JP2017158241A - Single-phase brushless motor - Google Patents

Single-phase brushless motor Download PDF

Info

Publication number
JP2017158241A
JP2017158241A JP2016037496A JP2016037496A JP2017158241A JP 2017158241 A JP2017158241 A JP 2017158241A JP 2016037496 A JP2016037496 A JP 2016037496A JP 2016037496 A JP2016037496 A JP 2016037496A JP 2017158241 A JP2017158241 A JP 2017158241A
Authority
JP
Japan
Prior art keywords
straight line
rotor
brushless motor
phase brushless
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037496A
Other languages
Japanese (ja)
Other versions
JP6385969B2 (en
Inventor
艶 鐘
Yan Zhong
艶 鐘
敦 太郎田
Atsushi Taroda
敦 太郎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2016037496A priority Critical patent/JP6385969B2/en
Publication of JP2017158241A publication Critical patent/JP2017158241A/en
Application granted granted Critical
Publication of JP6385969B2 publication Critical patent/JP6385969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single-phase brushless motor capable of reducing electromagnetic vibrations with a lower-order harmonic component of an electromagnetic force defined as an excitation force and noise with the electromagnetic vibrations.SOLUTION: A single-phase brushless motor comprises a stator 10 and a rotor 20. The stator 10 includes a stator core 11 including multiple salient poles 14, and a coil. The salient pole 14 includes a proximal portion 15 around which the coil is wound, and a distal end portion 16 that is spread in a circumferential direction rather than the proximal portion 15. A radial clearance between the distal end portion 16 and the rotor 20 is different between a first end E1 and a second end E2. On a cross section vertical to a rotation axis R of the rotor 20, an angle θ1 formed from a first straight line L1 passing the rotation axis R practically in parallel with a first side face 15c positioned at a front side in a rotation direction of the rotor 20 between both side faces of the proximal portion 15 and a second straight line L2 passing the rotation axis R and the first end E1 is larger than an angle θ2 formed from the first straight line L1 and a third straight line L3 passing the rotation axis R and the second end E2.SELECTED DRAWING: Figure 2

Description

本発明は、単相ブラシレスモータに関する。   The present invention relates to a single-phase brushless motor.

コイルが単一の相で構成された単相ブラシレスモータが知られている。単相ブラシレスモータでは、安定した起動を実現するために、ステータコアの突極とロータとの半径方向における隙間を突極の周方向の両端部で異ならせることがある。従来では、安定した起動の実現に加えてコギングトルクを低減するために、突極の周方向の両端部とロータとの半径方向における隙間が所定の関係を満たすよう構成された単相ブラシレスモータが提案されている(特許文献1)。   There is known a single-phase brushless motor in which a coil is composed of a single phase. In a single-phase brushless motor, in order to realize stable start-up, a gap in the radial direction between the salient pole of the stator core and the rotor may be made different at both ends in the circumferential direction of the salient pole. Conventionally, in order to reduce cogging torque in addition to realizing stable start-up, a single-phase brushless motor configured so that a gap in the radial direction between both ends of the salient pole in the circumferential direction and the rotor satisfies a predetermined relationship has been proposed. It has been proposed (Patent Document 1).

特開2013−236464号公報JP 2013-236464 A

上述した従来の単相ブラシレスモータは、コギングトルクを低減することができ、ひいては振動およびそれに伴う騒音を低減できる。   The conventional single-phase brushless motor described above can reduce cogging torque, and thus vibration and accompanying noise.

しかしながら、単相ブラシレスモータの振動・騒音を低減することへの要求が絶えることはなく、より振動・騒音を低減することが要求されている。単相ブラシレスモータの振動・騒音の原因の1つに、ステータコアの突極とマグネットとの間で生じる電磁力、特にその高調波成分を起振力とする電磁振動がある。本発明者らは、鋭意研究を重ねた結果、電磁力の高調波成分、ひいては電磁振動を低減できることを知見した。   However, the demand for reducing the vibration and noise of the single-phase brushless motor does not cease, and it is required to further reduce the vibration and noise. One of the causes of vibration and noise of a single-phase brushless motor is an electromagnetic force generated between the salient poles of the stator core and the magnet, particularly an electromagnetic vibration having a harmonic component as an excitation force. As a result of intensive studies, the present inventors have found that harmonic components of electromagnetic force, and hence electromagnetic vibration can be reduced.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、電磁力の高調波成分を起振力とする電磁振動を低減でき、ひいては振動・騒音を低減することができるとともに、コギングトルクを低減できる単相ブラシレスモータを提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to reduce electromagnetic vibration using a harmonic component of electromagnetic force as an exciting force, and thus to reduce vibration and noise, and to reduce cogging. The object is to provide a single-phase brushless motor capable of reducing torque.

上記課題を解決するために、本発明のある態様の単相ブラシレスモータは、ステータと、ステータに対して回転するロータと、を備える。ステータは、複数の突極を有するコアと、複数の突極に巻き線されて形成されるコイルと、を備える。ロータは、突極と半径方向に対向し、突極側の面に周方向に複数の磁極を有するマグネットを含む。突極は、コイルが巻かれる基部と、基部よりマグネット側に設けられ、基部よりも周方向に広がる先端部と、を含む。先端部とロータとの半径方向の隙間は、先端部の周方向の両端部のうちのロータの回転方向の前側の第1端部と後側の第2端部とで異なっており、ロータの回転軸に垂直な断面において、基部の両側面のうちのロータの回転方向の前側に位置する側面に実質的に平行で回転軸を通る第1直線と、回転軸と第1端部とを通る第2直線とがなす角が、第1直線と、回転軸と第2端部とを通る第3直線とがなす角よりも大きい。   In order to solve the above problems, a single-phase brushless motor according to an aspect of the present invention includes a stator and a rotor that rotates with respect to the stator. The stator includes a core having a plurality of salient poles and a coil formed by being wound around the salient poles. The rotor includes a magnet facing the salient pole in the radial direction and having a plurality of magnetic poles in the circumferential direction on the surface on the salient pole side. The salient pole includes a base around which the coil is wound, and a tip that is provided on the magnet side of the base and extends in the circumferential direction from the base. The radial clearance between the tip portion and the rotor is different between the first end portion on the front side in the rotational direction of the rotor and the second end portion on the rear side in the circumferential end portions of the tip portion. In a cross section perpendicular to the rotation axis, a first straight line that passes through the rotation axis and is substantially parallel to a side surface of the both sides of the base located on the front side in the rotation direction of the rotor, and passes through the rotation axis and the first end. The angle formed by the second straight line is larger than the angle formed by the first straight line and the third straight line passing through the rotation axis and the second end.

この態様によると、電磁力の高調波成分が低減される。   According to this aspect, the harmonic component of the electromagnetic force is reduced.

なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。   Note that any combination of the above-described constituent elements, and those obtained by replacing the constituent elements and expressions of the present invention with each other among methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.

本発明によれば、電磁力の高調波成分を起振力とする電磁振動およびそれに伴う騒音を低減できる。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetic vibration which makes a harmonic component of an electromagnetic force an excitation force, and the noise accompanying it can be reduced.

実施の形態に係る単相ブラシレスモータを示す断面図である。It is sectional drawing which shows the single phase brushless motor which concerns on embodiment. 図1のステータコアの突極の1つとその周辺を拡大して示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing one of salient poles of the stator core of FIG. 1 and its periphery in an enlarged manner. 図3(a)はステータコアとマグネットとの間に生じる半径方向の電磁力の4の倍数の高調波成分を示し、図3(b)はステータコアとマグネットとの間に生じる回転方向の電磁力の4の倍数の高調波成分を示す図である。FIG. 3A shows a harmonic component that is a multiple of 4 of the radial electromagnetic force generated between the stator core and the magnet, and FIG. 3B shows the rotational electromagnetic force generated between the stator core and the magnet. It is a figure which shows the harmonic component of the multiple of 4. コギングトルクを示す図である。It is a figure which shows a cogging torque.

以下、各図面に示される同一または同等の構成要素、部材、工程には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。   Hereinafter, the same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are appropriately omitted. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in the drawings, some of the members that are not important for describing the embodiment are omitted.

図1は、実施の形態に係る単相ブラシレスモータ100を示す断面図である。図1では、ロータ20の回転軸Rに垂直な断面を示す。単相ブラシレスモータ100は、ステータ10と、ステータ10に対して回転するロータ20と、を備える。本実施の形態では、ロータ20は、矢印で示したD方向(すなわち図1では時計回りの方向)に回転する。ステータ10は、ステータコア11と、コイル12と、を含む。ロータ20は、ロータヨーク21と、マグネット22と、を含む。   FIG. 1 is a cross-sectional view showing a single-phase brushless motor 100 according to an embodiment. FIG. 1 shows a cross section perpendicular to the rotation axis R of the rotor 20. Single-phase brushless motor 100 includes a stator 10 and a rotor 20 that rotates relative to stator 10. In the present embodiment, the rotor 20 rotates in the D direction indicated by the arrow (that is, the clockwise direction in FIG. 1). Stator 10 includes a stator core 11 and a coil 12. The rotor 20 includes a rotor yoke 21 and a magnet 22.

以降では、ロータ20の回転軸Rに平行な方向を軸方向とし、回転軸Rに垂直な平面上で回転軸Rを通る任意の方向を半径方向とし、半径方向において回転軸Rに近い方を内周側、回転軸Rから遠い方を外周側とし、回転軸Rに垂直な平面上において回転軸Rを中心とする円の円周に沿った方向を周方向として説明する。   Hereinafter, a direction parallel to the rotation axis R of the rotor 20 is defined as an axial direction, an arbitrary direction passing through the rotation axis R on a plane perpendicular to the rotation axis R is defined as a radial direction, and a direction closer to the rotation axis R in the radial direction. In the following description, the inner circumferential side, the far side from the rotation axis R is defined as the outer circumferential side, and the direction along the circumference of the circle centering on the rotation axis R on the plane perpendicular to the rotation axis R is defined as the circumferential direction.

ステータコア11は、円環部13とそこから外周側に伸びる4本の突極14とを有する。ステータコア11は、例えば、複数枚の薄型電磁鋼板を積層しカシメにより一体化して形成される。ステータコア11の各突極14は、円環部13から外周側に伸びる基部15と、基部15よりもマグネット22側すなわち基部15よりも外周側に設けられ、基部15よりも周方向に広がる先端部16と、を含む。各基部15にはインシュレータ(不図示)を介してコイル12が巻回される。このコイル12に駆動電流が流れることにより突極14に沿って駆動磁束が発生する。   The stator core 11 has an annular portion 13 and four salient poles 14 extending from the annular portion 13 to the outer peripheral side. The stator core 11 is formed by, for example, laminating a plurality of thin electromagnetic steel plates and integrating them by caulking. Each salient pole 14 of the stator core 11 includes a base portion 15 extending from the annular portion 13 to the outer peripheral side, and a tip portion provided on the magnet 22 side of the base portion 15, that is, on the outer peripheral side of the base portion 15, and extending in the circumferential direction of the base portion 15. 16 is included. A coil 12 is wound around each base 15 via an insulator (not shown). When a drive current flows through the coil 12, a drive magnetic flux is generated along the salient pole 14.

ロータヨーク21は、軟磁性材料を用いて、略カップ状の所定の形状に形成される。マグネット22は、円筒状に形成され、ロータヨーク21の円筒状の内周面21aに接着固定される。マグネット22は、例えば、希土類磁石材料やフェライト磁石材料によって形成される。マグネット22にはその周方向に4極の駆動用着磁が施される。マグネット22は、ステータコア11の4本の突極14と所定の隙間を介して半径方向に対向する。したがって、実施の形態に係る単相ブラシレスモータ100は4極4スロット構造となっている。   The rotor yoke 21 is formed in a predetermined substantially cup shape using a soft magnetic material. The magnet 22 is formed in a cylindrical shape, and is bonded and fixed to the cylindrical inner peripheral surface 21 a of the rotor yoke 21. The magnet 22 is formed of, for example, a rare earth magnet material or a ferrite magnet material. The magnet 22 is magnetized for driving with four poles in the circumferential direction. The magnet 22 faces the four salient poles 14 of the stator core 11 in the radial direction via a predetermined gap. Therefore, single-phase brushless motor 100 according to the embodiment has a 4-pole 4-slot structure.

図2は、ステータコア11の突極14の1つとその周辺を拡大して示す拡大断面図である。図2では、コイル12の表示は省略している。図2において、第1直線L1は、基部15の両側面(すなわち第1側面15cおよび第2側面15d)のうちロータ20の回転方向(すなわちD方向)の前側に位置する第1側面15cに平行で回転軸Rを通る直線である。第2直線L2は、回転軸Rと、先端部16の周方向の両端部のうちロータ20の回転方向の前側に位置する端部(特に先端部16の外周面16cの周方向の第1端部E1)と、を通る直線である。第3直線L3は、回転軸Rと、先端部16の周方向の両端部のうちロータ20回転方向の後側に位置する端部(特に先端部16の外周面16cの周方向の第2端部E2)と、を通る直線である。   FIG. 2 is an enlarged cross-sectional view showing one of the salient poles 14 of the stator core 11 and its periphery. In FIG. 2, the display of the coil 12 is omitted. In FIG. 2, the first straight line L1 is parallel to the first side surface 15c located on the front side in the rotational direction (that is, the D direction) of the rotor 20 on both side surfaces (that is, the first side surface 15c and the second side surface 15d) of the base portion 15. Is a straight line passing through the rotation axis R. The second straight line L2 is the rotation axis R and the end portion located on the front side in the rotation direction of the rotor 20 among both ends in the circumferential direction of the tip portion 16 (particularly the first end in the circumferential direction of the outer peripheral surface 16c of the tip portion 16). Part E1). The third straight line L3 is a rotation axis R and an end portion located on the rear side in the rotation direction of the rotor 20 among both ends in the circumferential direction of the tip portion 16 (particularly the second end in the circumferential direction of the outer peripheral surface 16c of the tip portion 16). Part E2).

基部15は、軸方向から見て略矩形状に形成される。具体的には、基部15は、外周側ほど、周方向の幅が広くなるよう形成される。基部15は特に、回転軸Rに垂直な断面において、第1直線L1よりもロータ20の回転方向の前側の第1部分15aは半径方向の位置によらずに周方向の幅が実質的に一定で、第1直線L1よりもロータ20の回転方向の後側の第2部分15bは外周側ほど周方向の幅が広くなるよう(別の言い方をすると基部15の第2側面15dと第1直線L1とが外周側ほど離れるよう)形成される。本実施の形態では特に、第2部分15bは、その内周側の端部の周方向の幅W2が第1部分15aの周方向の幅W1よりも狭く、外周側の端部の周方向の幅W3が第1部分15aの周方向の幅W1よりも広くなるよう形成される。   The base 15 is formed in a substantially rectangular shape when viewed from the axial direction. Specifically, the base 15 is formed such that the width in the circumferential direction becomes wider toward the outer peripheral side. In particular, in the cross section perpendicular to the rotation axis R, the base portion 15 has a substantially constant width in the circumferential direction regardless of the radial position of the first portion 15a on the front side in the rotational direction of the rotor 20 relative to the first straight line L1. Thus, the second portion 15b on the rear side in the rotational direction of the rotor 20 with respect to the first straight line L1 is wider in the circumferential direction toward the outer peripheral side (in other words, the second side surface 15d of the base 15 and the first straight line L1 is formed so as to be separated from the outer peripheral side. Particularly in the present embodiment, the second portion 15b has a circumferential width W2 of the end portion on the inner circumferential side thereof that is narrower than a circumferential width W1 of the first portion 15a, and the circumferential length of the end portion on the outer circumferential side. The width W3 is formed to be wider than the circumferential width W1 of the first portion 15a.

先端部16は、軸方向から見て傘形状を有する。先端部16は、ロータ20の回転方向の後側の第2端部E2におけるロータ20との半径方向の隙間と、ロータ20の回転方向の前側の第1端部E1におけるロータ20との半径方向の隙間とが異なるように形成される。本実施の形態では、先端部16は、第2端部E2におけるロータ20との半径方向の隙間が、第1端部E1におけるロータ20との半径方向の隙間よりも広くなるよう形成される。より具体的には、本実施の形態では、先端部16は、第1端部E1から第2端部E2に向かうほどロータ20との半径方向の隙間が広くなるよう形成される。例えば、マグネット22の内周面22aを回転軸Rを中心とする円弧状に形成し、先端部16の外周面16cを回転軸Rとは異なる点を中心とする円弧状に形成することにより、これが実現される。   The tip portion 16 has an umbrella shape when viewed from the axial direction. The distal end portion 16 has a radial gap with the rotor 20 at the second end E2 on the rear side in the rotation direction of the rotor 20 and a radial direction with the rotor 20 at the first end E1 on the front side in the rotation direction of the rotor 20. The gaps are different from each other. In the present embodiment, the tip end portion 16 is formed such that the radial gap with the rotor 20 at the second end E2 is wider than the radial gap with the rotor 20 at the first end E1. More specifically, in the present embodiment, the distal end portion 16 is formed such that a radial gap with the rotor 20 becomes wider as it goes from the first end portion E1 to the second end portion E2. For example, the inner peripheral surface 22a of the magnet 22 is formed in an arc shape centered on the rotation axis R, and the outer peripheral surface 16c of the tip portion 16 is formed in an arc shape centered on a point different from the rotation axis R. This is realized.

また、先端部16は、第1直線L1よりもロータ20の回転方向の前側の第1部分16aの周方向の幅が、第1直線L1よりもロータ20の回転方向の後側の第2部分16bの周方向の幅よりも広くなるよう形成される。言い換えると、先端部16は、第1直線L1と第2直線L2とがなす角度θ1が、第1直線L1と第3直線L3とがなす角度θ2よりも大きくなるよう形成される。   Further, the front end portion 16 has a circumferential width of the first portion 16a on the front side in the rotational direction of the rotor 20 relative to the first straight line L1, and a second portion on the rear side in the rotational direction of the rotor 20 relative to the first straight line L1. It is formed to be wider than the circumferential width of 16b. In other words, the distal end portion 16 is formed such that the angle θ1 formed by the first straight line L1 and the second straight line L2 is larger than the angle θ2 formed by the first straight line L1 and the third straight line L3.

以上のように構成された単相ブラシレスモータ100の動作を説明する。駆動電流がコイル12に供給される。その駆動電流がコイル12を流れることにより、4本の突極14に沿って磁束が発生し、ロータ20が回転する。   The operation of the single-phase brushless motor 100 configured as described above will be described. A drive current is supplied to the coil 12. When the drive current flows through the coil 12, magnetic flux is generated along the four salient poles 14, and the rotor 20 rotates.

以上説明した本実施の形態に係る単相ブラシレスモータ100によると、先端部16は第1部分16aの周方向の幅が第2部分16bの周方向の幅よりも大きくなるよう形成される。言い換えると、先端部16は、角度θ1が角度θ2よりも大きくなるよう形成される。これにより、角度θ1と角度θ2とが等しい場合と比べて、電磁振動を低減できる。   According to the single-phase brushless motor 100 according to the present embodiment described above, the tip portion 16 is formed such that the circumferential width of the first portion 16a is larger than the circumferential width of the second portion 16b. In other words, the tip end portion 16 is formed such that the angle θ1 is larger than the angle θ2. Thereby, compared with the case where angle (theta) 1 and angle (theta) 2 are equal, electromagnetic vibration can be reduced.

また、本実施の形態に係る単相ブラシレスモータ100によると、基部15は、外周側ほど、周方向の幅が広くなるよう形成される。また、基部15は、第2部分15bの内周側の端部の周方向の幅W2は第1部分15aの内周側の端部の周方向の幅W1よりも狭く、第2部分15bの外周側の端部の周方向の幅W3は第1部分15aの外周側の周方向の幅W1よりも広くなるよう形成される。これにより、電磁振動をより一層低減できる。   In addition, according to single-phase brushless motor 100 according to the present embodiment, base 15 is formed so that the width in the circumferential direction becomes wider toward the outer peripheral side. Further, in the base portion 15, the circumferential width W2 of the inner circumferential end of the second portion 15b is narrower than the circumferential width W1 of the inner circumferential end of the first portion 15a, and the second portion 15b The circumferential width W3 of the outer peripheral end is formed to be wider than the circumferential width W1 of the first portion 15a on the outer circumferential side. Thereby, electromagnetic vibration can be further reduced.

本発明者らは、本実施の形態に係る単相ブラシレスモータ100による電磁振動の低減効果を確かめるため、単相ブラシレスモータ100と、比較例として、本実施の形態と略同じ構造の4極4スロット構造の単相ブラシレスモータについてシミュレーションを行った。単相ブラシレスモータ100と比較例に係る単相ブラシレスモータとの違いは、ステータコアの構成である。各ステータコアの構成は以下の通りである。
<本実施の形態に係る単相ブラシレスモータ100のステータコア11>
θ1=43°
θ2=39°
D1/D2=1.36
W1/D1=0.13
W2/D1=0.11
W3/D1=0.16
ここで、D1は円環部13の外径、D2は円環部13の内径である。
<比較例に係る単相ブラシレスモータのステータコア>
θ1=θ2=40°
D1/D2=1.36
W1/D1=0.15
W2/D1=0.12
W3/D1=0.15
In order to confirm the electromagnetic vibration reduction effect of the single-phase brushless motor 100 according to the present embodiment, the present inventors have compared the single-phase brushless motor 100 and a four-pole 4 having the same structure as the present embodiment as a comparative example. A single phase brushless motor with a slot structure was simulated. The difference between the single-phase brushless motor 100 and the single-phase brushless motor according to the comparative example is the configuration of the stator core. The configuration of each stator core is as follows.
<Stator core 11 of single-phase brushless motor 100 according to the present embodiment>
θ1 = 43 °
θ2 = 39 °
D1 / D2 = 1.36
W1 / D1 = 0.13
W2 / D1 = 0.11
W3 / D1 = 0.16
Here, D1 is the outer diameter of the annular portion 13, and D2 is the inner diameter of the annular portion 13.
<Stator core of single-phase brushless motor according to comparative example>
θ1 = θ2 = 40 °
D1 / D2 = 1.36
W1 / D1 = 0.15
W2 / D1 = 0.12
W3 / D1 = 0.15

図3、4はシミュレーション結果を示すグラフである。図3(a)はステータコアとマグネットとの間に生じる半径方向の電磁力の4の倍数の高調波成分を示し、図3(b)はステータコアとマグネットとの間に生じる回転方向の電磁力の4の倍数の高調波成分を示す。図3(a)、(b)において縦軸は電磁力の振幅を示す。特に、図3(b)に示されるように、本実施の形態に係る単相ブラシレスモータ100では、比較例に係る単相ブラシレスモータに比べて、ステータコアとマグネットとの間に生じる回転方向の電磁力の4の倍数の高調波成分のうち、電磁力の振幅の大きい8次、12次、16次、20次の高調波成分における電磁力が低減されている。   3 and 4 are graphs showing simulation results. FIG. 3A shows a harmonic component that is a multiple of 4 of the radial electromagnetic force generated between the stator core and the magnet, and FIG. 3B shows the rotational electromagnetic force generated between the stator core and the magnet. A harmonic component of a multiple of 4 is shown. 3A and 3B, the vertical axis represents the amplitude of the electromagnetic force. In particular, as shown in FIG. 3B, in the single-phase brushless motor 100 according to the present embodiment, in comparison with the single-phase brushless motor according to the comparative example, electromagnetic waves in the rotational direction generated between the stator core and the magnet. Among the harmonic components that are multiples of 4 times the force, the electromagnetic forces in the 8th, 12th, 16th, and 20th harmonic components having a large amplitude of the electromagnetic force are reduced.

また、本発明者らは、ステータコア11の形状を種々変えながら電磁力を計算し、θ2/θ1が0.81〜0.99の範囲の場合、従来と同程度のトルクを得ることができ、かつ、電磁振動を低減できることを確認した。また発明者らは、θ2/θ1=0.9の場合は特に、従来と同程度のトルクを得ることができ、かつ、電磁振動を最も低減できることを確認した。   Further, the present inventors can calculate the electromagnetic force while changing the shape of the stator core 11 variously, and when θ2 / θ1 is in the range of 0.81 to 0.99, the torque comparable to the conventional one can be obtained, And it was confirmed that electromagnetic vibration can be reduced. In addition, the inventors have confirmed that particularly when θ2 / θ1 = 0.9, it is possible to obtain the same level of torque as in the prior art and to reduce the electromagnetic vibration most.

図4は、コギングトルクを示す。図4において横軸は回転角度を示し、縦軸はコギングトルクを示す。図4に示されるように、本実施の形態に係る単相ブラシレスモータ100によると、比較例に係る単相ブラシレスモータに比べ、電磁力のみならず、コギングトルクも低減(図4の例では24%低減)することができる。   FIG. 4 shows the cogging torque. In FIG. 4, the horizontal axis indicates the rotation angle, and the vertical axis indicates the cogging torque. As shown in FIG. 4, according to the single-phase brushless motor 100 according to the present embodiment, not only the electromagnetic force but also the cogging torque is reduced as compared with the single-phase brushless motor according to the comparative example (24 in the example of FIG. 4). % Reduction).

以上、実施の形態に係る単相ブラシレスモータについて説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下変形例を示す。
(変形例1)
実施の形態では、ステータコア11の突極14の数が4本である場合について説明したが、これに限られない。ステータコア11の突極14の数は、例えば6本であってもよい。この場合にも、θ2/θ1が0.81〜0.99の範囲であれば、従来と同程度のトルクを得ることができ、かつ、電磁振動を低減できる。
The single-phase brushless motor according to the embodiment has been described above. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there. A modification is shown below.
(Modification 1)
In the embodiment, the case where the number of salient poles 14 of the stator core 11 is four has been described, but the present invention is not limited to this. For example, the number of salient poles 14 of the stator core 11 may be six. In this case as well, if θ2 / θ1 is in the range of 0.81 to 0.99, it is possible to obtain the same level of torque as in the prior art and reduce electromagnetic vibration.

(変形例2)
実施の形態では、マグネット22がステータコア11の外側に位置する、いわゆるアウターロータ型の単相ブラシレスモータについて説明したが、これに限られない。たとえばマグネットがステータコアの内側に位置する、いわゆるインナーロータ型の単相ブラシレスモータであってもよい。
(Modification 2)
In the embodiment, a so-called outer rotor type single-phase brushless motor in which the magnet 22 is located outside the stator core 11 has been described. However, the present invention is not limited to this. For example, a so-called inner rotor type single-phase brushless motor in which a magnet is positioned inside a stator core may be used.

(変形例3)
実施の形態では、ステータコア11が積層コアである場合について説明したが、これに限られない。例えば、ステータコア11はソリッドコアであってもよい。
(Modification 3)
Although the case where the stator core 11 is a laminated core has been described in the embodiment, the present invention is not limited to this. For example, the stator core 11 may be a solid core.

上述した実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。   Any combination of the above-described embodiments and modifications is also useful as an embodiment of the present invention. The new embodiment generated by the combination has the effects of the combined embodiment and the modified examples.

10 ステータ、 11 ステータコア、 12 コイル、 13 円環部、 14 突極、 15 基部、 16 先端部、 20 ロータ、 22 マグネット、 100 単相ブラシレスモータ、 R 回転軸。   10 stator, 11 stator core, 12 coil, 13 annular part, 14 salient pole, 15 base, 16 tip, 20 rotor, 22 magnet, 100 single-phase brushless motor, R rotating shaft.

Claims (4)

ステータと、
ステータに対して回転するロータと、を備え、
前記ステータは、
複数の突極を有するコアと、
前記複数の突極に巻き線されて形成されるコイルと、を備え、
前記ロータは、前記突極と半径方向に対向し、前記突極側の面に周方向に複数の磁極を有するマグネットを含み、
前記突極は、コイルが巻かれる基部と、前記基部より前記マグネット側に設けられ、前記基部よりも周方向に広がる先端部と、を含み、
前記先端部と前記ロータとの半径方向の隙間は、前記先端部の周方向の両端部のうちの前記ロータの回転方向の前側の第1端部と後側の第2端部とで異なっており、
前記ロータの回転軸に垂直な断面において、
前記基部の両側面のうちの前記ロータの回転方向の前側に位置する側面に実質的に平行で前記回転軸を通る第1直線と、前記回転軸と前記第1端部とを通る第2直線とがなす角が、前記第1直線と、前記回転軸と前記第2端部とを通る第3直線とがなす角よりも大きいことを特徴とする単相ブラシレスモータ。
A stator,
A rotor that rotates relative to the stator,
The stator is
A core having a plurality of salient poles;
A coil formed by being wound around the plurality of salient poles,
The rotor includes a magnet facing the salient pole in the radial direction and having a plurality of magnetic poles in a circumferential direction on a surface on the salient pole side,
The salient pole includes a base on which a coil is wound, and a tip provided on the magnet side from the base and extending in the circumferential direction from the base,
The radial clearance between the tip portion and the rotor differs between the first end portion on the front side and the second end portion on the rear side in the rotational direction of the rotor among the circumferential end portions of the tip portion. And
In a cross section perpendicular to the rotation axis of the rotor,
A first straight line that passes through the rotation axis and is substantially parallel to a side surface of the both sides of the base that is located on the front side in the rotational direction of the rotor, and a second straight line that passes through the rotation shaft and the first end. The single-phase brushless motor is characterized in that an angle between the first straight line and a third straight line passing through the rotating shaft and the second end is larger.
前記第1直線と前記第2直線とがなす角に対する前記第1直線と前記第3直線とがなす角の比が0.81〜0.99であることを特徴とする請求項1に記載の単相ブラシレスモータ。   The ratio of the angle formed by the first straight line and the third straight line to the angle formed by the first straight line and the second straight line is 0.81 to 0.99. Single phase brushless motor. 前記第1直線と前記第2直線とがなす角に対する前記第1直線と前記第3直線とがなす角の比が0.9であることを特徴とする請求項1に記載の単相ブラシレスモータ。   2. The single-phase brushless motor according to claim 1, wherein a ratio of an angle formed by the first straight line and the third straight line to an angle formed by the first straight line and the second straight line is 0.9. . 前記ロータの回転軸に垂直な断面において、
前記基部は、前記第1直線と前記基部の両側面のうちの前記ロータの回転方向の後側の側面とが半径方向外側ほど離れるよう構成されることを特徴とする請求項1から3のいずれかに記載の単相ブラシレスモータ。
In a cross section perpendicular to the rotation axis of the rotor,
The said base part is comprised so that the radial direction outer side may leave | separate the said 1st straight line and the back side surface of the rotation direction of the said rotor of the both sides | surfaces of the said base part. A single-phase brushless motor according to claim 1.
JP2016037496A 2016-02-29 2016-02-29 Single phase brushless motor Active JP6385969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037496A JP6385969B2 (en) 2016-02-29 2016-02-29 Single phase brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037496A JP6385969B2 (en) 2016-02-29 2016-02-29 Single phase brushless motor

Publications (2)

Publication Number Publication Date
JP2017158241A true JP2017158241A (en) 2017-09-07
JP6385969B2 JP6385969B2 (en) 2018-09-05

Family

ID=59810547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037496A Active JP6385969B2 (en) 2016-02-29 2016-02-29 Single phase brushless motor

Country Status (1)

Country Link
JP (1) JP6385969B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207853A (en) * 1982-05-26 1983-12-03 Nippon Densan Kk Brushless motor
JPH08126280A (en) * 1994-10-20 1996-05-17 Mitsumi Electric Co Ltd Outer-rotor type two-phase brushless motor
JP2003193993A (en) * 2001-12-27 2003-07-09 Matsushita Electric Ind Co Ltd Du pump
JP2006020459A (en) * 2004-07-02 2006-01-19 Asmo Co Ltd Stator core and dynamo-electric machine equipped with the same
JP2007306782A (en) * 2006-04-14 2007-11-22 Japan Servo Co Ltd Single-phase motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207853A (en) * 1982-05-26 1983-12-03 Nippon Densan Kk Brushless motor
JPH08126280A (en) * 1994-10-20 1996-05-17 Mitsumi Electric Co Ltd Outer-rotor type two-phase brushless motor
JP2003193993A (en) * 2001-12-27 2003-07-09 Matsushita Electric Ind Co Ltd Du pump
JP2006020459A (en) * 2004-07-02 2006-01-19 Asmo Co Ltd Stator core and dynamo-electric machine equipped with the same
JP2007306782A (en) * 2006-04-14 2007-11-22 Japan Servo Co Ltd Single-phase motor

Also Published As

Publication number Publication date
JP6385969B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
US9356479B2 (en) Hybrid excitation rotating electrical machine
JP6001378B2 (en) Rotor and motor
JP2007336671A (en) Rotor of permanent magnet rotary electric machine
JP6627082B2 (en) Electric motor
JP2014039461A (en) Afpm motor
JP6370655B2 (en) Permanent magnet type rotating electric machine
JP2020188611A (en) Rotor and motor having the same
US6781260B2 (en) Permanent magnet type rotary machine
JP2006333656A (en) Rotor of rotary electric machine and rotary electric machine using same
JP5826596B2 (en) Rotor and motor
JPWO2020194390A1 (en) Rotating machine
CN103259354B (en) Rotor and motor
JP2007202363A (en) Rotary-electric machine
JP2006254622A (en) Permanent magnet type motor
JP6385969B2 (en) Single phase brushless motor
JP6062991B2 (en) Rotor and motor
JP6357870B2 (en) Permanent magnet motor
CN113036961A (en) Rotating electrical machine
JP6399071B2 (en) Rotating electric machine
WO2018135409A1 (en) Rotor and motor using same
WO2022219923A1 (en) Rotor and electric motor
JP2012060709A (en) Permanent magnet motor
WO2024117216A1 (en) Rotor
JP2013081284A (en) Embedded magnet type rotary electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150