JP2017155288A - Aluminum alloy member and manufacturing method therefor - Google Patents

Aluminum alloy member and manufacturing method therefor Download PDF

Info

Publication number
JP2017155288A
JP2017155288A JP2016039714A JP2016039714A JP2017155288A JP 2017155288 A JP2017155288 A JP 2017155288A JP 2016039714 A JP2016039714 A JP 2016039714A JP 2016039714 A JP2016039714 A JP 2016039714A JP 2017155288 A JP2017155288 A JP 2017155288A
Authority
JP
Japan
Prior art keywords
temperature
aluminum alloy
casting
alloy member
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016039714A
Other languages
Japanese (ja)
Other versions
JP6419742B2 (en
Inventor
川原 博
Hiroshi Kawahara
博 川原
岩田 靖
Yasushi Iwata
靖 岩田
加瑞馬 日比
Kazuma Hibi
加瑞馬 日比
亮 菊池
Akira Kikuchi
亮 菊池
翼 伊藤
Tsubasa Ito
翼 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016039714A priority Critical patent/JP6419742B2/en
Publication of JP2017155288A publication Critical patent/JP2017155288A/en
Application granted granted Critical
Publication of JP6419742B2 publication Critical patent/JP6419742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method providing a high strength aluminum alloy member consisting of a casting by a heat treatment in short time.SOLUTION: There is provided a manufacturing method of an aluminum alloy member consisting of a hypoeutectic aluminum alloy (called "hypoeutectic Al alloy") having temperature difference between phases (ΔT=Tl-Ts), which is temperature difference between a solidus line temperature (Ts) and a liquidus line temperature (Tl), of 20°C or more including conducting a solution process for heating casting which becomes the hypoeutectic Al alloy to a solution temperature of Ts or more and less than Tl in a compression atmosphere. The compression atmosphere is preferably gas atmosphere to which hydrostatic pressure of 0.5 to 15 MPa is applied for example. The solution temperature is preferably at (Ts+3°C) to (Ts+25°C). Time of the solution process for holding the solution temperature is enough with short time of 60 minutes or less.SELECTED DRAWING: Figure 1B

Description

本発明は、鋳造材からなる高強度なアルミニウム合金部材およびその製造方法に関する。   The present invention relates to a high-strength aluminum alloy member made of a cast material and a method for producing the same.

自動車等の軽量化を図るため、高強度が要求される構造部材等にもアルミニウム合金部材が使用されるようになってきた。その用途のさらなる拡大には、鍛造材のみならず鋳造材(鋳物)からなるアルミニウム合金部材も、機械的特性(特に強度)に優れることが必要となる。   In order to reduce the weight of automobiles and the like, aluminum alloy members have been used for structural members that require high strength. In order to further expand the application, not only forged materials but also aluminum alloy members made of cast materials (castings) are required to have excellent mechanical properties (particularly strength).

鋳物の機械的特性の向上には、その合金組成のみならず、熱処理(溶体化、冷却(焼入れ)、時効等)も非常に重要である。アルミニウム合金の熱処理として、一般的にはJIS規格にあるT4〜T7等がなされる。いずれの熱処理でも、鋳物を高温に加熱して固溶の均一化等を図る溶体化処理がなされる点で共通する。もっとも一般的に、溶体化処理には長時間を要するため、アルミニウム合金部材の製造コストの上昇要因となっていた。そこで、その処理時間を短縮する方法が提案されており、例えば、下記の特許文献に関連する記載がある。   In order to improve the mechanical properties of the casting, not only the alloy composition but also heat treatment (solution treatment, cooling (quenching), aging, etc.) is very important. As the heat treatment of the aluminum alloy, T4 to T7, etc., which are compliant with JIS standards are generally performed. Any of the heat treatments is common in that a solution treatment is performed in which the casting is heated to a high temperature to make the solid solution uniform. Most generally, since the solution treatment takes a long time, it has been a factor in increasing the manufacturing cost of the aluminum alloy member. Therefore, a method for shortening the processing time has been proposed. For example, there is a description related to the following patent document.

特開昭60−208460号公報JP 60-208460 A 特開平9−272942号公報Japanese Patent Laid-Open No. 9-272942 特開平11−293430号公報JP 11-293430 A 特開平11−246925号公報Japanese Patent Laid-Open No. 11-246925 特開2001−262295号公報JP 2001-262295 A 特開2004−52087号公報JP 2004-52087 A

特許文献1〜4は、固相線温度近傍の高温で加熱して、アルミニウム合金からなる鋳物の溶体化処理を短時間で行うことを提案している。しかし、鋳物を単純に高温加熱すると、鋳物の一部に溶融(バーニング)が生じ、溶体化処理後の鋳造組織には空隙(気孔)が生じる。これでは却って、鋳物の機械的特性が低下し得る。なお、鋳物は、形状が複雑で部位により肉厚が異なることが多いため、溶体化処理中の溶融を温度管理のみで抑制することも困難である。   Patent Documents 1 to 4 propose that a solution treatment of a casting made of an aluminum alloy is performed in a short time by heating at a high temperature near the solidus temperature. However, when the casting is simply heated at a high temperature, melting (burning) occurs in a part of the casting, and voids (pores) occur in the cast structure after the solution treatment. On the contrary, the mechanical properties of the casting may be deteriorated. In addition, since casting has a complicated shape and often has a different thickness depending on a part, it is difficult to suppress melting during solution treatment only by temperature control.

特許文献5、6は、熱間等方圧プレス処理(HIP処理)を利用して溶体化処理の少なくとも一部を行うことにより、気孔率または鋳造欠陥の低減と、溶体化処理時間の低減を図ることを提案している。例えば、特許文献5では、470〜540℃×700〜1200bar(70〜120MPa)の溶融塩浴中に鋳物を20〜40秒保持するHIP処理を行うことにより、溶体化処理時間を4〜5時間に短縮している([0011]〜[0013])。また特許文献6では、500〜530℃×50〜200MPaのガス中に鋳物を保持することにより、2〜3時間程度で圧密化処理と溶体化処理を同時に行っている([0035]〜[0037])。   Patent Documents 5 and 6 reduce the porosity or casting defects and reduce the solution treatment time by performing at least part of the solution treatment using hot isostatic pressing (HIP treatment). Propose to plan. For example, in Patent Document 5, the solution treatment time is 4 to 5 hours by performing HIP treatment in which a casting is held for 20 to 40 seconds in a molten salt bath at 470 to 540 ° C. × 700 to 1200 bar (70 to 120 MPa). ([0011] to [0013]). Moreover, in patent document 6, the compaction process and the solution treatment are simultaneously performed in about 2-3 hours by hold | maintaining a casting in the gas of 500-530 degreeC x 50-200 MPa ([0035]-[0037). ]).

しかし、このような方法でも、少なくとも数時間の溶体化処理を必要としていることに変わりなく、熱処理(特に溶体化処理)に要する時間を十分に短縮できているとはいえない。また、HIP処理は非常に高い圧力下でなされるため、大型で特殊な装置を必要とし、量産性にも乏しい。このためHIP処理を利用した方法では、鋳造材からなる高強度なアルミニウム合金部材の製造コストを低減することは困難である。なお、いずれのHIP処理も、完全な固相状態からなる鋳物に対して非常に高い静水圧を印加することにより、鋳物に内包されている鋳巣等の気孔や欠陥等を押し潰すことを意図している。   However, even with such a method, the solution treatment for at least several hours is still required, and it cannot be said that the time required for the heat treatment (particularly the solution treatment) can be sufficiently shortened. In addition, since the HIP process is performed under a very high pressure, a large and special device is required and the mass productivity is poor. For this reason, it is difficult to reduce the manufacturing cost of a high-strength aluminum alloy member made of a cast material by the method using the HIP process. All HIP treatments are intended to crush pores and defects, such as cast holes contained in the casting, by applying a very high hydrostatic pressure to the casting that is in a completely solid state. doing.

本発明はこのような事情に鑑みて為されたものであり、鋳造材からなる高強度なアルミニウム合金部材と、その製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength aluminum alloy member made of a cast material and a manufacturing method thereof.

本発明者はこの課題を解決すべく鋭意研究した結果、亜共晶Al合金からなる鋳物の溶体化処理を、液相が少し生じ得るような温度域で、かつ、その鋳物に静水圧を印加しつつ行うことを着想した。そして、この溶体化処理を含む熱処理を実際に行うことにより、機械的特性に優れたアルミニウム合金部材が得られることを確認した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor has applied a hydrostatic pressure to the casting in a temperature range in which a liquid phase can be slightly generated in a solution treatment of a casting made of a hypoeutectic Al alloy. Inspired to do. And it confirmed that the aluminum alloy member excellent in the mechanical characteristic was obtained by actually performing the heat processing including this solution treatment. By developing this result, the present invention described below has been completed.

《アルミニウム合金部材の製造方法》
(1)本発明のアルミニウム合金部材(単に「Al合金部材」ともいう。)の製造方法は、固相線温度(Ts)と液相線温度(Tl)の温度差である相間温度差(ΔT=Tl−Ts)が20℃以上ある亜共晶アルミニウム合金(「亜共晶Al合金」という。)からなるアルミニウム合金部材の製造方法であって、加圧雰囲気中で、Ts以上でTl未満である溶体化温度に、前記亜共晶Al合金からなる鋳物を加熱する溶体化工程を含む熱処理を行うことを特徴とする。
<< Method for Manufacturing Aluminum Alloy Member >>
(1) The method for producing an aluminum alloy member of the present invention (also simply referred to as “Al alloy member”) includes an interphase temperature difference (ΔT) which is a temperature difference between a solidus temperature (Ts) and a liquidus temperature (Tl). = Tl−Ts) is a method for producing an aluminum alloy member made of a hypoeutectic aluminum alloy (referred to as “hypereutectic Al alloy”) having a temperature of 20 ° C. or more, and is Ts or more and less than Tl in a pressurized atmosphere. A heat treatment including a solution treatment step of heating the casting made of the hypoeutectic Al alloy is performed at a certain solution treatment temperature.

(2)本発明の製造方法によれば、気孔等の欠陥が殆どなくて、結晶粒が粒状化した良好な鋳造組織からなり、優れた機械的特性を発揮し得るアルミニウム合金部材が得られる。この理由は次のように考えられる。 (2) According to the production method of the present invention, it is possible to obtain an aluminum alloy member that has almost no defects such as pores, has a good cast structure in which crystal grains are granulated, and can exhibit excellent mechanical properties. The reason is considered as follows.

亜共晶Al合金からなる鋳物に溶体化処理(溶体化工程)を施すことにより、アルミニウム基地(「Al基地」という。)内へ合金元素(Mg、Si、Cu等)を均質的に固溶させることができる。亜共晶Al合金が鋳造性を高めるSiを含む場合なら、溶体化処理により、AlとSiの共晶相も球状化し得る。   By applying a solution treatment (solution process) to a casting made of a hypoeutectic Al alloy, the alloy elements (Mg, Si, Cu, etc.) are homogeneously dissolved in the aluminum matrix (referred to as “Al matrix”). Can be made. If the hypoeutectic Al alloy contains Si that enhances castability, the eutectic phase of Al and Si can also be spheroidized by solution treatment.

このような溶体化処理を、鋳物の固相線温度近傍の高温で行うことにより、合金元素のAl基地内への固溶限界や合金元素の拡散速度の向上が図られる。特に本発明に係る溶体化工程は、鋳物中に液相を出現させてなされるため、合金元素の固溶や均質化が著しく促進され、熱処理時間の大幅な短縮が図られると共に、デンドライト状の初晶アルミニウム(「初晶Al」という。)の粒状化や共晶相(例えばAl−Si)の球状化等も促進されて、良好な鋳造組織が生成され易くなる。   By performing such a solution treatment at a high temperature near the solidus temperature of the casting, it is possible to improve the solid solution limit of the alloy element in the Al matrix and the diffusion rate of the alloy element. In particular, since the solution treatment step according to the present invention is performed by causing a liquid phase to appear in the casting, the solid solution and homogenization of the alloy elements are remarkably promoted, and the heat treatment time is greatly shortened, and the dendritic shape is reduced. Granulation of primary crystal aluminum (referred to as “primary crystal Al”), spheroidization of eutectic phase (eg, Al—Si), and the like are promoted, and a good cast structure is easily generated.

もっとも、液相を生じるような高温域で溶体化処理を行うと、鋳物の凝固時に生じた合金元素(溶質元素)の偏析部位で局部融解が生じ、その部位に空隙が形成され、却って強度低下を招くおそれがある。しかし本発明に係る溶体化工程は、加圧雰囲気中でなされるため、上述した溶体化処理中に鋳物内に生じた液相も加圧状態となり、局部融解等による空隙(気孔)の形成も抑制される。また、溶体化処理中、液相を介して鋳物内も加圧されるため、Al基地内への水素の拡散も進み易く、水素ガスに起因して発生する鋳巣(ガス巣)の縮小化やその発生の抑制等も図られる。   However, when a solution treatment is performed in a high temperature region that generates a liquid phase, local melting occurs at the segregation site of the alloy element (solute element) generated during solidification of the casting, and voids are formed at that site, and the strength is reduced. May be incurred. However, since the solution treatment step according to the present invention is performed in a pressurized atmosphere, the liquid phase generated in the casting during the solution treatment described above is also in a pressurized state, and voids (pores) are also formed by local melting or the like. It is suppressed. In addition, the inside of the casting is pressurized through the liquid phase during the solution treatment, so that hydrogen diffuses easily into the Al base, and the casting cavity (gas cavity) generated due to hydrogen gas is reduced. And suppression of the occurrence thereof.

さらに、鋳物中に液相が出現すると、その体積膨張によって鋳物表面に発汗が生じることもあるが、本発明に係る溶体化処理中は、鋳物表面が加圧されているため、その発汗も抑制され得る。   Furthermore, when a liquid phase appears in the casting, sweating may occur on the casting surface due to its volume expansion. However, since the casting surface is pressurized during the solution treatment according to the present invention, the sweating is also suppressed. Can be done.

こうして本発明の製造方法によれば、良好な鋳造組織からなり、鍛造材に匹敵するほどの高特性を発揮し得るAl合金部材が得られるようになったと考えられる。しかも本発明に係る溶体化工程は、従来よりも高温域で液相を介してなされるため、非常に短時間内に、鋳物中の合金元素の拡散と各結晶粒(晶出相)の粒状化等がなされる。従って本発明の製造方法によれば、機械的特性に優れた鋳造材からなるAl合金部材を短時間で得ることができ、その製造コストも大幅に低減可能となる。   Thus, according to the production method of the present invention, it is considered that an Al alloy member having a good cast structure and capable of exhibiting high properties comparable to a forged material can be obtained. Moreover, since the solution treatment step according to the present invention is performed via a liquid phase at a higher temperature than in the past, the diffusion of alloy elements in the casting and the grain size of each crystal grain (crystallization phase) are very short. Is made. Therefore, according to the manufacturing method of the present invention, an Al alloy member made of a cast material having excellent mechanical characteristics can be obtained in a short time, and the manufacturing cost can be greatly reduced.

《Al合金部材》
本発明は、上述した製造方法としてのみならず、機械的特性に優れた鋳物からなるAl合金部材としても把握できる。すなわち本発明は、固相線温度と液相線温度の温度差である相間温度差が20℃以上ある亜共晶Al合金からなる鋳造組織を有するアルミニウム合金部材であって、前記鋳造組織は、気孔率が0.5%以下であり、結晶粒径が50μm以上であると共に円形度が0.6以上であるデンドライト状の初晶Alからなる結晶粒を30%以上含むことを特徴とするアルミニウム合金部材としても把握できる。
《Al alloy member》
The present invention can be grasped not only as the manufacturing method described above, but also as an Al alloy member made of a casting excellent in mechanical characteristics. That is, the present invention is an aluminum alloy member having a cast structure made of a hypoeutectic Al alloy having an interphase temperature difference of 20 ° C. or more, which is a temperature difference between a solidus temperature and a liquidus temperature, Aluminum having a porosity of 0.5% or less, a crystal grain size of 50 μm or more, and a crystal grain made of dendritic primary Al having a circularity of 0.6 or more and containing 30% or more It can also be grasped as an alloy member.

《Al合金部材の製造装置》
本発明は、さらに、上述した製造方法としてのみならず、それを実施できる製造装置としても把握できる。すなわち本発明は、固相線温度と液相線温度の温度差である相間温度差が20℃以上ある亜共晶Al合金の鋳物に熱処理を施してアルミニウム合金部材を得るための製造装置であって、前記鋳物を気密状態で収容できる処理炉と、該鋳物内に液相が生じ得る溶体化温度以上の加熱温度(例えば700℃)まで該処理炉内を昇温できる加熱手段と、該処理炉内を所望のガス圧(例えば0.5〜15MPa)に加圧できる加圧手段と、該加熱手段と該加圧手段を制御する制御手段(調温手段と調圧手段)と、を備えることを特徴とするアルミニウム合金部材の製造装置としても把握できる。
<< Al alloy member manufacturing equipment >>
Further, the present invention can be grasped not only as the above-described manufacturing method but also as a manufacturing apparatus capable of implementing it. That is, the present invention is a production apparatus for obtaining an aluminum alloy member by subjecting a hypoeutectic Al alloy casting having a temperature difference between the solidus and liquidus temperatures of 20 ° C. or more to heat treatment. A treatment furnace capable of accommodating the casting in an airtight state, a heating means capable of raising the temperature in the treatment furnace to a heating temperature (for example, 700 ° C.) equal to or higher than a solution temperature at which a liquid phase can be generated in the casting, and the treatment A pressurizing unit capable of pressurizing the inside of the furnace to a desired gas pressure (for example, 0.5 to 15 MPa), a heating unit and a control unit (temperature control unit and pressure control unit) for controlling the pressurizing unit are provided. It can also be grasped as an aluminum alloy member manufacturing apparatus characterized by this.

《その他》
(1)本発明でいう溶体化温度は、固相線温度(Ts)と液相線温度(Tl)の中間温度であり、亜共晶Al合金からなる鋳物内に液相を生じ得る温度である。この溶体化温度が過大になると、鋳物の概形が保持され難くなる。このため溶体化温度は、溶体化処理の促進や結晶粒の粒状化等を図れる範囲内で、固相線温度近傍の温度であると好ましい。
<Others>
(1) The solution temperature in the present invention is an intermediate temperature between the solidus temperature (Ts) and the liquidus temperature (Tl), and is a temperature at which a liquid phase can be generated in a casting made of a hypoeutectic Al alloy. is there. If the solution temperature is excessive, the outline shape of the casting becomes difficult to be maintained. For this reason, the solution temperature is preferably a temperature close to the solidus temperature within a range in which solution treatment can be promoted, crystal grains can be granulated, and the like.

本明細書では、便宜上、固相線温度または液相線温度というが、本発明に係る亜共晶Al合金の組成を二元系に限るものではない。厳密には固相面温度または液相面温度というべき場合でも、便宜上、本明細書では固相線温度または液相線温度という。   In this specification, for convenience, the solidus temperature or the liquidus temperature is referred to, but the composition of the hypoeutectic Al alloy according to the present invention is not limited to the binary system. Strictly speaking, even if it should be referred to as solid phase temperature or liquidus temperature, in this specification, it is referred to as solidus temperature or liquidus temperature for convenience.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

試料23に係る熱処理前の鋳造組織を示す顕微鏡写真である。3 is a photomicrograph showing a cast structure before heat treatment according to Sample 23. その熱処理後の鋳造組織を示す顕微鏡写真である。It is a microscope picture which shows the cast structure after the heat processing. 試料C21に係る熱処理前の鋳造組織を示す顕微鏡写真である。It is a microscope picture which shows the cast structure before the heat processing which concerns on the sample C21. その熱処理後の鋳造組織を示す顕微鏡写真である。It is a microscope picture which shows the cast structure after the heat processing. 試料C32に係る熱処理前の鋳造組織を示す顕微鏡写真である。It is a microscope picture which shows the casting structure | tissue before the heat processing which concerns on sample C32. その熱処理後の鋳造組織を示す顕微鏡写真である。It is a microscope picture which shows the cast structure after the heat processing.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明のアルミニウム合金部材のみならず、その製造方法等にも適宜該当する。製造方法に関する構成要素は、一定の場合(構造または特性により「物」を直接特定することが不可能であるかまたは非実際的である事情(不可能・非実際的事情)等がある場合)、プロダクトバイプロセスとして「物」に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification appropriately correspond not only to the aluminum alloy member of the present invention but also to the production method thereof. Constituent elements related to the manufacturing method are fixed (when it is impossible or impractical (impossible / unpractical circumstances), etc.) to directly identify the “product” by structure or characteristics It can also be a component related to “thing” as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《亜共晶Al合金》
亜共晶Al合金(単に「Al合金」ともいう。)は、固相線温度(Ts)と液相線温度(Tl)の温度差である相間温度差(ΔT=Tl−Ts)が20℃以上、30℃以上さらには40℃以上となる合金組成を有する。ここでいう液相線温度(Tl)とは、液相状態の合金から固相が出現し始める温度である。また固相線温度(Ts)は、液相を含む状態から完全に固相単一の状態となる温度である。鋳造過程における凝固は、一般的な状態図で示される平衡状態で進行することはなく、通常、非平衡状態で進行し、その結果として鋳物が得られる。そこで、Al合金の液相線温度(Tl)または固相線温度(Ts)は、例えば、示差走査熱量測定(DSC)によるDSC曲線による融解温度または溶融状態にある合金を測温しながら型内で冷却して得られる凝固曲線から求まる凝固温度として特定するとよい。これらの温度に基づいて、各種Al合金の溶体化処理温度が決定されると好ましい。なお、合金組成が概知であれば、熱力学平衡計算および状態図計算を行う熱力学計算システム(例えば「Thermo-calc」を用いたScheilの凝固シミュレーションにより、液相線温度(Tl)、固相線温度(Ts)を推定することも可能である。
Hypoeutectic Al alloy
The hypoeutectic Al alloy (also simply referred to as “Al alloy”) has an interphase temperature difference (ΔT = Tl−Ts), which is a temperature difference between the solidus temperature (Ts) and the liquidus temperature (Tl), of 20 ° C. As described above, it has an alloy composition of 30 ° C. or higher, further 40 ° C. or higher. The liquidus temperature (Tl) here is a temperature at which a solid phase starts to appear from an alloy in a liquid phase state. The solidus temperature (Ts) is a temperature at which a state including a liquid phase is completely changed to a single solid phase. Solidification in the casting process does not proceed in an equilibrium state shown in a general phase diagram, but usually proceeds in a non-equilibrium state, and as a result, a casting is obtained. Therefore, the liquidus temperature (Tl) or the solidus temperature (Ts) of the Al alloy can be determined by, for example, measuring the melting temperature based on the DSC curve by differential scanning calorimetry (DSC) or measuring the alloy in the molten state. It may be specified as a solidification temperature obtained from a solidification curve obtained by cooling with the above. It is preferable that the solution treatment temperature of various Al alloys is determined based on these temperatures. If the alloy composition is known, a thermodynamic calculation system that performs thermodynamic equilibrium calculation and phase diagram calculation (for example, Scheil solidification simulation using “Thermo-calc”, liquidus temperature (Tl), solid It is also possible to estimate the phase line temperature (Ts).

そのような合金組成は種々考えられるが、例えば、以下に示すような合金組成であると好ましい。なお、以下に説明する合金組成は、亜共晶Al合金全体を100質量%(単に「%」という。)としたときの各元素の質量割合である。   Various such alloy compositions are conceivable. For example, an alloy composition as shown below is preferable. In addition, the alloy composition demonstrated below is a mass ratio of each element when the hypoeutectic Al alloy whole is 100 mass% (it is only called "%").

(1)Si
Al合金は、Siを3〜11%、3.5〜10%、4.5〜9%さらには5.5〜8%含むと好ましい。Siが過少では鋳造性が低下して、割れやパイプ状の引け巣等の鋳造欠陥が発生し易くなる。Siが過多になると、脆弱なSi粒子の晶出量が増加し、機械的特性(特に伸びや強度)が低下し易くなる。ちなみにAl―Si合金の共晶点はSi:12.6%である。
(1) Si
The Al alloy preferably contains 3 to 11%, 3.5 to 10%, 4.5 to 9%, or even 5.5 to 8% of Si. If the amount of Si is too small, castability deteriorates, and casting defects such as cracks and pipe-shaped shrinkage cavities tend to occur. When Si is excessive, the amount of crystallization of fragile Si particles increases, and mechanical properties (particularly, elongation and strength) tend to decrease. Incidentally, the eutectic point of the Al-Si alloy is Si: 12.6%.

(2)Mg、Cu、Cr
Al合金は、Mgを0.15〜1.5%、0.3〜1.2%、0.4〜0.9%さらには0.5〜0.65%含むと好ましい。MgはAl基地に固溶してAl基地を強化し得る。またMgは、Siが共存する場合、熱処理によりMgSiとして析出して、Al合金の機械的強度(引張強さ、耐力等)を向上させ得る。Mgが過少では、そのような効果が乏しくなる。Mgが過多では、Al合金の延性や靭性が低下し得る。
(2) Mg, Cu, Cr
The Al alloy preferably contains 0.15 to 1.5%, 0.3 to 1.2%, 0.4 to 0.9%, or even 0.5 to 0.65% of Mg. Mg can be dissolved in the Al base to strengthen the Al base. In addition, when Mg coexists, Mg can be precipitated as Mg 2 Si by heat treatment to improve the mechanical strength (tensile strength, yield strength, etc.) of the Al alloy. If Mg is too small, such an effect becomes poor. If Mg is excessive, the ductility and toughness of the Al alloy can be lowered.

Al合金は、Cuを0.3〜6%、0.4〜5%、0.5〜4.5%さらには0.6〜4%含むと好ましい。Cuは、熱処理によりCuAlとして析出したり、Mgが共存する場合はMgCu系化合物として析出し得る。これによりCuはAl合金の機械的強度(引張強さ、耐力等)を向上させ得る。また、CuもAl基地に固溶してAl基地を強化し得る。Cuが過少では、そのような効果が乏しくなる。Cuが過多では、Al合金の延性や靭性が低下し得る。 The Al alloy preferably contains 0.3 to 6%, 0.4 to 5%, 0.5 to 4.5%, or even 0.6 to 4% of Cu. Cu can be precipitated as CuAl 2 by heat treatment, or as an MgCu-based compound when Mg coexists. Thereby, Cu can improve the mechanical strength (tensile strength, yield strength, etc.) of the Al alloy. Also, Cu can be dissolved in the Al base to strengthen the Al base. If Cu is too small, such an effect becomes poor. If Cu is excessive, the ductility and toughness of the Al alloy may be reduced.

Al合金は、Crを0.01〜0.3%、0.05〜0.25%さらには0.1〜0.2%含むと好ましい。Crは、Al基地に固溶しAl基地を強化したり、熱処理によりCr系化合物として析出してAl合金の機械的強度(引張強さ、耐力等)を向上させ得る。Crが過少では、そのような効果が乏しくなる。Crが過多では、粗大なCr系化合物が晶出するようになり、Al合金の延性や靭性が低下し得る。   The Al alloy preferably contains Cr in an amount of 0.01 to 0.3%, 0.05 to 0.25%, and further 0.1 to 0.2%. Cr can be dissolved in the Al base to strengthen the Al base, or can be precipitated as a Cr-based compound by heat treatment to improve the mechanical strength (tensile strength, yield strength, etc.) of the Al alloy. If Cr is too small, such an effect becomes poor. When Cr is excessive, coarse Cr-based compounds are crystallized, and the ductility and toughness of the Al alloy can be reduced.

(3)Ti、Zr等
Al合金は、Tiを0.05〜0.5%さらには0.07〜0.3%含むと好ましい。またZrを0.05〜0.5%さらには0.07〜0.3%含むと好ましい。この範囲内であれば、TiとZrの両方が含まれてもよい。TiまたはZrは、結晶粒を微細化させると共に、Al基地を固溶強化あるいは析出強化させる。また、TiまたはZrにより結晶粒が十分微細化されることにより、晶出物が等方的に分布した(偏析の少ない)鋳造組織が得られ易くなる。TiまたはZrが過少では、そのような効果が乏しくなる。特に鋳型からの指向性が強い場合、柱状晶が発達し易くなり、溶体化処理時の加圧効果(鋳巣抑制等)が低下し得る。TiまたはZrが過多では、鋳造組織中に粗大なTi化合物またはZr化合物が晶出して、Al合金の機械的特性が低下し得る。
(3) Ti, Zr, etc. The Al alloy preferably contains 0.05 to 0.5%, more preferably 0.07 to 0.3% of Ti. Further, it is preferable that Zr is contained in an amount of 0.05 to 0.5%, further 0.07 to 0.3%. Within this range, both Ti and Zr may be included. Ti or Zr refines the crystal grains and strengthens the Al base by solid solution strengthening or precipitation strengthening. Further, when the crystal grains are sufficiently refined by Ti or Zr, it becomes easy to obtain a cast structure in which crystallized substances are isotropically distributed (small segregation). If Ti or Zr is too small, such an effect is poor. In particular, when directivity from the mold is strong, columnar crystals tend to develop, and the pressurizing effect (solution suppression, etc.) during the solution treatment can be reduced. When Ti or Zr is excessive, coarse Ti compound or Zr compound is crystallized in the cast structure, and the mechanical properties of the Al alloy may be lowered.

Ti、Zrの他、Sr:0.005〜0.05%、Na0.001〜0.03%、Sb:0.05〜0.15%の少なくとも一つを含むと好ましい。Sr、NaまたはSbは、共晶Siを微細化させ、Al合金の機械的強度の向上に寄与し得る。なお、Al合金は、その他の改質元素を含んでもよく、また不可避不純物も当然含み得る。   In addition to Ti and Zr, it preferably contains at least one of Sr: 0.005 to 0.05%, Na 0.001 to 0.03%, and Sb: 0.05 to 0.15%. Sr, Na or Sb can refine eutectic Si and contribute to the improvement of the mechanical strength of the Al alloy. The Al alloy may contain other modifying elements and may naturally contain inevitable impurities.

《鋳造組織》
本発明のAl合金部材(熱処理後の鋳物)は、次のような鋳造組織からなると、機械的特性に優れて好ましい。先ず、気孔率が0.5%以下、0.3%以下、0.1%以下さらには0.05%以下であると好ましい。気孔率が過大ではAl合金部材の機械的特性(特に強度)の向上が望めない。
<Casting structure>
The Al alloy member (cast after heat treatment) of the present invention is preferably excellent in mechanical properties if it has the following cast structure. First, the porosity is preferably 0.5% or less, 0.3% or less, 0.1% or less, and more preferably 0.05% or less. If the porosity is excessive, the mechanical properties (particularly strength) of the Al alloy member cannot be improved.

次に、結晶粒径が50μm以上であると共に円形度が0.6以上であるデンドライト状の初晶アルミニウム(「初晶Al」という。)の結晶粒が30%以上、40%以上さらには50%以上含まれると好ましい。粒状化した初晶Al(α−Al)が多いほど、機械的特性に優れたAl合金部材が得られる。   Next, the crystal grains of dendritic primary crystal aluminum (referred to as “primary crystal Al”) having a crystal grain size of 50 μm or more and a circularity of 0.6 or more are 30% or more, 40% or more, and even 50%. % Or more is preferable. The more the primary crystal Al (α-Al) granulated, the better the Al alloy member with excellent mechanical properties.

気孔率は、アルキメデス法による密度測定によって求めることができる。すなわち、アルキメデスの原理による液体中の浮力から求めた固体の体積で、大気中で測定した鋳物重量を除して密度(実密度:ρ)を算出する。また、気孔を含まない同鋳物の密度(真密度:ρ)を同様にアルキメデス法により算出する。これら両者の密度から、気孔を含む鋳物の気孔率(100×(ρ−ρ)/ρ)を算出する。なお、真密度は、同組成のAl合金を溶解し、溶湯内のガス除去した後に、指向性凝固する方案の金型内で急冷した鋳物の健全部の密度として求めることができる。この他、測定対象であるAl合金部材を十分に圧縮加工(据え込み加工等)し、鋳巣等の残留気孔を潰して用意した気孔のないAl合金の密度を真密度としてもよい。 The porosity can be determined by density measurement by Archimedes method. That is, the density (actual density: ρ) is calculated by dividing the casting weight measured in the atmosphere by the volume of the solid obtained from the buoyancy in the liquid according to Archimedes' principle. Further, the density (true density: ρ 0 ) of the casting containing no pores is similarly calculated by the Archimedes method. From these two densities, the porosity (100 × (ρ 0 −ρ) / ρ 0 ) of the casting containing the pores is calculated. The true density can be obtained as the density of a sound part of a casting that is rapidly cooled in a mold of a directionally solidified method after melting an Al alloy having the same composition and removing the gas from the molten metal. In addition, the density of an Al alloy without pores prepared by sufficiently compressing (upsetting or the like) an Al alloy member to be measured and crushing residual pores such as a cast hole may be set as a true density.

結晶粒径、円形度および結晶粒の存在割合(「含有率」という)は、いずれも所定の処理をしたAl合金部材の試料を顕微鏡で観察し、その得られた金属組織の画像を解析ソフトで処理することにより特定される。「結晶粒径」は、その画像処理により求まる結晶粒の最大長である。「円形度」は、結晶粒の占有面積:S、結晶粒の周長:Lとして4π・S/Lにより算出した値である。なお、真円の円形度は1であり、歪な結晶粒ほど、その円形度は小さくなる。結晶粒の含有率は、測定視野内における結晶粒総個数に対する特定条件を満たす結晶粒の個数の割合である。 The crystal grain size, circularity, and crystal grain presence ratio (referred to as “content”) are all observed with a microscope for a sample of an Al alloy member that has been subjected to a predetermined treatment, and the resulting metal structure image is analyzed software. It is specified by processing. “Crystal grain size” is the maximum length of crystal grains obtained by the image processing. “Circularity” is a value calculated by 4π · S / L 2 as an area occupied by crystal grains: S and a circumference of crystal grains: L. Note that the circularity of a perfect circle is 1, and the distorted crystal grain has a smaller circularity. The content rate of crystal grains is the ratio of the number of crystal grains satisfying a specific condition with respect to the total number of crystal grains in the measurement visual field.

《製造方法》
(1)溶体化工程
本発明に係る溶体化工程は、Al基地中に合金元素を十分にかつ均一的に固溶させるためになされるが、通常の溶体化処理とは異なる処理温度および処理雰囲気でなされる。
"Production method"
(1) Solution treatment step The solution treatment step according to the present invention is performed to sufficiently and uniformly dissolve the alloy elements in the Al matrix, but a treatment temperature and treatment atmosphere different from those of a normal solution treatment. Made in

先ず溶体化工程は、固相線温度(Ts)以上で液相線温度(Tl)未満である溶体化温度でなされる。これに対して従来の溶体化処理は、固溶限線(溶解度線)温度以上で固相線温度(Ts)未満の温度(特にTsに対して約20℃程度低い温度)で実施されることが多かった。従って、本発明に係る溶体化温度は、従来の処理温度よりもかなり高い温度である。但し、溶体化温度が過大になると、鋳物中に生じる液相量が増加して、その形状維持が困難となるため、溶体化温度はTs近傍の温度であると好ましい。   First, the solution treatment step is performed at a solution temperature that is equal to or higher than the solidus temperature (Ts) and lower than the liquidus temperature (Tl). On the other hand, the conventional solution treatment is performed at a temperature higher than the solid solution limit (solubility line) temperature and lower than the solidus temperature (Ts) (particularly, about 20 ° C. lower than Ts). There were many. Therefore, the solution temperature according to the present invention is considerably higher than the conventional processing temperature. However, if the solution temperature is excessive, the amount of liquid phase generated in the casting increases and it is difficult to maintain its shape. Therefore, the solution temperature is preferably near Ts.

そこで具体的にいうと、溶体化温度は、Ts直上、(Ts+3℃)以上、(Ts+5℃)以上さらには(Ts+7℃)以上であり、(Ts+25℃)以下、(Ts+20℃)以下さらには(Ts+15℃)以下であると好ましい。なお、合金元素の種類および量により、TsとTlの温度差である相間温度差(ΔT=Tl−Ts)は変化し得る。そこで溶体化温度は、(Ts+0.5ΔT)以下、(Ts+0.3ΔT)以下さらには(Ts+0.2ΔT)以下と規定してもよい。溶体化温度の下限値は上述したようにTs近傍の温度であればよいが、敢えていうと(Ts+0.05ΔT)以上さらには(Ts+0.1ΔT)以上と規定することもできる。   Specifically, the solution temperature is (Ts + 3 ° C.) or more, (Ts + 5 ° C.) or more, (Ts + 7 ° C.) or more, (Ts + 25 ° C.) or less, (Ts + 20 ° C.) or less, Ts + 15 ° C.) or less. Note that the interphase temperature difference (ΔT = Tl−Ts), which is the temperature difference between Ts and Tl, can vary depending on the type and amount of the alloy element. Therefore, the solution temperature may be defined as (Ts + 0.5ΔT) or less, (Ts + 0.3ΔT) or less, and further (Ts + 0.2ΔT) or less. As described above, the lower limit of the solution temperature may be a temperature in the vicinity of Ts. However, it may be defined as (Ts + 0.05ΔT) or more and further (Ts + 0.1ΔT) or more.

次に溶体化工程は、従来の溶体化処理と異なり加圧雰囲気中でなされる。加圧方法は種々考えられるが、複雑な形状をした鋳物の各部が均等に加圧されるように、静水圧を作用させると好ましい。具体的には、流体(気体または液体)を加圧媒体として鋳物を加圧すると好ましい。気体を用いる場合なら、Al(合金)に溶解(固溶)しない(溶解度を持たない)Ar、N、空気等のガスが好適である。液体を用いる場合なら、溶体化工程を行う処理温度域で液相状態となり、Al(合金)と反応し無い溶融塩等が好適である。 Next, the solution treatment step is performed in a pressurized atmosphere, unlike the conventional solution treatment. Although various pressurization methods are conceivable, it is preferable to apply a hydrostatic pressure so that each part of the casting having a complicated shape is evenly pressurized. Specifically, it is preferable to pressurize a casting using a fluid (gas or liquid) as a pressurizing medium. In the case of using a gas, a gas such as Ar, N 2 , and air that does not dissolve (solid solution) in Al (alloy) (does not have solubility) is preferable. In the case of using a liquid, a molten salt or the like which is in a liquid phase in a processing temperature range in which the solution treatment step is performed and does not react with Al (alloy) is preferable.

流体を加圧媒体としたときの圧力(単に「静水圧」という。)は、0.5〜15MPa、0.7〜10MPaさらには0.9〜8MPaであると好ましい。静水圧が過小では鋳物内部にまで圧力が伝わり難い。静水圧が過大では、液相の出現している鋳物の形状維持が困難となる。また、高圧の印加には、大規模な設備が必要になったり、除圧に時間を要して溶体化工程を長期化するため、好ましくない。なお、本発明に係る静水圧は、HIP処理やホットプレス等で用いられる圧力よりも、桁違いに小さい。   The pressure when the fluid is used as a pressurized medium (simply referred to as “hydrostatic pressure”) is preferably 0.5 to 15 MPa, 0.7 to 10 MPa, and more preferably 0.9 to 8 MPa. If the hydrostatic pressure is too low, it is difficult to transmit the pressure to the casting. If the hydrostatic pressure is excessive, it is difficult to maintain the shape of the casting in which the liquid phase appears. In addition, application of high pressure is not preferable because a large-scale facility is required or time is required for pressure removal and the solution treatment process is prolonged. The hydrostatic pressure according to the present invention is orders of magnitude smaller than the pressure used in HIP processing, hot pressing, and the like.

溶体化工程は、従来の溶体化処理よりも高温で処理されると共に液相を介してなされるため、大幅な処理時間の短縮が図られる。具体的な処理時間は、Al合金組成、処理温度、鋳物の形態(肉厚等)等により適宜選定されるが、溶体化温度の保持時間は90分間以下、60分間以下さらには45分間以下とすることもできる。なお、溶体化工程中における合金元素の拡散や結晶の粒状化等を十分に進行させるため、敢えていうと、保持時間は5分間以上さらには15分間以上であると好ましい。   Since the solution treatment step is performed at a higher temperature than the conventional solution treatment and through the liquid phase, the treatment time can be greatly shortened. The specific treatment time is appropriately selected according to the Al alloy composition, treatment temperature, casting form (wall thickness, etc.), etc., but the solution temperature retention time is 90 minutes or less, 60 minutes or less, and 45 minutes or less. You can also Incidentally, in order to sufficiently advance the diffusion of alloy elements and the granulation of crystals during the solution treatment step, it is preferable that the holding time is 5 minutes or more, further 15 minutes or more.

(2)急冷工程と時効工程
溶体化工程後の鋳物は、通常、急冷(いわゆる焼入れ)されて、合金元素が過飽和に固溶した状態の鋳造組織となる。Al合金組成、鋳物の形態(肉厚等)等を考慮して、冷却媒体(水、温水、油等)や冷却方法(噴霧、浸漬等)を適宜選択することにより、適切な冷却速度で溶体化工程後の鋳物を急冷できる。溶体化工程後の鋳物を温水または油に浸漬して急冷すると、鋳物の割れ等を抑止できて好ましい。
(2) Rapid cooling step and aging step The casting after the solution treatment step is usually rapidly cooled (so-called quenching) to form a cast structure in which the alloy elements are in a solid solution in a supersaturated state. Considering the Al alloy composition, casting form (thickness, etc.), etc., by appropriately selecting a cooling medium (water, hot water, oil, etc.) and cooling method (spraying, dipping, etc.), the solution at an appropriate cooling rate The casting after the conversion step can be rapidly cooled. It is preferable that the casting after the solution treatment step is immersed in warm water or oil and rapidly cooled to prevent cracking of the casting.

急冷工程後の鋳物は、時効により、微細な化合物が析出して高強度なAl合金部材となる。時効処理には自然時効もあるが、人工時効を行うことにより安定した品質のAl合金部材を短時間で得ることができる。人工時効は、急冷工程後の鋳物を、例えば、150〜220℃で0.5〜5時間保持することにより行うとよい。   The casting after the rapid cooling step becomes a high-strength Al alloy member by precipitation of fine compounds due to aging. Although the aging treatment also has natural aging, stable quality Al alloy members can be obtained in a short time by performing artificial aging. The artificial aging is preferably performed by holding the casting after the rapid cooling step at 150 to 220 ° C. for 0.5 to 5 hours, for example.

《Al合金部材》
本発明のAl合金部材は鋳造材(鋳物)からなり、種々の鋳造方法により得ることができる。このような鋳物の鋳造方法として、重力鋳造、低圧鋳造若しくはダイカスト、砂型鋳造若しくは金型鋳造等がある。但し、本発明のAl合金部材は、熱処理された鋳物であり、熱処理されない鋳物は対象外である。従って、一般的に熱処理されないダイカスト鋳物等は本発明のAl合金部材の対象外となる。
《Al alloy member》
The Al alloy member of the present invention is made of a cast material (casting) and can be obtained by various casting methods. Such casting methods include gravity casting, low pressure casting or die casting, sand casting or die casting. However, the Al alloy member of the present invention is a heat-treated casting, and a casting that is not heat-treated is out of scope. Accordingly, die casts that are not generally heat-treated are not subject to the Al alloy member of the present invention.

本発明のAl合金部材は、その形態や用途は問わない。その用途例を挙げると、自動車用の各種構造部材、具体的にはサスペンション等の足回り部材、ホイール部材、シャーシ部材、サブフレーム部材、継手部材、アクチュエーター部材、ブレーキ部材、エンジン部材等が好適である。   The form and use of the Al alloy member of the present invention are not limited. For example, various structural members for automobiles, specifically suspension members such as suspensions, wheel members, chassis members, subframe members, joint members, actuator members, brake members, engine members, etc. are suitable. is there.

Al合金鋳物に溶体化処理を施した種々の試料を製作した。各試料について、鋳造組織の観察または機械的特性や密度の測定等を行い、合金組成と溶体化処理条件の影響を評価した。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。   Various samples were produced by solution treatment of Al alloy castings. For each sample, the cast structure was observed or the mechanical properties and density were measured, and the effects of the alloy composition and solution treatment conditions were evaluated. The present invention will be described in more detail below with specific examples.

[実施例1]
《試料の製造》
(1)鋳造
表1に示す各合金組成に配合された原料を溶解して、種々の溶湯を調製した。これらの溶湯を舟型状の金型(JIS7号)に注湯し、大気中で自然冷却させて凝固させた(鋳造工程)。
(2)熱処理
こうして得られた各鋳物に対してT6熱処理(JIS)を行った。具体的には、表1に示すように、次のような熱処理を行った。先ず、各鋳物を、約7MPaに調整したArガス雰囲気中で、560℃×60分間保持した(溶体化工程)。この加熱温度は、各固相線温度(Ts)以上であるが、液相線温度(Tl)よりは十分に低く、液相が僅かに出現する温度である。
[Example 1]
<Production of sample>
(1) Casting The raw material mix | blended with each alloy composition shown in Table 1 was melt | dissolved, and various molten metal was prepared. These molten metal was poured into a boat-shaped mold (JIS No. 7) and allowed to cool naturally in the atmosphere and solidified (casting process).
(2) Heat treatment T6 heat treatment (JIS) was performed on each casting thus obtained. Specifically, as shown in Table 1, the following heat treatment was performed. First, each casting was held at 560 ° C. for 60 minutes in an Ar gas atmosphere adjusted to about 7 MPa (solution treatment step). This heating temperature is equal to or higher than each solidus temperature (Ts), but is sufficiently lower than the liquidus temperature (Tl), and is a temperature at which the liquid phase appears slightly.

加熱状態の各鋳物を、50℃の温水中に浸漬して焼き入れた(急冷工程)。さらに焼入れ後の鋳物を、大気中で185℃×45分間保持して時効処理した(時効工程)。こうして熱処理されたAl合金鋳物からなる種々の供試材を得た。   Each casting in a heated state was immersed in hot water at 50 ° C. and quenched (quenching process). Further, the cast product after quenching was kept in the atmosphere at 185 ° C. for 45 minutes and subjected to an aging treatment (aging process). Various specimens made of Al alloy castings thus heat-treated were obtained.

(3)比較試料として、上述した溶体化工程に対して、雰囲気(圧力の有無)、加熱温度または加熱時間を変更した溶体化処理を施した試料も製造した。その詳細は表1に併せて示した。なお、溶体化処理後の焼入れと時効処理は、上述した試料と同様に行った。 (3) As a comparative sample, a sample subjected to a solution treatment in which the atmosphere (the presence or absence of pressure), the heating temperature, or the heating time was changed with respect to the above-described solution treatment step was also manufactured. The details are also shown in Table 1. The quenching and aging treatment after the solution treatment was performed in the same manner as the sample described above.

《測定・観察》
(1)引張試験
熱処理後の各供試材の肉厚中心部から採取した平衡部5mmの丸棒引張試験片を用いて引張試験を行った。引張試験は、オートグラフ(株式会社島津製作所製)により、クロスヘッド速度0.5mm/minとして行った。0.2%耐力は、ビデオ伸び計により得れた変位と荷重に基づいて算出された応力−歪み曲線から求めた。なお、各試験は室温雰囲気で行った。こうして各試料について得られた引張強さ、0.2%耐力および伸びを表1に併せて示した。
<Measurement / Observation>
(1) Tensile test A tensile test was performed using a round bar tensile test piece having a balanced portion of 5 mm taken from the thickness center of each specimen after heat treatment. The tensile test was performed by an autograph (manufactured by Shimadzu Corporation) at a crosshead speed of 0.5 mm / min. The 0.2% proof stress was obtained from a stress-strain curve calculated based on the displacement and load obtained by a video extensometer. Each test was performed in a room temperature atmosphere. Table 1 shows the tensile strength, 0.2% proof stress and elongation obtained for each sample.

(2)鋳造組織
各試料に係る鋳造組織を次のように観察して、その形態を特定した。先ず、各供試材から切り出した観察片を鏡面まで研磨する。鏡面に仕上げた観察片に対して、さらに電解エッチングを行った。なお、電解エッチングは、電解液としてバカー氏液を用いて、陰極にステンレス板、陽極に供試材を結線し、直流電源:20V、通電時間:60〜120秒として行った。
(2) Casting structure The casting structure which concerns on each sample was observed as follows, and the form was specified. First, the observation piece cut out from each specimen is polished to a mirror surface. Electrolytic etching was further performed on the observation piece finished to a mirror surface. In addition, the electrolytic etching was performed by using a Bakker solution as an electrolytic solution, connecting a stainless steel plate to the cathode, and a test material to the anode, and setting the DC power supply: 20 V and the energization time: 60 to 120 seconds.

電解エッチング後の各観察片の金属組織を偏光顕微鏡により観察した。こうして倍率:50〜100倍で撮影した各組織画像(データ)を得た。これら組織画像を画像処理装置(株式会社ニレコ製LUZEX)を用いて解析した。具体的には、各結晶粒の輪郭をトレースし、その画像解析により結晶粒径とその円形度を求めた。結晶粒径は、各結晶粒の最大長とした。円形度は、4π・(結晶粒の面積)/(結晶粒の周長)として求めた。こうして各試料の初晶Alについて求まった円形度と結晶粒径の相加平均値を表1に併せて示した。 The metal structure of each observation piece after electrolytic etching was observed with a polarizing microscope. Thus, each tissue image (data) photographed at a magnification of 50 to 100 was obtained. These tissue images were analyzed using an image processing apparatus (LUZEX manufactured by Nireco Corporation). Specifically, the outline of each crystal grain was traced, and the crystal grain size and its circularity were determined by image analysis. The crystal grain size was the maximum length of each crystal grain. The degree of circularity was calculated as 4π · (area of crystal grains) / (peripheral length of crystal grains) 2 . Table 1 also shows the arithmetic value of the circularity and the crystal grain size obtained for the primary crystal Al of each sample.

気孔率は、熱処理後の鋳物の密度(実密度:ρ)と鋳巣を含まない鋳物の密度(真密度:ρ):2.681g/cmとを用いて、既述した方法により算出した。こうして得た気孔率も表1に併せて示した。 The porosity is calculated by the above-described method using the density of the casting after the heat treatment (actual density: ρ) and the density of the casting not including the cast hole (true density: ρ 0 ): 2.681 g / cm 3. did. The porosity thus obtained is also shown in Table 1.

《評価》
試料1〜5に係る鋳造組織は、気孔率が0.3以下(未満)であり、殆ど(少なくとも30%以上)の初晶Alの結晶粒は結晶粒径が50μm以上で円形度が0.6以上となっていた。
<Evaluation>
The cast structures according to Samples 1 to 5 have a porosity of 0.3 or less (less than), and most (at least 30% or more) primary Al crystal grains have a crystal grain size of 50 μm or more and a circularity of 0.00. It was 6 or more.

また、試料1〜5は、いずれも十分な伸びと高強度(引張強さまたは0.2%耐力)を発揮し、機械的特性に優れるものであった。   Samples 1 to 5 all exhibited sufficient elongation and high strength (tensile strength or 0.2% yield strength) and were excellent in mechanical properties.

一方、試料C1から明らかなように、無加圧で低温な従来の溶体化処理を、試料1〜5と同様な短時間行っただけでは、高強度化が図れないことがわかる。試料C3から明らかなように、その溶体化処理で高強度化を図るには、長時間を要することもわかる。また試料C2から明らかなように、加圧雰囲気中で高温な溶体化処理を行っても、Si量が少ない鋳物では、内部に集中引けが発生して、強度測定にすら至らなかった。さらに試料C4から明らかなように、液相の出現する高温域であっても、無加圧雰囲気で溶体化処理を行うと、鋳物内部に溶融部(バーニング)の出現に伴う空隙が形成され、伸びが低下することがわかった。   On the other hand, as is clear from the sample C1, it is understood that high strength cannot be achieved by simply performing a conventional solution treatment at a low temperature without applying pressure in the same manner as in the samples 1 to 5. As can be seen from sample C3, it takes a long time to increase the strength by the solution treatment. Further, as apparent from Sample C2, even when a high-temperature solution treatment was performed in a pressurized atmosphere, the casting with a small amount of Si caused concentrated shrinkage inside, and did not even lead to strength measurement. Further, as apparent from the sample C4, even in a high temperature region where a liquid phase appears, when a solution treatment is performed in a non-pressurized atmosphere, voids associated with the appearance of the melted portion (burning) are formed inside the casting, It turned out that elongation falls.

[実施例2]
《試料の製造》
表1に示した試料2と同組成からなる鋳物を、実施例1と同様に複数製造した。各鋳物に、実施例1の場合と同様な熱処理を施した。但し、溶体化処理条件(加熱温度と加熱時間)は、表2に示すように種々変更して行った。なお、加圧雰囲気はArガス雰囲気とした。こうして表2に示す種々の試料を得た。
[Example 2]
<Production of sample>
A plurality of castings having the same composition as Sample 2 shown in Table 1 were produced in the same manner as in Example 1. Each casting was subjected to the same heat treatment as in Example 1. However, solution treatment conditions (heating temperature and heating time) were variously changed as shown in Table 2. The pressurized atmosphere was an Ar gas atmosphere. Thus, various samples shown in Table 2 were obtained.

《測定》
各試料の密度をアルキメデス法により測定した。なお、密度の測定は、熱処理後のみならず、熱処理前にも予め行っておいた。こうして求めた各試料に係る熱処理前・後の密度を表2に併せて示した。既述した方法により算出した気孔率(100×(ρ−ρ)/ρ)も表2に併せて示した。この場合も真密度:ρは2.681g/cmとした。
<Measurement>
The density of each sample was measured by the Archimedes method. The density was measured in advance not only after the heat treatment but also before the heat treatment. The density before and after heat treatment relating to each sample thus obtained is also shown in Table 2. The porosity (100 × (ρ 0 −ρ) / ρ 0 ) calculated by the method described above is also shown in Table 2. Also in this case, the true density: ρ 0 was 2.681 g / cm 3 .

《評価》
加圧雰囲気中で液相の出現する温度域で溶体化処理した試料21〜23はいずれも、熱処理後に密度が上昇しており、気孔率も0.3%以下となっていた。一方、同じ加圧雰囲気中でも、固相温度域(固相線温度未満)で溶体化処理された試料C21は、熱処理前後で密度が殆ど変化しておらず、鋳巣が残留したままとなった。
<Evaluation>
In all samples 21 to 23, which were subjected to solution treatment in a temperature range where a liquid phase appeared in a pressurized atmosphere, the density increased after the heat treatment, and the porosity was 0.3% or less. On the other hand, even in the same pressurized atmosphere, the sample C21 subjected to the solution treatment in the solid phase temperature range (below the solidus temperature) had almost no change in density before and after the heat treatment, and the cast hole remained. .

[実施例3]
《試料の製造と測定》
実施例2の場合と同様に複数の鋳物を製造した。各鋳物に、実施例1の場合と同様な熱処理を施したが、溶体化処理の加圧雰囲気を表3に示すように種々変更した。こうして得られた各試料の熱処理前後の密度をアルキメデス法により測定し、その変化量と気孔率を表3に併せて示した。
[Example 3]
<Production and measurement of sample>
A plurality of castings were produced in the same manner as in Example 2. Each casting was subjected to the same heat treatment as in Example 1, but the pressure atmosphere of the solution treatment was variously changed as shown in Table 3. The density of each sample thus obtained before and after heat treatment was measured by the Archimedes method, and the amount of change and the porosity were also shown in Table 3.

《評価》
液相の出現する温度域(固相線温度以上)で溶体化処理する場合、無加圧雰囲気は勿論、加圧雰囲気でも圧力が過小であると、熱処理前後で密度が殆ど変化せず、気孔率も0.5%超となり、鋳巣を十分に潰せなかった。
<Evaluation>
When solution treatment is performed in the temperature range where the liquid phase appears (above the solidus temperature), the density hardly changes before and after the heat treatment if the pressure is too low in the pressurized atmosphere as well as in the non-pressurized atmosphere. The rate also exceeded 0.5%, and the cast hole could not be crushed sufficiently.

[鋳造組織]
試料23、試料C21および試料C32について、熱処理前・後の鋳造組織を前述した偏光顕微鏡で観察した写真を、それぞれ図1A〜図3Bに示した。これらを比較すると明らかなように、本発明のように固相線温度以上かつ加圧雰囲気で溶体化処理を行うことにより、それ以外の場合には得られない所望の緻密な鋳造組織が初めて得られたことがわかる。なお、各組織写真中、黒色部分が空孔(気孔)であり、淡灰色部分が初晶Alであり、農灰色部分が化合物相である。
[Casting structure]
With respect to Sample 23, Sample C21, and Sample C32, photographs of the cast structure before and after heat treatment observed with the polarization microscope described above are shown in FIGS. 1A to 3B, respectively. As is clear from comparison of these, by performing the solution treatment at a temperature higher than the solidus temperature and in a pressurized atmosphere as in the present invention, a desired dense cast structure that cannot be obtained in other cases can be obtained for the first time. You can see that In each structure photograph, black portions are pores (pores), light gray portions are primary crystal Al, and agricultural gray portions are compound phases.

Claims (10)

固相線温度(Ts)と液相線温度(Tl)の温度差である相間温度差(ΔT=Tl−Ts)が20℃以上ある亜共晶アルミニウム合金(「亜共晶Al合金」という。)からなるアルミニウム合金部材の製造方法であって、
加圧雰囲気中で、Ts以上でTl未満である溶体化温度に、前記亜共晶Al合金からなる鋳物を加熱する溶体化工程を含む熱処理を行うことを特徴とするアルミニウム合金部材の製造方法。
A hypoeutectic aluminum alloy (“hypereutectic Al alloy”) having an interphase temperature difference (ΔT = Tl−Ts), which is a temperature difference between the solidus temperature (Ts) and the liquidus temperature (Tl), of 20 ° C. or more. A method for producing an aluminum alloy member comprising:
The manufacturing method of the aluminum alloy member characterized by performing the heat processing including the solution treatment process which heats the casting which consists of said hypoeutectic Al alloy in the pressurization atmosphere to the solution temperature which is more than Ts and less than Tl.
前記加圧雰囲気は、0.5MPa〜15MPaの静水圧が印加される雰囲気である請求項1に記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the pressurized atmosphere is an atmosphere to which a hydrostatic pressure of 0.5 MPa to 15 MPa is applied. 前記溶体化温度は、(Ts+25℃)以下である請求項1または2に記載のアルミニウム合金部材の製造方法。   3. The method for producing an aluminum alloy member according to claim 1, wherein the solution temperature is (Ts + 25 ° C.) or less. 前記溶体化温度は、(Ts+0.5ΔT)以下である請求項1または2に記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the solution temperature is (Ts + 0.5ΔT) or less. 前記溶体化温度は、(Ts+3℃)以上である請求項1〜4のいずれかに記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the solution temperature is (Ts + 3 ° C.) or higher. 前記溶体化温度の保持時間は、90分間以下である請求項1〜5のいずれかに記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to any one of claims 1 to 5, wherein a retention time of the solution temperature is 90 minutes or less. 固相線温度と液相線温度の温度差である相間温度差が20℃以上ある亜共晶Al合金からなる鋳造組織を有するアルミニウム合金部材であって、
前記鋳造組織は、
気孔率が0.5%以下であり、
結晶粒径が50μm以上であると共に円形度が0.6以上であるデンドライト状の初晶アルミニウム(「初晶Al」という。)からなる結晶粒を30%以上含むことを特徴とするアルミニウム合金部材。
An aluminum alloy member having a cast structure made of a hypoeutectic Al alloy having an interphase temperature difference of 20 ° C. or more, which is a temperature difference between a solidus temperature and a liquidus temperature,
The cast structure is
The porosity is 0.5% or less,
Aluminum alloy member comprising 30% or more of crystal grains made of dendritic primary crystal aluminum (referred to as “primary crystal Al”) having a crystal grain size of 50 μm or more and a circularity of 0.6 or more .
前記亜共晶Al合金は、全体を100質量%(単に「%」という。)として、Si:3〜11%含む請求項7に記載のアルミニウム合金部材。   The aluminum alloy member according to claim 7, wherein the hypoeutectic Al alloy contains Si: 3 to 11% as a whole by 100 mass% (simply referred to as “%”). 前記亜共晶Al合金は、さらに、Mg:0.15〜1.5%またはCu:0.3〜6%の少なくとも一方を含む請求項8に記載のアルミニウム合金部材。   The aluminum alloy member according to claim 8, wherein the hypoeutectic Al alloy further contains at least one of Mg: 0.15 to 1.5% or Cu: 0.3 to 6%. 前記亜共晶Al合金は、さらに、Ti:0.05〜0.5%またはZr:0.05〜0.5%の少なくとも一方を含む請求項8または9に記載のアルミニウム合金部材。   The aluminum alloy member according to claim 8 or 9, wherein the hypoeutectic Al alloy further contains at least one of Ti: 0.05 to 0.5% or Zr: 0.05 to 0.5%.
JP2016039714A 2016-03-02 2016-03-02 Aluminum alloy member and manufacturing method thereof Active JP6419742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016039714A JP6419742B2 (en) 2016-03-02 2016-03-02 Aluminum alloy member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039714A JP6419742B2 (en) 2016-03-02 2016-03-02 Aluminum alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017155288A true JP2017155288A (en) 2017-09-07
JP6419742B2 JP6419742B2 (en) 2018-11-07

Family

ID=59808214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039714A Active JP6419742B2 (en) 2016-03-02 2016-03-02 Aluminum alloy member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6419742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540086A1 (en) 2018-03-15 2019-09-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021013018A2 (en) 2019-02-13 2021-09-14 Novelis Inc. MOLTED METAL PRODUCTS WITH HIGH GRAIN CIRCULARITY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192345A (en) * 1987-06-17 1989-04-11 Mazda Motor Corp Heat treatment of al alloy castings
JP2004099962A (en) * 2002-09-09 2004-04-02 Honda Motor Co Ltd Heat treatment method for light alloy casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192345A (en) * 1987-06-17 1989-04-11 Mazda Motor Corp Heat treatment of al alloy castings
JP2004099962A (en) * 2002-09-09 2004-04-02 Honda Motor Co Ltd Heat treatment method for light alloy casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540086A1 (en) 2018-03-15 2019-09-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member
JP2019157231A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Manufacturing method of aluminum alloy member
CN110273091A (en) * 2018-03-15 2019-09-24 丰田自动车株式会社 The method for manufacturing aluminium alloy element
US11214857B2 (en) 2018-03-15 2022-01-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member
JP7131932B2 (en) 2018-03-15 2022-09-06 トヨタ自動車株式会社 Method for manufacturing aluminum alloy member
US11761070B2 (en) 2018-03-15 2023-09-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member

Also Published As

Publication number Publication date
JP6419742B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US20190039125A1 (en) Secondary cast aluminum alloy for structural applications
Zhang et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting
JP5861254B2 (en) Aluminum alloy casting and manufacturing method thereof
US6428636B2 (en) Semi-solid concentration processing of metallic alloys
CN103370429B (en) The method of fining metal alloy
JP2008274403A (en) Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting
JP2007534840A (en) Heat-treatable Al-Zn-Mg-Cu alloys for aerospace and automotive castings
JPH0673485A (en) Thixotropic magnesium alloy and its production
Piątkowski et al. Crystallization and structure of cast A390. 0 alloy with melt overheating temperature
US20120087826A1 (en) High strength aluminum casting alloy
JP2011510174A (en) High strength aluminum casting alloy resistant to hot cracking
Chen et al. Effects of mould temperature and grain refiner amount on microstructure and tensile properties of thixoforged AZ63 magnesium alloy
Yuna et al. Effect of homogenization temperature on microstructure and conductivity of Al-Mg-Si-Ce alloy
JP2017171960A (en) Aluminum alloy for casting and aluminum alloy cast
JP6419742B2 (en) Aluminum alloy member and manufacturing method thereof
JP2009249647A (en) Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor
US5968292A (en) Casting thermal transforming and semi-solid forming aluminum alloys
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2010000514A (en) Method for producing magnesium alloy member
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP7096690B2 (en) Aluminum alloys for die casting and aluminum alloy castings
Qi et al. Comparison of microstructure and mechanical properties of AZ91D alloy formed by rheomolding and high-pressure die casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250