JP2017157925A - 投影装置及び投影システム - Google Patents

投影装置及び投影システム Download PDF

Info

Publication number
JP2017157925A
JP2017157925A JP2016037386A JP2016037386A JP2017157925A JP 2017157925 A JP2017157925 A JP 2017157925A JP 2016037386 A JP2016037386 A JP 2016037386A JP 2016037386 A JP2016037386 A JP 2016037386A JP 2017157925 A JP2017157925 A JP 2017157925A
Authority
JP
Japan
Prior art keywords
image
projection
excitation light
fluorescence
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037386A
Other languages
English (en)
Other versions
JP6085382B1 (ja
Inventor
朋之 齊藤
Tomoyuki Saito
朋之 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2016037386A priority Critical patent/JP6085382B1/ja
Application granted granted Critical
Publication of JP6085382B1 publication Critical patent/JP6085382B1/ja
Publication of JP2017157925A publication Critical patent/JP2017157925A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】被写体の撮像画像に基づく投影動作を行う投影装置において、精度良く被写体の撮像を行うことができる投影装置を提供する。【解決手段】投影装置(20)は、光源部(230)と、撮像部(210)と、投影部(220)と、制御部(250)とを備える。光源部は、被写体に励起光(300)を照射する。撮像部は、励起光によって被写体が発する蛍光(310)に基づく蛍光画像(IA)を撮像する。投影部は、蛍光画像に基づく投影画像(G13)を被写体に投影する。制御部は、撮像部により撮像された蛍光画像に基づき投影画像を制御する。撮像部は、蛍光画像に加えて、被写体における励起光の照度分布を示す励起光画像(IB)を撮像する。制御部は、励起光画像に基づいて、被写体における励起光の照度の違いによる影響を、補正前の蛍光画像よりも低減するように蛍光画像を補正する。【選択図】図7

Description

本開示は、被写体の撮像画像に基づく投影動作を行う投影装置及び投影システムに関する。
特許文献1は、医療分野において用いられる光学撮像システムを開示している。特許文献1の光学撮像システムは、術野を撮像する電子撮像装置と、手術中の術野の撮像結果の可視光像を投影するプロジェクタと、電子撮像装置及びプロジェクタの光軸を同一の光軸に揃える光学素子とを備える。特許文献1では、撮像データに対して拡大、縮小、回転及び並進などの変換を行う変換行列を用いて、同一光軸上の撮像画像と投影画像との対応関係を手術前に予め調整することにより、手術時に投影画像を正確に投影するためのキャリブレーションを行っている。
米国特許出願公開第2008/0004533号明細書
本開示の目的は、被写体の撮像画像に基づく投影動作を行う投影装置において、精度良く被写体の撮像を行うことができる投影装置及び投影システムを提供することである。
本開示における投影装置は、光源部と、撮像部と、投影部と、制御部とを備える。光源部は、被写体に励起光を照射する。撮像部は、励起光によって被写体が発する蛍光に基づく蛍光画像を撮像する。投影部は、蛍光画像に基づく投影画像を被写体に投影する。制御部は、撮像部により撮像された蛍光画像に基づき投影画像を制御する。撮像部は、蛍光画像に加えて、被写体における励起光の照度分布を示す励起光画像を撮像する。制御部は、励起光画像に基づいて、被写体における励起光の照度の違いによる影響を、補正前の蛍光画像よりも低減するように蛍光画像を補正する。
本開示における投影装置及び投影システムによれば、被写体の撮像画像に基づく投影動作を行う投影装置において、精度良く被写体の撮像を行うことができる。
実施の形態1にかかる手術支援システムの構成を示す概略図 手術支援システムにおける撮像照射装置の構成を示すブロック図 撮像照射装置の光学フィルタを説明するための図 手術支援システムにおける投影動作を説明するためのフローチャート 手術支援システムにおける投影動作前の術野の状態を説明するための図 手術支援システムにおける投影動作時の術野の状態を説明するための図 撮像照射装置による補正前の投影画像の表示例を示す図 撮像照射装置による励起光の照射状態を説明するための図 撮像照射装置による補正後の投影画像の表示例を示す図 実施の形態1における輝度補正処理のタイミングを示すタイミングチャート 実施の形態1における輝度補正処理を示すフローチャート 輝度補正処理による画像の補正方法を説明するための図 輝度補正処理における正規化を説明するための図 実施の形態2における輝度補正処理のタイミングを示すタイミングチャート 実施の形態2における輝度補正処理を示すフローチャート
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1)
1.構成
1−1.手術支援システムの概要
実施の形態1にかかる投影装置を備えた投影システムの一例である手術支援システムの概要を、図1を用いて説明する。図1は、実施の形態1にかかる手術支援システム100の構成を示す概略図である。
手術支援システム100は、カメラ210、プロジェクタ220及び励起光源230を備える。手術支援システム100は、手術室等において医師等が患者に対して行う手術を、投影画像を用いて視覚的にサポートするシステムである。手術支援システム100を使用する場合に、手術を受ける患者120には、予め光感受性物質が投与される。
光感受性物質は、励起光に反応して蛍光を発する物質である。光感受性物質としては、例えばICG(インドシアニングリーン)、5−ALA(アミノレブリン酸)及びポリフェリンなどが用いられる。本実施形態では、光感受性物質の一例として、ICGを用いた場合を説明する。ICGは、波長780nm近傍の赤外領域の励起光が照射されることにより、波長820〜860nmの赤外領域の蛍光を発する。
光感受性物質は、患者120に投与されると、血液又はリンパ液の流れが滞っている患部130に蓄積する。このため、励起光の照射に応じて蛍光発光する領域を検出することにより、患部130の領域を特定することが可能となる。
ここで、患部130が発する蛍光は微弱であったり、蛍光の波長帯が非可視領域又は非可視領域近傍であったりするため、医師等は、術野135を目視しても、患部130の領域を特定することが困難である。そこで、手術支援システム100では、励起光源230から術野135に励起光300を照射し、カメラ210を用いて蛍光310を発する患部130の領域を特定する。さらに、特定した患部130が人間に視認可能となるように、プロジェクタ220から患部130に可視光の投影光320を照射する。これにより、特定した患部130の領域を可視化する投影画像が投影され、手術を行う医師等による患部130の領域の特定をサポートすることができる。
1−2.手術支援システムの構成
以下、手術支援システム100の構成について、図1を用いて説明する。手術支援システム100は、病院の手術室内に配置されて使用される。手術支援システム100は、撮像照射装置200と、メモリ240と、投影制御装置250とを備える。
また、図示していないが、手術支援システム100は、撮像照射装置200の配置を変更するための機構、例えば、撮像照射装置200と機械的に接続された駆動アーム、及び手術支援システム100の一式を載置する台座のキャスターなどを備える。上記の機構により、撮像照射装置200は、患者120が対置される手術台110の鉛直上方に配置される。また、手術台110は、高さ及び向きを変更可能な駆動機構を備えてもよい。
撮像照射装置200は、カメラ210、プロジェクタ220、及び励起光源230が一体的に組み付けられた装置である。撮像照射装置200は、図1に示すように、ダイクロイックミラー201をさらに備える。撮像照射装置200の構成の詳細については後述する。
メモリ240は、投影制御装置250が種々の演算を実行する際に、適宜アクセスを行う記憶媒体である。メモリ240は、例えばROM及びRAMで構成される。
投影制御装置250は、手術支援システム100を構成する各部を統括制御する。投影制御装置250は、カメラ210、プロジェクタ220、励起光源230、及びメモリ240に電気的に接続され、各部をそれぞれ制御するための制御信号を出力する。投影制御装置250は、例えばCPUで構成され、所定のプログラムを実行することによってその機能を実現する。なお、投影制御装置250の機能は、専用に設計された電子回路や再構成可能な電子回路(FPGA、又はASIC等)により実現されてもよい。
投影制御装置250は、例えば、カメラ210による撮像画像に対して種々の画像処理を行って、投影画像を示す映像信号を生成する。投影制御装置250は、本開示における制御部の一例である、撮像照射装置200、メモリ240及び投影制御装置250は、本実施形態にかかる投影装置20を構成する。
また、本実施形態において、手術支援システム100は、表示制御装置150と、ディスプレイ160と、マウス170とを備える。表示制御装置150は、例えばPC(パーソナルコンピュータ)で構成され、投影制御装置250に接続されている。ディスプレイ160は、例えば液晶ディスプレイ又は有機ELディスプレイであり、本開示における表示装置の一例である。
表示制御装置150の操作者140は、例えば手術中に、カメラ210の撮像画像をディスプレイ160において確認することができ、撮像画像による画像診断を行うことができる。また、操作者140は、投影画像の種々の設定(例えば蛍光の強度分布に対するしきい値)を変更することができる。
1−3.撮像照射装置の構成
次に、撮像照射装置200の構成の詳細について、図2,3を用いて説明する。図2は、手術支援システムにおける撮像照射装置200の構成を示すブロック図である。図3は、撮像照射装置200の光学フィルタ213を説明するための図である。
励起光源230は、光感受性物質を蛍光発光させるための励起光300を照射する光源装置である。本実施形態では、光感受性物質としてICGを用いることから、励起光源230は、ICGの励起波長を含む波長帯(例えば780nm±30nm)を有する励起光300を照射する。励起光源230は、投影制御装置250からの制御信号に従って、励起光300の照射のON/OFFを切り替える。励起光源230は、本開示における光源部の一例である。なお、励起光源230は、撮像照射装置200(或いは投影装置20)とは別体で構成されてもよい。
カメラ210は、患者120の術野135などの被写体を撮像して撮像画像を生成する。カメラ210は、生成した撮像画像を投影制御装置250に伝送する。本実施形態では、カメラ210として、可視光領域とともにICGの蛍光820nm〜860nmの波長帯の光に基づき撮像可能な赤外カメラを用いる。カメラ210は、本実施形態における撮像部の一例である。カメラ210は、図2に示すように、撮像素子211と、望遠レンズ212と、光学フィルタ213とを備える。
撮像素子211は、例えばCCDイメージセンサ又はCMOSイメージセンサなどで構成される。撮像素子211は、望遠レンズ212から入射する光が結像する撮像面を有する。
望遠レンズ212は、カメラ210の画角を設定するズームレンズ、及びフォーカスを調整するフォーカスレンズを含む。望遠レンズ212は、カメラ210における撮像光学系の一例である。望遠レンズ212に代えて、標準レンズ、中望遠レンズ又は超望遠レンズが用いられてもよい。
光学フィルタ213は、蛍光透過フィルタ213a、励起光透過フィルタ213b、及びフィルタ切替え機構213sを備えて構成される。図2に示すように、光学フィルタ213は、望遠レンズ212の入射面に配置される。
蛍光透過フィルタ213a及び励起光透過フィルタ213bは、入射する光のうちで、それぞれ特有の波長帯Wa,Wbの成分を透過し、他の波長帯成分を遮断するバンドパスフィルタである。図3は、励起光300が有する波長帯W1、ICGによる蛍光310が有する波長帯W2、蛍光透過フィルタ213aが透過する波長帯Wa及び励起光透過フィルタ213bが透過する波長帯W4をそれぞれ示している。
図3に示すように、蛍光透過フィルタ213aの透過波長帯Waは、励起光の波長帯W1を含まず、蛍光310の波長帯W2の中心波長w2近傍を含んでいる。これにより、蛍光透過フィルタ213aは、励起光300を遮断して蛍光310を透過する。また、励起光透過フィルタ213bの透過波長帯Wbは、蛍光310の波長帯W2を含まず、励起光300の波長帯W1の中心波長w1近傍を含んでいる。これにより、励起光透過フィルタ213bは、蛍光310を遮断して励起光300を透過する。
図2に戻り、フィルタ切替え機構213sは、例えば投影制御装置250からの制御信号(フィルタ切替え信号Sf)に基づき、望遠レンズ212への入射光に対して、蛍光透過フィルタ213aと励起光透過フィルタ213bとを切り替える。フィルタ切替え機構213sは、例えば各フィルタ213a,213bをスライドさせる直動ユニットやアクチュエータ、或いは各フィルタ213a,213bを回転させる回転ホイールなどで構成される。本実施形態において、光学フィルタ213は、フィルタ切替え機構213sにより、励起光透過フィルタ213bを介して励起光300を透過する第1の状態と、蛍光透過フィルタ213aを介して蛍光310を透過する第2の状態とを切り替える。本実施形態では、第2の状態の光学フィルタ213は、蛍光透過フィルタ213aにより、励起光を遮断して前記蛍光を透過する。
プロジェクタ220は、例えばDLP方式、3LCD方式又はLCOS方式などのプロジェクタである。プロジェクタ220は、投影制御装置250から入力される映像信号に基づく投影画像を可視光で投影するように、投影光315を出射する。プロジェクタ220は、本実施形態における投影部の一例である。プロジェクタ220は、図2に示すように、投影光源221と、画像形成部222と、投影光学系223とを備える。
投影光源221は、例えばLD(半導体レーザ)、LED又はハロゲンランプなどで構成される。投影光源221は、可視光を画像形成部222に照射する。投影光源221は、プロジェクタ220の投影方式に応じて適宜、単色の光源素子のみを有してもよいし、RGB等の複数色の光源素子、或いは白色の光源素子を有してもよい。
画像形成部222は、DMD又はLCDなどの空間光変調素子を備える。画像形成部222は、空間光変調素子における画像形成面に、投影制御装置250からの映像信号に基づく画像を形成する。投影光源221からの光が、画像形成部222に形成された画像に応じて空間的に変調されることにより、投影光315が生成される。
投影光学系223は、プロジェクタ220の画角を設定するズームレンズ、及びフォーカスを調整するフォーカスレンズを含む。また、投影光学系223には、各種のレンズ位置をシフトするレンズシフト機構が組み込まれていてもよい。
なお、プロジェクタ220は、例えば台形補正およびレンズシフト機能などのプロジェクタ220特有の機能を実現する投影制御回路を有してもよい。また、上記の各機能は、投影制御装置250において実現されてもよい。
また、プロジェクタ220は、レーザ走査式であってもよく、走査方向に駆動可能なMEMSミラー或いはガルバノミラーを備えて構成されてもよい。
ダイクロイックミラー201は、入射する光のうちの特定の波長帯成分を透過する一方、その他の波長帯成分を反射する光学特性を有する光学素子である。本実施形態において、ダイクロイックミラー201は(ICGの蛍光を含む)650nmを上回る波長帯成分の光を透過し、(可視光を含む)650nmを下回る波長帯成分の光を反射する。ダイクロイックミラー201は、本実施形態における光学部の一例である。光学部の光学特性は、使用する光感受性物質の蛍光特性に応じて適宜、設定可能である。
図2に示すように、ダイクロイックミラー201は、カメラ210と、プロジェクタ220とのそれぞれに対向して配置される。ダイクロイックミラー201は、上記の光学特性により、カメラ210の撮像面に向かう蛍光310を透過する一方、プロジェクタ220から照射された投影光315を反射する。反射した投影光320は、術野135上に照射される。
本実施形態では、ダイクロイックミラー201は、術野135からの蛍光310などのカメラ210に入射する入射光の光軸と、術野135上に投影画像を投影する投影光320の光軸とが、光軸J1において一致するように導光する。これにより、カメラ210の撮像画像に基づく投影画像の位置ずれを低減することができる。
なお、本開示における光軸の一致には、適宜、許容誤差が設定されてもよい。例えば、角度が±5度の範囲内、或いは光軸の間隔が1cmの範囲内の許容誤差において、各光軸が一致してもよい。また、カメラ210とプロジェクタ220の光軸を一致させなくてもよい。この場合、ダイクロイックミラー201を省略してもよい。
2.動作
以下、本実施形態にかかる手術支援システム100の動作について説明する。
2−1.手術支援システムの基本的な投影動作
手術支援システム100の基本的な投影動作について、図4,5A,5Bを用いて説明する。図4は、手術支援システム100における基本的な投影動作を説明するためのフローチャートである。図5Aは、投影動作を行う前の手術支援システム100における術野135の状態を示す。図5Bは、図5Aの術野135に対して投影動作を行った状態を示す。
図4のフローチャートは、投影制御装置250によって実行される。本フローチャートによる処理は、カメラ210において光学フィルタ213が蛍光透過フィルタ213aに設定された状態で行われる。
図4のフローチャートにおいて、まず、投影制御装置250は、励起光源230を駆動して、図5Aに示すように、励起光300を術野135に照射する(S1)。励起光300の照射により、術野135における患部130が蛍光発光し、患部130からの蛍光310が撮像照射装置200に入射する。
撮像照射装置200において、蛍光310は図2に示すように、ダイクロイックミラー201を透過し、カメラ210の光学フィルタ213を透過する。これにより、カメラ210は、撮像素子211において蛍光310を受光する。
次に、投影制御装置250は、例えばカメラ210を制御して術野135を撮像させ、カメラ210から撮像画像を取得する(S2)。撮像画像には、患部130が発した蛍光310に基づく蛍光発光領域が含まれる。なお、この処理は、所定の周期(例えば1/60〜1/30秒)で繰り返し実行される。
次に、投影制御装置250は、取得した撮像画像に基づく投影画像を生成するための画像処理を行う(S3)。投影制御装置250は、撮像画像中の蛍光発光領域に対応する画像を生成し、映像信号としてプロジェクタ220に出力する。
ステップS3の画像処理において、投影制御装置250は、例えば、撮像画像における受光強度の分布に対して所定のしきい値に基づき二値化を行い、撮像画像中の蛍光発光領域の領域を抽出する。次いで、投影制御装置250は、メモリ240に格納された各種パラメータを参照し、抽出した領域を含む画像に対してシフト、回転、及び拡大/縮小などの座標変換、並びに画像の歪み等の補正などを行う。これにより、撮像画像中の蛍光発光領域に応じた特定の領域を表す画像が生成される。
次に、投影制御装置250は、生成した映像信号に基づく投影画像を投影するように、プロジェクタ220を制御する(S4)。投影制御装置250の制御により、プロジェクタ220において、投影制御装置250からの映像信号に応じた画像が、画像形成部222の画像形成面上に形成される。プロジェクタ220は、可視光で画像形成面上の画像を表す投影光315を生成するように投影光源221を駆動し、投影光学系223を介してダイクロイックミラー201に投影光315を出射する(図2参照)。
ダイクロイックミラー201は、図2に示すように、可視光である投影光315を反射し、光軸J1に沿って投影光320を出射する。これにより、図5Bに示すように、撮像照射装置200は術野135に投影光320を照射し、投影画像G320が、術野135における患部130に投影される。投影画像G320は、例えば単色で一階調の画像である。
以上の処理により、投影制御装置250が、カメラ210の撮像画像に基づき蛍光発光する患部130の領域を特定し、プロジェクタ220から可視光の投影画像G320が患部130に投影される。これにより、手術支援システム100において、目視では視認することが困難な患部130を可視化することができる。手術支援システム100により、医師等は患部130のリアルタイムの状態を視認することができる。
以上の説明では、投影画像G320が単色で一階調の画像の例を説明した。投影制御装置250は、例えば複数のしきい値を用いて撮像画像中の蛍光発光の強度を領域毎に多段階で判定することにより、多階調の投影画像を生成してもよい。また、投影制御装置250は、撮像画像における蛍光発光の強度の分布を連続的に再現するように、投影画像を生成してもよい。また、投影画像は、単色に限らず、複数色あるいはフルカラーで生成されてもよい。
2−2.輝度補正について
2−2−1.概要
本実施形態にかかる手術支援システム100における輝度補正の動作の概要について、図6A,6B,6Cを参照して説明する。図6Aは、撮像照射装置200による補正前の投影画像G13’の表示例を示す図である。図6Bは、撮像照射装置200による励起光300の照射状態を説明するための図である。図6Cは、撮像照射装置200による補正後の投影画像G13の表示例を示す図である。
図6A〜6Cの例においては、肝臓13が、手術支援システム100の撮像照射装置200の被写体である。図6A〜6Cの例では、ICGが肝臓13の全体に注入され、一様な濃度で蓄積していることとする。また、図6A,6Bの投影画像G13’,G13は、それぞれ肝臓13の撮像画像における蛍光発光の強度に対して複数のしきい値を用いて、多階調に投影可能になっていることとする。
図6Aの表示例では、ICGが肝臓13の全体に注入されているにも関わらず、投影画像G13’において階調が不均一であり、輝度ムラを生じている。図6Aに示すような輝度ムラは、肝臓13(被写体)の撮像時に術野135に照射される励起光300の照度の分布に起因する。
励起光300が照射される肝臓13表面では、図6Bに示すように、撮像照射装置200から励起光300を照射する位置及び向き、並びに肝臓13の立体形状などにより、励起光300の照度の分布にムラが生じる。すると、肝臓13において同一の濃度のICGが蓄積している箇所であっても、蛍光発光の強度が変動してしまう。このため、手術及び画像診断において蛍光発光の強度を患部の判断基準として用いる場合に、判断基準の信頼性が低下するという問題がある。
そこで、本実施形態にかかる手術支援システム100では、肝臓13などの被写体における励起光300の照度分布の撮像画像(以下、「励起光画像」という。)を取得し、励起光300によって生じる蛍光発光に基づく撮像画像(以下、「蛍光画像」という)を補正する。これにより、図6Cに示すように、励起光300の照度分布に関わらず均一で信頼性の高い投影画像G13を得ることができる。以下、本実施形態にかかる輝度補正処理について説明する。
2−2−2.輝度補正処理
本実施形態に係る輝度補正処理について、図7,8を用いて説明する。図7は、本実施形態における輝度補正処理のタイミングを示すタイミングチャートである。図8は、本実施形態における輝度補正処理を示すフローチャートである。
図7は、本実施形態における輝度補正処理が実行される際のフィルタ切替え信号Sfのタイミングチャート、撮像画像Iの取得タイミング及び投影画像G13の生成タイミングを示している。輝度補正処理は、励起光画像IBに基づき励起光300の照度分布に対する蛍光画像IAの輝度を補正し、投影画像G13を生成する処理であり、投影制御装置250によって実行される。本実施形態では、図7に示すように、例えば図1の表示制御装置150を介して操作者140による所定の指示があった時刻t1から輝度補正処理を開始する。
なお、時刻t1より前は、補正処理を行わず通常の処理であるため、投影制御装置250は、図4に示す動作となる。
本実施形態に係る輝度補正処理では、フィルタ切替え信号Sfに基づいて、カメラ210の撮像画像Iを励起光画像IBと蛍光画像IAとの間で交互に切替える。このとき、所定のフレームレート(例えば1/60〜1/30秒)において励起光画像IBを撮像する期間Tnが蛍光画像IAを撮像する期間Tmよりも短くなるように設定する。これにより、例えば手術中などにリアルタイムで目視し続ける際に、経時的にも信頼性の高い投影画像G13を得ることができる。以下、図8を用いて、輝度補正処理の流れを説明する。
図8のフローチャートにおいて、まず、投影制御装置250は、図4のステップS1と同様に励起光源230から励起光300を術野135に照射する。本実施形態では、励起光300の照射は、輝度補正処理の実行中にわたって継続的に行われる。
次に、投影制御装置250は、図7に示すようにフィルタ切替え信号Sfを「0」から「1」に変更し、光学フィルタ213を蛍光透過フィルタ213aから励起光透過フィルタ213bに切替える(S12)。これにより、図3に示すように励起光透過フィルタ213bを介して蛍光310が遮断され、励起光300の反射光のみがカメラ210に入射する。
次に、投影制御装置250は、例えばカメラ210を制御し、励起光透過フィルタ213bを介して術野135を撮像させる(S13)。ステップS13により、図7に示すようにフィルタ切替え信号Sfが「1」に設定された期間Tnにおいて、カメラ210は、照射された励起光300の照度が術野135上で分布する励起光画像IB(図9)を撮像する。投影制御装置250は、カメラ210から励起光画像IBを取得する。
また、投影制御装置250は、ステップS12の励起光透過フィルタ213bへの切替え前の撮像結果に基づいて、図7に示すように、プロジェクタ220に、前回の制御周期(フレーム)で投影した投影画像を引き続き投影させる(S14)。これにより、励起光画像IBを取得中の期間Tnにおいて、術野135に投影される投影画像を補間することができる。
次に、投影制御装置250は、取得した励起光画像IBのフレーム数が、Nフレーム(Nは2以上の整数)に到達したか否かを判断する(S15)。投影制御装置250は、取得した励起光画像IBのフレーム数がNフレームに到達していないとき(S15でNO)、ステップS12以降の処理を繰り返す。これにより、期間Tn中にNフレームの励起光画像IBが取得される。
取得した励起光画像IBのフレーム数がNフレームに到達したとき(S15でYES)、投影制御装置250は、Nフレームの励起光画像IBのフレーム平均を行い、正規化データDn(図9)を生成する(S16)。正規化データDnは、蛍光画像IAの輝度を補正するための正規化係数を示すデータであり、フレーム平均後の励起光画像IB’に基づき算出される。正規化データDnの算出方法については後述する。投影制御装置250は、算出した正規化データDnをメモリ240に格納する。
また、投影制御装置250は、図7に示すように時刻t1から期間Tn後の時刻t2においてフィルタ切替え信号Sfを「1」から「0」に変更し、光学フィルタ213を励起光透過フィルタ213bから蛍光透過フィルタ213aに切替える(S17)。これにより、時刻t2において図3に示すように蛍光透過フィルタ213aを介して励起光300が遮断され、術野135からの蛍光310のみがカメラ210に入射する。
次に、投影制御装置250は、カメラ210に、蛍光透過フィルタ213aを介して術野135を撮像させる(S18)。ステップS18により、図7に示すようにフィルタ切替え信号Sfが「0」に設定された期間Tmにおいて、カメラ210は、術野135の患部120から生じた蛍光に基づく蛍光画像IAを撮像する。投影制御装置250は、カメラ210から蛍光画像IAを取得する。
次に、投影制御装置250は、ステップS16において算出した正規化データDnを読み出して、カメラ210から取得した蛍光画像IAを補正する(S19)。蛍光画像IAの補正は、期間Tnに取得した励起光画像IBに基づく正規化データDnを参照して、励起光300の照度の違いに対して蛍光画像IAの画素毎の輝度を均一にするように行われる。蛍光画像IAの補正方法の詳細については後述する。
次に、投影制御装置250は、補正後の蛍光画像IA’(図9)に基づく投影画像を生成するための画像処理を行う(S20)。ステップS20の画像処理は、補正後の蛍光画像IA’に対して図4のステップS3と同様の処理を行うことによって実行される。
次に、投影制御装置250は、ステップS20の画像処理結果に基づいて、プロジェクタ220に、新たな投影画像G13を投影させる(S21)。ステップS21では、期間Tnに取得された励起光画像IBによる補正が為された1フレームの蛍光画像IA’に基づく投影画像G13が投影される。
次に、投影制御装置250は、ステップS17の蛍光透過フィルタ213aへの切り替え後に撮像した蛍光画像IAが、Mフレーム(MはNよりも大きい整数、例えばM=10)に到達したか否かを判断する(S22)。
投影制御装置250は、撮像した蛍光画像IAのフレーム数がMフレームに到達していないとき(S22でNO)、ステップS18以降の処理を繰り返す。ステップS18〜S22の処理により、図7に示すように期間Tm中、順次、撮像された蛍光画像IAの補正結果に基づく、信頼性の高い投影画像G13が投影される。
一方、投影制御装置250は、撮像した蛍光画像IAのフレーム数がMフレームに到達したとき(S22でYES)、ステップS12の処理に戻る。これにより、図7に示すように期間Tm経過後に再度、励起光画像IBの取得が行われる。
以上の処理は、励起光画像または蛍光画像を撮像する所定の周期(例えば1/60〜1/30秒)に合わせて繰り返し実行される。なお、操作者140等から終了の指示があった場合には、適宜、本フローチャートによる処理を終了し、図4の処理に切り替えてもよい。つまり、補正を行う図8の処理と補正を行わない図4の処理を操作者140の指示等で自由に切り替えてもよい。
以上の処理により、患部130を撮像した蛍光画像IAが励起光画像IBに基づき、励起光300の照度の違いに対して均一になるように補正される。このため、補正後の蛍光画像IA’を用いた投影画像G13はICGがより蓄積している患部130を特定する用途において信頼性を有し、投影装置20の医療用途における安全性を高めることができる。
また、以上の処理にいて、蛍光画像IAと励起光画像IBは交互に撮像され、蛍光画像IAの補正は直前に撮像された励起光画像IBに基づき行われるので、術野135の時間変化に対しても精度よく補正された蛍光画像IA’を得ることができる。また、励起光画像IBの撮像の期間Tnを蛍光画像IAの撮像の期間Tmよりも短く設定しているため、励起光画像IBの取得時に蛍光画像IAが取得されない影響を緩和することができる。これにより、蛍光画像IA’に基づく投影画像G13を目視し続ける際の信頼性を高めることができる。
また、以上の説明では、輝度補正処理の開始タイミングが操作者140の指示である例について説明した。輝度補正処理の開始タイミングは操作者140の指示に限らず、例えば、撮像照射装置200又は手術台110の移動があったときに、所定のセンサで移動を検知して行われてもよいし、所定のサイクルで常時、実行されてもよい。また、例えば手術直前など、手術支援システム100の使用前の事前のキャリブレーションにおいて輝度補正処理が行われてもよい。
2−2−3.補正方法の詳細
以下、本実施形態にかかる蛍光画像IAの補正法方法の詳細について、図9,10を用いて説明する。図9は、輝度補正処理による画像の補正方法を説明するための図である。図10は、輝度補正処理における正規化を説明するための図である。
まず、図8のステップS16における正規化データDnの算出方法について説明する。投影制御装置250は、カメラ210からNフレームの励起光画像IBを取得すると(S15で「YES」)、所定の正規化関数を用いて、フレーム平均後の励起光画像IB’から正規化データDnを算出する(S16)。図10に、正規化関数F1の一例を示す。
正規化関数F1は、励起光画像IB’の画素毎の信号レベル(輝度)と正規化係数との関係を規定する関数である。正規化関数F1を示す情報は、例えば信号レベル(輝度)と正規化係数とを関連付けたLUT(ルックアップテーブル)としてメモリ240に予め記録されている。投影制御装置250は、正規化関数F1のLUTを参照して、励起光画像IB’の画素毎の信号レベルに応じた正規化係数を計算し、正規化データDnを算出する。
なお、正規化データDnの算出はステップS16に行わなくてもよい。例えば、ステップS16では、フレーム平均の励起光画像IB’をメモリ240に格納し、ステップS19の補正時に、正規化関数F1に基づき正規化データDnを計算してもよい。また、正規化関数F1を示す情報はLUTに限らず、例えば演算式としてメモリ240に格納されてもよい。また、正規化データDnは1フレームの励起光画像IBに基づき算出されてもよい。この場合、図8のフローチャートにおいてステップS15を省略してもよい。
図10に示すように、正規化関数F1は単調減少であり、信号レベル「0」のときの正規化係数「1」から順次、減少する。これにより、励起光画像IB’において信号レベル(輝度)が大きい画素ほど小さい正規化係数が割り当てられる(図9参照)。正規化関数F1における正規化係数は0以上の値を有し、図10の例では、信号レベル0〜255の範囲内で正規化係数1〜0.8となっている。正規化関数F1は、励起光300の照度と被写体の蛍光発光の強度との関係を考慮して、適宜設定される。
図9に戻り、図8のステップS19における蛍光画像IAの補正方法について説明する。ステップS19において、投影制御装置250は、ステップS18で撮像される蛍光画像IAの各画素の輝度に対して、正規化データDn中で対応する画素の正規化係数を乗算することにより、蛍光画像IAの輝度補正を行う。正規化データDnにより、補正前の蛍光画像IAの内で強い照度の励起光300によって輝度が大きくなっている部分には、小さい正規化係数が乗算される。これより、補正後の蛍光画像IA’では、励起光300の照度の違いに対して輝度が均一になるように補正され、励起光300の照度分布によるムラが解消される。
なお、上記では、説明を簡単にするために、肝臓13においてICGの濃度を均一としたが、ICGの濃度が不均一の場合も当然ありうる。この場合も、肝臓13において励起光300の照度分布にムラがあるため、信頼性の高い蛍光画像を取得できないが、正規化データDnを用いて補正を行うことで、励起光300の照度分布が均一の時と同じような蛍光画像を得ることができる。つまり、励起光画像に基づいて蛍光画像の補正を行うことで、励起光300の照度分布にムラの影響を少なくすることができる。
3.効果等
以上の手術支援システム100における投影装置20は、励起光源230と、カメラ210と、プロジェクタ220と、投影制御装置250とを備える。励起光源230は、被写体である患部130に励起光300を照射する。カメラ210は、励起光300によって被写体が発する蛍光310に基づく蛍光画像IAを撮像する。プロジェクタ220は、蛍光画像IAに基づく投影画像G13を被写体に投影する。投影制御装置250は、カメラ210により撮像された蛍光画像IAに基づき投影画像G13を制御する。カメラ210は、蛍光画像IAに加えて、被写体における励起光300の照度分布を示す励起光画像IBを撮像する。投影制御装置250は、励起光画像IBに基づいて、被写体における励起光300の照度の違いによる影響を、補正前の蛍光画像IAよりも低減するように蛍光画像IAを補正する。
以上の投影装置20によると、蛍光画像IAの補正により、励起光300の照度分布に基づく輝度ムラが解消された蛍光画像IA’が得られる。補正後の蛍光画像IA’により、精度良く被写体である患部130の撮像を行うことができる。
また、本実施形態における投影装置20において、カメラ210は、励起光画像IBと蛍光画像IAとを交互に撮像する。励起光画像IBを撮像する期間Tn(第1の期間)は、蛍光画像IAを撮像する期間Tm(第2の期間)よりも短い。これにより、リアルタイムで精度良く蛍光画像IA’を得られ、これによって投影画像G13を医療用途に用いる際の信頼性を高めることができる。
また、本実施形態における投影装置20において、カメラ210は、期間Tm中にMフレームの蛍光画像IAを撮像する(S18,S22)。投影制御装置250は、期間Tmにおいて、各フレームの蛍光画像IAを補正して、補正した蛍光画像IA’に基づく投影画像G13をプロジェクタ220に投影させる(S19〜S21)。これにより、補正した蛍光画像IA’によって投影画像G30をリアルタイムに精度良く投影することができる。
また、本実施形態における投影装置20において、投影制御装置250は、期間Tmに投影された投影画像に基づき、期間Tnにおいて投影される投影画像G13を補間する(S14)。これにより、投影画像G13のちらつきを回避し、投影画像G13の視認性を向上することができる。
また、本実施形態における投影装置20において、カメラ210は、光学フィルタ213を備える。光学フィルタ213は、励起光透過フィルタ213bを介して蛍光310を遮断して励起光300を透過する第1の状態と、蛍光透過フィルタ213aを介して蛍光を透過する第2の状態とを切り替える。これにより、第1又は第2の状態において、それぞれ励起光画像IB又は蛍光画像IAを取得することができる。
また、本実施形態における投影装置20において、蛍光透過フィルタ213aを介した第2の状態は、励起光300を遮断して蛍光310を透過する状態である。これにより、蛍光画像IAを精度良く撮像することができる。
請求項6に記載の投影装置。
また、本実施形態における投影装置20において、被写体は、患者120などの生体中で光感受性物質を含有する患部130を含む。
また、本実施形態の係る手術支援システム100は、投影装置20と、補正された蛍光画像IA’を表示するディスプレイ160とを備える。これにより、本システムのユーザは、ディスプレイ160において補正された蛍光画像IA’に基づく画像診断を行うことができる。
(実施の形態2)
実施の形態1では、輝度補正処理において励起光画像IBを取得する際に、投影画像G13を補間した。実施の形態2では、さらに、補間のための投影画像G13から新たな蛍光画像IAに基づく投影画像G13を投影する際に、平滑化を行う。以下、図11,12を参照して、実施の形態2を説明する。
図11は、実施の形態2における輝度補正処理のタイミングを示すタイミングチャートである。図12は、実施の形態2における輝度補正処理を示すフローチャートである。
以下、実施の形態1に係る手術支援システムと同様の構成、動作の説明は適宜、省略して、本実施形態に係る手術支援システムを説明する。
図11は、本実施形態における輝度補正処理のフィルタ切替え信号Sfのタイミングチャート、撮像画像Iの取得タイミング、正規化データDnの記録タイミング、補正後の蛍光画像IA’の生成タイミング、及び投影画像G13の生成タイミングを示している。本実施形態に係る輝度補正処理では、投影制御装置250は、図12に示すように、実施形態1と同様に光学フィルタ213を蛍光透過フィルタ213aに切替え(S17)、その後の1フレームにおいて投影画像G13の平滑化を行う(S18A〜S21A)。
図11において、時刻t11は、光学フィルタ213の励起光透過フィルタ213bへの切替わりタイミングである(図12のS12)。時刻t12は、励起光透過フィルタ213bから蛍光透過フィルタ213aへの切替わりタイミングである(S17)。時刻11から時刻t12までの期間Tnの間にはカメラ210を用いて励起光画像IBの取得が行われる(S12〜S15)。また、取得された励起光画像IBに基づき、正規化データDnが生成され、時刻t11においてメモリ240に書き込まれる(S16)。
図11の時刻t11からの期間Tn中、投影画像G13は、励起光透過フィルタ213bへの切替わり前の時刻t10に撮像された蛍光画像IA10の補正結果(蛍光画像IA10’)に基づく投影画像G13aにより補間されている(図12のS14)。投影制御装置250は、時刻t12に、新たに蛍光画像IA11を取得し(S18A)、期間Tnに取得した正規化データDnを読み出して蛍光画像IA11の補正を行う(S19A)。
ここで、ステップS19Aの補正後の蛍光画像IA11’は、補間時に用いた蛍光画像IA10’に対する変化が大きく、フレーム間で投影画像G13に飛びが生じることが想定される。そこで、本実施形態において、投影制御装置250は、投影画像G13を生成する画像処理において、投影画像G13の平滑化を行う(S20A)。例えば、投影制御装置250は、期間Tn前後の蛍光画像IA10’,IA11’のフレーム平均を行い、平均化された蛍光画像に対してステップS20と同様の画像処理を行うことにより、平滑化のための投影画像G13bを生成する。
投影制御装置250は、時刻t12において、ステップS20Aにおいて生成した投影画像G13bを投影する(S21A)。これにより、補間時の投影画像G13aから切り替わる際の投影画像G13の変化を平滑化し、投影画像G13を視認する医師等の視覚的な負担を軽減することができる。
また、図11では、励起光画像IBのフレーム数NがN=2の場合を例示している。2フレームの励起光画像IBのフレーム平均について、投影制御装置250は、例えばメモリ240において、1フレーム分の遅延を有する取得画像を保持し、2フレーム目の励起光画像を取得したときに平均化処理を実行してもよい。また、補正後の蛍光画像IA10’を用いて補間時の投影画像G13a及び平滑化の投影画像G13bの投影画像G13を生成するために、投影制御装置250は、例えばメモリ240において、1フレームずつ遅延した3フレーム分の蛍光画像IA10’をそれぞれ保持してもよい。
以上のように、本実施形態にかかる手術支援システム100において、投影制御装置250は、期間Tnに投影された投影画像G13aに基づき、期間Tnから期間Tmに切り替わった直後に投影される投影画像G13bを平滑化する。これにより、期間Tnから期間Tmへの切り替わり時の投影画像G13bの変化を低減し、投影画像G13を見易くすることができる。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1,2を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1,2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
そこで、以下、他の実施の形態を例示する。
上記の各実施形態1,2では、光学フィルタ213は、蛍光透過フィルタ213aと励起光透過フィルタ213bとを備えたが、これに限らず、例えば蛍光透過フィルタ213aを備えなくてもよい。つまり、光学フィルタ213は、励起光透過フィルタ213bを介して励起光300を透過する第1の状態と、励起光透過フィルタ213bを介さずに蛍光310を透過する第2の状態とを切り替えてもよい。この場合、第2の状態の光学フィルタ213は励起光300を透過することとなる。本開示による輝度補正処理によると、画像処理において撮像画像中の励起光の影響を低減することができるので、実用上差し支えない範囲で、精度良く蛍光画像を得ることができる。
また、上記の各実施形態1,2では、カメラ210によって撮像された蛍光画像IAを補正し、補正後の蛍光画像IA’によって被写体に投影される投影画像G13の精度が補正された。本開示はこれに限らず、例えば投影制御装置250による画像処理において、投影画像自体を補正してもよい。例えば、距離画像センサなどを用いて被写体の立体形状を検出し、立体形状の表面上で輝度が均一になるように画像処理において投影画像の輝度を設定してもよい。また、例えば、ステップS20の後に、さらに画像処理において投影画像G13に正規化データDnと同様の正規化係数を乗算することにより、投影画像G13の輝度を補正してもよい。投影画像を補正することにより、被写体に投影された状態の投影画像の視認性が向上し、手術支援システム100における投影画像の信頼性を高めることができる。
また、上記の各実施形態1,2では、輝度補正処理において、カメラ210が励起光画像IBと蛍光画像IAとを交互に撮像したが、これに限らず、本開示における投影装置は、励起光画像IBと蛍光画像IAとを同時に撮像する撮像部を用いてもよい。例えば、撮像部として、励起光300と蛍光310との波長の違いに基づき、画素毎のカラーフィルタによって励起光300と蛍光310とを選択的に受光可能なカメラを採用してもよい。
また、上記の各実施の形態1,2では、励起光源230を撮像照射装置200と一体化させているが、別体で設けてもよい。
また、上記の各実施の形態1,2では、手術などの医療用途を例に挙げて説明したが、本発明はこれには限らない。例えば、工事現場や採掘現場、建築現場、材料を加工する工場など、目視では状態変化を確認できないような対象物に対して作業を行う必要がある場合、本発明を適用することができる。
具体的には、実施の形態1の医療機器に代えて、工事現場や採掘現場、建築現場、材料を加工する工場などにおける、目視では状態変化を確認できないような対象物に蛍光材料を塗布し、練りこみ、或いは流し込んで、カメラ210による撮像の対象である被写体としてもよい。発光ではなく、発熱箇所を熱センサで検出して、その部分だけ或いは、境界だけを走査するようにしてもよい。
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において、種々の変更、置き換え、付加、省略などを行うことができる。
本開示における投影システムは、医療用途、工事現場、採掘現場、建築現場、材料を加工する工場など、目視では状態変化を確認しづらいような対象物に対して作業を行う際に適用可能である。
100 手術支援システム
200 撮像照射装置
210 カメラ
213 光学フィルタ
213a 蛍光透過フィルタ
213b 励起光透過フィルタ
220 プロジェクタ
250 投影制御装置
20 投影装置

Claims (9)

  1. 被写体に励起光を照射する光源部と、
    前記励起光によって前記被写体が発する蛍光に基づく蛍光画像を撮像する撮像部と、
    前記蛍光画像に基づく投影画像を前記被写体に投影する投影部と、
    前記撮像部により撮像された蛍光画像に基づき前記投影画像を制御する制御部と
    を備え、
    前記撮像部は、前記蛍光画像に加えて、前記被写体における前記励起光の照度分布を示す励起光画像を撮像し、
    前記制御部は、前記励起光画像に基づいて、前記被写体における前記励起光の照度の違いによる影響を、補正前の蛍光画像よりも低減するように前記蛍光画像を補正する
    投影装置。
  2. 前記撮像部は、前記励起光画像と前記蛍光画像とを交互に撮像し、
    前記励起光画像を撮像する第1の期間は、前記蛍光画像を撮像する第2の期間よりも短い
    請求項1に記載の投影装置。
  3. 前記撮像部は、前記第2の期間中に複数フレームの蛍光画像を撮像し、
    前記制御部は、前記第2の期間において、各フレームの蛍光画像を補正して、補正した蛍光画像に基づく投影画像を前記投影部に投影させる
    請求項2に記載の投影装置。
  4. 前記制御部は、前記第2の期間に投影された投影画像に基づき、前記第1の期間において投影される投影画像を補間する
    請求項2又は3に記載の投影装置。
  5. 前記制御部は、前記第1の期間に投影された投影画像に基づき、前記第1の期間から前記第2の期間に切り替わった直後に投影される投影画像を平滑化する
    請求項2〜4のいずれか1項に記載の投影装置。
  6. 前記撮像部は、前記蛍光を遮断して前記励起光を透過する第1の状態と、前記蛍光を透過する第2の状態とを切り替える光学フィルタを備える
    請求項1〜5のいずれか1項に記載の投影装置。
  7. 前記第2の状態は、前記励起光を遮断して前記蛍光を透過する状態である
    請求項6に記載の投影装置。
  8. 前記被写体は、生体中で光感受性物質を含有する患部を含む
    請求項1〜7のいずれか1項に記載の投影装置。
  9. 請求項1〜8のいずれか1項に記載の投影装置と、
    前記補正された蛍光画像を表示する表示装置と
    を備えた投影システム。
JP2016037386A 2016-02-29 2016-02-29 投影装置及び投影システム Active JP6085382B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037386A JP6085382B1 (ja) 2016-02-29 2016-02-29 投影装置及び投影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037386A JP6085382B1 (ja) 2016-02-29 2016-02-29 投影装置及び投影システム

Publications (2)

Publication Number Publication Date
JP6085382B1 JP6085382B1 (ja) 2017-02-22
JP2017157925A true JP2017157925A (ja) 2017-09-07

Family

ID=58095290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037386A Active JP6085382B1 (ja) 2016-02-29 2016-02-29 投影装置及び投影システム

Country Status (1)

Country Link
JP (1) JP6085382B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194174A1 (ja) * 2018-04-03 2019-10-10 国立大学法人京都大学 医療用プロジェクター

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107049491A (zh) * 2017-05-16 2017-08-18 江苏信美医学工程科技有限公司 一种共光轴式病变部位显像投影导航装置与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175087A (ja) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd 画像処理装置
JP2010220890A (ja) * 2009-03-24 2010-10-07 Olympus Corp 蛍光観察装置および蛍光観察方法
WO2015072047A1 (ja) * 2013-11-14 2015-05-21 パナソニックIpマネジメント株式会社 投影システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175087A (ja) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd 画像処理装置
JP2010220890A (ja) * 2009-03-24 2010-10-07 Olympus Corp 蛍光観察装置および蛍光観察方法
WO2015072047A1 (ja) * 2013-11-14 2015-05-21 パナソニックIpマネジメント株式会社 投影システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194174A1 (ja) * 2018-04-03 2019-10-10 国立大学法人京都大学 医療用プロジェクター

Also Published As

Publication number Publication date
JP6085382B1 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6844539B2 (ja) 映像信号処理装置および映像信号処理方法、ならびに表示装置
JP6956805B2 (ja) 内視鏡システム、内視鏡システムの制御方法
US11273002B2 (en) Display system
JP5374953B2 (ja) プロジェクタおよびプロジェクタの制御方法
WO2018025457A1 (ja) 制御装置、制御システム、および制御方法
WO2020052623A1 (zh) 一种用于可见光和激发荧光实时成像的系统和方法
US20220109814A1 (en) Projection system
US20210019921A1 (en) Image processing device, image processing method, and program
US20210297606A1 (en) Medical image processing device and medical observation system
JP6085382B1 (ja) 投影装置及び投影システム
JP6921987B2 (ja) 投影装置
JP5025761B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6883256B2 (ja) 投影装置
JP6257475B2 (ja) 走査型内視鏡装置
JP5763893B2 (ja) 画像処理システム及びプログラム並びに内視鏡システムの作動方法
JP5994871B2 (ja) プロジェクターおよびプロジェクターの制御方法
WO2021140923A1 (ja) 医療画像生成装置、医療画像生成方法および医療画像生成プログラム
JP2020522206A (ja) レーザ投影ユニットの作動方法および制御ユニット、ならびにレーザ投影ユニット
JP4588843B2 (ja) 内視鏡装置
JP5679016B2 (ja) プロジェクターおよびプロジェクターの制御方法
JP2019098008A (ja) 内視鏡システム
WO2022059282A1 (ja) 撮像制御装置、内視鏡システム、および撮像制御方法
EP4304442A1 (en) Unwanted near-infrared signal suppression
JP2021157067A (ja) 医療用観察システム、制御装置、制御方法、および撮像装置
JP2012105232A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R151 Written notification of patent or utility model registration

Ref document number: 6085382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151