JP2017160103A - Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME - Google Patents

Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2017160103A
JP2017160103A JP2016048907A JP2016048907A JP2017160103A JP 2017160103 A JP2017160103 A JP 2017160103A JP 2016048907 A JP2016048907 A JP 2016048907A JP 2016048907 A JP2016048907 A JP 2016048907A JP 2017160103 A JP2017160103 A JP 2017160103A
Authority
JP
Japan
Prior art keywords
sintered body
oxide sintered
additive element
powder
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048907A
Other languages
Japanese (ja)
Other versions
JP6551683B2 (en
Inventor
勲雄 安東
Isao Ando
勲雄 安東
誠 小沢
Makoto Ozawa
誠 小沢
茂 五十嵐
Shigeru Igarashi
茂 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016048907A priority Critical patent/JP6551683B2/en
Publication of JP2017160103A publication Critical patent/JP2017160103A/en
Application granted granted Critical
Publication of JP6551683B2 publication Critical patent/JP6551683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Sn-Zn-O-based oxide sintered body which has excellent mechanical strength, machining performance, a high density, and a low resistance; and to provide a method for producing such a Sn-Zn-O-based oxide sintered body.SOLUTION: The Sn-Zn-O-based oxide sintered body including a ZnO phase or a SnOphase as well as a ZnSnOphase includes Sn at an atomic number ratio Sn/(Sn+Zn) of 0.1 or more and 0.9 or less, includes a first addition element M selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga at an atomic number ratio M/(Sn+Zn+M+X) of 0.001 or more and 0.04 or less with respect to the total amount of all metal elements, includes a second addition element X selected from Nb, Ta, W, and Mo at an atomic number ratio X/(Sn+Zn+M+X) of 0.0001 or more and 0.1 or less with respect to the total amount of all the metal elements, includes an M-containing compound that contains the first addition element M and is different from the ZnO phase, the SnOphase, and the ZnSnOphase, has a relative density of 90% or more, and has a specific resistance of 1 Ω cm or less.SELECTED DRAWING: None

Description

本発明は、太陽電池、液晶表面素子、タッチパネル等に適用される透明導電膜を直流スパッタリング、高周波スパッタリングといったスパッタリング法で製造する際にスパッタリングターゲットとして使用されるSn−Zn−O系酸化物焼結体に係り、特に、焼結体を研削加工する際の砥石の目詰まりを抑制して加工中における焼結体の破損を防止でき、かつ、スパッタリング成膜中におけるスパッタリングターゲットの破損やクラックの発生等も防止できる高密度で低抵抗のSn−Zn−O系酸化物焼結体とその製造方法に関するものである。   The present invention is a Sn—Zn—O-based oxide sintered material used as a sputtering target when a transparent conductive film applied to a solar cell, a liquid crystal surface element, a touch panel or the like is manufactured by a sputtering method such as direct current sputtering or high frequency sputtering. In particular, it prevents clogging of the grindstone when grinding a sintered body to prevent damage to the sintered body during processing, and also causes damage to the sputtering target and generation of cracks during sputtering film formation. The present invention relates to a high-density, low-resistance Sn—Zn—O-based oxide sintered body and a method for producing the same.

高い導電性と可視光領域での高い透過率とを有する透明導電膜は、太陽電池、液晶表示素子、有機エレクトロルミネッセンスおよび無機エレクトロルミネッセンス等の表面素子や、タッチパネル用電極等に利用される他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等の各種の防曇用透明発熱体としても利用されている。   A transparent conductive film having high conductivity and high transmittance in the visible light region is used for surface elements such as solar cells, liquid crystal display elements, organic electroluminescence and inorganic electroluminescence, electrodes for touch panels, etc. It is also used as various antifogging transparent heating elements such as automobile windows, heat ray reflective films for buildings, antistatic films, and refrigerated showcases.

透明導電膜としては、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)、および、錫をドーパントとして含む酸化インジウム(In23)等が知られている。特に、錫をドーパントとして含む酸化インジウム(In23)膜、すなわち、In−Sn−O系の膜はITO(Indium tin oxide)膜と称され、低抵抗の膜が容易に得られることから広く用いられている。 Examples of the transparent conductive film include tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, zinc oxide (ZnO) containing aluminum or gallium as a dopant, and indium oxide (In 2 O 3 ) containing tin as a dopant. Are known. In particular, an indium oxide (In 2 O 3 ) film containing tin as a dopant, that is, an In—Sn—O-based film is called an ITO (Indium tin oxide) film, and a low resistance film can be easily obtained. Widely used.

上記透明導電膜の製造方法としては、直流スパッタリング、高周波スパッタリングといったスパッタリング法が良く用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。   As a method for producing the transparent conductive film, sputtering methods such as direct current sputtering and high frequency sputtering are often used. The sputtering method is an effective method when film formation of a material having a low vapor pressure or precise film thickness control is required, and since the operation is very simple, it is widely used industrially.

このスパッタリング法は、薄膜の原料としてスパッタリングターゲットを用いる。スパッタリングターゲットは、成膜したい薄膜を構成している金属元素を含む個体であり、金属、金属酸化物、金属窒化物、金属炭化物等の焼結体や、場合によっては単結晶が使用される。スパッタリング法では、一般にその内部に基板とスパッタリングターゲットを配置できるようになった真空チャンバーを有する装置を用い、基板とスパッタリングターゲットを配置した後、真空チャンバーを高真空にし、その後アルゴン等の希ガスを導入し、真空チャンバー内を約10Pa以下のガス圧とする。そして、基板を陽極とし、スパッタリングターゲットを陰極とし、両者の間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによってはじきとばされるターゲットの成分粒子を基板上に堆積させて膜を形成するものである。   This sputtering method uses a sputtering target as a thin film material. The sputtering target is an individual containing a metal element constituting a thin film to be formed, and a sintered body such as a metal, a metal oxide, a metal nitride, and a metal carbide, or a single crystal depending on the case is used. In the sputtering method, generally, an apparatus having a vacuum chamber in which a substrate and a sputtering target can be arranged is used. After the substrate and the sputtering target are arranged, the vacuum chamber is set to a high vacuum, and then a rare gas such as argon is introduced. Then, the inside of the vacuum chamber is brought to a gas pressure of about 10 Pa or less. Then, the substrate is an anode, the sputtering target is a cathode, a glow discharge is generated between the two to generate argon plasma, and the argon cation in the plasma collides with the cathode sputtering target, thereby repelling the target. The component particles are deposited on the substrate to form a film.

そして、上記透明導電膜を製造するため、従来、ITO等の酸化インジウム系の材料が広範囲に用いられている。しかし、インジウム金属は、地球上で希少金属であることと毒性を有しているため環境や人体に対し悪影響が懸念されており、非インジウム系の材料が求められている。   And in order to manufacture the said transparent conductive film, conventionally, indium oxide type materials, such as ITO, are used extensively. However, since indium metal is a rare metal on the earth and has toxicity, there are concerns about adverse effects on the environment and the human body, and non-indium materials are required.

上記非インジウム系の材料としては、上述したようにアルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)系材料、および、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)系材料が知られている。そして、上記酸化亜鉛(ZnO)系材料の透明導電膜はスパッタリング法で工業的に製造されているが、耐薬品性(耐アルカリ性、耐酸性)に乏しい等の欠点を有する。他方、酸化錫(SnO2)系材料の透明導電膜は耐薬品性に優れているものの、高密度で耐久性があり加工効率に優れた酸化錫系焼結体ターゲットを製造し難いため、上記透明導電膜をスパッタリング法で製造することに困難が伴う欠点を有していた。 As the non-indium material, as described above, a zinc oxide (ZnO) material containing aluminum or gallium as a dopant and a tin oxide (SnO 2 ) material containing antimony or fluorine as a dopant are known. . And although the transparent conductive film of the said zinc oxide (ZnO) type | system | group material is manufactured industrially by sputtering method, it has faults, such as being poor in chemical resistance (alkali resistance, acid resistance). On the other hand, although the transparent conductive film of tin oxide (SnO 2 ) -based material is excellent in chemical resistance, it is difficult to produce a tin oxide-based sintered target having high density, durability, and excellent processing efficiency. It has a drawback that it is difficult to produce a transparent conductive film by a sputtering method.

そこで、これ等の欠点を改善する材料として、酸化亜鉛と酸化錫を主成分とする焼結体が提案されている。例えば、特許文献1には、SnO2相とZn2SnO4相とからなり、当該Zn2SnO4相の平均結晶粒径が1〜10μmの範囲である焼結体が記載されている。 Therefore, as a material for improving these disadvantages, a sintered body mainly composed of zinc oxide and tin oxide has been proposed. For example, Patent Document 1 describes a sintered body composed of a SnO 2 phase and a Zn 2 SnO 4 phase, and the average crystal grain size of the Zn 2 SnO 4 phase is in the range of 1 to 10 μm.

また、特許文献2には、平均結晶粒径が4.5μm以下で、CuKα線を使用したX線回折によるZn2SnO4相における(222)面、(400)面の積分強度をI(222)、I(400)としたとき、I(222)/[I(222)+I(400)]で表される配向度が標準(0.44)よりも大きい0.52以上とした焼結体が記載されている。更に、特許文献2には、上記特性を備えた焼結体を製造する方法として、当該焼結体製造工程を、焼成炉内に酸素を含む雰囲気中において800℃〜1400℃の条件で成形体を焼成する工程と、最高焼成温度での保持が終了してから焼成炉内をArガス等の不活性雰囲気にして冷却する工程とで構成する方法も記載されている。 Patent Document 2 discloses that the integrated intensity of the (222) plane and the (400) plane in the Zn 2 SnO 4 phase by X-ray diffraction using CuKα rays with an average crystal grain size of 4.5 μm or less is I (222 ) And I (400) , the degree of orientation represented by I (222) / [I (222) + I (400) ] is set to 0.52 or more, which is larger than the standard (0.44). The body is listed. Furthermore, in Patent Document 2, as a method for producing a sintered body having the above characteristics, the sintered body production process is performed under the conditions of 800 ° C. to 1400 ° C. in an atmosphere containing oxygen in a firing furnace. And a method of cooling the inside of the firing furnace to an inert atmosphere such as Ar gas after holding at the maximum firing temperature is also described.

しかし、これ等の方法では、ZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体において、機械的強度に耐える焼結体強度は得られるものの、得られた焼結体を研削加工する際に砥石が目詰まりして加工効率が低下してしまう課題が存在した。更に、十分な密度や導電性を得ることも難しく、量産現場でのスパッタリング成膜に必要とされる特性としては満足いくものではなかった。すなわち、常圧焼結法において、焼結体の高密度化や導電性および加工性能という点に至っては課題が残っている。   However, in these methods, although the Sn—Zn—O-based oxide sintered body containing Zn and Sn as main components can obtain a sintered body strength that can withstand the mechanical strength, There has been a problem that the grinding stone is clogged during grinding and the processing efficiency is lowered. Furthermore, it is difficult to obtain a sufficient density and conductivity, and the characteristics required for sputtering film formation at the mass production site are not satisfactory. That is, in the normal pressure sintering method, problems remain in terms of increasing the density of the sintered body, conductivity, and processing performance.

特開2010−037161号公報(請求項13、参照)JP 2010-037161 A (refer to claim 13) 特開2013−036073号公報(請求項1、3参照)JP 2013-036073 A (refer to claims 1 and 3)

本発明はこのような要請に着目してなされたもので、ZnおよびSnを主成分とし、機械的強度に加えて加工性能に優れ(すなわち、加工効率が高く)、高密度で低抵抗のSn−Zn−O系酸化物焼結体とその製造方法を提供することを課題とする。   The present invention has been made paying attention to such demands, and has Sn and Sn as main components, excellent mechanical performance in addition to mechanical strength (that is, high processing efficiency), high density and low resistance Sn. An object is to provide a —Zn—O-based oxide sintered body and a method for producing the same.

ZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体は、高密度かつ低抵抗といった両特性を備えることが困難な材料で、組成を変化させても高密度かつ導電性に優れた酸化物焼結体を作製することは困難である。焼結体密度において、配合比により多少の密度の上下はあるものの、導電性については、1×106Ω・cm以上と非常に高い比抵抗値を示し導電性に乏しい。 A Sn—Zn—O-based oxide sintered body mainly composed of Zn and Sn is a material that is difficult to have both high density and low resistance, and has high density and conductivity even when the composition is changed. It is difficult to produce an excellent oxide sintered body. In the sintered body density, although the density is somewhat higher and lower depending on the blending ratio, the conductivity is very high, such as 1 × 10 6 Ω · cm or more, and the conductivity is poor.

ZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体の作製においては、1100℃あたりからZn2SnO4という化合物が生成し始め、1450℃近辺からZnの揮発が著しくなる。Sn−Zn−O系酸化物焼結体の密度を上げるために高温で焼成するとZnの揮発が進むため、粒界拡散や粒同士の結合が弱まり、高密度の酸化物焼結体を得ることができない。 In the production of a Sn—Zn—O-based oxide sintered body containing Zn and Sn as main components, a compound called Zn 2 SnO 4 starts to be generated around 1100 ° C., and the volatilization of Zn becomes remarkable around 1450 ° C. When burning at a high temperature to increase the density of the Sn—Zn—O-based oxide sintered body, the volatilization of Zn proceeds, so that the grain boundary diffusion and the bonding between the grains are weakened to obtain a high-density oxide sintered body. I can't.

また、導電性については、Zn2SnO4、ZnO、SnO2が導電性に乏しい物質であることから、配合比を調整して化合物相やZnO、SnO2の量を調整したとしても、導電性を大幅に改善することはできない。その結果、ZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体は、量産現場でのスパッタリング成膜に必要とされる特性である焼結体の高密度および高導電性を得ることができない。 As for conductivity, Zn 2 SnO 4 , ZnO, and SnO 2 are substances having poor conductivity. Therefore, even if the compounding ratio is adjusted to adjust the amount of the compound phase and ZnO, SnO 2 Cannot be improved significantly. As a result, the Sn—Zn—O-based oxide sintered body mainly composed of Zn and Sn has the high density and high conductivity of the sintered body, which are characteristics required for sputtering film formation at the mass production site. Can't get.

一方、焼結体の加工効率(すなわち、加工性能)については、Sn−Zn−O系酸化物焼結体は靱性が高いため、研削加工の際に砥石が目詰まりを起こし易く、加工性能に劣る(加工効率が低い)という問題があった。   On the other hand, regarding the processing efficiency (that is, processing performance) of the sintered body, the Sn-Zn-O-based oxide sintered body has high toughness, so that the grindstone is easily clogged during the grinding process, and the processing performance is improved. There was a problem that it was inferior (processing efficiency was low).

すなわち、本発明の課題とするところは、Znの揮発を抑制しつつ粒界拡散を促進させ、粒同士の結合を強めた酸化物焼結体に、導電性を改善させる手段を施しかつ適切な化合物組織を形成することで、上述したように緻密で導電性に優れ、加工効率の高いZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体を提供することにある。   That is, the subject of the present invention is that an oxide sintered body that promotes grain boundary diffusion and strengthens bonding between grains while suppressing volatilization of Zn is provided with a means for improving conductivity and is appropriate. By forming a compound structure, it is to provide a Sn—Zn—O-based oxide sintered body containing Zn and Sn as main components, which are dense and excellent in electrical conductivity and have high processing efficiency as described above.

そこで、上記課題を解決するため、本発明者等は、焼結体の密度と導電性の両特性を両立する製造条件を探索すると共に、Zn2SnO4という化合物生成を開始する1100℃からZnの揮発が顕著になる1450℃の温度領域で、高密度および高導電性に優れたZnおよびSnを主成分とするSn−Zn−O系酸化物焼結体の製造方法について検討を行った。その結果、Snを原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有する条件の下、Si、Ti、Ge、In、Bi、Ce、Al、Gaから選ばれる少なくとも1種(すなわち第1添加元素M)をドーパントとして添加することで、相対密度が90%の酸化物焼結体を得ることができた。しかし、密度は向上したものの、導電性は改善されなかったため、導電性改善のため、更に、Nb、Ta、W、Moのいずれかの添加元素(すなわち第2添加元素X)を加えることで、高密度を維持したまま、導電性に優れた酸化物焼結体の製造が可能となった。尚、上記Sn−Zn−O系酸化物焼結体において、焼結体中のSnが低濃度の場合、ウルツ鉱型結晶構造のZnO相とスピネル型結晶構造のZn2SnO4相が主成分となり、Snが高濃度の場合、スピネル型結晶構造のZn2SnO4相とルチル型結晶構造のSnO2相が主成分となる。 Therefore, in order to solve the above-mentioned problems, the present inventors searched for manufacturing conditions that achieve both the density and conductivity characteristics of the sintered body, and started the formation of a compound called Zn 2 SnO 4 from 1100 ° C. In the temperature range of 1450 ° C. in which the volatilization of N is remarkable, a method for producing a Sn—Zn—O-based oxide sintered body mainly composed of Zn and Sn having high density and high conductivity was studied. As a result, at least selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga under the condition that Sn is contained at a ratio of 0.1 to 0.9 as the atomic ratio Sn / (Sn + Zn). An oxide sintered body having a relative density of 90% could be obtained by adding one type (that is, the first additive element M) as a dopant. However, although the density has been improved, the conductivity has not been improved. Therefore, in order to improve the conductivity, by further adding any one of Nb, Ta, W, and Mo (that is, the second additive element X), An oxide sintered body excellent in conductivity can be produced while maintaining a high density. In the Sn—Zn—O-based oxide sintered body, when the concentration of Sn in the sintered body is low, the main component is a ZnO phase having a wurtzite crystal structure and a Zn 2 SnO 4 phase having a spinel crystal structure. Thus, when Sn is high in concentration, the main component is a Zn 2 SnO 4 phase having a spinel crystal structure and a SnO 2 phase having a rutile crystal structure.

更に、加工効率に優れる酸化物焼結体の構造等について探求したところ、Sn−Zn−O系酸化物焼結体中に、Si、Ti、Ge、In、Bi、Ce、Al、Gaから選ばれる少なくとも1種の元素(すなわち第1添加元素M)を成分として含有し、上記ZnO相、SnO2相、Zn2SnO4相とは異なる化合物相を生成させた場合、焼結体の研削加工の際に砥石の目詰まりを起こし難くなることが発見され、これにより焼結体の加工効率が向上することを見出すに至った。本発明はこのような技術的発見により完成されたものである。 Furthermore, when the structure of the oxide sintered body excellent in processing efficiency was investigated, it was selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga in the Sn—Zn—O-based oxide sintered body. In the case where a compound phase different from the ZnO phase, SnO 2 phase and Zn 2 SnO 4 phase is generated, the sintered body is ground. In this case, it was found that clogging of the grindstone was difficult to occur, and this led to the finding that the processing efficiency of the sintered body was improved. The present invention has been completed by such technical discovery.

すなわち、本発明に係る第1の発明は、
ZnおよびSnを主成分とし、ZnO相およびSnO2相の少なくとも一方とZn2SnO4相を含有するSn−Zn−O系酸化物焼結体において、
Snを、原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有し、
Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種を第1添加元素Mとし、かつ、Nb、Ta、WおよびMoから選ばれた少なくとも1種を第2添加元素Xとした場合、
第1添加元素Mを、全金属元素の総量に対する原子数比M/(Sn+Zn+M+X)として0.001以上0.04以下の割合で含有し、
第2添加元素Xを、全金属元素の総量に対する原子数比X/(Sn+Zn+M+X)として0.0001以上0.1以下の割合で含有し、かつ、
上記ZnO相、SnO2相、Zn2SnO4相と異なる化合物相を更に含んでいると共に当該化合物相が上記第1添加元素Mを含有し、
相対密度が90%以上かつ比抵抗が1Ω・cm以下であることを特徴とする。
That is, the first invention according to the present invention is:
In a Sn—Zn—O-based oxide sintered body containing Zn and Sn as main components and containing at least one of a ZnO phase and a SnO 2 phase and a Zn 2 SnO 4 phase,
Sn is contained in an atomic ratio Sn / (Sn + Zn) at a ratio of 0.1 to 0.9.
At least one selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga is used as the first additive element M, and at least one selected from Nb, Ta, W, and Mo is added as the second additive In the case of element X,
The first additive element M is contained at a ratio of 0.001 or more and 0.04 or less as an atomic ratio M / (Sn + Zn + M + X) with respect to the total amount of all metal elements,
Containing the second additive element X in a ratio of 0.0001 to 0.1 as an atomic ratio X / (Sn + Zn + M + X) to the total amount of all metal elements, and
A compound phase different from the ZnO phase, SnO 2 phase, Zn 2 SnO 4 phase and the compound phase contains the first additive element M;
The relative density is 90% or more and the specific resistance is 1 Ω · cm or less.

また、本発明に係る第2の発明は、
第1の発明に記載のSn−Zn−O系酸化物焼結体の製造方法において、
ZnO粉末とSnO2粉末、Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種の第1添加元素Mを含有する酸化物粉末、Nb、Ta、WおよびMoから選ばれた少なくとも1種の第2添加元素Xを含有する酸化物粉末を、純水、有機バインダー、分散剤と混合して得られるスラリーを乾燥しかつ造粒して造粒粉末を製造する造粒粉末製造工程と、
上記造粒粉末を加圧成形して成形体を得る成形体製造工程と、
焼成炉内の酸素濃度が70体積%以上の雰囲気において、1200℃以上1450℃以下かつ10時間以上30時間以内の条件で上記成形体を焼成する焼結工程と、
引き続き得られた焼結体を800℃以上1100℃以下かつ1時間以上10時間以下の条件で保持する焼結後保持工程、
を具備することを特徴とするものである。
Further, the second invention according to the present invention is:
In the method for producing a Sn—Zn—O-based oxide sintered body according to the first invention,
ZnO powder and SnO 2 powder, oxide powder containing at least one first additive element M selected from Si, Ti, Ge, In, Bi, Ce, Al and Ga, from Nb, Ta, W and Mo A slurry obtained by mixing the selected oxide powder containing at least one second additive element X with pure water, an organic binder, and a dispersant is dried and granulated to produce a granulated powder. Granule powder manufacturing process,
A molded body manufacturing process for obtaining a molded body by pressure molding the granulated powder; and
A sintering step in which the molded body is fired under conditions of 1200 ° C. or higher and 1450 ° C. or lower and 10 hours or longer and 30 hours or shorter in an atmosphere having an oxygen concentration of 70% by volume or higher in the firing furnace
A post-sintering holding step of holding the obtained sintered body under the conditions of 800 ° C. or higher and 1100 ° C. or lower and 1 hour or longer and 10 hours or shorter;
It is characterized by comprising.

本発明によれば、Snを、原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有する条件、第1添加元素M(Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種)を、全金属元素の総量に対する原子数比M/(Sn+Zn+M+X)として0.001以上0.04以下の割合で含有する条件、第2添加元素X(Nb、Ta、WおよびMoから選ばれた少なくとも1種)を、全金属元素の総量に対する原子数比X/(Sn+Zn+M+X)として0.0001以上0.1以下の割合で含有する条件、および、ZnO相、SnO2相、Zn2SnO4相と異なる化合物相を更に含むと共に当該化合物相が上記第1添加元素Mを含有する条件、
を具備させることにより、SnとZnのどのような配合比においても常圧焼結法により量産性に優れた高密度かつ低抵抗でかつ加工効率に優れたSn−Zn−O系酸化物焼結体を得ることが可能となる。
According to the present invention, Sn is contained at a ratio of 0.1 to 0.9 as the atomic ratio Sn / (Sn + Zn), the first additive element M (Si, Ti, Ge, In, Bi, Ce , At least one selected from Al and Ga) at a ratio of 0.001 to 0.04 as the atomic ratio M / (Sn + Zn + M + X) to the total amount of all metal elements, the second additive element X ( A condition of containing at least one selected from Nb, Ta, W and Mo in an atomic ratio X / (Sn + Zn + M + X) of 0.0001 or more and 0.1 or less with respect to the total amount of all metal elements, and ZnO A phase that further includes a compound phase different from the phase, the SnO 2 phase, and the Zn 2 SnO 4 phase, and the compound phase contains the first additive element M;
Sn-Zn-O-based oxide sintering with high density, low resistance, and excellent processing efficiency, which is excellent in mass production by the atmospheric pressure sintering method at any mixing ratio of Sn and Zn The body can be obtained.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、Snを原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含み、Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種の第1添加元素Mを全金属元素の総量に対する原子数比M/(Sn+Zn+M+X)として0.001以上0.04以下の割合で含み、かつ、Nb、Ta、WおよびMoから選ばれた少なくとも1種の第2添加元素Xを全金属元素の総量に対する原子数比X/(Sn+Zn+M+X)として0.0001以上0.1以下の割合で含有する原料粉末を調製し、該原料粉末を造粒して得た造粒粉末を成形して成形体を製造すると共に、酸素濃度が70体積%以上の焼成炉内雰囲気において、1200℃以上1450℃以下かつ10時間以上30時間以内の条件で上記成形体を焼成し(焼結工程)、引き続き得られた焼結体を800℃以上1100℃以下かつ1時間以上10時間以下の条件で保持した(焼結後保持工程)後、冷却することで、加工性能に優れ、相対密度が90%以上かつ比抵抗が1Ω・cm以下である本発明に係るSn−Zn−O系酸化物焼結体を製造することが可能となる。   First, Sn is included at a ratio of 0.1 to 0.9 as the atomic ratio Sn / (Sn + Zn), and at least one first selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga. 1 addition element M is included in a ratio of 0.001 or more and 0.04 or less as atomic ratio M / (Sn + Zn + M + X) with respect to the total amount of all metal elements, and at least one selected from Nb, Ta, W and Mo A raw material powder containing the second additive element X in a ratio of 0.0001 or more and 0.1 or less as an atomic ratio X / (Sn + Zn + M + X) with respect to the total amount of all metal elements was prepared and obtained by granulating the raw material powder. The molded product is produced by molding the granulated powder, and in the atmosphere in the firing furnace having an oxygen concentration of 70% by volume or higher, and the temperature is 1200 ° C. or higher and 1450 ° C. or lower and 10 hours or longer and 30 hours or shorter. After firing (sintering step), the sintered body obtained is held under conditions of 800 ° C. or higher and 1100 ° C. or lower and 1 hour or longer and 10 hours or shorter (holding step after sintering), and then cooled, thereby processing performance It is possible to produce a Sn—Zn—O-based oxide sintered body according to the present invention which has an excellent relative density of 90% or more and a specific resistance of 1 Ω · cm or less.

以下、本発明に係るSn−Zn−O系酸化物焼結体の製造方法について説明する。   Hereinafter, the manufacturing method of the Sn—Zn—O-based oxide sintered body according to the present invention will be described.

[添加元素]
Snを原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有する条件の下、第1添加元素Mおよび第2添加元素Xを要件としているのは、第1添加元素Mだけの場合、密度は向上するものの低抵抗の特性を得られない。他方、第2添加元素Xだけの場合は、低抵抗になるものの高密度が得られない。
[Additive elements]
The first additive element M and the second additive element X are required under the condition that Sn is contained at a ratio of 0.1 to 0.9 as the atomic ratio Sn / (Sn + Zn). In the case of M alone, the density is improved, but the low resistance characteristic cannot be obtained. On the other hand, when only the second additive element X is used, the resistance becomes low, but a high density cannot be obtained.

すなわち、第1添加元素Mおよび第2添加元素Xを加えることで、高密度かつ低抵抗のSn−Zn−O系酸化物焼結体を得ることが可能となる。   That is, by adding the first additive element M and the second additive element X, it is possible to obtain a Sn—Zn—O-based oxide sintered body with high density and low resistance.

(第1添加元素M)
酸化物焼結体の緻密化には、Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種の第1添加元素Mを添加することで、高密度化の効果を得ることが可能となる。上記焼結工程において、第1添加元素Mが粒界拡散を促進し、粒同士のネック成長を手助けして粒同士の結合を強固とし、緻密化に寄与していると思われる。更に、上記焼結後保持工程で、第1添加元素Mを含有しかつ上述したZnO相、SnO2相、Zn2SnO4相と異なる化合物(以下、M含有化合物と略称する場合がある)相が生成されるため、当該化合物相により切削加工時における砥石の目詰まりが抑制されて加工性能の改善が図れる効果もある。
(First additive element M)
The densification of the oxide sintered body is achieved by adding at least one first additive element M selected from Si, Ti, Ge, In, Bi, Ce, Al and Ga, thereby increasing the density. Can be obtained. In the sintering step, it is considered that the first additive element M promotes grain boundary diffusion, helps neck growth between grains, strengthens the bond between grains, and contributes to densification. Further, in the post-sintering holding step, a phase containing the first additive element M and different from the above-described ZnO phase, SnO 2 phase, and Zn 2 SnO 4 phase (hereinafter sometimes abbreviated as M-containing compound) Therefore, the compound phase has the effect of suppressing clogging of the grindstone during cutting and improving the machining performance.

ここで、第1添加元素をMとし、第1添加元素Mの全金属元素の総量に対する原子数比M/(Sn+Zn+M+X)を0.001以上0.04以下とする。上記原子数比M/(Sn+Zn+M+X)が0.001未満の場合、上記焼結後保持工程を行っても、M含有化合物が生成されず、加工性能の改善効果が表れないからである(比較例9参照)。一方、上記原子数比M/(Sn+Zn+M+X)が0.04を超えた場合、後述する第2添加元素Xを添加しても酸化物焼結体の導電性は高まらない(比較例10参照)。   Here, the first additive element is M, and the atomic ratio M / (Sn + Zn + M + X) of the first additive element M to the total amount of all metal elements is 0.001 or more and 0.04 or less. This is because, when the atomic ratio M / (Sn + Zn + M + X) is less than 0.001, even if the post-sintering holding step is performed, an M-containing compound is not generated, and an improvement effect on processing performance does not appear (Comparative Example). 9). On the other hand, when the atomic ratio M / (Sn + Zn + M + X) exceeds 0.04, the conductivity of the oxide sintered body does not increase even when a second additive element X described later is added (see Comparative Example 10).

尚、第1添加元素Mを含有しかつZnO相、SnO2相、Zn2SnO4相と異なる上記M含有化合物自体は脆いため、酸化物焼結体の靱性を適度に低減して砥石の目詰まりを抑制する効果がある。第1添加元素Mを含有するこのような化合物としては、SiO2、TiO2、GeO2、In23、Bi23、CeO2、Al23、Ga23、および、Zn2SiO4、ZnSiO3、Zn2TiO4、Ti0.5Sn0.52、Zn2GeO4、Zn2In25、In2Sn27、ZnBi1219、Zn0.5Ce0.51.75、ZnAl24、ZnGa24等の酸化物がある。 The M-containing compound itself, which contains the first additive element M and is different from the ZnO phase, SnO 2 phase, and Zn 2 SnO 4 phase, is brittle. There is an effect of suppressing clogging. Examples of such a compound containing the first additive element M include SiO 2 , TiO 2 , GeO 2 , In 2 O 3 , Bi 2 O 3 , CeO 2 , Al 2 O 3 , Ga 2 O 3 , and Zn. 2 SiO 4 , ZnSiO 3 , Zn 2 TiO 4 , Ti 0.5 Sn 0.5 O 2 , Zn 2 GeO 4 , Zn 2 In 2 O 5 , In 2 Sn 2 O 7 , ZnBi 12 O 19 , Zn 0.5 Ce 0.5 O 1.75 , There are oxides such as ZnAl 2 O 4 and ZnGa 2 O 4 .

ところで、第1添加元素Mを加えただけでは、酸化物焼結体の密度は向上するものの、導電性は改善されない。   By the way, only by adding the first additive element M, the density of the oxide sintered body is improved, but the conductivity is not improved.

(第2添加元素)
Snを原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有する条件の下、上記第1添加元素Mを加えたSn−Zn−O系酸化物焼結体は上述したように密度は向上するものの導電性に課題が残る。
(Second additive element)
The Sn—Zn—O-based oxide sintered body to which the first additive element M is added under the condition that Sn is contained at a ratio of 0.1 to 0.9 as the atomic ratio Sn / (Sn + Zn) is described above. As described above, although the density is improved, a problem remains in conductivity.

そこで、Nb、Ta、WおよびMoから選ばれた少なくとも1種の第2添加元素Xを添加する。第2添加元素Xの添加により酸化物焼結体の高密度を維持したまま、導電性が改善される。尚、第2添加元素Xは、Nb、Ta、W、Mo等5価以上の元素である。   Therefore, at least one second additive element X selected from Nb, Ta, W and Mo is added. The addition of the second additive element X improves the conductivity while maintaining the high density of the oxide sintered body. The second additive element X is a pentavalent or higher element such as Nb, Ta, W, or Mo.

添加する量は、第2添加元素Xの全金属元素の総量に対する原子数比X/(Sn+Zn+M+X)を0.0001以上0.1以下にすることを要する。上記原子数比X/(Sn+Zn+M+X)が0.0001未満の場合、導電性は高まらない(比較例7参照)。一方、上記原子数比X/(Sn+Zn+M+X)が0.1を超えた場合、別の化合物相、例えば、Nb25、Ta25、WO3、MoO3、ZnTa26、ZnWO4、ZnMoO4等の化合物相を生成するため導電性を悪化させることになる(比較例8参照)。 The amount to be added requires that the atomic ratio X / (Sn + Zn + M + X) of the second additive element X to the total amount of all metal elements be 0.0001 or more and 0.1 or less. When the atomic ratio X / (Sn + Zn + M + X) is less than 0.0001, the conductivity does not increase (see Comparative Example 7). On the other hand, when the atomic ratio X / (Sn + Zn + M + X) exceeds 0.1, another compound phase, for example, Nb 2 O 5 , Ta 2 O 5 , WO 3 , MoO 3 , ZnTa 2 O 6 , ZnWO 4 , ZnMoO 4 and other compound phases are produced, so that the conductivity is deteriorated (see Comparative Example 8).

このように適正な量の第1添加元素Mと第2添加元素Xを添加すると共に、M含有化合物を生成させることにより、高密度で導電性に優れ、加工効率の高い(加工性能に優れた)Sn−Zn−O系酸化物焼結体を得ることが可能となる。   In this way, by adding appropriate amounts of the first additive element M and the second additive element X and generating the M-containing compound, high density, excellent conductivity, and high processing efficiency (excellent processing performance) ) A Sn—Zn—O-based oxide sintered body can be obtained.

[成形体の焼成条件]
(炉内雰囲気)
焼結炉内における酸素濃度が70体積%以上の雰囲気中において、成形体を焼成することが好ましい。これは、ZnO、SnO2やZn2SnO4化合物の拡散を促進させ、焼結性を向上させると共に導電性を向上させる効果があるためである。高温域では、ZnOやZn2SnO4の揮発を抑制する効果もある。
[Conditions for firing compacts]
(Furnace atmosphere)
The molded body is preferably fired in an atmosphere having an oxygen concentration of 70% by volume or more in the sintering furnace. This is because the diffusion of ZnO, SnO 2 and Zn 2 SnO 4 compound is promoted to improve the sinterability and improve the conductivity. In the high temperature range, there is also an effect of suppressing volatilization of ZnO and Zn 2 SnO 4 .

一方、焼結炉内における酸素濃度が70体積%未満の場合、ZnO、SnO2やZn2SnO4化合物の拡散が衰退する。更に、高温域では、Zn成分の揮発が促進し緻密な焼結体を作製することができない(比較例3参照)。 On the other hand, when the oxygen concentration in the sintering furnace is less than 70% by volume, the diffusion of ZnO, SnO 2 or Zn 2 SnO 4 compound declines. Furthermore, in the high temperature range, the volatilization of the Zn component is promoted and a dense sintered body cannot be produced (see Comparative Example 3).

(焼結工程の温度)
1200℃以上1450℃以下とすることが好ましい。焼結温度が1200℃未満の場合(比較例4参照)、温度が低過ぎて、ZnO、SnO2、Zn2SnO4化合物における焼結の粒界拡散が進まない。一方、1450℃を超えた場合(比較例5参照)、粒界拡散が促進されて焼結は進むが、たとえ、酸素濃度が70体積%以上の炉内で焼成しても、Zn成分の揮発を抑制することができず、焼結体内部に空孔を大きく残してしまうことになる。
(Sintering process temperature)
It is preferable to set it as 1200 degreeC or more and 1450 degrees C or less. When the sintering temperature is less than 1200 ° C. (see Comparative Example 4), the temperature is too low and the grain boundary diffusion of sintering in the ZnO, SnO 2 , Zn 2 SnO 4 compound does not proceed. On the other hand, when the temperature exceeds 1450 ° C. (see Comparative Example 5), the grain boundary diffusion is promoted and the sintering proceeds, but the Zn component volatilizes even if fired in a furnace having an oxygen concentration of 70% by volume or more. Can not be suppressed, leaving large pores inside the sintered body.

(焼結工程の保持時間)
10時間以上30時間以内とすることが好ましい。10時間を下回ると、焼結が不完全なため、歪や反りの大きい焼結体になると共に、粒界拡散が進まず、焼結が進まない。この結果、緻密な焼結体を作製することができない。一方、30時間を上回る場合、特に時間の効果が得られないため、作業効率の悪化やコスト高の結果を招く。
(Sintering process holding time)
It is preferable to set it to 10 hours or more and 30 hours or less. When the time is less than 10 hours, sintering is incomplete, resulting in a sintered body having large distortion and warpage, and grain boundary diffusion does not proceed and sintering does not proceed. As a result, a dense sintered body cannot be produced. On the other hand, when it exceeds 30 hours, the effect of time is not particularly obtained, resulting in deterioration of work efficiency and high cost.

(焼結後保持工程の温度)
焼結工程後に得られた焼結体を保持する温度条件は800℃以上1100℃以下とすることが好ましい。800℃未満の場合、温度が低過ぎてM含有化合物(第1添加元素Mを含有しかつZnO、SnO2、Zn2SnO4と異なる化合物)を生成しない。一方、1100℃を超えた場合、添加された第1添加元素Mの全てが酸化物焼結体中のZnO相、SnO2相、Zn2SnO4相に固溶されたままとなってM含有化合物を生成しない。
(Temperature of holding process after sintering)
The temperature condition for holding the sintered body obtained after the sintering step is preferably 800 ° C. or higher and 1100 ° C. or lower. When the temperature is less than 800 ° C., the temperature is too low to generate an M-containing compound (compound containing the first additive element M and different from ZnO, SnO 2 , Zn 2 SnO 4 ). On the other hand, when the temperature exceeds 1100 ° C., all of the added first additive element M remains in solid solution in the ZnO phase, SnO 2 phase, and Zn 2 SnO 4 phase in the oxide sintered body and contains M. Does not produce compounds.

(焼結後保持工程の保持時間)
焼結工程後に得られた焼結体を保持する時間は10時間以上30時間以内とすることが好ましい。10時間未満になると上記M含有化合物の生成が不十分となり、砥石の目詰まりは抑制されず加工効率は高まらない。一方、30時間を超える場合、酸化物焼結体の結晶粒径が大きくなって脆くなり、機械強度が低下して加工中に割れが発生する。
(Holding time of holding process after sintering)
The time for holding the sintered body obtained after the sintering step is preferably 10 hours or more and 30 hours or less. If it is less than 10 hours, the production of the M-containing compound becomes insufficient, clogging of the grindstone is not suppressed, and the processing efficiency does not increase. On the other hand, when it exceeds 30 hours, the crystal grain size of the oxide sintered body becomes large and becomes brittle, the mechanical strength is lowered, and cracks occur during processing.

上述した条件で得られたZnOおよびSnO2を主成分とするSn−Zn−O系酸化物焼結体は高密度化に加えて導電性も改善されていることから、DCスパッタリングでの成膜が可能となる。また、特別な製造方法を用いていないため、円筒形ターゲットにも応用が可能である。 The Sn—Zn—O-based oxide sintered body mainly composed of ZnO and SnO 2 obtained under the above-described conditions has improved conductivity in addition to high density, so that film formation by DC sputtering is performed. Is possible. Moreover, since a special manufacturing method is not used, it can be applied to a cylindrical target.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明に係る技術的範囲が下記実施例の記載内容に限定されることはなく、本発明に適合する範囲で変更を加えて実施することも当然のことながら可能である。   Hereinafter, examples of the present invention will be specifically described with reference to comparative examples. However, the technical scope according to the present invention is not limited to the description of the following examples, and changes are made within the scope suitable for the present invention. Of course, it is also possible to carry out by adding.

[実施例1]
平均粒径10μm以下のSnO2粉と、平均粒径10μm以下のZnO粉と、第1添加元素Mとして平均粒径20μm以下のBi23粉、および、第2添加元素Xとして平均粒径20μm以下のTa25粉を用意した。
[Example 1]
SnO 2 powder with an average particle diameter of 10 μm or less, ZnO powder with an average particle diameter of 10 μm or less, Bi 2 O 3 powder with an average particle diameter of 20 μm or less as the first additive element M, and an average particle diameter as the second additive element X A Ta 2 O 5 powder of 20 μm or less was prepared.

SnとZnの原子数比Sn/(Sn+Zn)が0.5となるようにSnO2粉とZnO粉を調合し、第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+Ta)が0.01、第2添加元素Xの原子数比Ta/(Sn+Zn+Bi+Ta)が0.001となるように、Bi23粉とTa25粉を調合した。 The SnO 2 powder and the ZnO powder were prepared so that the atomic ratio Sn / (Sn + Zn) of Sn and Zn was 0.5, and the atomic ratio Bi / (Sn + Zn + Bi + Ta) of the first additive element M was 0.01, Bi 2 O 3 powder and Ta 2 O 5 powder were prepared so that the atomic ratio Ta / (Sn + Zn + Bi + Ta) of the two additive elements X was 0.001.

そして、調合された原料粉末と純水、有機バインダー、分散剤を原料粉末濃度が60質量%となるように混合タンクにて混合した。   Then, the prepared raw material powder, pure water, an organic binder, and a dispersant were mixed in a mixing tank so that the raw material powder concentration was 60% by mass.

次に、硬質ZrO2ボールが投入されたビーズミル装置(アシザワ・ファインテック株式会社製、LMZ型)を用いて、原料粉末の平均粒径が1μm以下となるまで湿式粉砕を行った後、10時間以上混合撹拌してスラリーを得た。尚、原料粉末の平均粒径の測定にはレーザー回折式粒度分布測定装置(島津制作所製、SALD-2200)を用いた。 Next, using a bead mill apparatus (manufactured by Ashizawa Finetech Co., Ltd., LMZ type) charged with hard ZrO 2 balls, wet grinding is performed until the average particle size of the raw material powder becomes 1 μm or less, and then 10 hours. The mixture was stirred as above to obtain a slurry. In addition, a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-2200) was used to measure the average particle size of the raw material powder.

次に、得られたスラリーをスプレードライヤー装置(大川原化工機株式会社製、ODL-20型)にて噴霧および乾燥し造粒粉を得た。   Next, the obtained slurry was sprayed and dried with a spray dryer apparatus (Okawara Chemical Co., Ltd., ODL-20 type) to obtain granulated powder.

次に、得られた造粒粉末をゴム型へ充填し、冷間静水圧プレスで294MPa(3ton/cm2)の圧力をかけて成形し、得られた直径約250mmの成形体を常圧焼成炉に投入し、700℃まで焼結炉内に空気(酸素濃度21体積%)を導入した。焼成炉内の温度が700℃になったことを確認した後、「焼結工程」として、酸素濃度が80体積%となるように酸素を導入し、1400℃まで昇温させ、かつ、1400℃で15時間保持した。 Next, the obtained granulated powder is filled into a rubber mold and molded by applying a pressure of 294 MPa (3 ton / cm 2 ) with a cold isostatic press, and the molded product having a diameter of about 250 mm is fired at normal pressure. The furnace was charged and air (oxygen concentration 21 vol%) was introduced into the sintering furnace up to 700 ° C. After confirming that the temperature in the firing furnace has reached 700 ° C., as a “sintering step”, oxygen is introduced so that the oxygen concentration becomes 80% by volume, the temperature is raised to 1400 ° C., and 1400 ° C. For 15 hours.

次に、「焼結後保持工程」として、酸素濃度80体積%のままに1000℃まで降温させ、かつ、1000℃で15時間保持した。   Next, as a “post-sintering holding step”, the temperature was lowered to 1000 ° C. while maintaining the oxygen concentration at 80% by volume, and held at 1000 ° C. for 15 hours.

保持時間が終了した後は酸素導入を止め、冷却を行い、実施例1に係るSn−Zn−O系酸化物焼結体を得た。   After the holding time was completed, the introduction of oxygen was stopped and cooling was performed to obtain a Sn—Zn—O-based oxide sintered body according to Example 1.

次に、平面研削盤(日立ビアメカニクス社製GHL)を用いて、実施例1に係るSn−Zn−O系酸化物焼結体を直径200mm、厚み5mmに研削加工した。研削砥石はレジンボンド、粒度#140のダイヤモンドホイールを用いた。切り込み量0.015mm、テーブル速度25m/minの条件で研削した結果、砥石の目詰まりは発生しなかった。   Next, the Sn—Zn—O-based oxide sintered body according to Example 1 was ground to a diameter of 200 mm and a thickness of 5 mm using a surface grinder (GHL manufactured by Hitachi Via Mechanics). As the grinding wheel, a resin bond diamond wheel with a grain size of # 140 was used. As a result of grinding under the conditions of a cutting depth of 0.015 mm and a table speed of 25 m / min, clogging of the grindstone did not occur.

この加工体の密度をアルキメデス法で測定したところ、相対密度は97.9%であった。また、比抵抗を4探針法で測定したところ、0.09Ω・cmであった。   When the density of this processed body was measured by the Archimedes method, the relative density was 97.9%. The specific resistance was measured by a 4-probe method and found to be 0.09 Ω · cm.

次に、この加工体の一部を乳鉢で粉砕して粉末にし、X線回折装置(PANalytical社製X’Pert-PRO)を用いて分析した結果、SnO2、Zn2SnO4の他に、上記M含有化合物であるBi23を生成していることが確認された。この結果を表1に示す。 Next, a part of this processed body was pulverized with a mortar to form a powder and analyzed using an X-ray diffractometer (X'Pert-PRO manufactured by PANalytical). As a result, in addition to SnO 2 and Zn 2 SnO 4 , It was confirmed that Bi 2 O 3 as the M-containing compound was generated. The results are shown in Table 1.

[実施例2]
SnとZnの原子数比Sn/(Sn+Zn)が0.1となる割合で調合したこと以外は実施例1と同様にして、実施例2に係るSn−Zn−O系酸化物焼結体を得た。
[Example 2]
The Sn—Zn—O-based oxide sintered body according to Example 2 was obtained in the same manner as in Example 1 except that the atomic ratio Sn / (Sn + Zn) between Sn and Zn was adjusted to a ratio of 0.1. Obtained.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は96.4%であり、比抵抗値は0.23Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 96.4% and the specific resistance value was 0.23 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例3]
SnとZnの原子数比Sn/(Sn+Zn)が0.9となる割合で調合したこと以外は実施例1と同様にして、実施例3に係るSn−Zn−O系酸化物焼結体を得た。
[Example 3]
The Sn—Zn—O-based oxide sintered body according to Example 3 was obtained in the same manner as in Example 1 except that the atomic ratio Sn / (Sn + Zn) of Sn and Zn was adjusted to a ratio of 0.9. Obtained.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は95.2%であり、比抵抗値は0.33Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 95.2% and the specific resistance value was 0.33 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例4]
第2添加元素Xの原子数比Ta/(Sn+Zn+Bi+Ta)が0.0001となる割合で調合したこと以外は実施例1と同様にして、実施例4に係るSn−Zn−O系酸化物焼結体を得た。
[Example 4]
The Sn—Zn—O-based oxide sintering according to Example 4 is performed in the same manner as in Example 1, except that the atomic ratio Ta / (Sn + Zn + Bi + Ta) of the second additive element X is 0.0001. Got the body.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は97.5%であり、比抵抗値は0.21Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 97.5% and the specific resistance value was 0.21 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例5]
酸素濃度を100体積%としたこと以外は実施例1と同様にして、実施例5に係るSn−Zn−O系酸化物焼結体を得た。
[Example 5]
A Sn—Zn—O-based oxide sintered body according to Example 5 was obtained in the same manner as in Example 1 except that the oxygen concentration was 100% by volume.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は98.8%であり、比抵抗値は0.022Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 98.8%, and the specific resistance value was 0.022 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例6]
第2添加元素Xの原子数比Ta/(Sn+Zn+Bi+Ta)が0.1となる割合で調合し、「焼結工程」の保持時間を10時間、酸素濃度を70体積%とし、「焼結後保持工程」の保持時間を10時間、酸素濃度を70体積%としたこと以外は実施例1と同様にして、実施例6に係るSn−Zn−O系酸化物焼結体を得た。
[Example 6]
The second additive element X was prepared in such a ratio that the atomic ratio Ta / (Sn + Zn + Bi + Ta) was 0.1, the “sintering step” was held for 10 hours, the oxygen concentration was 70% by volume, A Sn—Zn—O-based oxide sintered body according to Example 6 was obtained in the same manner as in Example 1 except that the holding time of “Step” was 10 hours and the oxygen concentration was 70% by volume.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は95.3%であり、比抵抗値は0.15Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 95.3% and the specific resistance value was 0.15 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例7]
第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+Ta)が0.001となる割合で調合し、焼結温度を1450℃とし、「焼結後保持工程」の温度を1100℃としたこと以外は実施例1と同様にして、実施例7に係るSn−Zn−O系酸化物焼結体を得た。
[Example 7]
Except that the atomic ratio Bi / (Sn + Zn + Bi + Ta) of the first additive element M was adjusted to 0.001, the sintering temperature was 1450 ° C., and the temperature of the “holding step after sintering” was 1100 ° C. In the same manner as in Example 1, a Sn—Zn—O-based oxide sintered body according to Example 7 was obtained.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は97.1%であり、比抵抗値は0.060Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 97.1%, and the specific resistance value was 0.060 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

[実施例8]
第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+Ta)が0.04となる割合で調合し、焼結温度を1200℃とし、「焼結後保持工程」の温度を800℃としたこと以外は実施例1と同様にして、実施例8に係るSn−Zn−O系酸化物焼結体を得た。
[Example 8]
Except that the atomic ratio Bi / (Sn + Zn + Bi + Ta) of the first additive element M is 0.04, the sintering temperature is 1200 ° C., and the temperature of the “holding step after sintering” is 800 ° C. The Sn—Zn—O-based oxide sintered body according to Example 8 was obtained in the same manner as Example 1.

この酸化物焼結体を実施例1と同様にして研削加工した結果、砥石の目詰まりは発生しなかった。相対密度は96.2%であり、比抵抗値は0.17Ω・cmであった。   As a result of grinding this oxide sintered body in the same manner as in Example 1, clogging of the grindstone did not occur. The relative density was 96.2% and the specific resistance value was 0.17 Ω · cm.

また、実施例1と同様にX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表1に示す。 Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, were produced a Bi 2 O 3 is the M-containing compound. The results are shown in Table 1.

Figure 2017160103
Figure 2017160103

[実施例9〜15]
第1添加元素Mとして、SiO2粉(実施例9)、TiO2粉(実施例10)、GeO2粉(実施例11)、In23粉(実施例12)、CeO2粉(実施例13)、Al23粉(実施例14)、Ga23粉(実施例15)を用い、第1添加元素Mの原子数比M/(Sn+Zn+M+Ta)を0.04とし、第2添加元素Xとして、実施例1と同じTa25粉を用い、第2添加元素Xの原子数比Ta/(Sn+Zn+M+Ta)が0.1となる割合で調合したこと以外は実施例1と同様にして、実施例9〜15に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 9 to 15]
As the first additive element M, SiO 2 powder (Example 9), TiO 2 powder (Example 10), GeO 2 powder (Example 11), In 2 O 3 powder (Example 12), CeO 2 powder (Implementation) Example 13), Al 2 O 3 powder (Example 14), Ga 2 O 3 powder (Example 15), the atomic ratio M / (Sn + Zn + M + Ta) of the first additive element M was set to 0.04, and the second The same Ta 2 O 5 powder as in Example 1 was used as the additive element X, and the same as in Example 1 except that the atomic ratio Ta / (Sn + Zn + M + Ta) of the second additive element X was 0.1. Thus, Sn—Zn—O-based oxide sintered bodies according to Examples 9 to 15 were obtained.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ95.1%、0.10Ω・cm(実施例9)、94.2%、0.26Ω・cm(実施例10)、96.8%、0.031Ω・cm(実施例11)、97.2%、0・090Ω・cm(実施例12)、98.3%、0.11Ω・cm(実施例13)、92.2%、0.45Ω・cm(実施例14)、96.1%、0.16Ω・cm(実施例15)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 95.1%, 0.10 Ω · cm (Example 9), 94.2%, 0, respectively. .26 Ω · cm (Example 10), 96.8%, 0.031 Ω · cm (Example 11), 97.2%, 0.090 Ω · cm (Example 12), 98.3%, 0.11Ω • cm (Example 13), 92.2%, 0.45 Ω · cm (Example 14), 96.1%, 0.16 Ω · cm (Example 15).

更に、実施例1と同様に各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるSiO2(実施例9)、TiO2(実施例10)、GeO2(実施例11)、In23(実施例12)、CeO2(実施例13)、Al23(実施例14)、および、Ga23(実施例15)をそれぞれ生成していた。結果を表2に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, the above M-containing compounds, SiO 2 (Example 9), TiO 2 (implementation). Example 10), GeO 2 (Example 11), In 2 O 3 (Example 12), CeO 2 (Example 13), Al 2 O 3 (Example 14), and Ga 2 O 3 (Example 15) ) Respectively. The results are shown in Table 2.

[実施例16〜22]
第1添加元素Mとして、SiO2粉(実施例16)、TiO2粉(実施例17)、GeO2粉(実施例18)、In23粉(実施例19)、CeO2粉(実施例20)、Al23粉(実施例21)、Ga23粉(実施例22)を用い、第1添加元素Mの原子数比M/(Sn+Zn+M+Ta)を0.001とし、第2添加元素Xとして、実施例1と同じTa25粉を用い、第2添加元素Xの原子数比Ta/(Sn+Zn+M+Ta)が0.1となる割合で調合したこと以外は実施例1と同様にして、実施例16〜22に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 16 to 22]
As the first additive element M, SiO 2 powder (Example 16), TiO 2 powder (Example 17), GeO 2 powder (Example 18), In 2 O 3 powder (Example 19), CeO 2 powder (Implementation) Example 20), Al 2 O 3 powder (Example 21), Ga 2 O 3 powder (Example 22), the atomic ratio M / (Sn + Zn + M + Ta) of the first additive element M was set to 0.001, and the second The same Ta 2 O 5 powder as in Example 1 was used as the additive element X, and the same as in Example 1 except that the atomic ratio Ta / (Sn + Zn + M + Ta) of the second additive element X was 0.1. Thus, Sn—Zn—O-based oxide sintered bodies according to Examples 16 to 22 were obtained.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ91.8%、0.022Ω・cm(実施例16)、94.4%、0.25Ω・cm(実施例17)、95.3%、0.016Ω・cm(実施例18)、93.3%、0・061Ω・cm(実施例19)、96.6%、0.053Ω・cm(実施例20)、94.8%、0.079Ω・cm(実施例21)、95.8%、0.052Ω・cm(実施例22)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 91.8%, 0.022 Ω · cm (Example 16), 94.4%, and 0, respectively. .25 Ω · cm (Example 17), 95.3%, 0.016 Ω · cm (Example 18), 93.3%, 0.061 Ω · cm (Example 19), 96.6%, 0.053 Ω • cm (Example 20), 94.8%, 0.079 Ω · cm (Example 21), 95.8%, 0.052 Ω · cm (Example 22).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるSiO2(実施例16)、TiO2(実施例17)、GeO2(実施例18)、In23(実施例19)、CeO2(実施例20)、Al23(実施例21)、および、Ga23(実施例22)をそれぞれ生成していた。結果を表2に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, SiO 2 (Example 16), TiO 2 ( Example 17), GeO 2 (Example 18), In 2 O 3 (Example 19), CeO 2 (Example 20), Al 2 O 3 (Example 21), and Ga 2 O 3 (Example) 22) respectively. The results are shown in Table 2.

[実施例23〜29]
第1添加元素Mとして、SiO2粉(実施例23)、TiO2粉(実施例24)、GeO2粉(実施例25)、In23粉(実施例26)、CeO2粉(実施例27)、Al23粉(実施例28)、Ga23粉(実施例29)を用い、第1添加元素Mの原子数比M/(Sn+Zn+M+Ta)を0.04とし、第2添加元素Xとして、実施例1と同じTa25粉を用い、第2添加元素Xの原子数比Ta/(Sn+Zn+M+Ta)が0.0001となる割合で調合したこと以外は実施例1と同様にして、実施例23〜29に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 23 to 29]
As the first additive element M, SiO 2 powder (Example 23), TiO 2 powder (Example 24), GeO 2 powder (Example 25), In 2 O 3 powder (Example 26), CeO 2 powder (Implementation) Example 27), Al 2 O 3 powder (Example 28), Ga 2 O 3 powder (Example 29), the atomic ratio M / (Sn + Zn + M + Ta) of the first additive element M was set to 0.04, and the second As the additive element X, the same Ta 2 O 5 powder as in Example 1 was used, and the same as in Example 1 except that the atomic ratio Ta / (Sn + Zn + M + Ta) of the second additive element X was 0.0001. Thus, Sn—Zn—O-based oxide sintered bodies according to Examples 23 to 29 were obtained.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ96.6%、0.31Ω・cm(実施例23)、95.5%、0.098Ω・cm(実施例24)、97.7%、0.0096Ω・cm(実施例25)、97.2%、0・022Ω・cm(実施例26)、98.5%、0.0081Ω・cm(実施例27)、95.2%、0.023Ω・cm(実施例28)、96.0%、0.014Ω・cm(実施例29)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 96.6%, 0.31 Ω · cm (Example 23), 95.5%, and 0, respectively. 0.098 Ω · cm (Example 24), 97.7%, 0.0096 Ω · cm (Example 25), 97.2%, 0.02 Ω · cm (Example 26), 98.5%, 0.0081 Ω • cm (Example 27), 95.2%, 0.023 Ω · cm (Example 28), 96.0%, 0.014 Ω · cm (Example 29).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるSiO2(実施例23)、TiO2(実施例24)、GeO2(実施例25)、In23(実施例26)、CeO2(実施例27)、Al23(実施例28)、および、Ga23(実施例29)をそれぞれ生成していた。結果を表2に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, SiO 2 (Example 23), TiO 2 ( Example 24), GeO 2 (Example 25), In 2 O 3 (Example 26), CeO 2 (Example 27), Al 2 O 3 (Example 28), and Ga 2 O 3 (Example) 29) respectively. The results are shown in Table 2.

[実施例30〜36]
第1添加元素Mとして、SiO2粉(実施例30)、TiO2粉(実施例31)、GeO2粉(実施例32)、In23粉(実施例33)、CeO2粉(実施例34)、Al23粉(実施例35)、Ga23粉(実施例36)を用い、第1添加元素Mの原子数比M/(Sn+Zn+M+Ta)を0.001とし、第2添加元素Xとして、実施例1と同じTa25粉を用い、第2添加元素Xの原子数比Ta/(Sn+Zn+M+Ta)が0.0001となる割合で調合したこと以外は実施例1と同様にして、実施例30〜36に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 30 to 36]
As the first additive element M, SiO 2 powder (Example 30), TiO 2 powder (Example 31), GeO 2 powder (Example 32), In 2 O 3 powder (Example 33), CeO 2 powder (Implementation) Example 34), Al 2 O 3 powder (Example 35), Ga 2 O 3 powder (Example 36), the atomic ratio M / (Sn + Zn + M + Ta) of the first additive element M was set to 0.001, and the second As the additive element X, the same Ta 2 O 5 powder as in Example 1 was used, and the same as in Example 1 except that the atomic ratio Ta / (Sn + Zn + M + Ta) of the second additive element X was 0.0001. Thus, Sn—Zn—O-based oxide sintered bodies according to Examples 30 to 36 were obtained.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ96.3%、0.19Ω・cm(実施例30)、95.5%、0.041Ω・cm(実施例31)、96.9%、0.0077Ω・cm(実施例32)、94.4%、0・019Ω・cm(実施例33)、96.0%、0.055Ω・cm(実施例34)、97.6%、0.014Ω・cm(実施例35)、92.2%、0.0077Ω・cm(実施例36)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 96.3%, 0.19 Ω · cm (Example 30), 95.5%, 0, respectively. 0.041 Ω · cm (Example 31), 96.9%, 0.0077 Ω · cm (Example 32), 94.4%, 0.010 Ω · cm (Example 33), 96.0%, 0.055Ω • cm (Example 34), 97.6%, 0.014 Ω · cm (Example 35), 92.2%, 0.0077 Ω · cm (Example 36).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるSiO2(実施例30)、TiO2(実施例31)、GeO2(実施例32)、In23(実施例33)、CeO2(実施例34)、Al23(実施例35)、および、Ga23(実施例36)をそれぞれ生成していた。結果を表2に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, SiO 2 (Example 30), TiO 2 ( Example 31), GeO 2 (Example 32), In 2 O 3 (Example 33), CeO 2 (Example 34), Al 2 O 3 (Example 35), and Ga 2 O 3 (Example) 36) respectively. The results are shown in Table 2.

Figure 2017160103
Figure 2017160103

[実施例37〜39]
第1添加元素Mとして、実施例1と同じBi23粉を用い、第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+X)を0.04とし、第2添加元素Xとして、Nb25粉(実施例37)、WO3粉(実施例38)、MoO3粉(実施例39)を用い、第2添加元素Xの原子数比X/(Sn+Zn+Bi+X)が0.1となる割合で調合したこと以外は実施例1と同様にして、実施例37〜39に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 37 to 39]
The same Bi 2 O 3 powder as in Example 1 was used as the first additive element M, the atomic ratio Bi / (Sn + Zn + Bi + X) of the first additive element M was 0.04, and the second additive element X was Nb 2 O Using 5 powders (Example 37), WO 3 powder (Example 38), and MoO 3 powder (Example 39), the atomic ratio X / (Sn + Zn + Bi + X) of the second additive element X is 0.1. Sn-Zn-O-based oxide sintered bodies according to Examples 37 to 39 were obtained in the same manner as Example 1 except that the preparations were made.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ95.4%、0.13Ω・cm(実施例37)、95.2%、0.088Ω・cm(実施例38)、93.3%、0.33Ω・cm(実施例39)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 95.4%, 0.13 Ω · cm (Example 37), 95.2%, 0, respectively. 0.088 Ω · cm (Example 38), 93.3%, and 0.33 Ω · cm (Example 39).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表3に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, Bi 2 O 3 which was the M-containing compound was generated. The results are shown in Table 3.

[実施例40〜42]
第1添加元素Mとして、実施例1と同じBi23粉を用い、第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+X)を0.001とし、第2添加元素Xとして、Nb25粉(実施例40)、WO3粉(実施例41)、MoO3粉(実施例42)を用い、第2添加元素Xの原子数比X/(Sn+Zn+Bi+X)が0.1となる割合で調合したこと以外は実施例1と同様にして、実施例40〜42に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 40 to 42]
As the first additive element M, the same Bi 2 O 3 powder as in Example 1 was used, the atomic ratio Bi / (Sn + Zn + Bi + X) of the first additive element M was 0.001, and the second additive element X was Nb 2 O Using 5 powders (Example 40), WO 3 powder (Example 41), and MoO 3 powder (Example 42), the atomic ratio X / (Sn + Zn + Bi + X) of the second additive element X is 0.1. Sn-Zn-O-based oxide sintered bodies according to Examples 40 to 42 were obtained in the same manner as Example 1 except that the preparations were made.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ96.5%、0.068Ω・cm(実施例40)、94.7%、0.17Ω・cm(実施例41)、96.5%、0.096Ω・cm(実施例42)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 96.5%, 0.068 Ω · cm (Example 40), 94.7%, 0, respectively. They were 0.17 Ω · cm (Example 41), 96.5%, and 0.096 Ω · cm (Example 42).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表3に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, Bi 2 O 3 which was the M-containing compound was generated. The results are shown in Table 3.

[実施例43〜45]
第1添加元素Mとして、実施例1と同じBi23粉を用い、第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+X)を0.04とし、第2添加元素Xとして、Nb25粉(実施例43)、WO3粉(実施例44)、MoO3粉(実施例45)を用い、第2添加元素Xの原子数比X/(Sn+Zn+Bi+X)が0.0001となる割合で調合したこと以外は実施例1と同様にして、実施例43〜45に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 43 to 45]
The same Bi 2 O 3 powder as in Example 1 was used as the first additive element M, the atomic ratio Bi / (Sn + Zn + Bi + X) of the first additive element M was 0.04, and the second additive element X was Nb 2 O Using 5 powders (Example 43), WO 3 powder (Example 44), and MoO 3 powder (Example 45), the atomic ratio X / (Sn + Zn + Bi + X) of the second additive element X is 0.0001. Sn-Zn-O-based oxide sintered bodies according to Examples 43 to 45 were obtained in the same manner as Example 1 except that the preparations were made.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ97.3%、0.25Ω・cm(実施例43)、94.4%、0.28Ω・cm(実施例44)、92.8%、0.76Ω・cm(実施例45)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 97.3%, 0.25 Ω · cm (Example 43), 94.4%, and 0, respectively. It was .28 Ω · cm (Example 44), 92.8%, 0.76 Ω · cm (Example 45).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表3に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, Bi 2 O 3 which was the M-containing compound was generated. The results are shown in Table 3.

[実施例46〜48]
第1添加元素Mとして、実施例1と同じBi23粉を用い、第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+X)を0.001とし、第2添加元素Xとして、Nb25粉(実施例46)、WO3粉(実施例47)、MoO3粉(実施例48)を用い、第2添加元素Xの原子数比X/(Sn+Zn+Bi+X)が0.0001となる割合で調合したこと以外は実施例1と同様にして、実施例46〜48に係るSn−Zn−O系酸化物焼結体を得た。
[Examples 46 to 48]
As the first additive element M, the same Bi 2 O 3 powder as in Example 1 was used, the atomic ratio Bi / (Sn + Zn + Bi + X) of the first additive element M was 0.001, and the second additive element X was Nb 2 O Using 5 powders (Example 46), WO 3 powder (Example 47), and MoO 3 powder (Example 48), the atomic ratio X / (Sn + Zn + Bi + X) of the second additive element X is 0.0001. Sn-Zn-O-based oxide sintered bodies according to Examples 46 to 48 were obtained in the same manner as Example 1 except that the preparations were made.

そして、実施例1と同様に、各実施例に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。   And like Example 1, as a result of grinding the Sn—Zn—O-based oxide sintered body according to each Example, clogging of the grindstone did not occur.

また、各実施例に係るSn−Zn−O系酸化物焼結体の相対密度と比抵抗値は、それぞれ97.7%、0.041Ω・cm(実施例46)、91.6%、0.085Ω・cm(実施例47)、92.9%、0.036Ω・cm(実施例48)であった。   Moreover, the relative density and specific resistance value of the Sn—Zn—O-based oxide sintered body according to each example were 97.7%, 0.041 Ω · cm (Example 46), 91.6%, 0, respectively. 0.085 Ω · cm (Example 47), 92.9%, and 0.036 Ω · cm (Example 48).

更に、実施例1と同様にして各実施例に係るSn−Zn−O系酸化物焼結体をX線回折分析したところ、上記M含有化合物であるBi23を生成していた。結果を表3に示す。 Further, when the Sn—Zn—O-based oxide sintered body according to each example was subjected to X-ray diffraction analysis in the same manner as in Example 1, Bi 2 O 3 which was the M-containing compound was generated. The results are shown in Table 3.

Figure 2017160103
Figure 2017160103

[比較例1]
SnとZnの原子数比Sn/(Sn+Zn)が0.05となる割合で調合したこと以外は実施例1同様にして比較例1に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 1]
An Sn—Zn—O-based oxide sintered body according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the atomic ratio Sn / (Sn + Zn) of Sn and Zn was adjusted to a ratio of 0.05. .

そして、実施例1と同様にして比較例1に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 1 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は87.0%、比抵抗値は600Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value are measured, the relative density is 87.0%, the specific resistance value is 600 Ω · cm, and it is impossible to achieve the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less. confirmed. The results are shown in Table 4.

[比較例2]
SnとZnの原子数比Sn/(Sn+Zn)が0.95となる割合で調合したこと以外は実施例1同様にして、比較例2に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 2]
An Sn—Zn—O-based oxide sintered body according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the compound was prepared at a ratio where the atomic ratio Sn / (Sn + Zn) of Sn and Zn was 0.95. It was.

そして、実施例1と同様にして比較例2に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 2 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は85.0%、比抵抗値は1000Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value are measured, the relative density is 85.0%, the specific resistance value is 1000 Ω · cm, and the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less cannot be achieved. confirmed. The results are shown in Table 4.

[比較例3]
1400℃での焼結時に、炉内酸素濃度を68体積%としたこと以外は実施例1と同様にして、比較例3に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 3]
A Sn—Zn—O-based oxide sintered body according to Comparative Example 3 was obtained in the same manner as in Example 1 except that the oxygen concentration in the furnace was set to 68% by volume during sintering at 1400 ° C.

そして、実施例1と同様にして比較例3に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 3 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は86.5%、比抵抗値は47000Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value are measured, the relative density is 86.5%, the specific resistance value is 47000 Ω · cm, and it is impossible to achieve the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less. confirmed. The results are shown in Table 4.

[比較例4]
「焼結工程」の焼結温度を1170℃とし、「焼結後保持工程」の保持温度を700℃としたこと以外は実施例1と同様にして、比較例4に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 4]
The Sn—Zn—O according to Comparative Example 4 was the same as Example 1 except that the sintering temperature of the “sintering process” was 1170 ° C. and the holding temperature of the “post-sintering holding process” was 700 ° C. A system oxide sintered body was obtained.

そして、実施例1と同様にして比較例4に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりを発生していた。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物は検出されなかった。   As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 4 in the same manner as in Example 1, clogging of the grindstone occurred. Moreover, when the X-ray-diffraction analysis was carried out similarly to Example 1, the said M containing compound was not detected.

更に、相対密度と比抵抗値を測定したところ、相対密度は81.4%、比抵抗値は94000Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   Furthermore, when the relative density and the specific resistance value were measured, the relative density was 81.4%, the specific resistance value was 94000 Ω · cm, and it was impossible to achieve the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less. confirmed. The results are shown in Table 4.

[比較例5]
「焼結工程」の焼結温度を1500℃とし、「焼結後保持工程」の保持温度を1200℃としたこと以外は実施例1と同様にして、比較例5に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 5]
The Sn—Zn—O according to Comparative Example 5 was the same as Example 1 except that the sintering temperature of the “sintering step” was 1500 ° C. and the holding temperature of the “post-sintering holding step” was 1200 ° C. A system oxide sintered body was obtained.

そして、実施例1と同様にして比較例5に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりを発生していた。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物は検出されなかった。   As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 5 in the same manner as in Example 1, clogging of the grindstone occurred. Moreover, when the X-ray-diffraction analysis was carried out similarly to Example 1, the said M containing compound was not detected.

更に、相対密度と比抵抗値を測定したところ、相対密度は86.9%、比抵抗値は12Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   Furthermore, when the relative density and the specific resistance value were measured, the relative density was 86.9%, the specific resistance value was 12 Ω · cm, and it was impossible to achieve the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less. confirmed. The results are shown in Table 4.

[比較例6]
「焼結工程」の後に「焼結後保持工程」を実施しないで冷却したこと以外は実施例1と同様にして、比較例6に係るSn−Zn−O系酸化物焼結体を得た。1100℃から800℃までの降温に要した時間は7時間であった。
[Comparative Example 6]
A Sn—Zn—O-based oxide sintered body according to Comparative Example 6 was obtained in the same manner as in Example 1 except that the “sintering process” was followed by cooling without performing the “post-sintering holding process”. . The time required to lower the temperature from 1100 ° C. to 800 ° C. was 7 hours.

そして、実施例1と同様にして比較例6に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりを発生していた。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物は検出されなかった。   As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 6 in the same manner as in Example 1, clogging of the grindstone occurred. Moreover, when the X-ray-diffraction analysis was carried out similarly to Example 1, the said M containing compound was not detected.

更に、相対密度と比抵抗値を測定したところ、相対密度は82.0%、比抵抗値は730000Ω・cmであり、相対密度90%以上かつ比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   Furthermore, when the relative density and the specific resistance value were measured, the relative density was 82.0%, the specific resistance value was 730000 Ω · cm, and it was impossible to achieve the characteristics of the relative density of 90% or more and the specific resistance of 1 Ω · cm or less. confirmed. The results are shown in Table 4.

[比較例7]
第2添加元素Xの原子数比Ta/(Sn+Zn+Bi+Ta)が0.00009となる割合で調合したこと以外は実施例1と同様にして、比較例7に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 7]
The Sn—Zn—O-based oxide sintering according to Comparative Example 7 was performed in the same manner as in Example 1 except that the atomic ratio Ta / (Sn + Zn + Bi + Ta) of the second additive element X was adjusted to 0.00009. Got the body.

そして、実施例1と同様にして比較例7に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 7 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は93.5%、比抵抗値は260Ω・cmであり、相対密度90%以上の特性は達成できたが、比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value were measured, the relative density was 93.5%, the specific resistance value was 260 Ω · cm, and a characteristic with a relative density of 90% or more was achieved, but the specific resistance was 1 Ω · cm or less. It was confirmed that this characteristic cannot be achieved. The results are shown in Table 4.

[比較例8]
第2添加元素Xの原子数比Ta/(Sn+Zn+Bi+Ta)が0.15となる割合で調合したこと以外は実施例1と同様にして、比較例8に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 8]
The Sn—Zn—O-based oxide sintering according to Comparative Example 8 is performed in the same manner as in Example 1 except that the atomic ratio Ta / (Sn + Zn + Bi + Ta) of the second additive element X is 0.15. Got the body.

そして、実施例1と同様にして比較例8に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 8 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は92.2%、比抵抗値は110Ω・cmであり、相対密度90%以上の特性は達成できたが、比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value were measured, the relative density was 92.2%, the specific resistance value was 110 Ω · cm, and a characteristic with a relative density of 90% or more was achieved, but the specific resistance was 1 Ω · cm or less. It was confirmed that this characteristic cannot be achieved. The results are shown in Table 4.

[比較例9]
第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+Ta)が0.0009となる割合で調合したこと以外は実施例1と同様にして、比較例9に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 9]
The Sn—Zn—O-based oxide sintering according to Comparative Example 9 was performed in the same manner as in Example 1, except that the atomic ratio Bi / (Sn + Zn + Bi + Ta) of the first additive element M was adjusted to 0.0009. Got the body.

そして、実施例1と同様にして比較例9に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりを発生していた。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物は検出されなかった。   As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 9 in the same manner as in Example 1, clogging of the grindstone occurred. Moreover, when the X-ray-diffraction analysis was carried out similarly to Example 1, the said M containing compound was not detected.

更に、相対密度と比抵抗値を測定したところ、相対密度は85.0%、比抵抗値は0・89Ω・cmであり、比抵抗1Ω・cm以下の特性は達成できたが、相対密度90%以上の特性を達成できないことが確認された。結果を表4に示す。   Furthermore, when the relative density and the specific resistance value were measured, the relative density was 85.0%, the specific resistance value was 0.889 Ω · cm, and a characteristic with a specific resistance of 1 Ω · cm or less was achieved. It was confirmed that more than% characteristics could not be achieved. The results are shown in Table 4.

[比較例10]
第1添加元素Mの原子数比Bi/(Sn+Zn+Bi+Ta)が0.05となる割合で調合したこと以外は実施例1と同様にして、比較例10に係るSn−Zn−O系酸化物焼結体を得た。
[Comparative Example 10]
The Sn—Zn—O-based oxide sintering according to Comparative Example 10 was performed in the same manner as in Example 1 except that the atomic ratio Bi / (Sn + Zn + Bi + Ta) of the first additive element M was adjusted to 0.05. Got the body.

そして、実施例1と同様にして比較例10に係るSn−Zn−O系酸化物焼結体を研削加工した結果、砥石の目詰まりは発生しなかった。また、実施例1と同様にしてX線回折分析したところ、上記M含有化合物であるBi23の生成が認められた。 As a result of grinding the Sn—Zn—O-based oxide sintered body according to Comparative Example 10 in the same manner as in Example 1, clogging of the grindstone did not occur. Furthermore, it was X-ray diffraction analysis in the same manner as in Example 1, generation of Bi 2 O 3 is the M-containing compounds was observed.

しかし、相対密度と比抵抗値を測定したところ、相対密度は96.9%、比抵抗値は5500Ω・cmであり、相対密度90%以上の特性は達成できたが、比抵抗1Ω・cm以下の特性を達成できないことが確認された。結果を表4に示す。   However, when the relative density and the specific resistance value were measured, the relative density was 96.9%, the specific resistance value was 5500 Ω · cm, and a characteristic with a relative density of 90% or more was achieved, but the specific resistance was 1 Ω · cm or less. It was confirmed that this characteristic cannot be achieved. The results are shown in Table 4.

Figure 2017160103
Figure 2017160103

本発明に係るSn−Zn−O系酸化物焼結体は、機械的強度と優れた加工性能を備え、加えて高密度かつ低抵抗といった特性を備えているため、太陽電池やタッチパネル等の透明電極を形成するためのスパッタリングターゲットとして利用される産業上の利用可能性を有している。   The Sn—Zn—O-based oxide sintered body according to the present invention has mechanical strength and excellent processing performance, and additionally has characteristics such as high density and low resistance. It has industrial applicability as a sputtering target for forming electrodes.

Claims (2)

ZnおよびSnを主成分とし、ZnO相およびSnO2相の少なくとも一方とZn2SnO4相を含有するSn−Zn−O系酸化物焼結体において、
Snを、原子数比Sn/(Sn+Zn)として0.1以上0.9以下の割合で含有し、
Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種を第1添加元素Mとし、かつ、Nb、Ta、WおよびMoから選ばれた少なくとも1種を第2添加元素Xとした場合、
第1添加元素Mを、全金属元素の総量に対する原子数比M/(Sn+Zn+M+X)として0.001以上0.04以下の割合で含有し、
第2添加元素Xを、全金属元素の総量に対する原子数比X/(Sn+Zn+M+X)として0.0001以上0.1以下の割合で含有し、かつ、
上記ZnO相、SnO2相、Zn2SnO4相と異なる化合物相を更に含んでいると共に当該化合物相が上記第1添加元素Mを含有し、
相対密度が90%以上かつ比抵抗が1Ω・cm以下であることを特徴とするSn−Zn−O系酸化物焼結体。
In a Sn—Zn—O-based oxide sintered body containing Zn and Sn as main components and containing at least one of a ZnO phase and a SnO 2 phase and a Zn 2 SnO 4 phase,
Sn is contained in an atomic ratio Sn / (Sn + Zn) at a ratio of 0.1 to 0.9.
At least one selected from Si, Ti, Ge, In, Bi, Ce, Al, and Ga is used as the first additive element M, and at least one selected from Nb, Ta, W, and Mo is added as the second additive In the case of element X,
The first additive element M is contained at a ratio of 0.001 or more and 0.04 or less as an atomic ratio M / (Sn + Zn + M + X) with respect to the total amount of all metal elements,
Containing the second additive element X in a ratio of 0.0001 to 0.1 as an atomic ratio X / (Sn + Zn + M + X) to the total amount of all metal elements, and
A compound phase different from the ZnO phase, SnO 2 phase, Zn 2 SnO 4 phase and the compound phase contains the first additive element M;
A Sn—Zn—O-based oxide sintered body having a relative density of 90% or more and a specific resistance of 1 Ω · cm or less.
請求項1に記載のSn−Zn−O系酸化物焼結体の製造方法において、
ZnO粉末とSnO2粉末、Si、Ti、Ge、In、Bi、Ce、AlおよびGaから選ばれた少なくとも1種の第1添加元素Mを含有する酸化物粉末、Nb、Ta、WおよびMoから選ばれた少なくとも1種の第2添加元素Xを含有する酸化物粉末を、純水、有機バインダー、分散剤と混合して得られるスラリーを乾燥しかつ造粒して造粒粉末を製造する造粒粉末製造工程と、
上記造粒粉末を加圧成形して成形体を得る成形体製造工程と、
焼成炉内の酸素濃度が70体積%以上の雰囲気において、1200℃以上1450℃以下かつ10時間以上30時間以内の条件で上記成形体を焼成する焼結工程と、
引き続き得られた焼結体を800℃以上1100℃以下かつ1時間以上10時間以下の条件で保持する焼結後保持工程、
を具備することを特徴とするSn−Zn−O系酸化物焼結体の製造方法。
In the manufacturing method of the Sn-Zn-O type oxide sintered compact according to claim 1,
ZnO powder and SnO 2 powder, oxide powder containing at least one first additive element M selected from Si, Ti, Ge, In, Bi, Ce, Al and Ga, from Nb, Ta, W and Mo A slurry obtained by mixing the selected oxide powder containing at least one second additive element X with pure water, an organic binder, and a dispersant is dried and granulated to produce a granulated powder. Granule powder manufacturing process,
A molded body manufacturing process for obtaining a molded body by pressure molding the granulated powder; and
A sintering step in which the molded body is fired under conditions of 1200 ° C. or higher and 1450 ° C. or lower and 10 hours or longer and 30 hours or shorter in an atmosphere having an oxygen concentration of 70% by volume or higher in the firing furnace
A post-sintering holding step of holding the obtained sintered body under the conditions of 800 ° C. or higher and 1100 ° C. or lower and 1 hour or longer and 10 hours or shorter;
The manufacturing method of the Sn-Zn-O type oxide sintered compact characterized by comprising.
JP2016048907A 2016-03-11 2016-03-11 Sn-Zn-O-based oxide sintered body and method for producing the same Expired - Fee Related JP6551683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048907A JP6551683B2 (en) 2016-03-11 2016-03-11 Sn-Zn-O-based oxide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048907A JP6551683B2 (en) 2016-03-11 2016-03-11 Sn-Zn-O-based oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017160103A true JP2017160103A (en) 2017-09-14
JP6551683B2 JP6551683B2 (en) 2019-07-31

Family

ID=59854783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048907A Expired - Fee Related JP6551683B2 (en) 2016-03-11 2016-03-11 Sn-Zn-O-based oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6551683B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057672A1 (en) * 2022-09-16 2024-03-21 株式会社アルバック Sputtering target for formation of oxide semiconductor thin film, method for producing sputtering target for formation of oxide semiconductor thin film, oxide semiconductor thin film, thin film semiconductor device and method for producing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212263A (en) * 1988-02-19 1989-08-25 Ngk Insulators Ltd Method for machining ceramics
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2008192604A (en) * 2007-01-12 2008-08-21 Sumitomo Chemical Co Ltd Transparent conductive film material
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP2012180247A (en) * 2011-03-02 2012-09-20 Kobelco Kaken:Kk Sintered oxide and sputtering target
JP2013036073A (en) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn-Sn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
JP2013177676A (en) * 2012-02-06 2013-09-09 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
WO2014168224A1 (en) * 2013-04-12 2014-10-16 日立金属株式会社 Oxide semiconductor target, oxide semiconductor film and method for producing same, and thin film transistor
JP2015038027A (en) * 2008-11-20 2015-02-26 出光興産株式会社 ZnO-SnO2-In2O3-BASED OXIDE SINTERED COMPACT, AND AMORPHOUS, TRANSPARENT, AND ELECTRICALLY-CONDUCTIVE FILM

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212263A (en) * 1988-02-19 1989-08-25 Ngk Insulators Ltd Method for machining ceramics
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2008192604A (en) * 2007-01-12 2008-08-21 Sumitomo Chemical Co Ltd Transparent conductive film material
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2015038027A (en) * 2008-11-20 2015-02-26 出光興産株式会社 ZnO-SnO2-In2O3-BASED OXIDE SINTERED COMPACT, AND AMORPHOUS, TRANSPARENT, AND ELECTRICALLY-CONDUCTIVE FILM
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP2012180247A (en) * 2011-03-02 2012-09-20 Kobelco Kaken:Kk Sintered oxide and sputtering target
US20130334039A1 (en) * 2011-03-02 2013-12-19 Kobelco Research Institute, Inc. Oxide sintered body and sputtering target
JP2013036073A (en) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn-Sn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
JP2013177676A (en) * 2012-02-06 2013-09-09 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
WO2014168224A1 (en) * 2013-04-12 2014-10-16 日立金属株式会社 Oxide semiconductor target, oxide semiconductor film and method for producing same, and thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057672A1 (en) * 2022-09-16 2024-03-21 株式会社アルバック Sputtering target for formation of oxide semiconductor thin film, method for producing sputtering target for formation of oxide semiconductor thin film, oxide semiconductor thin film, thin film semiconductor device and method for producing same

Also Published As

Publication number Publication date
JP6551683B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6677095B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP6015801B2 (en) Oxide sintered body, manufacturing method thereof, target, and transparent conductive film
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
KR101623735B1 (en) Zn-Sn-O TYPE OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
TWI741154B (en) Sn-Zn-O series oxide sintered body and its manufacturing method
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
JP6287327B2 (en) Oxide sintered body and oxide transparent conductive film
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2019202909A1 (en) Sn-zn-o oxide sintered body and method for production thereof
WO2017086016A1 (en) SINTERED Sn-Zn-O OXIDE AND PROCESS FOR PRODUCING SAME
JP6414527B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
TWI748971B (en) Sn-Zn-O series oxide sintered body and its manufacturing method
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5822034B2 (en) Sputtering target and manufacturing method thereof
JP2020117415A (en) MANUFACTURING METHOD OF Sn-Zn-O-BASED OXIDE SINTERED BODY, Sn-Zn-O-BASED OXIDE SINTERED BODY, AND Sn-Zn-O-BASED OXIDE TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6551683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees