JP2017155324A - Method of hardening metal surface layer by dielectric barrier discharge - Google Patents

Method of hardening metal surface layer by dielectric barrier discharge Download PDF

Info

Publication number
JP2017155324A
JP2017155324A JP2016056206A JP2016056206A JP2017155324A JP 2017155324 A JP2017155324 A JP 2017155324A JP 2016056206 A JP2016056206 A JP 2016056206A JP 2016056206 A JP2016056206 A JP 2016056206A JP 2017155324 A JP2017155324 A JP 2017155324A
Authority
JP
Japan
Prior art keywords
metal
surface layer
gas
barrier discharge
dielectric barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056206A
Other languages
Japanese (ja)
Other versions
JP6789562B2 (en
Inventor
龍大 市來
Ryusuke Ichiki
龍大 市來
卓斗 津留
Takuto Tsuru
卓斗 津留
圭一 喜多村
Keiichi Kitamura
圭一 喜多村
修一 赤峰
Shuichi Akamine
修一 赤峰
誠司 金澤
Seiji Kanazawa
誠司 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Publication of JP2017155324A publication Critical patent/JP2017155324A/en
Application granted granted Critical
Publication of JP6789562B2 publication Critical patent/JP6789562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To uniformly harden a metal surface layer by employing a dielectric barrier discharge technique and performing a nitriding treatment on a metal surface layer under atmospheric pressure.SOLUTION: A method of hardening a metal surface layer in which a surface layer of metal to be treatment is hardened through a nitriding treatment comprises: (i) covering the metal to be treatment with an atmosphere consisting of a nitrogen gas or, as needed, a mixed gas including an inactive gas such as a hydrogen gas, a rare gas, etc.; and (ii) generating ionizing plasma of nitrogen through dielectric barrier discharge under or substantially under atmospheric pressure, and performing a nitriding treatment on a surface layer of the metal to be treated or the surface layer in a predetermined region.SELECTED DRAWING: Figure 1

Description

本発明は、大気圧下で、誘電体バリア放電により、N原子を含むプラズマを発生させ,鋼,鉄,アルミニウム,チタン等の金属の表層に窒化処理を施す方法に関する。   The present invention relates to a method in which a plasma containing N atoms is generated by a dielectric barrier discharge under atmospheric pressure, and a surface layer of a metal such as steel, iron, aluminum, or titanium is subjected to nitriding treatment.

鋼の表層を硬化する方法のひとつに,窒素原子を鋼の表層に固溶させ、最表層に、厚さ10μm程度の窒化鉄からなる「化合物層」を形成し、その下に、深さ100μm程度まで、窒素原子が鉄の結晶に固溶して硬化した「拡散層」を形成する窒化処理がある。化合物層は、耐食性と耐焼付性を担い、拡散層は、耐摩耗性及び疲労強度を担うので、窒化処理は、自動車産業において重要な技術である。   One method of hardening the steel surface layer is to dissolve nitrogen atoms in the steel surface layer to form a “compound layer” made of iron nitride with a thickness of about 10 μm on the outermost layer, with a depth of 100 μm below it. To some extent, there is a nitriding treatment in which nitrogen atoms form a “diffusion layer” that is solidified and dissolved in iron crystals. Since the compound layer is responsible for corrosion resistance and seizure resistance, and the diffusion layer is responsible for wear resistance and fatigue strength, nitriding is an important technology in the automotive industry.

窒化処理は、低圧下で直流放電を用いるプラズマ窒化(イオン窒化)が普及している。プラズマ窒化によれば、高エネルギー電子の存在により、窒素原子及び他のラジカルを多量に生成して窒化処理を促進することが可能である。   As the nitriding treatment, plasma nitriding (ion nitriding) using a direct current discharge under a low pressure is widely used. According to plasma nitriding, it is possible to generate a large amount of nitrogen atoms and other radicals due to the presence of high-energy electrons to promote nitriding treatment.

しかし、プラズマ窒化は、高価な真空容器を必要とし、また、バッジ処理であるため作業時間及び作業工程が増えるという課題を抱えている。このことを踏まえ、例えば、特許文献1には、窒素を原料ガスとして発生させた大気圧プラズマジェットを材料の表面に照射し,材料の表面を窒化する窒化処理法が提案されている。   However, plasma nitriding requires an expensive vacuum vessel, and has a problem that the working time and work process increase because it is a badge process. In view of this, for example, Patent Document 1 proposes a nitriding method in which an atmospheric pressure plasma jet generated using nitrogen as a source gas is irradiated on the surface of the material to nitride the surface of the material.

特許文献1の窒化処理法によれば、材料表層の硬度は向上するが、材料の靱性は低下する。通常、金属材料の表層を窒化すると、硬度は向上するが、靭性が低下し脆くなるが、特許文献2には、大気圧下でN原子を被処理物に拡散固溶させ、靭性を保ったまま硬度を向上させ,しかも、N原子の拡散処理を連続ラインで処理できる金属又は樹脂等の表層硬化方法が提案されている。   According to the nitriding method of Patent Document 1, the hardness of the material surface layer is improved, but the toughness of the material is lowered. Usually, when the surface layer of a metal material is nitrided, the hardness is improved, but the toughness is lowered and becomes brittle. However, in Patent Document 2, N atoms are diffused and dissolved in an object to be processed under atmospheric pressure to maintain the toughness. There has been proposed a surface layer hardening method such as a metal or a resin that can improve the hardness and process the diffusion process of N atoms in a continuous line.

特許文献2の表層硬化方法は、容器内に窒素ガスと水素ガスの混合ガスを供給しながら、容器内を大気圧かそのプラス近傍の陽圧状態にして、被処理物の表面にパルスアーク型プラズマジェットを照射することを特徴とするパルスアーク型プラズマジェットによる表層硬化方法であるが、被処理物の表層を均一に硬化することは難しい。   In the surface layer curing method of Patent Document 2, the inside of the container is brought to a positive pressure state at or near the atmospheric pressure while supplying a mixed gas of nitrogen gas and hydrogen gas into the container, and the surface of the object to be processed is a pulse arc type. Although it is a surface layer curing method using a pulsed arc type plasma jet characterized by irradiating a plasma jet, it is difficult to uniformly cure the surface layer of the object to be processed.

近年、大気圧下で、誘電バリア放電を用いてプラズマを発生させて、被処理物の表層を均一に処理する方法が注目されている。   In recent years, attention has been focused on a method for uniformly processing the surface layer of an object to be processed by generating plasma using dielectric barrier discharge under atmospheric pressure.

例えば、特許文献3には、i)基板をプラズマ処理する工程と、ii)オルガノポリシロキサンポリマー、オルガノポリシロキサンオリゴマー、シロキサン樹脂及びポリシランの群から選択される1つ以上の化合物を含む液体コーティング材料をソフトリソグラフィック印刷法により基板表面に塗布して、基板表面上にパターン化皮膜を形成する工程と、iii)必要な場合は、基板表面から残留液体コーティング材料を除去する工程とを含む、基板上にパターン化薄膜を適用する方法であって、工程i)の前に、噴霧液及び/又は固体コーティング形成材料を、大気圧プラズマ放電及び/又は該大気圧プラズマ放電から生じるイオン化/励起ガス流中に供給し、大気圧条件下で、基板を噴霧コーティング形成材料に曝露する方法が開示されている。   For example, Patent Document 3 discloses: i) a step of plasma-treating a substrate; and ii) a liquid coating material containing one or more compounds selected from the group consisting of an organopolysiloxane polymer, an organopolysiloxane oligomer, a siloxane resin, and a polysilane. Coating the substrate surface by a soft lithographic printing method to form a patterned film on the substrate surface; and iii) removing the residual liquid coating material from the substrate surface, if necessary, A method of applying a patterned thin film thereon, wherein prior to step i), the spray liquid and / or the solid coating forming material is subjected to an atmospheric pressure plasma discharge and / or an ionized / excited gas stream resulting from the atmospheric pressure plasma discharge. Disclosed is a method of exposing a substrate to a spray coating forming material under atmospheric pressure conditions

また、特許文献4には、誘電体バリア放電(DBD)技術を用いて無機−有機ハイブリッドポリマー材料で基材を被覆するための方法において、次の段階:a)二つの電極間の空間に試料を供給する、b)電極間の雰囲気を制御する、c)電極間にプラズマ放電を発生する、d)ゾル−ゲル工程を介して形成された、ハイブリッド有機/無機架橋プレポリマーを含むエアロゾルをプラズマ放電中に混合する、を含むことを特徴とする方法が開示されている。   Patent Document 4 discloses a method for coating a substrate with an inorganic-organic hybrid polymer material using a dielectric barrier discharge (DBD) technique, in the following steps: a) a sample in a space between two electrodes B) controlling the atmosphere between the electrodes, c) generating a plasma discharge between the electrodes, d) plasma forming an aerosol containing a hybrid organic / inorganic cross-linked prepolymer formed through a sol-gel process. A method is disclosed comprising mixing during discharge.

しかし、特許文献3及び特許文献4の方法は、基板(基材)の表面をポリマー材料で被覆する方法であり、浸窒処理により金属表層を硬化する方法ではない。   However, the methods of Patent Document 3 and Patent Document 4 are methods of coating the surface of a substrate (base material) with a polymer material, and are not methods of curing a metal surface layer by nitriding treatment.

また、非特許文献1には、真空反応炉にアンモニアガスを供給して、誘電体バリア放電で窒化処理を行い、金属表層を硬化する方法が開示されているが、この方法は、プラズマ化するガスとしてアンモニアガスを使用するので、コスト及び環境の点で、課題を抱えている。   Non-Patent Document 1 discloses a method of supplying ammonia gas to a vacuum reactor and performing nitriding treatment with dielectric barrier discharge to cure the metal surface layer. Since ammonia gas is used as the gas, there are problems in terms of cost and environment.

また、近年、金属表面に、図形やパターンの形で窒化処理を施す技術が開発されている(非特許文献2、参照)。この技術によれば,金型などの表面硬化において、所望の場所のみを高精度に限定して硬化させることができる。   In recent years, a technique for nitriding a metal surface in the form of a figure or a pattern has been developed (see Non-Patent Document 2). According to this technique, it is possible to cure only a desired place with high accuracy in surface curing of a mold or the like.

しかし、ミリメートル以下の精度で窒化のパターニングをするためには,金属表面に、微細加工で作製したマスクを被せ,マスキングした部分に、ガスやプラズマから窒素が拡散しないようにする必要がある。それ故、上記技術には、微細加工によるマスキングの作製に手間がかかり、さらに、マスキングが消耗するという問題がある。   However, in order to perform nitriding patterning with an accuracy of millimeters or less, it is necessary to cover a metal surface with a mask fabricated by microfabrication so that nitrogen does not diffuse from the gas or plasma into the masked portion. Therefore, the above technique has a problem that it takes time to produce masking by fine processing, and masking is consumed.

マスキングなしで窒化のパターニングを可能とするためには,対向電極通りの形状でプラズマを生成するDBDが有力な手法である.しかし、非特許文献1のDBD窒化処理では、アンモニアガスを用いるため,プラズマが発生していない部分にも、アンモニアガスから直接窒素が供給されてしまうので、結局は、金属表面全体が窒化されてしまい、パターニング窒化ができない。   In order to enable nitriding patterning without masking, DBD that generates plasma in the shape of the counter electrode is a promising technique. However, in the DBD nitridation process of Non-Patent Document 1, since ammonia gas is used, nitrogen is directly supplied from the ammonia gas even to a portion where plasma is not generated. Consequently, the entire metal surface is nitrided. Therefore, patterning nitriding cannot be performed.

特開2009−202087号公報JP 2009-202087 A 特開2013−023769号公報JP 2013-023769 A 特許第5090739号公報Japanese Patent No. 5090739 特許第5297652号公報Japanese Patent No. 52297652

Li Yan、Plasma Chemistry and Plasma Processing、Vol.25 No.5(October 2005)、「A New Approach to Metal Surface Nitriding Using Dielectric Barrier Discharge at Atmospheric Pressure」Li Yan, Plasma Chemistry and Plasma Processing, Vol.25 No.5 (October 2005), “A New Approach to Metal Surface Nitriding Using Dielectric Barrier Discharge at Atmospheric Pressure” Marcos他、Surface & Coatings Technology 205(2011)、S275-S279、「Stainless steel patterning by combination of micro-patterning and driven strain produced by plasma assisted nitriding」Marcos et al., Surface & Coatings Technology 205 (2011), S275-S279, `` Stainless steel patterning by combination of micro-patterning and driven strain produced by plasma assisted nitriding ''

本発明は、従来技術に鑑み、(a)誘電体バリア放電技術を用いて、大気圧下で、金属表層に浸窒処理を施し、金属表層を均一に硬化すること、及び、(b)金属表層をマスキングしなくても、金属表層をパターニング窒化することを課題とし、これら課題を解決する金属表層の硬化方法を提供することを目的とする。   The present invention, in view of the prior art, (a) using a dielectric barrier discharge technology, subjecting the metal surface layer to nitriding under atmospheric pressure, uniformly curing the metal surface layer, and (b) metal The object is to pattern and nitride the metal surface layer without masking the surface layer, and to provide a method for curing the metal surface layer that solves these problems.

本発明者らは、上記課題を解決する手法について鋭意検討した。   The present inventors diligently studied a method for solving the above problems.

その結果、(i)窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスで被処理金属を包み、大気圧下又は大気圧近傍下で、誘電体バリア放電を行なえば、窒素の電離プラズマが発生し、被処理金属の表層に窒化処理を施すことができること、さらに、(ii)対向電極の平面形状を、所要の形状にパターニングすれば,被処理金属の表層をマスキングしなくても、対向電極の平面形状の形状通りの表層領域に窒素処理を施すことができることを見いだした。   As a result, (i) the metal to be treated is wrapped in a mixed gas containing nitrogen gas and, if necessary, an inert gas such as hydrogen gas or a rare gas, and dielectric barrier discharge can be performed at or near atmospheric pressure. For example, an ionized plasma of nitrogen is generated, and the surface layer of the metal to be processed can be nitrided. (Ii) If the planar shape of the counter electrode is patterned into a required shape, the surface layer of the metal to be processed can be formed. It has been found that nitrogen treatment can be performed on the surface layer region of the counter electrode in a planar shape without masking.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)被処理金属の表層に窒化処理を施して硬化させる金属表層の硬化方法において、
(i)窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスからなる雰囲気で、被処理金属を包み、
(ii)大気圧下又は大気圧近傍下で、誘電体バリア放電により、窒素の電離プラズマを発生させ、被処理金属の表層に窒化処理を施す
ことを特徴とする誘電体バリア放電による金属表層の硬化方法。
(2)前記被処理金属の所定領域の表層に窒化処理を施すことを特徴とする前記(1)に記載の誘電体バリア放電による金属表層の硬化方法。
(3)前記混合ガスにおける水素ガスと窒素ガスの体積比:水素ガス/窒素ガスが0〜0.5であることを特徴とする前記(1)又は(2)に記載の誘電体バリア放電による金属表層の硬化方法。
(4)前記混合ガスを、流量0.1〜100L/分で処理装置に供給し、被処理金属の温度を、室温〜1000℃に保持して窒化処理を行なうことを特徴とする前記(1)〜(3)のいずれかに記載の誘電体バリア放電による金属表層の硬化方法。
(5)前記被処理金属が鋼又は鉄合金であることを特徴とする前記(1)〜(4)のいずれかに記載の誘電体バリア放電による金属表層の硬化方法。
(1) In a method for curing a metal surface layer in which the surface layer of the metal to be treated is cured by nitriding,
(I) wrapping the metal to be treated in an atmosphere consisting of a mixed gas containing an inert gas such as a nitrogen gas or a hydrogen gas or a rare gas, if necessary,
(Ii) An ionized plasma of nitrogen is generated by dielectric barrier discharge under atmospheric pressure or near atmospheric pressure, and nitriding is applied to the surface layer of the metal to be treated. Curing method.
(2) The method for curing a metal surface layer by dielectric barrier discharge according to (1), wherein a surface layer of a predetermined region of the metal to be processed is subjected to nitriding treatment.
(3) Volume ratio of hydrogen gas to nitrogen gas in the mixed gas: hydrogen gas / nitrogen gas is 0 to 0.5, by dielectric barrier discharge as described in (1) or (2) above A method for curing the metal surface layer.
(4) The mixed gas is supplied to the processing apparatus at a flow rate of 0.1 to 100 L / min, and the temperature of the metal to be processed is maintained at room temperature to 1000 ° C., and nitriding is performed (1) The method for curing a metal surface layer by dielectric barrier discharge according to any one of (1) to (3).
(5) The method for curing a metal surface layer by dielectric barrier discharge according to any one of (1) to (4), wherein the metal to be treated is steel or an iron alloy.

本発明によれば、高価な真空処理装置を必要とせず、大気圧下又は大気圧近傍下で、無害な、窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスを用いて、被処理金属の表層に、短時間で均一に窒化処理を施すことができる。   According to the present invention, a gas mixture that does not require an expensive vacuum processing apparatus, is harmless under atmospheric pressure or near atmospheric pressure, and contains an inert gas such as hydrogen gas or a rare gas, if necessary, is not harmful. Can be used to uniformly nitride the surface layer of the metal to be processed in a short time.

また、本発明によれば、100μm以下の精度で、被処理金属の表層を部分的に限定して窒化処理を施す、即ち、高精度のパターニング窒化を施すことができる。さらに、本発明によれば、被処理金属の表層の面積が大きい場合は、それに合せ、対向電極の面積を大きくして、被処理金属の表層に、短時間で均一に窒化処理を施すことができる。   Furthermore, according to the present invention, the surface layer of the metal to be processed can be partially limited with an accuracy of 100 μm or less, that is, highly precise patterning nitriding can be performed. Furthermore, according to the present invention, when the surface area of the metal to be processed is large, the area of the counter electrode is increased accordingly, and the surface layer of the metal to be processed can be uniformly nitrided in a short time. it can.

処理装置の一態様を示す図である。(a)は、処理装置の上面態様を示し、(b)は、処理装置のA−A断面態様を示す。It is a figure which shows the one aspect | mode of a processing apparatus. (A) shows the upper surface aspect of a processing apparatus, (b) shows the AA cross-sectional aspect of a processing apparatus. 窒化処理後の鋼片断面の硬さ分布を示す図である。It is a figure which shows the hardness distribution of the steel piece cross section after a nitriding process. 金属表層の硬化部と非硬化部における、金属層ビッカース硬さ(Hv)分布例を示す図である。(a)は、実施例2の金属表層ビッカース硬さ(Hv)分布を示し、(b)は、実施例3の金属表層ビッカース硬さ(Hv)分布を示し、(c)は、実施例4の金属表層ビッカース硬さ(Hv)分布を示す。It is a figure which shows the metal layer Vickers hardness (Hv) distribution example in the hardening part and non-hardening part of a metal surface layer. (A) shows the metal surface layer Vickers hardness (Hv) distribution of Example 2, (b) shows the metal surface layer Vickers hardness (Hv) distribution of Example 3, and (c) shows Example 4. The metal surface layer Vickers hardness (Hv) distribution is shown.

本発明の誘電体バリア放電による金属表層の硬化方法(以下「本発明硬化方法」という。)は、被処理金属の表層に窒化処理を施して硬化させる金属表層の硬化方法において、
(i)窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスからなる雰囲気で、被処理金属を包み、
(ii)大気圧下又は大気圧近傍下で、誘電体バリア放電により、窒素の電離プラズマを発生させ、被処理金属の表層に窒化処理を施す
ことを特徴とする。
The method for curing a metal surface layer by dielectric barrier discharge of the present invention (hereinafter referred to as “the present invention curing method”) is a method for curing a metal surface layer in which a surface layer of a metal to be treated is cured by nitriding.
(I) wrapping the metal to be treated in an atmosphere consisting of a mixed gas containing an inert gas such as a nitrogen gas or a hydrogen gas or a rare gas, if necessary,
(Ii) Nitrogen ionized plasma is generated by dielectric barrier discharge under atmospheric pressure or near atmospheric pressure, and the surface layer of the metal to be processed is subjected to nitriding treatment.

以下、本発明硬化方法について説明する。   Hereinafter, the curing method of the present invention will be described.

被処理金属を包む雰囲気は、窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスで形成する。誘電体バリア放電で、窒素の電離プラズマを形成するので、雰囲気は、窒素ガスを主体成分として形成する。窒素ガスの体積%は、特に、特定の範囲に限定されないが、雰囲気中に混入した酸素を除去するために水素ガスを混合する場合、水素ガスと窒素ガスの体積比:水素ガス/窒素ガスが0〜0.5が好ましい。   The atmosphere surrounding the metal to be processed is formed of nitrogen gas and, if necessary, a mixed gas containing an inert gas such as a hydrogen gas or a rare gas. Since the ionized plasma of nitrogen is formed by the dielectric barrier discharge, the atmosphere is formed using nitrogen gas as a main component. The volume% of nitrogen gas is not particularly limited to a specific range, but when hydrogen gas is mixed to remove oxygen mixed in the atmosphere, the volume ratio of hydrogen gas to nitrogen gas: hydrogen gas / nitrogen gas is 0 to 0.5 are preferred.

不活性ガスは、ヘリウムガスおよびアルゴンガスが好ましい。ヘリウムガスおよびアルゴンガスは、窒素の電離プラズマ化を促進する作用をなす。   The inert gas is preferably helium gas or argon gas. Helium gas and argon gas serve to promote the ionization plasma conversion of nitrogen.

誘電体バリア放電は、混合ガスを閉じ込めた処理装置の中で行ってもよいし、混合ガスを、処理装置に、所要の流量で供給しながら行ってもよい。混合ガスの流量は、金属表層の所望の硬化の程度に応じて設定すればよく、特に特定の流量に限定されないが、プラズマを良好な状態で維持する点で、0.1〜100L/分が好ましい。処理装置において、被処理金属は、室温〜1000℃の温度域に保持すればよい。   The dielectric barrier discharge may be performed in a processing apparatus in which the mixed gas is confined, or may be performed while supplying the mixed gas to the processing apparatus at a required flow rate. The flow rate of the mixed gas may be set according to the desired degree of curing of the metal surface layer, and is not particularly limited to a specific flow rate, but is 0.1 to 100 L / min in terms of maintaining the plasma in a good state. preferable. In the processing apparatus, the metal to be processed may be held in a temperature range of room temperature to 1000 ° C.

被処理金属も、特定の金属に限定されないが、被処理金属が鋼又は鉄合金であると、本発明硬化方法の硬化が顕著に発現する。   The metal to be treated is not limited to a specific metal, but when the metal to be treated is steel or an iron alloy, the curing of the present curing method is remarkably exhibited.

また、本発明硬化方法は、被処理金属の所定領域の表層に窒化処理を施すことができる。この点も、本発明の特徴である。   Further, the curing method of the present invention can perform nitriding treatment on the surface layer of a predetermined region of the metal to be processed. This point is also a feature of the present invention.

DBDによる窒化は、DBOプラズマから供給される窒素で起きる。即ち、窒化ガスとしてアンモニアを使用する場合と異なり、雰囲気ガス自体から、直接、窒素は供給されない。それ故、DBD窒化時、対向電極の平面形状を、所要の形状にパターニングすれば,被処理金属の表層をマスキングしなくても、被処理金属の表層において、対向電極の平面形状の形状通りの領域範囲に窒素が供給されて、対向電極の平面形状の形状通りの表層領域に窒素処理を施すことができる。   Nitriding by DBD occurs with nitrogen supplied from DBO plasma. That is, unlike when ammonia is used as the nitriding gas, nitrogen is not directly supplied from the atmospheric gas itself. Therefore, at the time of DBD nitriding, if the planar shape of the counter electrode is patterned to a required shape, the surface layer of the metal to be processed does not need to be masked, and the surface shape of the counter electrode is the same as that of the counter electrode. Nitrogen is supplied to the region range, so that the surface treatment can be performed on the surface layer region according to the planar shape of the counter electrode.

そして、対向電極の平面形状のパターニングを高精度で行えば、被処理金属の表層において、高精度の領域範囲で窒化処理を行なうことができる。一方、被処理金属の表層の面積が大きい場合は、それに合せ、対向電極の面積を大きくすれば、被処理金属の表層に、短時間で均一に窒化処理を施すことができる。   Then, if the patterning of the planar shape of the counter electrode is performed with high accuracy, nitriding can be performed in a highly accurate region range on the surface layer of the metal to be processed. On the other hand, when the surface area of the metal to be processed is large, if the area of the counter electrode is increased accordingly, the surface of the metal to be processed can be uniformly nitrided in a short time.

ここで、本発明硬化方法を実施する処理装置の一態様を、図1に示す。図1(a)に、処理装置の上面態様を示し、図1(b)に、処理装置のA−A断面態様を示す。図1に示す処理装置1は、混合ガスを所要の流量で供給しながら行う形の処理装置で、バリア放電管1aと、バリア放電管1aを包囲する外部加熱器1bから構成されている。   Here, one mode of a processing apparatus for carrying out the curing method of the present invention is shown in FIG. FIG. 1A shows an upper surface aspect of the processing apparatus, and FIG. 1B shows an AA cross-sectional aspect of the processing apparatus. A processing apparatus 1 shown in FIG. 1 is a processing apparatus that is configured to supply a mixed gas at a required flow rate, and includes a barrier discharge tube 1a and an external heater 1b that surrounds the barrier discharge tube 1a.

外部加熱器1bには交流電源6が電気的に接続されていて、バリア放電管1aの温度を、プラズマの形成・維持に適切な温度に保持するため、バリア放電管1aを外側から加熱する。   An AC power source 6 is electrically connected to the external heater 1b, and the barrier discharge tube 1a is heated from the outside in order to maintain the temperature of the barrier discharge tube 1a at a temperature suitable for the formation and maintenance of plasma.

バリア放電管1aの中央部には、誘電体2が配置されている。誘電体2は、誘電体バリア放電を促進し得るものであればよく、特定の誘電体に限定されないが、なかでも、絶縁体のアルミナが好ましい。   A dielectric 2 is disposed at the center of the barrier discharge tube 1a. The dielectric 2 is not limited to a specific dielectric as long as it can promote dielectric barrier discharge, and among them, an insulating alumina is preferable.

誘電体2の上部には、所要の間隔をおいて、被処理金属3が載置されている。被処理金属3は、バリア放電管1a内で誘電体バリア放電を生起する際の一方の電極として機能する。誘電体2と被処理金属3の間隔は、誘電体バリア放電が、大気圧下又は大気圧近傍下で適確に生起するように、適宜、調整して設定する。誘電体2の下面には、対向電極4の平面形状が配置されている。   A metal 3 to be processed is placed on the upper part of the dielectric 2 with a predetermined interval. The metal 3 to be processed functions as one electrode when dielectric barrier discharge occurs in the barrier discharge tube 1a. The distance between the dielectric 2 and the metal 3 to be processed is appropriately adjusted and set so that the dielectric barrier discharge is appropriately generated under atmospheric pressure or near atmospheric pressure. The planar shape of the counter electrode 4 is disposed on the lower surface of the dielectric 2.

被処理金属3と対向電極4の平面形状は交流電源5に電気的に接続されていて、バリア放電管1a内で誘電体バリア放電を生起するため、被処理金属3と対向電極4の平面形状の間に、所要の電圧を、所要の周波数で印加する。   The planar shape of the metal to be processed 3 and the counter electrode 4 is electrically connected to the AC power source 5 and generates a dielectric barrier discharge in the barrier discharge tube 1a. During this time, a required voltage is applied at a required frequency.

バリア放電管1aは、耐熱性の点で石英管が好ましいが、プラズマの形成・維持に耐え得る材質のものであればよく、特定の材質のものに限定されない。バリア放電管1aの断面形状は、管状に限定されず、任意の断面形状をとり得る。例えば、断面が矩形状のバリア放電管1aでもよい。   The barrier discharge tube 1a is preferably a quartz tube in terms of heat resistance, but may be any material that can withstand the formation and maintenance of plasma, and is not limited to a specific material. The cross-sectional shape of the barrier discharge tube 1a is not limited to a tubular shape, and may take any cross-sectional shape. For example, the barrier discharge tube 1a may have a rectangular cross section.

なお、図1には、断面が矩形状の外部加熱器1bを示したが、外部加熱器1bの断面形状は矩形に限定されない。バリア放電管1aの断面形状に合せて管状の断面形状にしてもよいし、また、他の断面形状でもよい。   Although FIG. 1 shows the external heater 1b having a rectangular cross section, the cross sectional shape of the external heater 1b is not limited to a rectangle. A tubular cross-sectional shape may be used in accordance with the cross-sectional shape of the barrier discharge tube 1a, or another cross-sectional shape may be used.

バリア放電管1aには、窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスxを供給する。誘電体2を挟む被処理金属3と対向電極4の平面形状の間に、所要の電圧を、所要の周波数で印加すると、誘電体バリア放電が生起し、被処理金属3の周囲に、電離した窒素を含むプラズマが形成される。電離した窒素が、被処理金属3の表層に侵入して窒化が進行し、被処理金属3の表層が硬化する。   The barrier discharge tube 1a is supplied with a mixed gas x containing nitrogen gas and, if necessary, an inert gas such as hydrogen gas or rare gas. When a required voltage is applied at a required frequency between the planar shape of the metal to be processed 3 and the counter electrode 4 sandwiching the dielectric 2, a dielectric barrier discharge occurs and the periphery of the metal to be processed 3 is ionized. A plasma containing nitrogen is formed. The ionized nitrogen enters the surface layer of the metal 3 to be processed and nitriding proceeds, and the surface layer of the metal 3 to be processed is cured.

バリア放電管1aに、窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスxを連続的に供給し、他端から、余剰の混合ガスyを排出することにより、被処理金属3の表層の窒化が表層全体において均一に進行し、被処理金属3の表層が均一に硬化する。   By continuously supplying a mixed gas x containing nitrogen gas and, if necessary, an inert gas such as hydrogen gas or a rare gas, to the barrier discharge tube 1a, and discharging the surplus mixed gas y from the other end, Nitriding of the surface layer of the metal to be processed 3 proceeds uniformly in the entire surface layer, and the surface layer of the metal 3 to be processed is uniformly cured.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表面が15mm×15mm、厚さ4mmの鋼片(被処理金属)を、図1に示す処理装置において、誘電体(アルミナ)の上部に、約1mmの間隔をおいて配置した。
Example 1
Steel pieces (metals to be processed) having a surface of 15 mm × 15 mm and a thickness of 4 mm were arranged on the upper part of the dielectric (alumina) at an interval of about 1 mm in the processing apparatus shown in FIG.

ガスa(窒素:45体積%、水素:5体積%、残部:アルゴンの混合ガス)、ガスb(窒素:90体積%、水素:10体積%の混合ガス)、ガスc(窒素:100体積%)をバリア放電管に送給し、上記鋼(被処理金属)と電極の間に、5.7kVの電圧を、周波数12.8kHzで印加し、処理温度を530℃に保持して、誘電体バリア放電を、大気圧下で生起して、2時間継続し、上記鋼片の表層に窒化処理を施した。   Gas a (nitrogen: 45% by volume, hydrogen: 5% by volume, balance: mixed gas of argon), gas b (mixed gas of nitrogen: 90% by volume, hydrogen: 10% by volume), gas c (nitrogen: 100% by volume) ) Is fed to the barrier discharge tube, a voltage of 5.7 kV is applied between the steel (metal to be treated) and the electrode at a frequency of 12.8 kHz, and the treatment temperature is kept at 530 ° C. Barrier discharge occurred under atmospheric pressure and continued for 2 hours, and the surface layer of the steel slab was subjected to nitriding treatment.

窒化処理後、上記鋼片を中央部で分割し、鋼片断面の硬さをビッカース硬さ試験(荷重10g)で測定した。図2に、窒化処理後の鋼片断面の硬さ分布を示す。鋼片の表面から深さ約70μmまで、硬化していることが解る。   After the nitriding treatment, the steel piece was divided at the center, and the hardness of the cross section of the steel piece was measured by a Vickers hardness test (load 10 g). FIG. 2 shows the hardness distribution of the steel piece cross section after nitriding. It turns out that it has hardened from the surface of a steel piece to about 70 micrometers in depth.

(実施例2)
実施例1と同様に、図1に示す処理装置の誘電体(アルミナ)の上部に、約1mmの間隔をおいて被処理金属とにより表面が15mm×15mm、厚さ4mmの鋼片(被処理金属)を配置した。
(Example 2)
As in Example 1, a steel piece (surface to be processed) having a surface of 15 mm × 15 mm and a thickness of 4 mm is formed on the top of the dielectric (alumina) of the processing apparatus shown in FIG. Metal).

被処理金属を包む雰囲気ガスは、窒素:45体積%、水素:5体積%、残部:アルゴンの混合ガスである。この混合ガスをバリア放電管に送給し、被処理金属と電極の間に、5.7kVの電圧を、周波数12.8kHzで印加し、処理温度を530℃に保持して、誘電体バリア放電を、大気圧下で生起して、2時間継続し、上記鋼片の表層の所定領域にパターニング窒化処理を施した。   The atmosphere gas surrounding the metal to be treated is a mixed gas of nitrogen: 45% by volume, hydrogen: 5% by volume, and the balance: argon. This mixed gas is supplied to the barrier discharge tube, a voltage of 5.7 kV is applied between the metal to be processed and the electrode at a frequency of 12.8 kHz, the processing temperature is maintained at 530 ° C., and dielectric barrier discharge is performed. Was generated under atmospheric pressure and continued for 2 hours, and a patterning nitriding treatment was applied to a predetermined region of the surface layer of the steel slab.

図3(a)に、金属表面の硬化部と非硬化部における金属表面ビッカース硬さ(Hv)分布を示す。金属表面において硬化部と非硬化部を明瞭に区分でき、金属表層にパターニング窒化処理がなされていることが解る。   FIG. 3A shows a metal surface Vickers hardness (Hv) distribution in a hardened portion and a non-hardened portion of the metal surface. It can be seen that the hardened portion and the non-hardened portion can be clearly distinguished on the metal surface, and the metal surface layer is subjected to patterning nitriding treatment.

(実施例3)
実施例1と同様に、図1に示す処理装置の誘電体(アルミナ)の上部に、約1mmの間隔をおいて被処理金属とにより表面が15mm×15mm、厚さ4mmの鋼片(被処理金属)を配置した。
(Example 3)
As in Example 1, a steel piece (surface to be processed) having a surface of 15 mm × 15 mm and a thickness of 4 mm is formed on the top of the dielectric (alumina) of the processing apparatus shown in FIG. Metal).

被処理金属を包む雰囲気ガスは、窒素:95体積%、水素:5体積%の混合ガスである。この混合ガスをバリア放電管に送給し、被処理金属と電極の間に、5.7kVの電圧を、周波数12.8kHzで印加し、処理温度を530℃に保持して、誘電体バリア放電を、大気圧下で生起して、2時間継続し、上記鋼片の表層の所定領域にパターニング窒化処理を施した。   The atmosphere gas surrounding the metal to be treated is a mixed gas of 95% by volume of nitrogen and 5% by volume of hydrogen. This mixed gas is supplied to the barrier discharge tube, a voltage of 5.7 kV is applied between the metal to be processed and the electrode at a frequency of 12.8 kHz, the processing temperature is maintained at 530 ° C., and dielectric barrier discharge is performed. Was generated under atmospheric pressure and continued for 2 hours, and a patterning nitriding treatment was applied to a predetermined region of the surface layer of the steel slab.

図3(b)に、金属試料表面の硬化部と非硬化部における金属試料表面ビッカース硬さ(Hv)分布を示す。金属表面において硬化部と非硬化部を明瞭に区分でき、金属表層にパターニング窒化処理がなされていることが解る。   FIG. 3 (b) shows the Vickers hardness (Hv) distribution of the metal sample surface in the hardened part and the non-hardened part on the surface of the metal sample. It can be seen that the hardened portion and the non-hardened portion can be clearly distinguished on the metal surface, and the metal surface layer is subjected to patterning nitriding treatment.

(実施例4)
実施例1と同様に、図1に示す処理装置の誘電体(アルミナ)の上部に、約1mmの間隔をおいて被処理金属とにより表面が15mm×15mm、厚さ4mmの鋼片(被処理金属)を配置した。
前記被処理金属を包む雰囲気ガスは、窒素:100体積%の単体ガスである。この単体ガスをバリア放電管に送給し、被処理金属と電極の間に、5.7kVの電圧を、周波数12.8kHzで印加し、処理温度を530℃に保持して、誘電体バリア放電を、大気圧下で生起して、2時間継続し、上記鋼片の表面の所定領域表層にパターニング窒化処理を施した。
Example 4
As in Example 1, a steel piece (surface to be processed) having a surface of 15 mm × 15 mm and a thickness of 4 mm is formed on the top of the dielectric (alumina) of the processing apparatus shown in FIG. Metal).
The atmosphere gas surrounding the metal to be treated is a simple gas of nitrogen: 100% by volume. This single gas is supplied to the barrier discharge tube, a voltage of 5.7 kV is applied between the metal to be processed and the electrode at a frequency of 12.8 kHz, the processing temperature is maintained at 530 ° C., and dielectric barrier discharge is performed. Was generated under atmospheric pressure and continued for 2 hours, and a patterning nitriding treatment was applied to a surface layer of a predetermined region on the surface of the steel piece.

図3(c)に、金属試料表面の硬化部と非硬化部における金属試料表面ビッカース硬さ(Hv)分布を示す。金属表面において硬化部と非硬化部を明瞭に区分でき、金属表層にパターニング窒化処理がなされていることが解る。   FIG. 3 (c) shows the Vickers hardness (Hv) distribution of the metal sample surface in the hardened and non-hardened parts of the metal sample surface. It can be seen that the hardened portion and the non-hardened portion can be clearly distinguished on the metal surface, and the metal surface layer is subjected to patterning nitriding treatment.

実施例2〜4の金属表面の硬化部と非硬化部のビッカース硬さ(Hv)分布によれば、該分布は、雰囲気ガスの種類に大きく影響されず、また、硬化部と非硬化部の境界は、100μm程度、又は、100μm以下の精度で区分できることが解る。したがって、本発明硬化方法においては、被処理金属の所定領域の表層に、対向電極の平面形状の形状の通りの正確で高精度のパターニング窒化処理を実現することができる。   According to the Vickers hardness (Hv) distribution of the hardened part and the non-hardened part on the metal surface in Examples 2 to 4, the distribution is not greatly affected by the type of the atmospheric gas, and the hardened part and the non-hardened part are not affected. It can be seen that the boundary can be classified with an accuracy of about 100 μm or 100 μm or less. Therefore, in the curing method of the present invention, it is possible to realize an accurate and highly accurate patterning nitriding treatment on the surface layer of the predetermined region of the metal to be processed as in the shape of the planar shape of the counter electrode.

前述したように、本発明によれば、高価な真空処理装置を必要とせず、大気圧下又は大気圧近傍下で、無害な、窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスを用いて、被処理金属の表層に、短時間で均一に窒化処理を施すことができる。   As described above, according to the present invention, an expensive vacuum processing apparatus is not required, and it is harmless under atmospheric pressure or near atmospheric pressure. Using a mixed gas containing a gas, the surface layer of the metal to be processed can be uniformly nitrided in a short time.

また、本発明によれば、100μm以下の精度で、被処理金属の表層を部分的に限定して窒化処理を施す、即ち、高精度のパターニング窒化を施すことができる。さらに、本発明によれば、被処理金属の表層の面積が大きい場合は、それに合せ、対向電極の面積を大きくして、被処理金属の表層に、短時間で均一に窒化処理を施すことができる。   Furthermore, according to the present invention, the surface layer of the metal to be processed can be partially limited with an accuracy of 100 μm or less, that is, highly precise patterning nitriding can be performed. Furthermore, according to the present invention, when the surface area of the metal to be processed is large, the area of the counter electrode is increased accordingly, and the surface layer of the metal to be processed can be uniformly nitrided in a short time. it can.

よって、本発明は、機械部品製造産業、金型製造産業、医療機器製造産業などにおいて利用可能性が高いものである。   Therefore, the present invention has high applicability in the machine component manufacturing industry, the mold manufacturing industry, the medical device manufacturing industry, and the like.

1 処理装置
1a バリア放電管
1b 外部加熱器
2 誘電体
3 被処理金属
4 電極
5、6 交流電源
x、y 混合ガス
DESCRIPTION OF SYMBOLS 1 Processing apparatus 1a Barrier discharge tube 1b External heater 2 Dielectric material 3 Metal to be processed 4 Electrode 5, 6 AC power source x, y Mixed gas

Claims (5)

被処理金属の表層に窒化処理を施して硬化させる金属表層の硬化方法において、
(i)窒素ガス、必要に応じ、水素ガスや希ガス等の不活性ガスを含む混合ガスからなる雰囲気で、被処理金属を包み、
(ii)大気圧下又は大気圧近傍下で、誘電体バリア放電により、窒素の電離プラズマを発生させ、被処理金属の表層に窒化処理を施す
ことを特徴とする誘電体バリア放電による金属表層の硬化方法。
In the method for curing the metal surface layer, the surface layer of the metal to be treated is cured by nitriding,
(I) wrapping the metal to be treated in an atmosphere consisting of a mixed gas containing an inert gas such as a nitrogen gas or a hydrogen gas or a rare gas, if necessary,
(Ii) An ionized plasma of nitrogen is generated by dielectric barrier discharge under atmospheric pressure or near atmospheric pressure, and nitriding is applied to the surface layer of the metal to be treated. Curing method.
前記被処理金属表面の所定領域の表層に窒化処理を施すことを特徴とする請求項1に記載の誘電体バリア放電による金属表層の硬化方法。   2. The method for curing a metal surface layer by dielectric barrier discharge according to claim 1, wherein a surface layer in a predetermined region of the surface of the metal to be treated is subjected to nitriding treatment. 前記混合ガスにおける水素ガスと窒素ガスの体積比:水素ガス/窒素ガスが0〜0.5であることを特徴とする請求項1又は2に記載の誘電体バリア放電による金属表層の硬化方法。   The volume ratio of hydrogen gas to nitrogen gas in the mixed gas: hydrogen gas / nitrogen gas is 0 to 0.5, The method for curing a metal surface layer by dielectric barrier discharge according to claim 1 or 2. 前記混合ガスを、流量0.1〜100L/分で処理装置に供給し、被処理金属の温度を、室温〜1000℃に保持して窒化処理を行なうことを特徴とする請求項1〜3のいずれか1項に記載の誘電体バリア放電による金属表層の硬化方法。   The mixed gas is supplied to a processing apparatus at a flow rate of 0.1 to 100 L / min, and the temperature of the metal to be processed is maintained at room temperature to 1000 ° C to perform nitriding treatment. The metal surface hardening method by the dielectric barrier discharge of any one of Claims 1. 前記被処理金属が鋼又は鉄合金であることを特徴とする請求項1〜4のいずれか1項に記載の誘電体バリア放電による金属表層の硬化方法。   The method for curing a metal surface layer by dielectric barrier discharge according to any one of claims 1 to 4, wherein the metal to be treated is steel or an iron alloy.
JP2016056206A 2016-02-26 2016-03-18 Method of curing metal surface layer by dielectric barrier discharge Active JP6789562B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016035624 2016-02-26
JP2016035624 2016-02-26

Publications (2)

Publication Number Publication Date
JP2017155324A true JP2017155324A (en) 2017-09-07
JP6789562B2 JP6789562B2 (en) 2020-11-25

Family

ID=59808235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056206A Active JP6789562B2 (en) 2016-02-26 2016-03-18 Method of curing metal surface layer by dielectric barrier discharge

Country Status (1)

Country Link
JP (1) JP6789562B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319192A (en) * 2005-05-13 2006-11-24 Sharp Corp Electrode and plasma process unit employing it
JP2008041355A (en) * 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd Plasma surface treatment device, and surface treatment method
JP2008513595A (en) * 2003-09-24 2008-05-01 アルセロール フランス Method and apparatus for the production of metal-coated steel products
WO2009028084A1 (en) * 2007-08-31 2009-03-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Apparatus for generating dielectric barrier discharge gas
JP2011084793A (en) * 2009-10-19 2011-04-28 Ngk Insulators Ltd Plasma processing apparatus
WO2015093167A1 (en) * 2013-12-18 2015-06-25 株式会社Ihi Plasma nitriding apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513595A (en) * 2003-09-24 2008-05-01 アルセロール フランス Method and apparatus for the production of metal-coated steel products
JP2006319192A (en) * 2005-05-13 2006-11-24 Sharp Corp Electrode and plasma process unit employing it
JP2008041355A (en) * 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd Plasma surface treatment device, and surface treatment method
WO2009028084A1 (en) * 2007-08-31 2009-03-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Apparatus for generating dielectric barrier discharge gas
JP2011084793A (en) * 2009-10-19 2011-04-28 Ngk Insulators Ltd Plasma processing apparatus
WO2015093167A1 (en) * 2013-12-18 2015-06-25 株式会社Ihi Plasma nitriding apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮本潤示: "「大気圧プラズマ窒化法における硬度均一性への影響」", 表面技術, vol. 66, no. 4, JPN7019004014, 2015, pages 165 - 166, ISSN: 0004325035 *

Also Published As

Publication number Publication date
JP6789562B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6241839B2 (en) Hardening method for low alloy steel
Ichiki et al. Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure
JP2011235318A (en) Method for surface treatment of die-casting die
JP2009290026A (en) Film forming method of semiconductor device which uses neutral particle
JP2010103188A (en) Atmospheric pressure plasma processing apparatus
TW455917B (en) System and method for cleaning silicon-coated surfaces in an ion implanter
US20030180556A1 (en) Corrosive-resistant coating over aluminum substrates for use in plasma deposition and etch environments
JP5606707B2 (en) Nitriding processing apparatus and nitriding processing method
JP6789562B2 (en) Method of curing metal surface layer by dielectric barrier discharge
US20090160309A1 (en) Electron beam exit window
US5830540A (en) Method and apparatus for reactive plasma surfacing
WO2020189195A1 (en) Plasma nitridization method
JP5271456B2 (en) Plasma processing apparatus and plasma processing method
JP2012256501A (en) Plasma generation gas, method for generating plasma, and atmospheric pressure plasma generated by the method
JP2009290025A (en) Neutral particle irradiation type cvd apparatus
JP2006249539A (en) Compound surface reforming treatment method and apparatus, and surface reforming treated material
US3616383A (en) Method of ionitriding objects made of high-alloyed particularly stainless iron and steel
JP2006199980A (en) Method for coating inner surface and apparatus therefor
JP3989585B2 (en) How to passivate surgical needles
JP2015117405A (en) Plasma nitriding device
Mikhalev et al. Structure, morphology, and elemental-phase composition of j02002 steel as a result of electrolytic-plasma processing
JP5956302B2 (en) Plasma processing apparatus and method for forming hetero film
JP7174943B2 (en) Nitriding equipment
JP2014001414A (en) Method and device for nitriding treatment
JP2004001086A (en) Surface treatment method for metal mold by electronic beam irradiation and treated metal mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6789562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250