogenization treatment, the time for maintaining the homogenization temperature (homogenization time) is preferably 4 hours or more and 10 hours or less. If the homogenization time is less than 4 hours, the homogenization may not proceed sufficiently. However, if the homogenization time is too long, there is no effect and the production efficiency is lowered. From the above viewpoint, the preferable homogenization time is in the range of 4 to 10 hours. Since the homogenization time is relatively long, this homogenization treatment is usually performed by placing it in a batch type furnace.
In this embodiment, after the homogenization treatment, the face cut body is further cooled to 500 to 555 [deg.] C., and after soaking for a predetermined time, hot rolling is started. The holding time (soaking time) in the temperature range of 500 to 555 ° C. can be performed for 1 hour or more.

「熱間圧延」
熱間圧延は、熱間粗圧延およびそれに続く熱間仕上げ圧延からなり、本実施形態においては、シングルミルのリバース式熱間仕上圧延機を使用して熱間仕上げ圧延を行うことが好ましい。
熱間圧延工程においては、図1に示すように、熱間粗圧延機20を用いて板厚20mm程度まで熱間粗圧延した後、熱間仕上圧延機30を用いて板厚2〜7mmまで熱間圧延する。
"Hot rolling"
The hot rolling includes hot rough rolling and subsequent hot finish rolling. In the present embodiment, it is preferable to perform hot finish rolling using a single-mill reverse hot finish rolling mill.
In the hot rolling step, as shown in FIG. 1, after hot rough rolling to a thickness of about 20 mm using a hot roughing mill 20, a thickness of 2 to 7 mm using a hot finish rolling mill 30 is used. Hot rolled.

図1に示す熱間粗圧延機20は、例えば上下のワークロール21、22、およびバックアップロール23、24と、複数の搬送ローラが配列された搬送路4、6を備え、搬送されてきたアルミニウム合金の板材5をワークロール21、22間を通過させて目的の厚さに圧延する装置である。
図1において、ワークロール21、22の左右両側の搬送路4、6から繰り返しアルミニウム合金の板材5をワークロール21、22に供給して順次粗圧延することにより、熱間粗圧延機20は板材5を必要な厚さまで圧延して板材7とすることができる。
The hot roughing mill 20 shown in FIG. 1 includes, for example, upper and lower work rolls 21 and 22, backup rolls 23 and 24, and transport paths 4 and 6 in which a plurality of transport rollers are arranged, and has been transported aluminum. This is an apparatus for rolling an alloy plate 5 to a desired thickness by passing between work rolls 21 and 22.
In FIG. 1, the hot rough rolling mill 20 is a plate material by repeatedly supplying the aluminum alloy plate material 5 to the work rolls 21, 22 from the conveying paths 4, 6 on the left and right sides of the work rolls 21, 22 and sequentially rolling them. 5 can be rolled to a required thickness to obtain a plate 7.

図1に示す熱間仕上圧延機30は、シングルミルのリバース式熱間仕上圧延機であり、例えば上下のワークロール31、32およびバックアップロール33、34と、これらロールの入り側に設置されたリール型の送出巻取装置35と、出側に設置されたリール型の送出巻取装置36とを具備してなる。この熱間仕上圧延機30は、送出巻取装置35から送り出してワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置36で巻き取る操作と、送出巻取装置36から再度ワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置35で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール31、32間の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで熱間仕上圧延する装置である。   The hot finish rolling mill 30 shown in FIG. 1 is a single-mill reverse hot finish rolling mill, for example, upper and lower work rolls 31 and 32 and backup rolls 33 and 34 and installed on the entrance side of these rolls. A reel-type delivery winding device 35 and a reel-type delivery winding device 36 installed on the outlet side are provided. The hot finish rolling mill 30 is configured to wind a sheet material that is hot-rolled from the feed winder 35 and passed between the work rolls 31 and 32 by the feed winder 36, and from the feed winder 36. The operation of winding the sheet material hot-rolled by passing between the work rolls 31 and 32 again with the feed winder 35 is repeated as many times as necessary, and the interval between the work rolls 31 and 32 is gradually adjusted for each rolling operation. By doing so, it is an apparatus that hot-rolls an aluminum alloy plate material to a target plate thickness.

前記均熱処理後、均熱炉から取り出したスラブは通常直ちに熱間粗圧延を開始するが、スラブ温度が500℃未満にならなければ、熱間粗圧延開始を遅延してもよい。熱間粗圧延のパス数は、鋳塊(スラブ)厚さ、仕上げ厚さ、スラブ幅、合金組成などに依存するが、十数パス〜二十数パスの範囲が一般的である。
熱間粗圧延は、圧延材が厚い間は、通常圧延機の前後に搬送テーブルが設置された1スタンド式粗圧延機(図1に示す熱間粗圧延機20)を用いて圧延する。しかし、板が薄くなると、必要な搬送テーブル長が長くなり、板の自重によるたるみも大きくなり、板の冷却も生じ易くなる。
After the soaking process, the slab taken out from the soaking furnace usually starts hot rough rolling immediately, but if the slab temperature does not become less than 500 ° C., the start of hot rough rolling may be delayed. The number of hot rough rolling passes depends on the ingot (slab) thickness, finished thickness, slab width, alloy composition, and the like, but is generally in the range of tens of passes to tens of passes.
In the hot rough rolling, while the rolled material is thick, rolling is usually performed using a one-stand type rough rolling mill (hot rough rolling mill 20 shown in FIG. 1) in which a conveyance table is installed before and after the rolling mill. However, if the plate is thinned, the necessary transfer table length is increased, the slack due to the weight of the plate is increased, and the plate is likely to be cooled.

そのため、搬送テーブルで保持するには、板厚が十数mm以上必要である。したがって、粗圧延機から仕上圧延機に板を送る際の最低板厚は、コイル重量や板幅に依存するが、工業的に用いられている重量・幅の場合、16mm程度以上であることが好ましい。また、粗圧延機から仕上げ圧延機に送る際の板厚が厚すぎる場合には、仕上圧延機での圧延パス回数の増加を招き、生産性を低下させる。したがって、仕上げ圧延機に送る際の板厚の上限は40mm以下であることが好ましい。上述の厚さ上限から下限の範囲内までアルミニウム合金の板材が薄くなった場合に、図1に示す構成のシングルミルのリバース式熱間仕上圧延機で熱間仕上げ圧延を行う。   Therefore, in order to hold on the transfer table, the plate thickness needs to be more than 10 mm. Therefore, the minimum plate thickness when the plate is sent from the roughing mill to the finishing mill depends on the coil weight and the plate width, but in the case of the weight and width used industrially, it is about 16 mm or more. preferable. Moreover, when the plate | board thickness at the time of sending to a finishing mill from a rough mill is too thick, the increase in the number of rolling passes in a finishing mill will be caused, and productivity will be reduced. Therefore, it is preferable that the upper limit of the sheet thickness at the time of sending to a finishing mill is 40 mm or less. When the aluminum alloy sheet is thinned from the above upper limit to the lower limit, hot finish rolling is performed with a single mill reverse hot finish rolling mill having the configuration shown in FIG.

熱間仕上げ圧延は、シングルミルのリバース式熱間仕上圧延機を使用して行う。
圧延機の両側に巻取装置があるシングルミルのリバース式熱間仕上圧延機(図1に示す熱間仕上圧延機30)を使用することにより、熱間仕上板厚を小さくすることができる。
従って、以降の冷間圧延の圧下率を小さくできるので、冷間圧延のパス回数を削減でき、生産性を向上させることができる。これに対し、例えば、巻取装置が片方にだけ設置された熱間仕上圧延機を用いた場合、搬送テーブル上で保持できる板厚に最小値が存在するために、熱間圧延で圧延可能な最小板厚が増加することになる。このため、熱間圧延後の冷間圧下率が増加する。
Hot finish rolling is performed using a single-mill reverse hot finish rolling mill.
By using a single-mill reverse hot finish rolling mill (hot finish rolling mill 30 shown in FIG. 1) having a winding device on both sides of the rolling mill, the hot finish plate thickness can be reduced.
Therefore, since the reduction ratio of the subsequent cold rolling can be reduced, the number of cold rolling passes can be reduced and the productivity can be improved. On the other hand, for example, when a hot finish rolling mill in which the winding device is installed only on one side is used, there is a minimum value for the plate thickness that can be held on the transfer table, so that it can be rolled by hot rolling. The minimum plate thickness will increase. For this reason, the cold rolling reduction after hot rolling increases.

前述の如く、熱間圧延の仕上り板厚の薄肉化は、冷間圧延パス回数の削減による生産性の向上に寄与する。そのため、本実施形態において、熱間仕上げ圧延の仕上げ板厚は、2〜7mmの範囲内とすることが好ましい。仕上げ板厚が2mm未満では第1冷間圧延の圧下率が不足し、低い耳率が得られない。仕上げ板厚が7mmを超えると第1冷間圧延のパス回数が増加して生産性が低下する。
熱間仕上げ圧延時の条件として、1パス目の出側温度を380℃以下に設定し、2パス目の出側温度を340℃以下に設定し、3パス目の出側温度(仕上げ温度)を250〜310℃の範囲とすることが好ましい。
また3パス目の圧下率について、55%以上65%以下とすることが好ましい。
As described above, the reduction in the thickness of the finished sheet of hot rolling contributes to the improvement of productivity by reducing the number of cold rolling passes. Therefore, in this embodiment, it is preferable that the finishing plate | board thickness of hot finish rolling shall be in the range of 2-7 mm. If the finished sheet thickness is less than 2 mm, the reduction ratio of the first cold rolling is insufficient, and a low ear ratio cannot be obtained. If the finished plate thickness exceeds 7 mm, the number of passes of the first cold rolling increases and the productivity decreases.
As conditions for hot finish rolling, the outlet temperature of the first pass is set to 380 ° C. or lower, the outlet temperature of the second pass is set to 340 ° C. or lower, and the outlet temperature of the third pass (finishing temperature). Is preferably in the range of 250 to 310 ° C.
Moreover, it is preferable that the rolling reduction ratio in the third pass is 55% or more and 65% or less.

1パス目の出側温度について380℃を超える温度に設定すると、圧延加工時の局部歪みが駆動力となって部分的に再結晶が進行し、機械的性質が劣化するとともに、ランダム方位の再結晶粒が多くなり異方性が悪化する恐れがある。
2パス目の出側温度について340℃を超える温度に設定すると、上記1パス目と同様の現象により同様の問題が生じる。
3パス目の出側温度について、310℃を超える温度では上記1パス目と同様の現象により同様の問題が生じる。250℃未満の温度では立方体方位の再結晶粒の核が生じにくく、後述の第1冷間圧延に続く第1中間焼鈍を行っても十分な立方体方位が成長せず、異方性が悪化する。
また3パス目の圧下率について、55%未満では上記の出側温度250℃未満の場合と同様の現象により同様の問題が生じる。65%を超える場合は圧延荷重が大きくなり過ぎ、安定した圧延を行うことが困難となる問題が生じる。
If the outlet temperature in the first pass is set to a temperature exceeding 380 ° C., the local strain during rolling becomes a driving force, the recrystallization partially proceeds, the mechanical properties deteriorate, and the random orientation is restored. There is a risk that the number of crystal grains increases and the anisotropy deteriorates.
If the outlet temperature in the second pass is set to a temperature exceeding 340 ° C., the same problem occurs due to the same phenomenon as in the first pass.
Regarding the outlet side temperature in the third pass, the same problem occurs due to the same phenomenon as in the first pass at a temperature exceeding 310 ° C. When the temperature is lower than 250 ° C., nuclei of recrystallized grains having a cube orientation are unlikely to be generated, and sufficient cube orientation does not grow even if the first intermediate annealing following the first cold rolling described later is performed, and the anisotropy deteriorates. .
In addition, if the rolling reduction ratio in the third pass is less than 55%, the same problem occurs due to the same phenomenon as in the case where the outlet temperature is less than 250 ° C. When it exceeds 65%, the rolling load becomes too large, and there arises a problem that it is difficult to perform stable rolling.

「第1冷間圧延」
第1冷間圧延工程においては、前記の熱間圧延を施した後に冷却した板材を、圧下率10〜20%の範囲となるように冷間圧延する。第1冷間圧延は、熱間圧延で形成させた立方体方位の核を、続く第1中間焼鈍において優先的に成長させるための駆動力を与えるために必要な工程である。第1冷間圧延の圧下率が20%を超えると歪みが過大となり、第1中間焼鈍において熱間圧延で形成された立方体方位の再結晶粒の成長が妨げられ、逆にランダム方位が成長して異方性を悪化させる。
一方、第1冷間圧延の圧下率が10%未満では、圧延の制御が困難になるとともに前記の第一中間焼鈍において立方体方位を優先的に成長させるための駆動力が不足するため、やはり異方性が悪化する。
"First cold rolling"
In the first cold rolling step, the plate material cooled after the hot rolling is cold-rolled so as to be in the range of a reduction rate of 10 to 20%. 1st cold rolling is a process required in order to give the driving force for growing the nucleus of the cube orientation formed by hot rolling preferentially in the 1st intermediate annealing which follows. When the rolling reduction ratio of the first cold rolling exceeds 20%, the strain becomes excessive, and the growth of recrystallized grains with cubic orientation formed by hot rolling in the first intermediate annealing is hindered, and conversely the random orientation grows. To worsen anisotropy.
On the other hand, if the rolling reduction of the first cold rolling is less than 10%, it becomes difficult to control the rolling and the driving force for preferentially growing the cube orientation in the first intermediate annealing is insufficient. The directionality deteriorates.

「第1中間焼鈍」
第1中間焼鈍工程は、前記第1冷間圧延後の板材に対し、図2に基本構成を示す連続焼鈍装置を用いて保持温度460〜540℃の範囲(460℃以上、540℃以下の範囲)に5〜60秒保持した後、冷却することで行う。
第1中間焼鈍工程において、加熱速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で加熱することが好ましく、冷却速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で冷却を行うことが好ましい。
この焼鈍工程は、アルミニウム合金板材を半軟化状態にもたらすものであって、焼鈍後の耐力;YS(Yield Strength)を好適な範囲とすることが好ましい。
焼鈍温度が460℃未満では軟化が不十分で、また十分な立方体方位粒の成長が得られず結果的に異方性が悪化する。焼鈍温度が540℃を越えるか、または、保持時間が60秒を越えると溶質元素の固溶度が過剰になり、最終製品の機械的性質が高くなったり、缶のネック成形性が悪化する。
"First intermediate annealing"
In the first intermediate annealing step, a holding temperature of 460 to 540 ° C. (range of 460 ° C. or more and 540 ° C. or less) is applied to the plate material after the first cold rolling using a continuous annealing apparatus having a basic configuration shown in FIG. ) For 5 to 60 seconds and then cooled.
In the first intermediate annealing step, heating is preferably performed at a heating rate in the range of 10 to 200 ° C./second (a range of 10 ° C./second or more and 200 ° C./second or less), and a cooling rate in the range of 10 to 200 ° C./second ( It is preferable to perform cooling at 10 ° C./second or more and 200 ° C./second or less).
This annealing step brings the aluminum alloy sheet material into a semi-softened state, and it is preferable to set the yield strength after annealing; YS (Yield Strength) within a suitable range.
If the annealing temperature is less than 460 ° C., the softening is insufficient, and sufficient cube-oriented grain growth cannot be obtained, resulting in deterioration of anisotropy. When the annealing temperature exceeds 540 ° C. or the holding time exceeds 60 seconds, the solid solubility of the solute element becomes excessive, the mechanical properties of the final product become high, and the neck formability of the can deteriorates.

図2に連続焼鈍装置(Continuous Annealing Line:略称CAL)の基本構成の一例を示すが、この例の連続焼鈍装置40は、供給ロール41から長尺のアルミニウム合金の板材42を引き出して緩衝装置43を介し数10m〜100m程度の長い炉本体44に供給し、この炉本体44内で移動中に前記の条件で焼鈍し、焼鈍後に炉本体44から引き出し、緩衝装置46を介し巻取ロール47に巻き取ることができる装置である。この連続焼鈍装置40によれば、炉本体44を通過するアルミニウム合金の板材42を連続単体処理できるために、バッチ式の焼鈍炉よりもより正確な加熱条件と冷却条件で焼鈍処理を行うことができる。   FIG. 2 shows an example of the basic configuration of a continuous annealing device (Continuous Annealing Line: CAL). The continuous annealing device 40 in this example draws a long aluminum alloy plate 42 from a supply roll 41 and cushions 43. Is supplied to a long furnace main body 44 of about several tens to 100 m through, and annealed under the above-mentioned conditions while moving in the furnace main body 44, and is drawn out from the furnace main body 44 after annealing, and is wound on a winding roll 47 through a shock absorber 46. It is a device that can be wound up. According to this continuous annealing apparatus 40, since the aluminum alloy plate material 42 passing through the furnace body 44 can be continuously processed alone, the annealing process can be performed under more accurate heating conditions and cooling conditions than the batch type annealing furnace. it can.

そして、連続焼鈍装置40ならば、アルミニウム合金の板材42を供給ロール41に巻き付けた状態のコイルの幅や径が異なっても、換言するとアルミニウム合金の板材42の幅や厚さ、処理するべき長さが異なっていても、製造したい順番に焼鈍処理できるために、同一の大きさのコイルのみを焼鈍炉に搬入して焼鈍していたバッチ式の焼鈍炉の場合に比べて中間在庫の増加を抑えることができる。   And if it is the continuous annealing apparatus 40, even if the width | variety and diameter of the coil of the state which wound the aluminum alloy board | plate material 42 around the supply roll 41 differ, in other words, the width | variety and thickness of the aluminum alloy board | plate material 42, and the length which should be processed Even if the lengths are different, annealing can be performed in the order in which they are to be manufactured.Therefore, the intermediate stock is increased compared to the case of the batch type annealing furnace in which only coils of the same size are brought into the annealing furnace and annealed. Can be suppressed.

「第2冷間圧延」
次に、第1中間焼鈍後の板材に対し、圧下率80〜95%の範囲内となるように冷間圧延を施す。第2冷間圧延の圧下率を80〜95%の範囲内とすることにより、缶ボディ用板材として求められる適度な機械的性質と、異方性・ネック成形性の両立を図ることができる。
第2冷間圧延の圧下率を80%未満にすると、加工率が不足し必要な強度が得られないとともに、加工硬化しやすく缶のネック成形性を低下させる問題を生じる。
第2冷間圧延の圧下率について95%を超えると、加工率が過剰となり場合によっては強度が過剰となり、また異方性悪化の原因ともなる。
第2冷間圧延により、板厚0.210〜0.47mmの飲料缶ボディ用アルミニウム合金板を得ることができる。また、このアルミニウム合金板は、塗装焼付け後の耐力が230〜320N/mmの範囲であることが好ましい。
"Second cold rolling"
Next, cold rolling is performed on the plate material after the first intermediate annealing so that the rolling reduction is within a range of 80 to 95%. By setting the rolling reduction ratio of the second cold rolling within the range of 80 to 95%, it is possible to achieve both appropriate mechanical properties required for a can body plate material and anisotropy and neck formability.
If the reduction ratio of the second cold rolling is less than 80%, the processing rate is insufficient and the required strength cannot be obtained, and the problem is that work hardening tends to occur and the neck formability of the can is lowered.
When the reduction ratio of the second cold rolling exceeds 95%, the processing rate becomes excessive, and in some cases, the strength becomes excessive, and the anisotropy deteriorates.
By the second cold rolling, an aluminum alloy plate for beverage can bodies having a plate thickness of 0.210 to 0.47 mm can be obtained. Moreover, it is preferable that this aluminum alloy plate has the yield strength after baking by coating in the range of 230 to 320 N / mm 2 .

「安定化焼鈍」
以上の製造方法によれば、異方性とネック成形性に優れた缶ボディ用アルミニウム合金板を得ることができるが、当該合金板のDI成形において、缶底部の形状および成形条件によっては、底部抜けなどの成形異常の問題を生じる場合がある。
このため、当該合金板に対し、保持温度120〜140℃、保持時間2時間〜6時間の条件で安定化焼鈍を行うことによって缶底部成形などの局部成形性を改善することができ、成形異常を有効に抑制することが可能である。
"Stabilized annealing"
According to the above production method, an aluminum alloy plate for a can body having excellent anisotropy and neck formability can be obtained. In DI molding of the alloy plate, depending on the shape and molding conditions of the bottom of the can, the bottom There may be a problem of molding abnormality such as missing.
For this reason, local formability such as can bottom molding can be improved by performing stabilization annealing on the alloy plate under the conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 hours to 6 hours. Can be effectively suppressed.

保持温度を120℃未満にすると、上記の効果がほぼ認められなくなるという面で問題があり140℃を超える保持温度とすると、強度低下の問題が生じる。
保持時間を2時間未満にすると、コイル全体を安定的に加熱処理するのが困難となるため好ましくなく、4時間を超える保持時間とすると、生産性が低下するという問題がある。
安定化焼鈍処理を上述の条件で施すことにより、缶成形における異常や安定生産性の問題を生じることなく成形できる特徴がある。
If the holding temperature is less than 120 ° C., there is a problem in that the above effect is hardly recognized. If the holding temperature exceeds 140 ° C., the problem of strength reduction occurs.
If the holding time is less than 2 hours, it is difficult to stably heat the entire coil, which is not preferable. If the holding time is longer than 4 hours, productivity is lowered.
By performing the stabilization annealing treatment under the above-described conditions, there is a feature that molding can be performed without causing abnormalities in can molding and problems of stable productivity.

以下に、上述のアルミニウム合金板を用いてDI缶を製造する工程とDI缶の概要について説明する。
図3は、DI缶の製造方法の工程図を、図4はDI缶を示す部分断面図であり、これらの図において符号10は、DI缶を示している。
DI缶10は、アルミニウム合金製の有底筒状のDI缶であって、板厚が0.240mm以上0.270mm以下とされるアルミニウム合金の板材に、しごき率が54.2%以上64.8%以下とされる絞りしごき加工を施して成形されており、例えば、缶軸方向の大きさ、すなわち高さが約122.5mm、外径が65mm以上67mm以下とされている。胴部は、肉厚が0.095mm以上0.110mm以下とされるとともに引張り強さが、340MPa以上410MPa以下とされ、かつこの場合の缶体重量が11.6g以下とされる。
Below, the outline | summary of the process and DI can which manufacture a DI can using the above-mentioned aluminum alloy plate are demonstrated.
FIG. 3 is a process diagram of a method for manufacturing a DI can, and FIG. 4 is a partial cross-sectional view showing the DI can. In these drawings, reference numeral 10 indicates the DI can.
The DI can 10 is a bottomed cylindrical DI can made of an aluminum alloy, and an iron alloy plate material having a thickness of 0.240 mm or more and 0.270 mm or less has an ironing rate of 54.2% or more and 64. For example, the size in the can axis direction, that is, the height is about 122.5 mm, and the outer diameter is 65 mm or more and 67 mm or less. The body portion has a wall thickness of 0.095 mm to 0.110 mm, a tensile strength of 340 MPa to 410 MPa, and a can body weight of 11.6 g or less.

また、底部12は、図4に示すように、胴部11の缶軸方向における内側に向けて凹むドーム部12aを備えるとともに、このドーム部12aの外周縁部が胴部11の缶軸方向における外側に向けて突出する環状凸部12cとされている。この環状凸部12cの缶軸方向における頂部が、DI缶10が正立姿勢となるように、このDI缶10を接地面L上に配置したときに接地面Lに接する接地部12bとされる。
また、DI缶10は、ポリエステル系塗料を使用して、文字情報等の印刷部分も含め、胴部11の外面を印刷、塗装し、この外面印刷及び外面塗装がされたDI缶10を180℃×30秒間加熱することにより50mg/dmの塗膜を形成させた後に、DI缶10の内面にエポキシ系塗料を使用して内面塗装し、200℃×60秒間加熱することにより40mg/dmの塗膜を形成させた外面印刷、外面塗装及び内面塗装がなされている。
Further, as shown in FIG. 4, the bottom portion 12 includes a dome portion 12 a that is recessed inward in the can axis direction of the trunk portion 11, and an outer peripheral edge portion of the dome portion 12 a is in the can axis direction of the trunk portion 11. It is set as the annular convex part 12c which protrudes toward the outer side. The top of the annular convex portion 12c in the can axis direction is a grounding portion 12b that contacts the grounding surface L when the DI can 10 is placed on the grounding surface L so that the DI can 10 is in an upright posture. .
In addition, the DI can 10 is made by printing and painting the outer surface of the body portion 11 including a printed portion such as character information using a polyester-based paint, and the DI can 10 subjected to the outer surface printing and the outer surface coating is 180 ° C. After forming a 50 mg / dm 2 coating film by heating for 30 seconds, the inner surface of the DI can 10 was coated with an epoxy-based paint and heated to 200 ° C. for 60 seconds to be 40 mg / dm 2 The outer surface printing, the outer surface coating, and the inner surface coating in which the above coating film is formed are performed.

このDI缶は、例えば、以下の工程により製造される。
前述の工程で得られたアルミニウム合金板を打ち抜いて直径が約150mmとされた円板状の板材(ブランク)Wを成形する。
次に、この板材Wをカッピングプレスによって絞り加工することによりカップ状体W1に成形する。
次いで、DI加工装置によって、カップ状体W1に再絞りしごき加工を施して有底筒状体W2を形成する。この際の、しごき率は、例えば、60.4%で胴部11の最薄部における肉厚が0.100mmになるまで絞りしごき加工が施される。
This DI can is manufactured by the following processes, for example.
A disk-shaped plate material (blank) W having a diameter of about 150 mm is formed by punching the aluminum alloy plate obtained in the above-described process.
Next, the plate material W is drawn into a cup-shaped body W1 by drawing with a cupping press.
Subsequently, the DI processing apparatus performs redrawing and ironing on the cup-shaped body W1 to form a bottomed cylindrical body W2. In this case, the ironing rate is, for example, 60.4%, and the ironing process is performed until the thickness of the thinnest portion of the body portion 11 becomes 0.100 mm.

再絞りしごき加工に用いるDI加工装置は、再絞り加工するための円形の貫通孔を有する一枚の再絞りダイと、この再絞りダイと同軸に配列される円形の貫通孔を有する複数枚(例えば、3枚)のアイアニング・ダイ(しごきダイ)と、アイアニング・ダイと同軸とされ、上記それぞれのアイアニング・ダイの各貫通孔の内部に嵌合可能とされ、軸方向に移動自在とされる円筒状のパンチスリーブと、このパンチスリーブの外側に嵌合された円筒状のカップホルダースリーブとを備えている。   The DI processing apparatus used for the redrawing ironing process includes a single redrawing die having a circular through hole for redrawing processing, and a plurality of sheets having circular through holes arranged coaxially with the redrawing die ( For example, three ironing dies (ironing dies) are coaxial with the ironing die, and can be fitted into the through holes of the respective ironing dies, and are movable in the axial direction. A cylindrical punch sleeve and a cylindrical cup holder sleeve fitted to the outside of the punch sleeve are provided.

DI加工装置による再絞り加工は、カップW1をパンチスリーブと再絞りダイとの間に配置して、カップホルダースリーブ及びパンチスリーブを前進させてカップホルダースリーブが、再絞りダイの端面にカップW1の底面を押し付けてカップ押し付け動作を行ないながら、パンチスリーブがカップW1を再絞りダイの貫通孔内に押し込むことにより行われる。その結果、所定の内径を有する再絞り加工されたカップが成形される。引き続き、再絞り加工されたカップを複数のアイアニング・ダイを順次通過させて徐々にしごき加工をして、カップ状体の側壁をしごいて側壁を延伸させて側壁高さを高くするとともに壁厚を薄くして有底筒状体W2を形成する。   In the redrawing process by the DI processing apparatus, the cup W1 is disposed between the punch sleeve and the redrawing die, the cup holder sleeve and the punch sleeve are advanced, and the cup holder sleeve is moved to the end face of the redrawing die. The punch sleeve pushes the cup W1 into the through-hole of the redraw die while pressing the bottom surface to perform the cup pressing operation. As a result, a redrawn cup having a predetermined inner diameter is formed. Subsequently, the redrawn cup is passed through a plurality of ironing dies one after another and gradually ironed, and the side wall of the cup-shaped body is squeezed to extend the side wall to increase the side wall height and wall thickness. To form a bottomed cylindrical body W2.

しごき加工が終了した有底筒状体W2は、パンチスリーブがさらに前方に押し出して底部をボトム成形金型に押圧することにより、底部が、例えばドーム形状に形成される。
この有底筒状体W2は、側壁がしごかれることで冷間加工硬化されて強度が高くなる。
The bottomed cylindrical body W <b> 2 that has been subjected to the ironing process has its bottom formed, for example, in a dome shape by the punch sleeve further pushing forward and pressing the bottom against the bottom molding die.
The bottomed cylindrical body W2 is cold-worked and hardened by the side walls being squeezed to increase the strength.

次に、有底筒状体W2の開口端部W2aをトリミングする。
DI加工装置によって形成された有底筒状体W2の開口端部W2aは、その缶軸方向に波打つような凹凸形状とされ不均一であるため、有底筒状体W2の開口端部W2aを切断してトリミングすることにより缶軸方向における側壁の高さを全周に亙って均一にする。
このようにして、胴部11と底部12とを有する横断面円形のDI缶10を形成することができる。
Next, the open end W2a of the bottomed cylindrical body W2 is trimmed.
Since the opening end W2a of the bottomed cylindrical body W2 formed by the DI processing apparatus is uneven and has a concavo-convex shape that undulates in the can axis direction, the opening end W2a of the bottomed cylindrical body W2 is By cutting and trimming, the height of the side wall in the can axis direction is made uniform over the entire circumference.
In this way, the DI can 10 having a circular cross section having the body 11 and the bottom 12 can be formed.

前述の製造方法により得られたアルミニウム合金板であるならば、上述のDI缶の製造方法においてしごき加工を受けた場合であってもネック成形性に優れさせることができ、傷や成形不良などの問題を生じないアルミニウム缶を得ることができる。   If it is the aluminum alloy plate obtained by the above-mentioned manufacturing method, even when it is subjected to ironing in the above-mentioned DI can manufacturing method, it can be made excellent in neck formability, such as scratches and molding defects. An aluminum can that does not cause problems can be obtained.

以下、実施例を示して、本発明に係る缶ボディ用アルミニウム合金板の製造方法について更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。
表1、表2に示す組成のアルミニウム合金を溶解し、脱ガスおよび溶湯ろ過後、半連続鋳造により厚さ600mm、幅1100mm、長さ4.5mのスラブに鋳造した。なお本実施例各スラブにおけるCr、Zn、Tiの含有量はほぼ同等で、それぞれCr=0.02〜0.03%、Zn=0.15〜0.17%、Ti=0.02〜0.03%であった。
EXAMPLES Hereinafter, although an Example is shown and the manufacturing method of the aluminum alloy plate for can bodies which concerns on this invention is demonstrated in detail, this invention is not limited to a following example.
Aluminum alloys having the compositions shown in Tables 1 and 2 were melted, degassed and filtered with molten metal, and then cast into a slab having a thickness of 600 mm, a width of 1100 mm, and a length of 4.5 m by semi-continuous casting. In addition, the Cr, Zn, and Ti contents in each slab of this example are substantially the same, Cr = 0.02 to 0.03%, Zn = 0.15 to 0.17%, Ti = 0.02 to 0, respectively. 0.03%.

次に、前記スラブを面削後、均質化・均熱兼用炉を用いて、保持温度565℃かつ保持時間8時間の均質化処理を施した後、保持温度545℃まで炉中で冷却し、当該保持温度にて保持時間1時間以上の均熱処理を施した。
続いて、図1に示す構成の熱間粗圧延機20を使用して板厚20mmまで熱間粗圧延した後、図1に示すシングルミルのリバース式熱間仕上圧延機30を使用して、熱間仕上げ圧延により種々の仕上板厚の板材を得た。
熱間粗圧延の出側温度は、表1、表2に示すように430℃とした。
熱間仕上げ圧延の1パス目の出側温度は、表1、表2に示すように375〜385℃に調節し、2パス目の出側温度は、330〜345℃に調節し、3パス目の出側温度は、225〜315℃に調節した。
Next, after chamfering the slab, using a homogenization / soaking furnace, a homogenization treatment with a holding temperature of 565 ° C. and a holding time of 8 hours, and then cooled in the furnace to a holding temperature of 545 ° C., Soaking was performed at the holding temperature for a holding time of 1 hour or longer.
Subsequently, after hot rough rolling to a plate thickness of 20 mm using the hot rough rolling machine 20 having the configuration shown in FIG. 1, using a single-mill reverse hot finish rolling mill 30 shown in FIG. Plates with various finished plate thicknesses were obtained by hot finish rolling.
As shown in Tables 1 and 2, the outlet temperature of the hot rough rolling was set to 430 ° C.
As shown in Tables 1 and 2, the delivery temperature in the first pass of hot finish rolling is adjusted to 375 to 385 ° C., and the delivery temperature in the second pass is adjusted to 330 to 345 ° C. The outlet temperature of the eyes was adjusted to 225 to 315 ° C.

次に、熱間圧延後の板材に表3、表4に示す圧下率(第1冷延率)で第1冷間圧延を施した後、連続焼鈍装置を用いて表3、表4記載の保持温度で、常温から保持温度までの平均加熱速度25℃/秒、保持した時間5〜60秒、最高到達温度から70℃までの平均冷却速度50℃/秒の条件で第1中間焼鈍(CAL)を行った。
次いで、第1中間焼鈍後の板材に表3、表4に示す圧下率(第2冷延率)で第2冷間圧延を施し、表3、表4に示す板厚(mm)の缶ボディ用アルミニウム合金板を得た。
また、得られた缶ボディ用アルミニウム合金板の一部について、更に、バッチ式焼鈍炉を用いて、表3、表4記載の保持温度で保持した時間、3時間の条件で安定化焼鈍を行った。
Next, after the first cold rolling is performed on the plate material after the hot rolling at the rolling reduction (first cold rolling rate) shown in Tables 3 and 4, the results shown in Tables 3 and 4 are used using a continuous annealing apparatus. The first intermediate annealing (CAL) under the conditions of an average heating rate of 25 ° C./second from the normal temperature to the holding temperature, a holding time of 5 to 60 seconds, and an average cooling rate of 50 ° C./second from the highest temperature to 70 ° C. at the holding temperature. )
Next, the plate material after the first intermediate annealing is subjected to the second cold rolling at the rolling reduction (second cold rolling rate) shown in Tables 3 and 4, and the can body having the plate thickness (mm) shown in Tables 3 and 4 An aluminum alloy plate was obtained.
In addition, a part of the obtained aluminum alloy plate for can bodies was further subjected to stabilization annealing under the conditions of 3 hours for 3 hours held at the holding temperatures shown in Tables 3 and 4 using a batch annealing furnace. It was.

得られた缶ボディ用アルミニウム合金板の素材強度(ASTS)をJISZ2241に準拠した引張試験により求め、更に210℃×10分の条件で塗装焼き付け相当の熱処理を行い、ベーキング後の耐力(ABYS、0.2%耐力)を測定した。
なお、上記物性値(ASTS)は、コイルの幅方向及び長手方向各3点以上の位置から採取したサンプルについて計測し、ASTSばらつき(最大値‐最小値)については、8MPa未満を許容範囲とした。
得られた缶ボディ用アルミニウム合金板のブランク材については、容量350ccの飲料缶に加工した。
The material strength (ASTS) of the obtained aluminum alloy plate for can bodies was determined by a tensile test according to JISZ2241, and further subjected to heat treatment equivalent to paint baking under conditions of 210 ° C. × 10 minutes, and the yield strength after baking (ABYS, 0 .2% yield strength) was measured.
The physical property values (ASTS) were measured for samples taken from three or more positions in the width direction and longitudinal direction of the coil, and the ASTS variation (maximum value-minimum value) was within an allowable range of less than 8 MPa. .
About the obtained blank material of the aluminum alloy plate for can bodies, it processed into the drink can of capacity | capacitance 350cc.

「耳率」
得られた缶ボディ用アルミニウム合金板の異方性評価として、カップ成形における耳率を測定した。
耳率は、素材をエリクセン試験機で深絞り加工したカップの側壁高さから計算した。加工条件はポンチ径;33mm(平頭ポンチ)、絞り比;1.75、しわ押さえ力;3kNとした。このカップの側壁高さをデジタルマイクロメーターで測定し、次式により耳率を算出した。
(山平均高さ−谷平均高さ)÷谷平均高さ×100=耳率(%)
なお、0°および180°の山の平均高さと45°、135°、225°、315°の山の平均高さをそれぞれ求め、いずれか高い方の山を上式の山平均高さとした。また、90°および270°の谷平均高さを求め、上式の谷平均高さとした。
耳率による異方性の評価としてはn=3の平均値で、1.5%未満を「◎」、1.5%以上2.5%未満を「○」、2.5%以上3.5%未満を「△」、3.5%以上を「×」とした。「◎」および「○」を合格レベルと判断した。
`` Ear rate ''
As anisotropy evaluation of the obtained aluminum alloy plate for can bodies, the ear rate in cup molding was measured.
The ear rate was calculated from the height of the side wall of the cup that was deep-drawn from the Eriksen testing machine. The processing conditions were punch diameter: 33 mm (flat head punch), drawing ratio: 1.75, wrinkle holding force: 3 kN. The side wall height of this cup was measured with a digital micrometer, and the ear rate was calculated by the following formula.
(Mountain average height-average valley height) ÷ average valley height x 100 = ear rate (%)
The average height of the 0 ° and 180 ° peaks and the average height of the 45 °, 135 °, 225 °, and 315 ° peaks were determined, and the higher one was defined as the average height of the above equation. In addition, the average valley heights of 90 ° and 270 ° were obtained and used as the average valley height of the above formula.
As an evaluation of anisotropy by the ear ratio, the average value of n = 3 is less than 1.5% “「 ”, 1.5% or more and less than 2.5%“ ◯ ”, 2.5% or more. Less than 5% was designated as “Δ”, and 3.5% or more was designated as “x”. “◎” and “○” were judged to be acceptable levels.

ネック成形性の評価は、すべての試料について350cc飲料缶に成形して実施した。DI成形後の缶の口端部をトリムにより除去し、洗浄乾燥後、缶内外面に塗装印刷を施し、ダイネック成形およびスピンフロー成形を行い、内径およそ55mmの350cc飲料缶のネック形状とした。なお、DI成形の際に、ネック成形加工を受ける部位の肉厚を薄くすることにより、ネック成形加工におけるカール部からネジ部にかけて生じる割れを促進評価した。各試料24缶の製缶を行い、カール部からネジ部にかけて割れが発生した缶数を目視にて計数し、ネック成形不良率を求めた。ネック成形不良が認められない場合を◎、ネック成形不良率が5%以下の場合を○、ネック成形不良率が5%〜10%を△、10%を超える場合を×とした。◎または○の場合を合格とし、△または×を不合格と判定した。
以上の結果を以下の表1〜表4に記載した。
The neck formability was evaluated by molding all samples into 350 cc beverage cans. After the DI molding, the mouth end of the can was removed by trim, washed and dried, and coated and printed on the inner and outer surfaces of the can, followed by die neck molding and spin flow molding to form a neck shape of a 350 cc beverage can having an inner diameter of approximately 55 mm. In addition, the crack produced from the curl part in a neck shaping | molding process to a screw part was accelerated and evaluated by making thin the thickness of the site | part which receives neck shaping | molding process in DI shaping | molding. 24 cans of each sample were manufactured, and the number of cans in which cracks occurred from the curled portion to the screw portion was visually counted to obtain a neck forming defect rate. A case where no neck molding failure was observed was marked as ◎, a case where the neck molding failure rate was 5% or less was marked as ◯, a case where the neck molding failure rate was 5% to 10%, and a value exceeding 10%. The case of ◎ or ○ was determined to be acceptable, and Δ or × was determined to be unacceptable.
The above results are shown in Tables 1 to 4 below.

Figure 2017160521
Figure 2017160521

Figure 2017160521
Figure 2017160521

Figure 2017160521
Figure 2017160521

Figure 2017160521
Figure 2017160521

表1、表3に示すようにNo.1〜16の実施例試料は、それぞれ望ましい合金成分、第1パス〜第3パスの出側温度、第1冷間圧延圧下率、第1中間焼鈍条件、第2冷間圧延圧下率を満たしているので、BS耐力に優れ、異方性がなく、ネック成形性にも優れたアルミニウム合金板であった。
これらの実施例試料に対し、No.17の比較例試料は熱間仕上圧延第1パスの出側温度を望ましい範囲の380℃以下より高い385℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.18の比較例試料は熱間仕上圧延第2パスの出側温度を望ましい範囲の340℃以下より高い345℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.19の比較例試料は熱間仕上圧延第3パスの出側温度を望ましい範囲の310℃以下より高い315℃に設定した試料であるが、異方性、ネック成形性共に悪化した。
As shown in Tables 1 and 3, the sample samples of Nos. 1 to 16 are respectively desirable alloy components, first pass to third pass exit temperatures, first cold rolling reduction, and first intermediate annealing conditions. Since the second cold rolling reduction ratio was satisfied, the aluminum alloy plate was excellent in BS yield strength, free of anisotropy, and excellent in neck formability.
In contrast to these example samples, the comparative example sample of No. 17 is a sample in which the exit side temperature of the hot finish rolling first pass is set to 385 ° C. higher than the desired range of 380 ° C. or lower. It deteriorated and caused problems in neck formability.
The comparative sample of No. 18 is a sample in which the exit temperature of the second hot finish rolling pass is set to 345 ° C. higher than the desired range of 340 ° C. or lower, but the anisotropy deteriorates and the neck formability is also reduced. Caused a problem.
The comparative sample of No. 19 was a sample in which the outlet temperature of the third hot finish rolling pass was set to 315 ° C. higher than the desired range of 310 ° C. or less, but both anisotropy and neck formability deteriorated.

No.20の比較例試料は熱間仕上圧延第3パスの出側温度を望ましい範囲の250℃以上より低い225℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.21の比較例試料は第1冷間圧延の圧下率を望ましい範囲の10%以上より低い8%に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.22の比較例試料は第1冷間圧延の圧下率を望ましい範囲の20%以下より高い22%に設定した試料であるが、異方性、ネック成形性共に悪化した。
No.23の比較例試料は第1中間焼鈍処理を行わない試料であるが、異方性、ネック成形性共に悪化した。
No.24の比較例試料は第1中間焼鈍処理の温度を低くし過ぎた試料であるが、異方性、ネック成形性共に悪化した。
No.25の比較例試料は第1中間焼鈍処理の温度を高くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化した。
The comparative sample of No. 20 is a sample in which the exit temperature of the third hot finish rolling pass is set to 225 ° C. which is lower than the desired range of 250 ° C. or more, but the anisotropy deteriorates and the neck formability is also reduced. Caused a problem.
The comparative sample of No. 21 is a sample in which the reduction ratio of the first cold rolling is set to 8%, which is lower than 10% or more of the desired range, but the anisotropy is deteriorated and the neck formability is also problematic. It was.
The comparative sample of No. 22 was a sample in which the reduction ratio of the first cold rolling was set to 22% higher than 20% or less of the desired range, but both the anisotropy and neck formability deteriorated.
The comparative sample of No. 23 was a sample that was not subjected to the first intermediate annealing treatment, but both anisotropy and neck formability deteriorated.
The comparative sample of No. 24 was a sample in which the temperature of the first intermediate annealing process was made too low, but both the anisotropy and neck formability deteriorated.
The comparative sample of No. 25 was a sample in which the temperature of the first intermediate annealing treatment was increased too much, but the neck formability deteriorated although the anisotropy was good.

No.26の比較例試料はアルミニウム合金の成分においてSi含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化した。
No.27の比較例試料はアルミニウム合金の成分においてFe含有量を少なくし過ぎた試料、No.28の比較例試料はFe含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化し、Feが少ない場合はダイスに焼き付きを生じた。
No.29の比較例試料はアルミニウム合金の成分においてCu含有量を少なくし過ぎた試料、No.30の比較例試料はCu含有量を多くし過ぎた試料であるが、Cu過少の場合にBS耐力が低下し、異方性が悪化し、Cu過剰の場合にネック成形性が悪化した。
No.31の比較例試料はアルミニウム合金の成分においてMn含有量を少なくし過ぎた試料、No.32の比較例試料はMn含有量を多くし過ぎた試料であるが、Mn過少の場合に異方性、ネック成形性ともに悪化し、焼き付きが生じるとともに、Mn過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.33の比較例試料はアルミニウム合金の成分においてMg含有量を少なくし過ぎた試料、No.34の比較例試料はMg含有量を多くし過ぎた試料であるが、Mg過少の場合に異方性、ネック成形性ともに悪化し、Mg過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.35の比較例試料は安定化焼鈍の温度を高くし過ぎた試料であるが、異方性、ネック成形性は良好であるがBS耐力が低下した。
The comparative sample of No. 26 was a sample in which the Si content was excessive in the aluminum alloy components, but the anisotropy was good, but the neck formability deteriorated.
The comparative sample of No. 27 is a sample in which the Fe content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 28 is a sample in which the Fe content is excessively increased, but the anisotropy is good. However, the neck formability deteriorated, and when the Fe content was small, the die was seized.
The comparative sample of No. 29 is a sample in which the Cu content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 30 is a sample in which the Cu content is excessively increased. Yield strength decreased, anisotropy deteriorated, and neck formability deteriorated when Cu was excessive.
The comparative sample of No. 31 is a sample in which the Mn content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 32 is a sample in which the Mn content is excessively increased. Both the directivity and neck formability deteriorated, and seizure occurred, and when Mn was excessive, anisotropy deteriorated and neck formability deteriorated.
The comparative sample of No. 33 is a sample in which the Mg content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 34 is a sample in which the Mg content is excessively increased. Both anisotropy and neck formability deteriorated. When Mg was excessive, anisotropy deteriorated and neck formability deteriorated.
The comparative sample of No. 35 was a sample in which the stabilization annealing temperature was excessively high, but the anisotropy and neck formability were good, but the BS proof stress was lowered.

1…ブランク材、2…カップ、3…缶体、3A…耳、4、6…搬送路、5、7…板材、10…ボトル型飲料缶、11…胴部、12…肩部、13…頸部、14…ネジ部、15…カール部、16…底部、20…熱間粗圧延機、21、22…ワークロール、23、24…バックアップロール、30…熱間仕上圧延機、31、32…ワークロール、33、34…バックアップロール、35、36…送出巻取装置、40…連続焼鈍装置、41…供給ロール、42…アルミニウム合金板材、43、46…緩衝装置、44…炉体、47…巻取ロール。   DESCRIPTION OF SYMBOLS 1 ... Blank material, 2 ... Cup, 3 ... Can body, 3A ... Ear | edge, 4, 6 ... Conveyance path 5, 7 ... Plate material, 10 ... Bottle-type drink can, 11 ... Body part, 12 ... Shoulder part, 13 ... Neck, 14 ... Screw, 15 ... Curl, 16 ... Bottom, 20 ... Hot roughing mill, 21, 22 ... Work roll, 23, 24 ... Backup roll, 30 ... Hot finish rolling mill, 31, 32 ... Work rolls, 33, 34 ... Backup rolls, 35, 36 ... Sending and winding device, 40 ... Continuous annealing device, 41 ... Supply roll, 42 ... Aluminum alloy sheet, 43, 46 ... Shock absorber, 44 ... Furnace body, 47 ... take-up roll.

DI加工装置による再絞り加工は、カップ状体W1をパンチスリーブと再絞りダイとの間に配置して、カップホルダースリーブ及びパンチスリーブを前進させてカップホルダースリーブが、再絞りダイの端面にカップ状体W1の底面を押し付けてカップ押し付け動作を行ないながら、パンチスリーブがカップ状体W1を再絞りダイの貫通孔内に押し込むことにより行われる。その結果、所定の内径を有する再絞り加工されたカップが成形される。引き続き、再絞り加工されたカップを複数のアイアニング・ダイを順次通過させて徐々にしごき加工をして、カップ状体の側壁をしごいて側壁を延伸させて側壁高さを高くするとともに壁厚を薄くして有底筒状体W2を形成する。 In the redrawing process by the DI processing apparatus, the cup- shaped body W1 is disposed between the punch sleeve and the redrawing die, the cup holder sleeve and the punch sleeve are advanced, and the cup holder sleeve is cupped on the end face of the redrawing die. The punch sleeve presses the cup- shaped body W1 into the through-hole of the redraw die while pressing the bottom surface of the shaped body W1 to perform the cup pressing operation. As a result, a redrawn cup having a predetermined inner diameter is formed. Subsequently, the redrawn cup is passed through a plurality of ironing dies one after another and gradually ironed, and the side wall of the cup-shaped body is squeezed to extend the side wall to increase the side wall height and wall thickness. To form a bottomed cylindrical body W2.

ネック成形性の評価は、すべての試料について350cc飲料缶に成形して実施した。DI成形後の缶の口端部をトリムにより除去し、洗浄乾燥後、缶内外面に塗装印刷を施し、ダイネック成形およびスピンフロー成形を行い、内径およそ55mmの350cc飲料缶のネック形状とした。なお、DI成形の際に、ネック成形加工を受ける部位の肉厚を薄くすることにより、ネック成形加工においてカール部ネジ部を形成するべき部分に生じる割れを促進評価した。各試料24缶の製缶を行い、カール部及びネジ部形成相当部に割れが発生した缶数を目視にて計数し、ネック成形不良率を求めた。ネック成形不良が認められない場合を◎、ネック成形不良率が5%以下の場合を○、ネック成形不良率が5%〜10%を△、10%を超える場合を×とした。◎または○の場合を合格とし、△または×を不合格と判定した。
以上の結果を以下の表1〜表4に記載した。
The neck formability was evaluated by molding all samples into 350 cc beverage cans. After the DI molding, the mouth end of the can was removed by trim, washed and dried, and coated and printed on the inner and outer surfaces of the can, followed by die neck molding and spin flow molding to form a neck shape of a 350 cc beverage can having an inner diameter of approximately 55 mm. Note that when the DI forming, by reducing the thickness of the portion receiving the neck molding promoted evaluated cracks occurring in portions to form a curled portion and a threaded portion have your neck molding. 24 cans of each sample were manufactured, and the number of cans in which a crack occurred in the curled portion and the portion corresponding to the formation of the screw portion was visually counted to obtain a neck forming defect rate. A case where no neck molding failure was observed was marked as ◎, a case where the neck molding failure rate was 5% or less was marked as ◯, a case where the neck molding failure rate was 5% to 10%, and a value exceeding 10%. The case of ◎ or ○ was determined to be acceptable, and Δ or × was determined to be unacceptable.
The above results are shown in Tables 1 to 4 below.

Figure 2017160521
Figure 2017160521

Figure 2017160521
Figure 2017160521

表1、表3に示すようにNo.1〜16の実施例試料は、それぞれ望ましい合金成分、第1パス〜第3パスの出側温度、第1冷間圧延圧下率、第1中間焼鈍条件、第2冷間圧延圧下率を満たしているので、AB耐力に優れ、異方性がなく、ネック成形性にも優れたアルミニウム合金板であった。
これらの実施例試料に対し、No.17の比較例試料は熱間仕上圧延第1パスの出側温度を望ましい範囲の380℃以下より高い385℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.18の比較例試料は熱間仕上圧延第2パスの出側温度を望ましい範囲の340℃以下より高い345℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.19の比較例試料は熱間仕上圧延第3パスの出側温度を望ましい範囲の310℃以下より高い315℃に設定した試料であるが、異方性、ネック成形性共に悪化した。
As shown in Tables 1 and 3, the sample samples of Nos. 1 to 16 are respectively desirable alloy components, first pass to third pass exit temperatures, first cold rolling reduction, and first intermediate annealing conditions. Since the second cold rolling reduction ratio is satisfied, the aluminum alloy sheet has excellent AB yield strength, no anisotropy, and excellent neck formability.
In contrast to these example samples, the comparative example sample of No. 17 is a sample in which the exit side temperature of the hot finish rolling first pass is set to 385 ° C. higher than the desired range of 380 ° C. or lower. It deteriorated and caused problems in neck formability.
The comparative sample of No. 18 is a sample in which the exit temperature of the second hot finish rolling pass is set to 345 ° C. higher than the desired range of 340 ° C. or lower, but the anisotropy deteriorates and the neck formability is also reduced. Caused a problem.
The comparative sample of No. 19 was a sample in which the outlet temperature of the third hot finish rolling pass was set to 315 ° C. higher than the desired range of 310 ° C. or less, but both anisotropy and neck formability deteriorated.

No.26の比較例試料はアルミニウム合金の成分においてSi含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化した。
No.27の比較例試料はアルミニウム合金の成分においてFe含有量を少なくし過ぎた試料、No.28の比較例試料はFe含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化し、Feが少ない場合はダイスに焼き付きを生じた。
No.29の比較例試料はアルミニウム合金の成分においてCu含有量を少なくし過ぎた試料、No.30の比較例試料はCu含有量を多くし過ぎた試料であるが、Cu過少の場合にAB耐力が低下し、異方性が悪化し、Cu過剰の場合にネック成形性が悪化した。
No.31の比較例試料はアルミニウム合金の成分においてMn含有量を少なくし過ぎた試料、No.32の比較例試料はMn含有量を多くし過ぎた試料であるが、Mn過少の場合に異方性、ネック成形性ともに悪化し、焼き付きが生じるとともに、Mn過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.33の比較例試料はアルミニウム合金の成分においてMg含有量を少なくし過ぎた試料、No.34の比較例試料はMg含有量を多くし過ぎた試料であるが、Mg過少の場合に異方性、ネック成形性ともに悪化し、Mg過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.35の比較例試料は安定化焼鈍の温度を高くし過ぎた試料であるが、異方性、ネック成形性は良好であるがAB耐力が低下した。
The comparative sample of No. 26 was a sample in which the Si content was excessive in the aluminum alloy components, but the anisotropy was good, but the neck formability deteriorated.
The comparative sample of No. 27 is a sample in which the Fe content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 28 is a sample in which the Fe content is excessively increased, but the anisotropy is good. However, the neck formability deteriorated, and when the Fe content was small, the die was seized.
Sample Comparative Sample of No.29 is that too small a Cu content in the components of the aluminum alloy, although Comparative Sample of No.30 is a sample too much Cu content, AB in the case of Cu under- Yield strength decreased, anisotropy deteriorated, and neck formability deteriorated when Cu was excessive.
The comparative sample of No. 31 is a sample in which the Mn content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 32 is a sample in which the Mn content is excessively increased. Both the directivity and neck formability deteriorated, and seizure occurred, and when Mn was excessive, anisotropy deteriorated and neck formability deteriorated.
The comparative sample of No. 33 is a sample in which the Mg content is excessively reduced in the components of the aluminum alloy, and the comparative sample of No. 34 is a sample in which the Mg content is excessively increased. Both anisotropy and neck formability deteriorated. When Mg was excessive, anisotropy deteriorated and neck formability deteriorated.
The comparative sample of No. 35 was a sample in which the temperature of the stabilization annealing was increased too much, but the anisotropy and neck formability were good, but the AB yield strength decreased.

4、6…搬送路、5、7…板材、10…DI缶、11…胴部、12…底部12a…ドーム部、12b…接地部、12c…環状凸部、13…頸部、14…フランジ部(カール部及びネジ部形成相当部)、20…熱間粗圧延機、21、22…ワークロール、23、24…バックアップロール、30…熱間仕上圧延機、31、32…ワークロール、33、34…バックアップロール、35、36…送出巻取装置、40…連続焼鈍装置、41…供給ロール、42…アルミニウム合金板材、43、46…緩衝装置、44…炉体、47…巻取ロール、W…板材、W1…カップ状体、W2…有底筒状体、W2a…開口端部
4, 6 ... conveying path, 5, 7 ... plate material, 10 ... DI can, 11 ... trunk, 12 ... bottom part , 12a ... dome part, 12b ... grounding part, 12c ... annular convex part, 13 ... neck part, 14 ... Flange part (curl part and screw part forming equivalent part), 20 ... hot rough rolling mill, 21, 22 ... work roll, 23, 24 ... backup roll, 30 ... hot finish rolling mill, 31, 32 ... work roll , 33, 34 ... backup roll, 35, 36 ... delivery winding device, 40 ... continuous annealing device, 41 ... supply roll, 42 ... aluminum alloy sheet, 43, 46 ... shock absorber, 44 ... furnace body, 47 ... winding Roll , W ... plate material, W1 ... cup-shaped body, W2 ... bottomed cylindrical body, W2a ... open end .

Claims (5)

質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て熱間粗圧延を行って25〜16mmの熱間粗圧延板とした後、続いて1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を250〜310℃とする、熱間仕上げ圧延を行った後、圧下率を10〜20%とする第1冷間圧延を行い、その後、連続焼鈍装置を用いて保持温度460〜540℃、保持時間5〜60秒の条件で第1中間焼鈍を行い、続いて圧下率80〜95%で第2冷間圧延を行って、板厚0.210〜0.47mm、焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とする異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 In mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: 0.8-1.15%, Mg: 0.60 An ingot obtained by melting an aluminum alloy containing ˜1.60% and the balance consisting of Al and inevitable impurities and semi-continuously casting is subjected to hot rough rolling through homogenization treatment and soaking treatment Then, the first pass first-side temperature is 380 ° C. or lower, the second pass first-side temperature is 340 ° C. or lower, and the third pass third-side finish temperature is 250 to 310 ° C. After the hot finish rolling, the first cold rolling with a reduction rate of 10 to 20% is performed, and then the holding temperature is 460 to 540 ° C. and the holding time is 5 to 60 seconds using a continuous annealing apparatus. The first intermediate annealing is performed under the following conditions, followed by the second cold rolling at a rolling reduction of 80 to 95%, 0.210~0.47Mm, anisotropic and neck molding excellent in beverage can bodies for aluminum alloy sheet, characterized in that to obtain an aluminum alloy plate strength 230~320N / mm 2 after baking, and anisotropically For producing aluminum alloy sheet for bottle can body with excellent moldability and bottleneck formability. 前記鋳塊に対して行なう均質化処理は、555〜605℃で4〜10時間の条件で行ない、続いて行なう均熱処理は500〜555℃で1時間以上加熱する条件で行うことを特徴とする請求項1に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。   The homogenization treatment performed on the ingot is performed at 555 to 605 ° C. for 4 to 10 hours, and the subsequent soaking is performed at 500 to 555 ° C. for 1 hour or more. The manufacturing method of the aluminum alloy plate for drink can bodies excellent in anisotropy and neck moldability of Claim 1, and the aluminum alloy plate for bottle can bodies excellent in anisotropy and bottle neck moldability. 前記熱間粗圧延の最終パス出側材料温度は400〜460℃であることを特徴とする請求項1または請求項2に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。   3. The aluminum alloy for beverage can bodies having excellent anisotropy and neck formability according to claim 1, wherein the material temperature on the final pass outlet side of the hot rough rolling is 400 to 460 ° C. 3. A method for producing an aluminum alloy plate for a bottle can body having excellent anisotropy and bottleneck formability. 前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることを特徴とする請求項1〜請求項3のいずれか一項に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。   In addition to the above composition, an aluminum alloy containing at least one or more of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less is used. The aluminum alloy plate for beverage can bodies excellent in anisotropy and neck formability according to any one of claims 1 to 3, and a bottle excellent in anisotropy and bottleneck formability Manufacturing method of aluminum alloy plate for can body. 第2冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で最終安定化焼鈍を行うことを特徴とする請求項1〜請求項4のいずれか一項に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。   After the second cold rolling, the final stabilization annealing is performed under the conditions of a holding temperature of 120 to 140 ° C and a holding time of 2 to 4 hours. 5. The difference according to any one of claims 1 to 4, An aluminum alloy plate for beverage can bodies excellent in isotropic and neck formability, and a method for producing an aluminum alloy plate for bottle can bodies excellent in anisotropy and bottleneck formability.
JP2016048850A 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability Active JP6718701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048850A JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048850A JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Publications (2)

Publication Number Publication Date
JP2017160521A true JP2017160521A (en) 2017-09-14
JP6718701B2 JP6718701B2 (en) 2020-07-08

Family

ID=59856659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048850A Active JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Country Status (1)

Country Link
JP (1) JP6718701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913964A (en) * 2018-07-13 2018-11-30 东北轻合金有限责任公司 A kind of superhard hollow billet of large-size high-tensile and its manufacturing method
CN109338131A (en) * 2018-12-11 2019-02-15 江苏鼎胜新能源材料股份有限公司 A kind of preparation method of new energy resource power battery tab aluminium strip material
CN109930038A (en) * 2019-03-29 2019-06-25 北京科技大学 A kind of deformation heat treatment method of Al-Mg-Zn sheet alloy
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256291A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2000234158A (en) * 1999-02-09 2000-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet for can barrel
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256291A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2000234158A (en) * 1999-02-09 2000-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet for can barrel
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913964A (en) * 2018-07-13 2018-11-30 东北轻合金有限责任公司 A kind of superhard hollow billet of large-size high-tensile and its manufacturing method
CN108913964B (en) * 2018-07-13 2020-04-24 东北轻合金有限责任公司 Method for manufacturing large-size high-strength superhard hollow round ingot
CN109338131A (en) * 2018-12-11 2019-02-15 江苏鼎胜新能源材料股份有限公司 A kind of preparation method of new energy resource power battery tab aluminium strip material
CN109930038A (en) * 2019-03-29 2019-06-25 北京科技大学 A kind of deformation heat treatment method of Al-Mg-Zn sheet alloy
CN109930038B (en) * 2019-03-29 2020-12-29 北京科技大学 Thermomechanical treatment method for Al-Mg-Zn alloy plate
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof

Also Published As

Publication number Publication date
JP6718701B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP5818457B2 (en) Method for producing aluminum alloy plate for can body with low ear rate and method for producing aluminum alloy plate for bottle-type beverage can with low ear rate
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP6850635B2 (en) A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6611338B2 (en) Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP2016020531A (en) Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP4011293B2 (en) Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP3868839B2 (en) Method for producing aluminum alloy plate for bottle-type beverage can
WO2016002226A1 (en) Aluminum alloy plate for beverage can body and method for manufacturing same
JP2009242830A (en) Aluminum alloy sheet for bottle can and method for producing the same
EP3875629A1 (en) Method and installation for producing aluminum can sheet
JP2009235475A (en) Aluminum alloy sheet for can body excellent in circularity of drawn cup, and method for producing the same
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP6678431B2 (en) Aluminum alloy plate for cap and its manufacturing method
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP5882034B2 (en) Aluminum alloy plate for cap and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6718701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250