JP2017155261A - Surface treatment galvanized steel sheet excellent in appearance - Google Patents

Surface treatment galvanized steel sheet excellent in appearance Download PDF

Info

Publication number
JP2017155261A
JP2017155261A JP2016037547A JP2016037547A JP2017155261A JP 2017155261 A JP2017155261 A JP 2017155261A JP 2016037547 A JP2016037547 A JP 2016037547A JP 2016037547 A JP2016037547 A JP 2016037547A JP 2017155261 A JP2017155261 A JP 2017155261A
Authority
JP
Japan
Prior art keywords
layer
steel sheet
mass
colloidal silica
zinc phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016037547A
Other languages
Japanese (ja)
Inventor
忠繁 中元
Tadashige Nakamoto
忠繁 中元
航 于
Hang Yu
航 于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016037547A priority Critical patent/JP2017155261A/en
Priority to KR1020187027678A priority patent/KR102292784B1/en
Priority to PCT/JP2017/003836 priority patent/WO2017150067A1/en
Priority to CN201780011729.0A priority patent/CN108699704B/en
Priority to TW106106221A priority patent/TWI650445B/en
Publication of JP2017155261A publication Critical patent/JP2017155261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/51One specific pretreatment, e.g. phosphatation, chromatation, in combination with one specific coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment galvanized steel sheet excellent in appearance.SOLUTION: The surface treatment galvanized steel sheet comprises a galvanized steel sheet, a first layer formed on at least one surface of the galvanized steel sheet and a second layer formed on the first layer. The first layer includes a zinc phosphate crystal; the coating weight of the zinc phosphate crystal is 0.04 -0.4 g/m; and the major axis of the zinc phosphate crystal is 2.5 μm or less. The second layer includes a resin, and the coating weight of the second layer is 0.35-0.85 g/m.SELECTED DRAWING: None

Description

本発明は、外観に優れた表面処理亜鉛系めっき鋼板に関する。   The present invention relates to a surface-treated galvanized steel sheet excellent in appearance.

従来より、亜鉛系めっき鋼板の表面に、黒変現象が生じることが知られている。亜鉛系めっき鋼板の黒変現象は、亜鉛めっき表面が黒っぽく変色する現象であり、具体的には、白錆が発生する前の、腐食環境の初期段階に見られる腐食現象であり、比較的穏やかな腐食環境下で発生する。めっき表面が黒っぽく見えるのは、Znの酸化反応(腐食反応)の際にZnx1-xという化学量論組成から外れた不定形酸化物が生成するためである。黒変は、Znの酸化反応が中途半端で終了するために生じると言われており、黒変を防ぐためには、酸化反応をある程度促進させてやればよいが、促進させすぎると耐食性が著しく劣化して白錆が発生する。 Conventionally, it is known that a blackening phenomenon occurs on the surface of a galvanized steel sheet. The blackening phenomenon of galvanized steel sheets is a phenomenon in which the galvanized surface turns blackish. Specifically, it is a corrosion phenomenon seen in the early stage of the corrosive environment before white rust occurs, and it is relatively mild. It occurs in a corrosive environment. The reason why the plating surface looks black is that an amorphous oxide deviating from the stoichiometric composition of Zn x O 1-x is formed during the oxidation reaction (corrosion reaction) of Zn. Blackening is said to occur because the oxidation reaction of Zn ends halfway. To prevent blackening, the oxidation reaction may be promoted to some extent, but if it is promoted too much, the corrosion resistance will be significantly degraded. And white rust occurs.

そこで、酸化反応を適度に促進させる元素としてNi、Co、Inなどを亜鉛めっき層に添加することが考えられる。しかし、亜鉛めっき層中に不純物として存在するPb、Cu、Agなどの耐食性を劣化させる元素とのバランスを考慮する必要がある。   Therefore, it is conceivable to add Ni, Co, In, or the like as an element that appropriately promotes the oxidation reaction to the galvanized layer. However, it is necessary to consider the balance with elements that degrade the corrosion resistance, such as Pb, Cu, and Ag, present as impurities in the galvanized layer.

Znめっき層中にNi、Co、Inなどの元素を添加し、かつ、そのバランスを調整した従来技術として、特許文献1〜4などが挙げられる。   Patent documents 1-4 are mentioned as conventional technology which added elements, such as Ni, Co, and In, and adjusted the balance in a Zn plating layer.

上記以外の方法として、特許文献5には、電気亜鉛めっき層の表面に、NiおよびCoの少なくとも1つを析出させて形成された金属層と、前記金属層の上に形成されたクロメート皮膜とを備えた鋼板が開示されている。   As a method other than the above, Patent Document 5 discloses a metal layer formed by depositing at least one of Ni and Co on the surface of an electrogalvanized layer, and a chromate film formed on the metal layer. A steel plate provided with is disclosed.

さらに、クロメートフリー鋼板の耐食性を劣化させることなく耐黒変性を向上させる方法として、特許文献6には、Si、P、As、S、Fe、Co、B、Ge、Mn、Cu、およびZnから選択される少なくとも1種類の第一元素(ヘテロ元素)とMo、W、V、およびNbから選択される少なくとも1種の第二元素(ポリ元素)とを含有し、かつ、第二元素をヘテロポリ酸として化成処理皮膜中に存在させた亜鉛系めっき鋼板が開示されている。   Furthermore, as a method for improving blackening resistance without deteriorating the corrosion resistance of the chromate-free steel sheet, Patent Document 6 includes Si, P, As, S, Fe, Co, B, Ge, Mn, Cu, and Zn. Containing at least one selected first element (heteroelement) and at least one second element (polyelement) selected from Mo, W, V, and Nb, and the second element as a heteropoly A zinc-based plated steel sheet that is present in the chemical conversion coating as an acid is disclosed.

特開平2−8374号公報Japanese Patent Laid-Open No. 2-8374 特開平1−129991号公報Japanese Patent Laid-Open No. 1-129991 特開昭60−77988号公報Japanese Unexamined Patent Publication No. 60-77788 特開2000−355790号公報JP 2000-355790 A 特開平10−219494号公報JP-A-10-219494 特開2012−167326号公報JP 2012-167326 A

NiやCoなどの金属元素を亜鉛めっき液に添加したり、NiやCoなどの金属元素を含む層を鋼板上に設けることによって、耐黒変性の向上は図れるが、腐食環境での金属元素の価数変化や金属の溶出などによる変色ムラが発生して外観不良が発生するおそれがある。   By adding a metal element such as Ni or Co to the zinc plating solution or providing a layer containing a metal element such as Ni or Co on the steel plate, the resistance to blackening can be improved, but the metal element in a corrosive environment can be improved. Discoloration unevenness due to valence change or metal elution may occur, resulting in poor appearance.

また、耐食性、耐黒変性、亜鉛めっき表面との密着性、及び鋼板の導電性のバランスを考慮して、上記各特許文献に記載の鋼板の上に、さらに無機リッチ皮膜や有機リッチ皮膜を0.5〜1μm程度の薄膜で形成させることも考えられる。しかし、既に設けられている皮膜やめっき表面と新たに設けられた皮膜とのバリア性(酸素透過性、水透過性)の違いによって、中途半端に耐食性(バリア性)が向上するため、亜鉛めっき表面への酸素の供給が不足した状態で酸化反応が起こってしまい、不定形酸化物が生成して亜鉛めっき表面に黒変現象が発生する。特に、バリア性が劣る無機リッチ皮膜を備えた鋼板では、黒変現象が発生しやすいのみならず、しみ状(黒褐色)のムラ(以下、しみ汚れと称する)も発生しやすい。   Further, considering the balance of corrosion resistance, blackening resistance, adhesion to the galvanized surface, and electrical conductivity of the steel sheet, an inorganic rich film or an organic rich film is further added on the steel sheet described in each of the above patent documents. It is also conceivable to form a thin film of about 5 to 1 μm. However, the corrosion resistance (barrier property) is improved halfway due to the difference in barrier properties (oxygen permeability, water permeability) between the existing coating or plating surface and the newly provided coating. An oxidation reaction occurs in a state where oxygen supply to the surface is insufficient, and an amorphous oxide is generated, resulting in a blackening phenomenon on the galvanized surface. In particular, in a steel sheet provided with an inorganic rich film having poor barrier properties, not only the blackening phenomenon is likely to occur, but also stain-like (black brown) unevenness (hereinafter referred to as stain stain) is likely to occur.

本発明は上記のような事情に鑑みてなされたものであり、その目的は、耐黒変性に優れ、しみ汚れの発生を抑えた表面処理亜鉛系めっき鋼板、すなわち、外観に優れた表面処理亜鉛系めっき鋼板を提供することにある。   The present invention has been made in view of the circumstances as described above, and the object thereof is a surface-treated zinc-based plated steel sheet that is excellent in blackening resistance and suppresses the occurrence of stain stains, that is, surface-treated zinc that is excellent in appearance. It is to provide a galvanized steel sheet.

上記課題を解決し得た表面処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板と、前記亜鉛系めっき鋼板の少なくとも片面に形成された第一層と、前記第一層の上に形成された第二層と、を備えた表面処理亜鉛系めっき鋼板であって、前記第一層は、リン酸亜鉛結晶を含んでおり、前記リン酸亜鉛結晶の付着量は0.04〜0.4g/m2であり、前記リン酸亜鉛結晶の長径は2.5μm以下であり、前記第二層は、樹脂を含んでおり、前記第二層の付着量は0.35〜0.85g/mであることを特徴とする。 The surface-treated zinc-based plated steel sheet that can solve the above problems is a zinc-based plated steel sheet, a first layer formed on at least one surface of the zinc-based plated steel sheet, and a second layer formed on the first layer. A surface-treated zinc-based plated steel sheet, wherein the first layer includes zinc phosphate crystals, and the amount of zinc phosphate crystals deposited is 0.04 to 0.4 g / m 2. The major axis of the zinc phosphate crystal is 2.5 μm or less, the second layer contains a resin, and the adhesion amount of the second layer is 0.35 to 0.85 g / m 2 . It is characterized by that.

前記第一層は、さらにコロイダルシリカを含むことが好ましい。   The first layer preferably further contains colloidal silica.

前記第二層を形成する第二層形成用組成物は、バインダー樹脂、コロイダルシリカ、外部架橋剤、及び潤滑剤を含むことが好ましい。   The second layer forming composition for forming the second layer preferably contains a binder resin, colloidal silica, an external crosslinking agent, and a lubricant.

第二層形成用組成物は、前記バインダー樹脂、前記コロイダルシリカ、前記外部架橋剤、及び前記潤滑剤の合計100質量部中、前記バインダー樹脂の含有量が54〜79質量部であり、前記コロイダルシリカの含有量が10〜35質量部であり、前記外部架橋剤の含有量が5〜8.5質量部であり、前記潤滑剤の含有量が2〜5質量部であることがより好ましい。   The composition for forming the second layer has a content of the binder resin of 54 to 79 parts by mass in a total of 100 parts by mass of the binder resin, the colloidal silica, the external crosslinking agent, and the lubricant, and the colloidal More preferably, the silica content is 10 to 35 parts by mass, the external cross-linking agent content is 5 to 8.5 parts by mass, and the lubricant content is 2 to 5 parts by mass.

本発明によれば、第一層におけるリン酸亜鉛結晶の付着量、リン酸亜鉛結晶の長径を調整し、さらに、第二層の付着量を調整することで、外観に優れた表面処理亜鉛系めっき鋼板とすることができる。本発明の表面処理亜鉛系めっき鋼板は、自動車や家庭電気製品の筐体や内装・外装部品、鋼製家具等の外板材や建築材料等に用いることができる。   According to the present invention, the amount of zinc phosphate crystals attached to the first layer and the major axis of the zinc phosphate crystals are adjusted, and further, the amount of adhesion of the second layer is adjusted to provide a surface-treated zinc-based material with excellent appearance. It can be set as a plated steel plate. The surface-treated galvanized steel sheet of the present invention can be used for casings and interior / exterior parts of automobiles and household electrical appliances, outer plate materials such as steel furniture, and building materials.

図1は、スプレー装置の概略図である。FIG. 1 is a schematic view of a spray device. 図2は、クランクプレス装置の概略図である。FIG. 2 is a schematic view of a crank press device. 図3は、プレス後の鋼板を示した図である。FIG. 3 is a view showing a steel plate after pressing.

本発明の表面処理亜鉛系めっき鋼板(以下、表面処理鋼板という)は、亜鉛系めっき鋼板と、前記亜鉛系めっき鋼板の少なくとも片面に形成された第一層と、前記第一層の上に形成された第二層と、を備えている。第一層は、リン酸亜鉛結晶を含む皮膜であり、第二層は、樹脂を含む皮膜である。   A surface-treated galvanized steel sheet (hereinafter referred to as a surface-treated steel sheet) according to the present invention is formed on a galvanized steel sheet, a first layer formed on at least one surface of the galvanized steel sheet, and the first layer. And a second layer. The first layer is a film containing zinc phosphate crystals, and the second layer is a film containing resin.

[亜鉛系めっき鋼板]
本発明で用いられる鋼板は、亜鉛系めっき鋼板であれば、特に限定されないが、例えば、溶融亜鉛めっき鋼板(GI)、合金化溶融Zn−Feめっき鋼板(GA)、合金化溶融Zn−5%Alめっき鋼板(GF)、電気亜鉛めっき鋼板(EG)、Zn−Ni合金電気めっき鋼板等を挙げることができる。これらの中でも、電気亜鉛めっき鋼板(EG)であることが好ましい。
[Zinc-based plated steel sheet]
The steel plate used in the present invention is not particularly limited as long as it is a zinc-based plated steel plate. For example, a hot-dip galvanized steel plate (GI), an alloyed molten Zn-Fe plated steel plate (GA), and an alloyed molten Zn-5% Examples thereof include an Al-plated steel sheet (GF), an electrogalvanized steel sheet (EG), and a Zn—Ni alloy electroplated steel sheet. Among these, an electrogalvanized steel sheet (EG) is preferable.

[第一層]
第一層は、リン含有処理液(第一層形成用組成物)により形成されるリン含有皮膜である。リン含有皮膜を亜鉛系めっき鋼板の表面に設けることによって、耐黒変性を抑制することができる。また、亜鉛系めっき鋼板の表面にリン含有皮膜を均一となるように設けることによって、原板(亜鉛系めっき鋼板)に由来する汚れ(亜鉛めっき表面の外観ムラ)を隠ぺいして、外観が美麗な表面処理鋼板とすることができる。また、表面処理鋼板の耐食性も向上させることができる。第一層は、亜鉛系めっき鋼板の片面のみに設けられていてもよく、両面に設けられていてもよい。
[First layer]
The first layer is a phosphorus-containing film formed by a phosphorus-containing treatment liquid (first layer forming composition). By providing the phosphorus-containing film on the surface of the galvanized steel sheet, blackening resistance can be suppressed. In addition, by providing a uniform phosphorus-containing coating on the surface of the galvanized steel sheet, dirt (uneven appearance on the galvanized surface) derived from the original sheet (galvanized steel sheet) is concealed and the appearance is beautiful. It can be set as a surface treatment steel plate. Moreover, the corrosion resistance of the surface-treated steel sheet can be improved. The first layer may be provided only on one side of the galvanized steel sheet or may be provided on both sides.

第一層形成用組成物は、リン酸亜鉛結晶が含まれていればよい。また、第一層形成用組成物は、リン酸が含まれていることが好ましく、第一層形成用組成物は、亜鉛めっき表面のエッチング剤として、硅フッ化水素酸や促進剤の硝酸亜鉛を含むことが好ましい。   The first layer forming composition only needs to contain zinc phosphate crystals. Moreover, it is preferable that the composition for 1st layer formation contains phosphoric acid, and the composition for 1st layer formation uses a hydrofluoric acid and the zinc nitrate of an accelerator as an etching agent of the zinc plating surface. It is preferable to contain.

第一層形成用組成物としては、市販品のリン含有処理液を使用してもよい。市販品としては、例えば、日本パーカライジング社製のパルボンド(登録商標)3312、パルボンド(登録商標)3300、パルボンド(登録商標)3140、パルボンド(登録商標)3100、パルボンド(登録商標)3308、エナレス(登録商標)20、日本ペイント・サーフケミカルズ社製サーフダイン(登録商標)セレクト1000系などが挙げられる。   As the first-layer forming composition, a commercially available phosphorus-containing treatment solution may be used. Commercially available products include, for example, Palbond (registered trademark) 3312, Palbond (registered trademark) 3300, Palbond (registered trademark) 3140, Palbond (registered trademark) 3100, Palbond (registered trademark) 3308, and Enares (registered) manufactured by Nippon Parkerizing Co., Ltd. (Trademark) 20, SurfDyne (registered trademark) select 1000 series manufactured by Nippon Paint Surf Chemicals.

リン酸亜鉛結晶の付着量(第一層に含有されるリン酸亜鉛結晶の量)は0.04〜0.4g/m2(P換算で2.7〜27mg/m2)であり、より好ましくは0.06〜0.39g/m2(P換算で4.0〜26.3mg/m2)であり、さらに好ましくは0.09〜0.28g/m2(P換算で6.1〜18.9mg/m2)である。リン酸亜鉛結晶の付着量を上記範囲内にすると、アンカー効果により、耐テープ剥離性が良好になる。リン酸亜鉛結晶の付着量の調整は、リン含有処理液の濃度や温度、通板速度等の調整によって行うことができる。リン酸亜鉛結晶の付着量の具体的な調整方法については後述する。 Adhesion amount of the zinc phosphate crystals (the amount of zinc phosphate crystals contained in the first layer) is 0.04~0.4g / m 2 (2.7~27mg / m 2 at P conversion), more preferably 0.06~0.39g / m 2 (4.0~26.3mg / m 2 at P conversion), 6.1 more preferably 0.09~0.28g / m 2 (P terms ˜18.9 mg / m 2 ). When the adhesion amount of the zinc phosphate crystal is within the above range, the tape peeling resistance is improved due to the anchor effect. The amount of zinc phosphate crystals attached can be adjusted by adjusting the concentration and temperature of the phosphorus-containing treatment liquid, the plate passing speed, and the like. A specific method for adjusting the adhesion amount of zinc phosphate crystals will be described later.

リン酸亜鉛結晶の付着量が0.4g/m2を超えると、アンカー効果により、耐テープ剥離性は良好になるが、第二層で第一層の表面を覆うのが困難となり、耐食性および耐黒変性が劣化する。また、リン酸亜鉛結晶は高い絶縁性を有するため、導電性も大幅に劣化する。さらに、リン酸亜鉛結晶は硬くて脆いため、付着量の増加に伴い表面処理鋼板の曲げ加工性も劣化する。一方、リン酸亜鉛結晶の付着量が0.04g/m2未満であると、耐テープ剥離性が大幅に劣化する。 When the adhesion amount of zinc phosphate crystals exceeds 0.4 g / m 2 , the tape peel resistance is good due to the anchor effect, but it becomes difficult to cover the surface of the first layer with the second layer, and the corrosion resistance and Blackening resistance deteriorates. In addition, since zinc phosphate crystals have high insulating properties, conductivity is also greatly deteriorated. Furthermore, since the zinc phosphate crystal is hard and brittle, the bendability of the surface-treated steel sheet deteriorates as the amount of adhesion increases. On the other hand, if the adhesion amount of zinc phosphate crystals is less than 0.04 g / m 2 , the tape peel resistance is greatly deteriorated.

第一層の上に第二層を塗布・乾燥することによって、第一層に含まれるリン酸亜鉛結晶(Zn3(PO42・4H2O)に存在するヒドロキシ基と第二層に存在するカルボキシル基とが脱水縮合してエステル結合が生成されるため、アンカー効果により、第一層と第二層との密着性が優れたものとなり、すなわち、耐テープ剥離性が優れたものになる。したがって、アンカー効果により、第一層と第二層との密着性を向上させるためには、リン酸亜鉛結晶の成長を抑制し、結晶は極力小さくし、亜鉛系めっき鋼板の表面にリン酸亜鉛結晶を均一に分散させる必要がある。 By coating and drying the second layer on the first layer, the hydroxy groups present in the zinc phosphate crystals (Zn 3 (PO 4 ) 2 .4H 2 O) contained in the first layer and the second layer Since the ester bond is generated by dehydration condensation with the existing carboxyl groups, the anchor effect makes the first layer and the second layer excellent in adhesion, that is, excellent in tape peel resistance. Become. Therefore, in order to improve the adhesion between the first layer and the second layer by the anchor effect, the growth of the zinc phosphate crystal is suppressed, the crystal is made as small as possible, and the zinc phosphate is formed on the surface of the zinc-based plated steel sheet. It is necessary to disperse the crystals uniformly.

リン酸亜鉛結晶の長径は2.5μm以下であり、好ましくは2.2μm以下であり、より好ましくは1.56μm以下である。また、リン酸亜鉛結晶の長径の下限は、特に限定されないが、皮膜との密着性の観点から0.5μm以上であることが好ましい。リン酸亜鉛結晶の長径が2.5μmを超えると、アンカー効果により、耐テープ剥離性は良好になるが、第二層で第一層の表面を覆うのが困難となり、耐食性および耐黒変性が劣化する。また、リン酸亜鉛結晶は高い絶縁性を有するため、導電性も大幅に劣化する。さらに、リン酸亜鉛結晶は硬くて脆いため、結晶の増大に伴い表面処理鋼板の曲げ加工性も劣化する。一方、リン酸亜鉛結晶の長径が0.5μm未満であると、耐テープ剥離性が劣化するおそれがある。   The major axis of the zinc phosphate crystal is 2.5 μm or less, preferably 2.2 μm or less, more preferably 1.56 μm or less. Further, the lower limit of the major axis of the zinc phosphate crystal is not particularly limited, but is preferably 0.5 μm or more from the viewpoint of adhesion to the film. When the long diameter of the zinc phosphate crystal exceeds 2.5 μm, the tape peel resistance is improved due to the anchor effect, but it becomes difficult to cover the surface of the first layer with the second layer, and the corrosion resistance and blackening resistance are reduced. to degrade. In addition, since zinc phosphate crystals have high insulating properties, conductivity is also greatly deteriorated. Furthermore, since the zinc phosphate crystal is hard and brittle, the bendability of the surface-treated steel sheet deteriorates as the crystal increases. On the other hand, when the major axis of the zinc phosphate crystal is less than 0.5 μm, the tape peel resistance may be deteriorated.

リン酸亜鉛結晶の長径は、リン酸亜鉛結晶の付着量と相関性があり、リン酸亜鉛結晶の付着量が多くなればなるほど、リン酸亜鉛結晶の長径は長くなる。亜鉛結晶の長径の調整は、リン酸亜鉛結晶の付着量と同様に、リン含有処理液の濃度や温度、通板速度(めっき時間)等の調整によって行うことができる。   The major axis of the zinc phosphate crystal correlates with the adhesion amount of the zinc phosphate crystal, and the major axis of the zinc phosphate crystal becomes longer as the adhesion amount of the zinc phosphate crystal increases. The major axis of the zinc crystal can be adjusted by adjusting the concentration and temperature of the phosphorus-containing treatment liquid, the plate passing speed (plating time), and the like, similarly to the amount of zinc phosphate crystal attached.

第一層の形成方法および条件には特に限定は無く、既知の塗布方法で形成することができる。例えば、バーコーター法、カーテンフローコーター法、ロールコーター法、スプレー法、スプレーリンガー法等を挙げることができ、これらの中でも、コスト等の観点からバーコーター法やスプレーリンガー法が好ましく、スプレーリンガー法が特に好ましい。スプレーリンガー法の詳細については後述する。なお、塗布後における第一層の加熱乾燥の条件については、特に限定は無く、例えば、200〜300℃で加熱乾燥することができる。   The formation method and conditions of the first layer are not particularly limited, and can be formed by a known coating method. For example, a bar coater method, a curtain flow coater method, a roll coater method, a spray method, a spray ringer method and the like can be mentioned. Among these, the bar coater method and the spray ringer method are preferable from the viewpoint of cost and the like, and the spray ringer method Is particularly preferred. Details of the spray ringer method will be described later. In addition, there is no limitation in particular about the conditions of the heat drying of the 1st layer after application | coating, For example, it can heat dry at 200-300 degreeC.

<コロイダルシリカ>
第一層形成用組成物は、さらにコロイダルシリカを含有してもよい。コロイダルシリカを含有させることによって、第一層形成用組成物の塗布・乾燥時に第一層が存在しない部位(ハジキ部)が発生するのを防止でき、第一層を均一に塗布することができる。第一層形成用組成物中のコロイダルシリカは、SiO2換算で0.2〜2.0g/Lであることが好ましく、より好ましくは0.5〜1.5g/Lである。第一層形成用組成物には、バインダーとなる樹脂が含まれていないため、皮膜中のコロイダルシリカはリン酸亜鉛結晶間に取り込まれる形で存在していると考えられる。そのため、コロイダルシリカの含有量が2.0g/Lを超えると、第一層と第二層との密着性が低下し、耐テープ剥離性が低下するおそれがある。一方、コロイダルシリカの含有量が0.2g/L未満になると、表面処理鋼板の耐テープ剥離性、耐食性、耐黒変性が低下するおそれがある。
<Colloidal silica>
The composition for forming the first layer may further contain colloidal silica. By containing colloidal silica, it is possible to prevent the occurrence of a site (repel portion) where the first layer does not exist during application / drying of the first layer forming composition, and the first layer can be uniformly applied. . The colloidal silica in the first layer forming composition is preferably 0.2 to 2.0 g / L, more preferably 0.5 to 1.5 g / L in terms of SiO 2 . Since the composition for forming the first layer does not contain a resin as a binder, it is considered that the colloidal silica in the film exists in a form that is taken in between the zinc phosphate crystals. Therefore, when the content of colloidal silica exceeds 2.0 g / L, the adhesion between the first layer and the second layer is lowered, and the tape peel resistance may be lowered. On the other hand, when the content of colloidal silica is less than 0.2 g / L, tape peel resistance, corrosion resistance, and blackening resistance of the surface-treated steel sheet may be reduced.

コロイダルシリカとしては、特に限定されるものではなく、具体的には、平均粒子径4〜6nmのコロイダルシリカ(市販品では、例えば、日産化学工業社製の「スノーテックス(登録商標)XS」、「スノーテックス(登録商標)NXS」、「スノーテックス(登録商標)OXS」、「スノーテックス(登録商標)CXS」)、平均粒子径10〜15nmのコロイダルシリカ(市販品では、例えば、日産化学工業社製の「スノーテックス(登録商標)30」、「スノーテックス(登録商標)40」、「スノーテックス(登録商標)N30G」、「スノーテックス(登録商標)N」、「スノーテックス(登録商標)O」、「スノーテックス(登録商標)C」等)、平均粒子径20〜25nmのコロイダルシリカ(市販品では、例えば、日産化学工業社製の「スノーテックス(登録商標)50」、「スノーテックス(登録商標)N−40」、「スノーテックス(登録商標)O−40」等)、平均粒子径8〜11nmのコロイダルシリカ(市販品では、例えば、日産化学工業社製の「スノーテックス(登録商標)S」、「スノーテックス(登録商標)NS」、「スノーテックス(登録商標)OS」等)等が挙げられる。第一層形成用組成物中でのコロイダルシリカの分散性や表面処理鋼板の耐食性及び耐黒変性の向上効果等の観点から、「スノーテックス(登録商標)OXS」、「スノーテックス(登録商標)OS」、「スノーテックス(登録商標)O」、「スノーテックス(登録商標)O−40」などのpH2.0〜4.0である酸性コロイダルシリカが好ましく、「スノーテックス(登録商標)OXS」、「スノーテックス(登録商標)OS」、「スノーテックス(登録商標)O」などのpH2.0〜4.0であり、かつ、平均粒子径が4〜15nmである酸性コロイダルシリカがより好ましい。第一層形成用組成物中のコロイダルシリカの平均粒子径が15nmよりも大きくなると第一層と第二層との密着性が低下し、耐テープ剥離性が低下するおそれがある。また、平均粒子径が4nm未満であるコロイダルシリカは現在市販されておらず、平均粒子径が4nm未満であるコロイダルシリカは粒子表面が活性化するため、第一層形成用組成物の液安定性を劣化させ、コロイダルシリカの凝集や溶液のゲル化を促進するおそれがある。   The colloidal silica is not particularly limited, and specifically, colloidal silica having an average particle diameter of 4 to 6 nm (in a commercial product, for example, “Snowtex (registered trademark) XS” manufactured by Nissan Chemical Industries, Ltd., “Snowtex (registered trademark) NXS”, “Snowtex (registered trademark) OXS”, “Snowtex (registered trademark) CXS”), colloidal silica having an average particle diameter of 10 to 15 nm (commercially available products such as Nissan Chemical Industries, Ltd.) "Snowtex (registered trademark) 30", "Snowtex (registered trademark) 40", "Snowtex (registered trademark) N30G", "Snowtex (registered trademark) N", "Snowtex (registered trademark)" O ”,“ Snowtex (registered trademark) C ”, etc.), colloidal silica having an average particle diameter of 20 to 25 nm (commercially available products such as Nissan “Snowtex (registered trademark) 50”, “Snowtex (registered trademark) N-40”, “Snowtex (registered trademark) O-40”, etc.) manufactured by Kogyo Co., Ltd., colloidal silica having an average particle diameter of 8 to 11 nm ( Examples of commercially available products include “Snowtex (registered trademark) S”, “Snowtex (registered trademark) NS”, and “Snowtex (registered trademark) OS” manufactured by Nissan Chemical Industries, Ltd.). From the viewpoint of the dispersibility of colloidal silica in the composition for forming the first layer, the effect of improving the corrosion resistance and blackening resistance of the surface-treated steel sheet, "Snowtex (registered trademark) OXS", "Snowtex (registered trademark)" Acid colloidal silica having a pH of 2.0 to 4.0, such as “OS”, “Snowtex (registered trademark) O”, “Snowtex (registered trademark) O-40”, is preferable, and “Snowtex (registered trademark) OXS” Acid colloidal silica having a pH of 2.0 to 4.0 and an average particle diameter of 4 to 15 nm, such as “Snowtex (registered trademark) OS” and “Snowtex (registered trademark) O”, is more preferable. When the average particle diameter of the colloidal silica in the composition for forming the first layer is larger than 15 nm, the adhesion between the first layer and the second layer is lowered, and the tape peel resistance may be lowered. In addition, colloidal silica having an average particle diameter of less than 4 nm is not commercially available at present, and the particle surface of colloidal silica having an average particle diameter of less than 4 nm is activated, so that the liquid stability of the composition for forming the first layer is increased. May be deteriorated, and the agglomeration of colloidal silica and the gelation of the solution may be promoted.

なお、本明細書におけるコロイダルシリカの平均粒子径は、平均粒子径が1〜10nm程度の場合にはシアーズ法、10〜100nm程度の場合にはBET法により測定された値である。また、製造者のパンフレットに公証値が記載されている場合、公証値を平均粒子径とする。   The average particle size of colloidal silica in the present specification is a value measured by the Sears method when the average particle size is about 1 to 10 nm and by the BET method when the average particle size is about 10 to 100 nm. Moreover, when a notary value is described in the manufacturer's pamphlet, the notarized value is defined as an average particle diameter.

[第二層]
第二層は、樹脂を含んでいる、すなわち、第二層を形成する第二層形成用組成物は、樹脂を含んでいる。上記第二層形成用組成物は、樹脂、コロイダルシリカ、外部架橋剤、及び潤滑剤を含むことが好ましく、上記樹脂はバインダー樹脂の役割を果たしていることが好ましい。また、上記第二層形成用組成物は、前記バインダー樹脂、前記コロイダルシリカ、前記外部架橋剤、及び前記潤滑剤の合計100質量部中、前記バインダー樹脂の含有量が54〜79質量部であり、前記コロイダルシリカの含有量が10〜35質量部であり、前記外部架橋剤の含有量が5〜8.5質量部であり、前記潤滑剤の含有量が2〜5質量部であることがより好ましい。このような第二層形成用組成物を用いることによって、表面処理鋼板の耐食性を高めることができる。また、このような第二層形成用組成物を用いることによって、第二層の薄膜化が可能となり、優れた導電性を有する表面処理鋼板を得ることができる。
[Second layer]
The 2nd layer contains resin, ie, the composition for 2nd layer formation which forms the 2nd layer contains resin. The composition for forming the second layer preferably contains a resin, colloidal silica, an external cross-linking agent, and a lubricant, and the resin preferably serves as a binder resin. The composition for forming the second layer is such that the binder resin content is 54 to 79 parts by mass in a total of 100 parts by mass of the binder resin, the colloidal silica, the external crosslinking agent, and the lubricant. The colloidal silica content is 10 to 35 parts by mass, the external cross-linking agent content is 5 to 8.5 parts by mass, and the lubricant content is 2 to 5 parts by mass. More preferred. By using such a composition for forming a second layer, the corrosion resistance of the surface-treated steel sheet can be increased. Moreover, by using such a composition for forming a second layer, the second layer can be made thin, and a surface-treated steel sheet having excellent conductivity can be obtained.

<バインダー樹脂>
バインダー樹脂を含有することによって、第二層にコロイダルシリカを固定することができる。バインダー樹脂としては、コロイダルシリカを固定できるものであれば、その種類は特に限定されるものではなく、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、フッ素系樹脂、シリコーン系樹脂、及びそれらの混合又は変性した樹脂等を適宜使用することができる。中でも、ポリオレフィン系樹脂が好ましい。バインダー樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。また、バインダー樹脂以外の樹脂が含まれていてもよい。
<Binder resin>
By containing a binder resin, colloidal silica can be fixed to the second layer. As long as the colloidal silica can be fixed as the binder resin, the kind thereof is not particularly limited, and acrylic resin, urethane resin, polyolefin resin, polyester resin, fluorine resin, silicone resin, And mixed or modified resins thereof can be used as appropriate. Of these, polyolefin resins are preferred. Binder resin may be used independently or may be used in combination of 2 or more type. Moreover, resin other than binder resin may be contained.

上記ポリオレフィン系樹脂は、オレフィン−α,β−不飽和カルボン酸共重合体(以下「オレフィン−酸共重合体」と称することがある)を含むことが好ましい。オレフィン−酸共重合体を有することによって、第二層形成用組成物中のコロイダルシリカの分散安定性を損なわず、かつバリア性に優れるため第一層への水の浸透を抑制し、耐食性を向上させることができる。   The polyolefin resin preferably contains an olefin-α, β-unsaturated carboxylic acid copolymer (hereinafter sometimes referred to as “olefin-acid copolymer”). By having an olefin-acid copolymer, the dispersion stability of the colloidal silica in the composition for forming the second layer is not impaired, and the barrier property is excellent, so that the penetration of water into the first layer is suppressed, and the corrosion resistance is improved. Can be improved.

(オレフィン−α,β−不飽和カルボン酸共重合体)
本発明におけるオレフィン−α,β−不飽和カルボン酸共重合体(以下、オレフィン−酸共重合体)という)は、オレフィンとα,β−不飽和カルボン酸との共重合体であって、オレフィン由来の構成単位が、共重合体中に50質量%以上(すなわち、α,β−不飽和カルボン酸由来の構成単位が50質量%以下)であるものを意味する。
(Olefin-α, β-unsaturated carboxylic acid copolymer)
The olefin-α, β-unsaturated carboxylic acid copolymer (hereinafter referred to as olefin-acid copolymer) in the present invention is a copolymer of an olefin and an α, β-unsaturated carboxylic acid, This means that the structural unit derived from the copolymer is 50% by mass or more (that is, the structural unit derived from the α, β-unsaturated carboxylic acid is 50% by mass or less).

上記オレフィン−酸共重合体は、オレフィンとα,β−不飽和カルボン酸とを既知の方法で共重合させることにより製造でき、また市販されている。オレフィン−酸共重合体は、1種または2種以上を使用することができる。   The olefin-acid copolymer can be produced by copolymerizing an olefin and an α, β-unsaturated carboxylic acid by a known method, and is commercially available. 1 type (s) or 2 or more types can be used for an olefin-acid copolymer.

オレフィン−酸共重合体の製造に使用できるオレフィンとしては、特に限定はないが、エチレン、プロピレン等が好ましく、エチレンがより好ましい。オレフィン−酸共重合体は、オレフィン構成単位が1種のオレフィンのみに由来するものであってもよいし、2種以上のオレフィンに由来するものであってもよい。   Although there is no limitation in particular as an olefin which can be used for manufacture of an olefin-acid copolymer, ethylene, propylene, etc. are preferable and ethylene is more preferable. The olefin-acid copolymer may be one in which the olefin structural unit is derived from only one olefin, or may be derived from two or more olefins.

オレフィン−酸共重合体の製造に使用できるα,β−不飽和カルボン酸も、特に限定はなく、例えばアクリル酸、メタクリル酸、クロトン酸、イソクロトン酸等のモノカルボン酸;マレイン酸、フマル酸、イタコン酸等のジカルボン酸等が挙げられ、1種または2種以上を混合して使用することができる。これらの中でもアクリル酸又はメタクリル酸であることが好ましく、アクリル酸であることがより好ましい。オレフィン−酸共重合体は、α,β−不飽和カルボン酸の構成単位が、1種のα,β−不飽和カルボン酸のみに由来するものであってもよいし、2種以上のα,β−不飽和カルボン酸に由来するものであってもよい。   The α, β-unsaturated carboxylic acid that can be used for the production of the olefin-acid copolymer is not particularly limited, and examples thereof include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid; maleic acid, fumaric acid, Examples thereof include dicarboxylic acids such as itaconic acid, and one kind or a mixture of two or more kinds can be used. Among these, acrylic acid or methacrylic acid is preferable, and acrylic acid is more preferable. In the olefin-acid copolymer, the constituent unit of α, β-unsaturated carboxylic acid may be derived from only one α, β-unsaturated carboxylic acid, or two or more α, β, It may be derived from a β-unsaturated carboxylic acid.

オレフィン−酸共重合体中のα,β−不飽和カルボン酸単位は、第一層と第二層との密着性を向上させる作用をなすものであり、かかる作用を効果的に発揮するには、共重合体中のα,β−不飽和カルボン酸単位量は、5質量%以上であることが好ましく、より好ましくは10質量%以上である。一方、共重合体中のα,β−不飽和カルボン酸単位量の上限は、上述したように50質量%であるが、耐食性の観点からは特に30質量%以下が好ましく、より好ましくは25質量%以下である。   The α, β-unsaturated carboxylic acid unit in the olefin-acid copolymer serves to improve the adhesion between the first layer and the second layer. The amount of α, β-unsaturated carboxylic acid units in the copolymer is preferably 5% by mass or more, and more preferably 10% by mass or more. On the other hand, the upper limit of the amount of α, β-unsaturated carboxylic acid units in the copolymer is 50% by mass as described above, but is preferably 30% by mass or less, more preferably 25% by mass from the viewpoint of corrosion resistance. % Or less.

上記オレフィン−酸共重合体は、耐食性や耐黒変性等に悪影響を及ぼさない範囲で、その他の単量体に由来する構成単位を有していても良い。オレフィン−酸共重合体中において、その他の単量体に由来する構成単位量は、好ましくは10質量%以下、より好ましくは5質量%以下であり、最も好ましいオレフィン−酸共重合体は、その他の単量体が0質量%、すなわち、オレフィン−およびα,β−不飽和カルボン酸のみから構成される共重合体である。また、好ましいオレフィン−酸共重合体として、エチレン−アクリル酸共重合体が挙げられる。   The olefin-acid copolymer may have structural units derived from other monomers within a range that does not adversely affect corrosion resistance, blackening resistance, and the like. In the olefin-acid copolymer, the structural unit amount derived from other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and the most preferable olefin-acid copolymer is other Is a copolymer composed only of olefin- and α, β-unsaturated carboxylic acid. Moreover, an ethylene-acrylic acid copolymer is mentioned as a preferable olefin-acid copolymer.

(沸点100℃以下のアミン)
上記オレフィン−酸共重合体はカルボキシル基を有しているので、有機塩基や金属イオンで中和することにより、第二層形成用組成物をエマルジョン化(水分散体化)することが可能となる。有機塩基として沸点100℃以下のアミンを用いることが好ましい。沸点が100℃を超えるアミンは、樹脂塗膜を乾燥させたときに鋼板上に残存しやすく、樹脂塗膜の吸水性が増すため、耐食性が低下するおそれがある。
(Amine with a boiling point of 100 ° C or lower)
Since the olefin-acid copolymer has a carboxyl group, it is possible to emulsify (form an aqueous dispersion) the composition for forming the second layer by neutralizing with an organic base or a metal ion. Become. It is preferable to use an amine having a boiling point of 100 ° C. or lower as the organic base. An amine having a boiling point exceeding 100 ° C. tends to remain on the steel sheet when the resin coating film is dried, and the water absorption of the resin coating film increases, which may reduce the corrosion resistance.

沸点100℃以下のアミンの具体例としては、トリエチルアミン、N,N−ジメチルブチルアミン、N,N−ジメチルアリルアミン、N−メチルピロリジン、テトラメチルジアミノメタン、トリメチルアミン等の3級アミン;N−メチルエチルアミン、ジイソプロピルアミン、ジエチルアミン等の2級アミン;プロピルアミン、t−ブチルアミン、sec−ブチルアミン、イソブチルアミン、1,2−ジブチルプロピルアミン、3−ペンチルアミン等の1級アミン等が挙げられ、1種または2種以上を混合して用いることができる。これらの中でも3級アミンが好ましく、最も好ましいものはトリエチルアミンである。   Specific examples of amines having a boiling point of 100 ° C. or less include tertiary amines such as triethylamine, N, N-dimethylbutylamine, N, N-dimethylallylamine, N-methylpyrrolidine, tetramethyldiaminomethane, trimethylamine; N-methylethylamine, Secondary amines such as diisopropylamine and diethylamine; primary amines such as propylamine, t-butylamine, sec-butylamine, isobutylamine, 1,2-dibutylpropylamine, and 3-pentylamine, and the like. A mixture of seeds or more can be used. Of these, tertiary amines are preferred, and triethylamine is the most preferred.

上記沸点100℃以下のアミンの量は、上記オレフィン−酸共重合体中のカルボキシル基1モルに対し、0.2〜0.8モル(20〜80モル%)であることが好ましい。この範囲であれば、表面処理鋼板の耐食性や耐テープ剥離性が良好だからである。上記アミンが0.2モルより少ないと、第二層形成用組成物中の樹脂粒子の粒径が大きくなって、このために上記効果が発揮されないおそれがある。また、上記アミンが0.8モルを超えると、第二層形成用組成物が増粘してゲル化するおそれがある。上記アミンの量の上限については0.6モル以下であることがより好ましく、0.5モル以下であることがさらに好ましい。上記アミンの量の下限については、0.3モル以上であることがより好ましい。   The amount of the amine having a boiling point of 100 ° C. or less is preferably 0.2 to 0.8 mol (20 to 80 mol%) with respect to 1 mol of the carboxyl group in the olefin-acid copolymer. This is because within this range, the surface-treated steel sheet has good corrosion resistance and tape peel resistance. When the amount of the amine is less than 0.2 mol, the particle size of the resin particles in the composition for forming the second layer is increased, and thus the above effect may not be exhibited. Moreover, when the said amine exceeds 0.8 mol, there exists a possibility that the composition for 2nd layer formation may thicken and gelatinize. The upper limit of the amount of the amine is more preferably 0.6 mol or less, and further preferably 0.5 mol or less. About the minimum of the quantity of the said amine, it is more preferable that it is 0.3 mol or more.

(1価の金属を含む化合物)
皮膜硬度の向上の観点から、中和のために、上記オレフィン−酸共重合体に対して1価の金属イオンを添加することが好ましい。1価の金属としては、ナトリウム、カリウム、リチウムから選ばれる1種または2種以上の金属を含むことが好ましく、1価の金属を含む化合物(以下、単に化合物という)としては、これらの金属の水酸化物、炭酸化物、または酸化物が好ましい。中でも、NaOH、KOH、LiOH等が好ましく、NaOHがより好ましい。
(Compound containing monovalent metal)
From the viewpoint of improving the film hardness, it is preferable to add a monovalent metal ion to the olefin-acid copolymer for neutralization. The monovalent metal preferably contains one or more metals selected from sodium, potassium, and lithium, and the compound containing a monovalent metal (hereinafter simply referred to as a compound) Hydroxides, carbonates or oxides are preferred. Among these, NaOH, KOH, LiOH and the like are preferable, and NaOH is more preferable.

上記化合物の量は、上記オレフィン−酸共重合体中のカルボキシル基1モルに対して、0.02〜0.4モル(2〜40モル%)の範囲とする。上記化合物の量が0.02モルより少ないと乳化安定性が不充分となるが、0.4モルを超えると耐食性が劣化するおそれがある。上記化合物の量の上限については0.2モル以下であることがより好ましい。上記化合物の量の下限については0.03モル以上であることがより好ましく、0.1モル以上であることがさらに好ましい。   The amount of the compound is in the range of 0.02 to 0.4 mol (2 to 40 mol%) with respect to 1 mol of the carboxyl group in the olefin-acid copolymer. When the amount of the compound is less than 0.02 mol, the emulsion stability becomes insufficient, but when it exceeds 0.4 mol, the corrosion resistance may be deteriorated. The upper limit of the amount of the compound is more preferably 0.2 mol or less. The lower limit of the amount of the compound is more preferably 0.03 mol or more, and further preferably 0.1 mol or more.

上記沸点100℃以下のアミンと上記化合物のそれぞれの使用量の好ましい範囲は上記したとおりであるが、これらはいずれも上記オレフィン−酸共重合体中のカルボキシル基を中和して第二層形成用組成物をエマルジョン化するために用いられる。従って、これらの合計量(中和量)が多すぎると、第二層形成用組成物の粘度が急激に上昇して固化することがある上に、過剰なアルカリ分は耐食性劣化の原因となるため、揮発させるのに多大なエネルギーが必要となり好ましくない。しかし、中和量が少なすぎると乳化性が不充分となるおそれがある。従って、上記沸点100℃以下のアミンと上記化合物の合計量は、上記オレフィン−酸共重合体中のカルボキシル基1モルに対し、0.3〜1.0モル(30〜100モル%)であることが好ましい。   The preferred ranges of the amounts used of the amine having a boiling point of 100 ° C. or less and the compound are as described above, and these are all formed by neutralizing the carboxyl group in the olefin-acid copolymer to form a second layer. Used to emulsify the composition. Accordingly, if the total amount (neutralization amount) is too large, the viscosity of the composition for forming the second layer may rapidly increase and solidify, and excessive alkali content may cause corrosion resistance deterioration. Therefore, a large amount of energy is required for volatilization, which is not preferable. However, if the amount of neutralization is too small, the emulsifiability may be insufficient. Therefore, the total amount of the amine having the boiling point of 100 ° C. or less and the compound is 0.3 to 1.0 mol (30 to 100 mol%) with respect to 1 mol of the carboxyl group in the olefin-acid copolymer. It is preferable.

(内部架橋剤)
沸点100℃以下のアミンおよび1価の金属イオンによって中和されたカルボキシル基を有するオレフィン−酸共重合体は、イオンクラスターによる分子間会合を形成し(アイオノマー化)、耐食性及び耐テープ剥離性に優れた樹脂皮膜を形成する。しかし、より強靱な皮膜を形成するためには、官能基間反応を利用した化学結合によってポリマー鎖同士を架橋させることが望ましい。そこで、第二層形成用組成物は、カルボキシル基と反応し得る官能基を2個以上有する架橋剤を有するのが好ましい。なお、本段落に記載のバインダー樹脂形成に用いられる架橋剤を内部架橋剤、第二層の形成に用いられる後述の架橋剤を外部架橋剤とする。内部架橋剤の量は、バインダー樹脂成分中の固形分100質量%のうち、1〜20質量%(より好ましくは5〜10質量%)とすることが好ましい。1質量%より少ないと、化学結合による架橋の効果が不充分となり、耐食性・耐テープ剥離性の向上効果が発揮されにくい。一方、20質量%を超えると、第二層の架橋密度が過度に高くなりすぎて硬度が上昇し、プレス加工時の変形に追従できなくなることからクラックが発生し、その結果、耐食性を低下させるおそれがある。
(Internal crosslinking agent)
An olefin-acid copolymer having a carboxyl group neutralized by an amine having a boiling point of 100 ° C. or less and a monovalent metal ion forms an intermolecular association by an ion cluster (ionomerization), and is resistant to corrosion and tape peeling. Forms an excellent resin film. However, in order to form a tougher film, it is desirable to crosslink the polymer chains by chemical bonding utilizing a reaction between functional groups. Therefore, the second layer forming composition preferably has a crosslinking agent having two or more functional groups capable of reacting with a carboxyl group. In addition, let the crosslinking agent used for binder resin formation as described in this paragraph be an internal crosslinking agent, and let the below-mentioned crosslinking agent used for formation of a 2nd layer be an external crosslinking agent. The amount of the internal crosslinking agent is preferably 1 to 20% by mass (more preferably 5 to 10% by mass) out of 100% by mass of the solid content in the binder resin component. When the amount is less than 1% by mass, the effect of crosslinking by chemical bonding becomes insufficient, and the effect of improving the corrosion resistance and tape peel resistance is hardly exhibited. On the other hand, if it exceeds 20% by mass, the crosslink density of the second layer becomes excessively high, the hardness increases, and cracks are generated because it becomes impossible to follow the deformation at the time of press working, resulting in a decrease in corrosion resistance. There is a fear.

カルボキシル基と反応し得る官能基を1分子中に2個以上有する内部架橋剤としては特に限定されないが、ソルビトールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル等のポリグリシジルエーテル類や、ポリグリシジルアミン類等のグリシジル基含有架橋剤;4,4’−ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、N,N’−ヘキサメチレン−1,6−ビス(1−アジリジンカルボキシアミド)、N,N’−ジフェニルメタン−4,4’−ビス(1−アジリジンカルボキシアミド)、トルエンビスアジリジンカルボキシアミド等の2官能アジリジン化合物;トリ−1−アジリジニルホスフィンオキサイド、トリス〔1−(2−メチル)アジリジニル〕ホスフィンオキサイド、トリメチロールプロパントリス(β−アジリジニルプロピオネート)、トリス−2,4,6−(1−アジリジニル)−1,3,5−トリアジン、テトラメチルプロパンテトラアジリジニルプロピオネート等の3官能以上のアジリジン化合物あるいはこれらの誘導体等のアジリジニル基含有架橋剤が挙げられ、これらのうちの1種または2種以上を用いることができる。中でも、2官能以上のアジリジン化合物が好ましく、2官能のアジリジン化合物がより好ましく、4,4’−ビス(エチレンイミノカルボニルアミノ)ジフェニルメタンがさらに好ましい。   The internal crosslinking agent having two or more functional groups capable of reacting with a carboxyl group is not particularly limited, but sorbitol polyglycidyl ether, (poly) glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, trimethylolpropane poly Polyglycidyl ethers such as glycidyl ether, neopentyl glycol diglycidyl ether, (poly) ethylene glycol diglycidyl ether, and glycidyl group-containing crosslinking agents such as polyglycidyl amines; 4,4′-bis (ethyleneiminocarbonylamino) Diphenylmethane, N, N′-hexamethylene-1,6-bis (1-aziridinecarboxamide), N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), toluenebi Bifunctional aziridine compounds such as aziridinecarboxamide; tri-1-aziridinylphosphine oxide, tris [1- (2-methyl) aziridinyl] phosphine oxide, trimethylolpropane tris (β-aziridinylpropionate), tris An aziridinyl group-containing crosslinking agent such as a tri- or higher functional aziridine compound such as 2,4,6- (1-aziridinyl) -1,3,5-triazine, tetramethylpropanetetraaziridinylpropionate, or a derivative thereof. Of these, one or more of these can be used. Among them, bifunctional or higher functional aziridine compounds are preferable, bifunctional aziridine compounds are more preferable, and 4,4′-bis (ethyleneiminocarbonylamino) diphenylmethane is further preferable.

<コロイダルシリカ>
第二層形成用組成物は、さらにコロイダルシリカを含有することが好ましい。コロイダルシリカ(固形分)は、全固形分100質量%中、5〜40質量%含有することが好ましく、より好ましくは10〜37質量%であり、さらに好ましくは20〜35質量%である。なお、本明細書中では、全固形分(固形分100質量%)とは、バインダー樹脂、コロイダルシリカ、外部架橋剤、及び潤滑剤の固形分の合計のことをいう。コロイダルシリカの含有量が5質量%未満であると、表面処理鋼板の耐食性、耐黒変性、耐テープ剥離性などが低下するおそれがある。また、相対的にバインダー樹脂が増加するため、皮膜の膜厚が厚くなり、導電性も劣化する。一方、コロイダルシリカの含有量が40質量%を超えると、造膜性が低下し、皮膜にクラックが入ったり、皮膜が脆くなったりするため、表面処理鋼板の耐食性、耐黒変性、曲げ加工性が低下するおそれがある。耐食性や耐黒変性が向上する理由としては、腐食環境下においてコロイダルシリカが溶解、溶出して、pHの緩衝作用や不動態皮膜形成作用が生じることに起因すると推測される。さらに、コロイダルシリカを含有させることによって、第二層形成用組成物の塗布・乾燥時に第二層が存在しない部位(ハジキ部)が発生するのを防止できる。また、コロイダルシリカとバインダー樹脂との質量比は、固形比で5:84〜40:49であることが好ましく、20:69〜35:54であることがより好ましい。
<Colloidal silica>
It is preferable that the composition for forming a second layer further contains colloidal silica. The colloidal silica (solid content) is preferably contained in an amount of 5 to 40% by mass, more preferably 10 to 37% by mass, and further preferably 20 to 35% by mass in 100% by mass of the total solid content. In the present specification, the total solid content (solid content: 100% by mass) refers to the total solid content of the binder resin, colloidal silica, external cross-linking agent, and lubricant. If the colloidal silica content is less than 5% by mass, the corrosion resistance, blackening resistance, tape peel resistance and the like of the surface-treated steel sheet may be reduced. Moreover, since binder resin increases relatively, the film thickness of a film | membrane becomes thick and electroconductivity also deteriorates. On the other hand, if the colloidal silica content exceeds 40% by mass, the film-forming property is lowered, and the film is cracked or the film becomes brittle. Therefore, the corrosion resistance, blackening resistance and bending workability of the surface-treated steel sheet are reduced. May decrease. The reason why the corrosion resistance and blackening resistance are improved is presumed to be that colloidal silica is dissolved and eluted in a corrosive environment to cause a pH buffering action and a passive film forming action. Furthermore, by containing colloidal silica, it is possible to prevent the occurrence of a site (repellent portion) where the second layer does not exist when the second layer forming composition is applied and dried. The mass ratio of the colloidal silica and the binder resin is preferably 5:84 to 40:49, more preferably 20:69 to 35:54, in terms of solid ratio.

コロイダルシリカとしては、特に限定されるものではなく、上述の第一層形成用組成物に用いられるコロイダルシリカと同種のものを挙げることができる。第二層形成用組成物中での分散性や表面処理鋼板の耐食性及び耐黒変性の向上効果等の観点から、特に平均粒子径が4〜15nmのコロイダルシリカが好ましく、中でも「スノーテックス(登録商標)XS」が好ましい。   The colloidal silica is not particularly limited, and examples thereof include the same type as the colloidal silica used in the above-described first layer forming composition. Colloidal silica having an average particle diameter of 4 to 15 nm is particularly preferable from the viewpoints of dispersibility in the composition for forming the second layer, the corrosion resistance of the surface-treated steel sheet, and the effect of improving blackening resistance. Trademark) XS "is preferred.

<外部架橋剤>
バインダー樹脂を架橋するために、第二層形成用組成物には、外部架橋剤が含まれているのが好ましい。外部架橋剤を含有させることによって、表面処理鋼板の耐食性及び耐黒変性を高めることができる。外部架橋剤は、第二層形成用組成物の全固形分100質量%中、5〜8.5質量%含有することが好ましく、より好ましくは6〜8質量%であり、さらに好ましくは6.5〜7.5質量%である。外部架橋剤を5質量%以上とすることにより、十分に架橋が進行して、より耐食性及び耐黒変性が向上する。一方、外部架橋剤を8.5質量%以下とすることにより、余剰の架橋剤の自己架橋を防止して、より耐食性及び耐黒変性が向上する。また、外部架橋剤とコロイダルシリカとの質量比は、固形比で5:32.5〜8.5:29であることが好ましく、6.5:31〜7.5:30であることがより好ましい。
<External crosslinking agent>
In order to crosslink the binder resin, the second layer forming composition preferably contains an external crosslinking agent. By including an external crosslinking agent, the corrosion resistance and blackening resistance of the surface-treated steel sheet can be enhanced. The external cross-linking agent is preferably contained in an amount of 5 to 8.5% by mass, more preferably 6 to 8% by mass, and still more preferably 6 to 100% by mass of the total solid content of the composition for forming the second layer. 5 to 7.5% by mass. By setting the external cross-linking agent to 5% by mass or more, the cross-linking proceeds sufficiently to further improve the corrosion resistance and blackening resistance. On the other hand, by setting the external cross-linking agent to 8.5% by mass or less, self-crosslinking of the surplus cross-linking agent is prevented, and the corrosion resistance and blackening resistance are further improved. The mass ratio of the external cross-linking agent and colloidal silica is preferably 5: 32.5 to 8.5: 29, more preferably 6.5: 31 to 7.5: 30 in terms of solid ratio. preferable.

外部架橋剤は、反応性の点からはエポキシ系架橋剤が好ましく、ソルビトールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル等のポリグリシジルエーテル類や、ポリグリシジルアミン類等が挙げられる。このようなエポキシ系架橋剤としては、DIC社製のエピクロン(登録商標)CR5LやCR75等が入手可能である。   The external cross-linking agent is preferably an epoxy cross-linking agent from the viewpoint of reactivity. Sorbitol polyglycidyl ether, (poly) glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether And polyglycidyl ethers such as (poly) ethylene glycol diglycidyl ether, and polyglycidyl amines. As such an epoxy-based crosslinking agent, Epicron (registered trademark) CR5L, CR75, and the like manufactured by DIC are available.

<潤滑剤>
第二層形成用組成物には、潤滑剤が含まれているのが好ましい。潤滑剤を含むことによって、第二層の表面における摩擦が低減され、疵つきにくくなる。潤滑剤は、全固形分100質量%中、2〜5質量%含有することが好ましく、より好ましくは3〜4.7質量%であり、さらに好ましくは3.5〜4.5質量%である。潤滑剤の含有量が2質量%より少ない場合、得られる第二層の潤滑性が十分ではなく、表面処理鋼板の曲げ加工性等が低下するおそれがある。潤滑剤が5質量%を超えると、第二層の造膜性が低下するので、表面処理鋼板の耐食性が低下するおそれがある。また、球形ポリエチレンワックスなどの潤滑剤を用いた場合には、潤滑剤が5質量%を超えると、潤滑剤の加水分解等によって耐食性が劣化するおそれがある。潤滑剤とバインダー樹脂との質量比は、固形比で2:60.5〜5:57.5であることが好ましく、3.5:59〜4.5:58であることがより好ましい。
<Lubricant>
The composition for forming the second layer preferably contains a lubricant. By including the lubricant, the friction on the surface of the second layer is reduced, and it becomes difficult to cause wrinkles. The lubricant is preferably contained in an amount of 2 to 5% by mass in 100% by mass of the total solid content, more preferably 3 to 4.7% by mass, and further preferably 3.5 to 4.5% by mass. . When the content of the lubricant is less than 2% by mass, the lubricity of the obtained second layer is not sufficient, and the bendability of the surface-treated steel sheet may be lowered. If the lubricant exceeds 5% by mass, the film-forming property of the second layer is lowered, so that the corrosion resistance of the surface-treated steel sheet may be lowered. When a lubricant such as spherical polyethylene wax is used, if the lubricant exceeds 5% by mass, the corrosion resistance may be deteriorated due to hydrolysis of the lubricant or the like. The mass ratio between the lubricant and the binder resin is preferably 2: 60.5 to 5: 57.5, more preferably 3.5: 59 to 4.5: 58, in terms of solid ratio.

潤滑剤としては、ポリエチレン、酸化ポリエチレン、ポリプロピレン等のポリオレフィン系ワックス;ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、四フッ化エチレン等のフッ素系樹脂;有機変性ポリシロキサン;パラフィンワックス等が使用可能である。これらの中でも、ポリオレフィン系ワックスが好ましく、ポリエチレンワックスがより好ましい。   As the lubricant, polyolefin waxes such as polyethylene, polyethylene oxide, and polypropylene; fluorine resins such as polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, and tetrafluoroethylene; organic modified polysiloxanes; paraffin wax, etc. are used. Is possible. Among these, polyolefin wax is preferable, and polyethylene wax is more preferable.

ポリエチレンワックス粒子としては、球形で、平均粒子径が0.1〜3μmのものを使用することが好ましく、平均粒子径が0.3〜1.0μmのものを使用することがより好ましい。平均粒子径が3μmを超える場合には、第二層形成用組成物中へ潤滑剤を均一に分散することが困難になるなど、造膜性を阻害するため耐食性が低下する傾向がある。一方、ポリエチレンワックス粒子の平均粒子径が0.1μmよりも小さいときは、第二層の潤滑性が向上しないおそれがある。なお、ポリエチレンワックス粒子の平均粒子径は、コールターカウンター法により測定することができる。   The polyethylene wax particles are preferably spherical and have an average particle diameter of 0.1 to 3 μm, more preferably an average particle diameter of 0.3 to 1.0 μm. When the average particle diameter exceeds 3 μm, it is difficult to uniformly disperse the lubricant in the composition for forming the second layer, and the corrosion resistance tends to be lowered because the film forming property is inhibited. On the other hand, when the average particle diameter of the polyethylene wax particles is smaller than 0.1 μm, the lubricity of the second layer may not be improved. The average particle diameter of the polyethylene wax particles can be measured by a Coulter counter method.

このようなポリエチレンワックスを用いることによって、第二層において球状で存在し、第二層の表面における摩擦を効果的に低減することができ、疵付きの発生等を抑制するのに有効である。球状ポリエチレンワックスとしては、三井化学社製の「ケミパール(登録商標)W640」、「ケミパール(登録商標)W700」、「ケミパール(登録商標)W950」、「ケミパール(登録商標)W900」などが挙げられる。   By using such a polyethylene wax, the second layer exists in a spherical shape, and friction on the surface of the second layer can be effectively reduced, which is effective in suppressing the occurrence of wrinkles. Examples of the spherical polyethylene wax include “Chemipearl (registered trademark) W640”, “Chemipearl (registered trademark) W700”, “Chemipearl (registered trademark) W950”, and “Chemical (registered trademark) W900” manufactured by Mitsui Chemicals. .

<付着量>
第二層の付着量は、乾燥後において、0.35〜0.85g/m2であることが好ましく、0.4〜0.8g/m2がより好ましく、0.4〜0.7g/m2がより好ましく、0.45〜0.6g/m2が最も好ましい。第二層として樹脂を含む皮膜を第一層の上に形成することで、第二層の薄膜化を図ることができる。また、薄膜化を図ったことにより、導電性も備えた表面処理鋼板とすることができる。付着量が0.35g/m2未満であると、第二層を第一層上に均一に塗布することが難しく、表面処理鋼板の耐食性、耐黒変性、耐テープ剥離性、曲げ加工性が劣化するおそれがある。一方、付着量が0.85g/m2を超えると、表面処理鋼板の導電性が低下するおそれがある。
<Adhesion amount>
The adhesion amount of the second layer is preferably 0.35 to 0.85 g / m 2 after drying, more preferably 0.4 to 0.8 g / m 2 , and 0.4 to 0.7 g / m 2. m 2 is more preferable, and 0.45 to 0.6 g / m 2 is most preferable. By forming a film containing a resin on the first layer as the second layer, the second layer can be made thinner. Moreover, by achieving a thin film, a surface-treated steel sheet having conductivity can be obtained. When the adhesion amount is less than 0.35 g / m 2 , it is difficult to uniformly apply the second layer onto the first layer, and the corrosion resistance, blackening resistance, tape peeling resistance, and bending workability of the surface-treated steel sheet are difficult. May deteriorate. On the other hand, when the adhesion amount exceeds 0.85 g / m 2 , the conductivity of the surface-treated steel sheet may be lowered.

<その他の成分>
水系黒色樹脂組成物には、本発明の効果を損なわない範囲で、希釈溶媒、皮張り防止剤、レベリング剤、消泡剤、浸透剤、乳化剤、造膜助剤、着色顔料、増粘剤、シランカップリング剤、他の樹脂等を適宜添加してもよい。
<Other ingredients>
In the aqueous black resin composition, within the range that does not impair the effects of the present invention, dilution solvent, anti-skinning agent, leveling agent, antifoaming agent, penetrating agent, emulsifying agent, film-forming aid, coloring pigment, thickener, Silane coupling agents, other resins, etc. may be added as appropriate.

<第二層の形成方法>
第二層形成用組成物は、上述した各成分を所定の割合で混合して調製することができる。混合順序は特に制限されない。
<Method for forming second layer>
The composition for forming the second layer can be prepared by mixing the above-described components at a predetermined ratio. The mixing order is not particularly limited.

第二層を第一層の上に形成する際の第二層形成用組成物の塗布、乾燥方法は、特に制限されず、既知の方法を適宜採用することができる。第二層形成用組成物の塗布方法としては、例えばバーコーター法、ロールコーター法、カーテンフローコーター法、スプレー法、スプレーリンガー法等を挙げることができ、これらの中でも、コスト等の観点からバーコーター法、ロールコーター法、スプレーリンガー法が好ましい。また乾燥温度としては、第二層が熱により劣化しない程度であればよく、例えば、50〜160℃程度が好ましく、より好ましくは70〜140℃程度である。   The method for applying and drying the second layer forming composition when forming the second layer on the first layer is not particularly limited, and known methods can be appropriately employed. Examples of the method for applying the composition for forming the second layer include a bar coater method, a roll coater method, a curtain flow coater method, a spray method, a spray ringer method, and the like. A coater method, a roll coater method and a spray ringer method are preferred. Moreover, as drying temperature, it should just be a grade which a 2nd layer does not deteriorate with a heat | fever, For example, about 50-160 degreeC is preferable, More preferably, it is about 70-140 degreeC.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。また、以下では、「%」は「質量%」を、「部」は「質量部」を示すことがある。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. In the following, “%” may indicate “mass%” and “part” may indicate “mass part”.

まず、実施例で用いた測定・評価方法について、以下説明する。   First, the measurement / evaluation methods used in the examples will be described below.

(1)リン酸亜鉛結晶
(1−1)リン酸亜鉛結晶の長径
第一層におけるリン酸亜鉛結晶の長径は、走査型電子顕微鏡(Carl Zeiss製SUPRA35)を用いて、倍率5000倍で写真撮影して測定した。
(1) Zinc phosphate crystal (1-1) Long diameter of zinc phosphate crystal The long diameter of the zinc phosphate crystal in the first layer was photographed at a magnification of 5000 times using a scanning electron microscope (SUPRA35 manufactured by Carl Zeiss). And measured.

(1−2)リン酸亜鉛結晶の付着量
まず、蛍光X線分析装置(島津製作所製MXF−2100)を用いて、第一層における1m2当たりのP元素の含有量(単位:g/m2)を測定した。そして、測定したP元素(分子量:65.37)の含有量から第一層におけるリン酸亜鉛結晶(分子量:458.05)の付着量を算出した。すなわち、1m2当たりのP元素の含有量に458.05/65.37を掛けた値を、第一層における1m2当たりのリン酸亜鉛結晶の付着量(単位:g/m2)とした。
(1-2) Amount of Zinc Phosphate Crystal First, the content of P element per 1 m 2 in the first layer (unit: g / m) using a fluorescent X-ray analyzer (MXF-2100 manufactured by Shimadzu Corporation). 2 ) measured. And the adhesion amount of the zinc phosphate crystal (molecular weight: 458.05) in the first layer was calculated from the measured content of P element (molecular weight: 65.37). That is, the value obtained by multiplying the content of P element per 1 m 2 by 458.05 / 65.37 was defined as the amount of zinc phosphate crystals deposited per 1 m 2 in the first layer (unit: g / m 2 ). .

(2)耐食性
供試材の表面にカッターナイフでクロスカットを入れ、JIS Z2371に準じ、35℃の雰囲気下で5%NaCl溶液を噴霧して塩水噴霧試験を実施した。白錆の発生率が5%に達するまでの時間(SST時間)を測定し、下記基準で評価し、A、B評価を合格、C、D評価を不合格とした。
A:SST時間が240時間以上である
B:SST時間が168時間以上240時間未満である
C:SST時間が120時間以上168時間未満である
D:SST時間が120時間未満である
(2) Corrosion resistance A cross-cut was made on the surface of the test material with a cutter knife, and a 5% NaCl solution was sprayed in a 35 ° C. atmosphere in accordance with JIS Z2371, and a salt spray test was performed. The time until the white rust occurrence rate reached 5% (SST time) was measured, evaluated according to the following criteria, A and B evaluations passed, and C and D evaluations rejected.
A: SST time is 240 hours or more B: SST time is 168 hours or more and less than 240 hours C: SST time is 120 hours or more and less than 168 hours D: SST time is less than 120 hours

(3)外観
(3−1)定量分析
まず、色差計(日本電色工業製SZS−Σ90)を用いて供試材のL値を測定した。そして、供試材を50℃、湿度98%の恒温恒湿試験機に168時間保存した後、再び供試材のL値を測定した。168時間保管前後のL値の差ΔLを算出し、下記基準で定量的に評価し、A、B評価を合格、C、D評価を不合格とした。
A:ΔLが1未満である
B:ΔLが1以上2未満である
C:ΔLが2以上3未満である
D:ΔLが3以上である
(3) Appearance (3-1) Quantitative Analysis First, the L value of the test material was measured using a color difference meter (Nippon Denshoku Industries SZS-Σ90). The sample material was stored in a constant temperature and humidity tester at 50 ° C. and 98% humidity for 168 hours, and then the L value of the sample material was measured again. A difference ΔL between the L values before and after storage for 168 hours was calculated, and quantitatively evaluated according to the following criteria. A and B evaluations passed, and C and D evaluations failed.
A: ΔL is less than 1 B: ΔL is 1 or more and less than 2 C: ΔL is 2 or more and less than 3 D: ΔL is 3 or more

(3−2)定性分析
まず、供試材の外観を確認した。そして、供試材を50℃、湿度98%の恒温恒湿試験機に168時間保存した後、再び供試材の外観を確認した。168時間保管前後の外観の違いを以下の基準で評価し、A、B評価を合格、C、D評価を不合格とした。
A:試験前後で変化なし
B:試験後の供試材には、極わずかに黒変があるが、しみ汚れはない
C:試験後の供試材には、わずかに黒変があり、しみ汚れも有る
D:試験後の供試材には、黒変及びしみ汚れが有る
(3-2) Qualitative Analysis First, the appearance of the test material was confirmed. The specimen was stored in a constant temperature and humidity tester at 50 ° C. and a humidity of 98% for 168 hours, and then the appearance of the specimen was confirmed again. The difference in appearance before and after storage for 168 hours was evaluated according to the following criteria, and A and B evaluations passed, and C and D evaluations failed.
A: No change before and after the test B: The test material after the test has a slight blackening, but there is no stain stain C: The test material after the test has a slight blackening, the stain There is also dirt. D: The test material after the test has blackening and stains.

(4)導電性
表面抵抗測定装置(ダイヤインスツルメンツ社製Loresta(登録商標)−EP)を用いて2探針法(2探針APプローブ(タイプA)、ピン間距離:10mm、ピン先端径:2mmφ、測定時ばね圧力:240g/本、銅板なし)により、鋼板表面に直接端子を接触させて供試材の表面抵抗値(導電性)を測定し、A、B評価を合格、C、D評価を不合格とした。
A:表面抵抗値が0.05Ω未満である
B:表面抵抗値が0.05Ω以上0.50Ω未満である
C:表面抵抗値が0.50Ω以上1.00Ω未満である
D:表面抵抗値が1.00Ω以上である
(4) Conductivity Using a surface resistance measuring device (Loresta (registered trademark) -EP manufactured by Dia Instruments Co., Ltd.), a two-probe method (two-probe AP probe (type A), pin-to-pin distance: 10 mm, pin tip diameter: 2 mmφ, spring pressure during measurement: 240 g / piece, no copper plate), the surface resistance value (conductivity) of the test material was measured by bringing the terminal directly into contact with the steel plate surface, and passed A and B evaluations, C and D Evaluation was rejected.
A: Surface resistance value is less than 0.05Ω B: Surface resistance value is from 0.05Ω to less than 0.50Ω C: Surface resistance value is from 0.50Ω to less than 1.00Ω D: Surface resistance value 1.00Ω or more

(5)耐テープ剥離性
供試材の表面にフィラメントテープ(マクセルスリオンテック社製フィラメントテープ #9510)を貼り付け、恒温恒湿試験装置において、温度40℃、湿度98%の雰囲気下で120時間保存した後、JIS K5400に準じてテープ剥離試験を実施して、皮膜の残存している面積の割合(残存率)を測定し、下記基準で評価した。供試材の表面に粘着テープを貼り付けて、高温多湿条件で、粘着テープの可塑剤を皮膜内部に浸透させて皮膜と金属板の密着性の劣化を促進させることによって、間接的に皮膜の密着性を評価することができる。
A:残存率が95%以上である
B:残存率が90%以上95%未満である
C:残存率が80%以上90%未満である
D:残存率が80%未満である
(5) Tape peeling resistance Filament tape (Flax tape # 9510 manufactured by Maxell Sliontec Co., Ltd.) is attached to the surface of the test material, and stored in a constant temperature and humidity test apparatus at a temperature of 40 ° C. and a humidity of 98% for 120 hours. After that, a tape peeling test was performed according to JIS K5400, and the ratio of the remaining area of the film (residual rate) was measured and evaluated according to the following criteria. Adhesive tape is applied to the surface of the test material, and the adhesive tape plasticizer is infiltrated into the film under high temperature and high humidity conditions to promote the deterioration of the adhesion between the film and the metal plate. Adhesion can be evaluated.
A: Residual rate is 95% or more B: Residual rate is 90% or more and less than 95% C: Residual rate is 80% or more and less than 90% D: Residual rate is less than 80%

(6)曲げ加工性(90°曲げ試験)
得られた供試材について、図2に記載の80トンのクランクプレス装置(アイダエンジニアリング社製80TONクランクプレス)を用いて、以下に記載のプレス成形条件で図2のように供試材5について90°L曲げ加工を行った。加工後、供試材の摺動部(図3の摺動部6)の外観を以下の評価基準で目視を行い、下記基準で評価した。
A:皮膜ダメージ無し
B:極わずかに皮膜剥離・擦り傷有り
C:わずかに皮膜剥離・擦り傷有り
D:皮膜剥離・擦り傷有り
(6) Bending workability (90 ° bending test)
About the obtained test material, about the test material 5 like FIG. 2 on the press molding conditions described below using the 80-ton crank press apparatus (Aida Engineering Co., Ltd. 80TON crank press) shown in FIG. 90 ° L bending was performed. After processing, the appearance of the sliding portion of the specimen (sliding portion 6 in FIG. 3) was visually observed according to the following evaluation criteria and evaluated according to the following criteria.
A: No film damage B: Slight film peeling / scratching C: Slight film peeling / scratching D: Film peeling / scratching

<プレス成形条件>
ダイ肩半径R1:0.5mm
パンチ肩半径R2:0.5mm
パンチ−ダイ間クリアランスCL:板厚−10μm、±0
しわ押さえ圧:0.2MPa
成形速度:40spm(ストローク/分)
なお、潤滑剤は用いていない。
<Press molding conditions>
Die shoulder radius R1: 0.5mm
Punch shoulder radius R2: 0.5mm
Punch-die clearance CL: Plate thickness -10 μm, ± 0
Wrinkle holding pressure: 0.2MPa
Molding speed: 40 spm (stroke / min)
Note that no lubricant is used.

(実施例1〜4、比較例1〜5)
[第一層の作製方法]
日本パーカライジング社製パルボンド(登録商標)3312(リン酸亜鉛結晶:10〜20質量%、リン酸:1〜10質量%、硅フッ化水素酸:1〜10質量%、硝酸亜鉛:0.2質量%含有)の原液を純水で希釈して第一層形成用組成物を作製した。その後、図1に記載のスプレー装置を用いて、電気亜鉛めっき鋼板(Zn付着量20g/m2)の両面にスプレーリンガー法にて第一層形成用組成物を第一層を形成した。
(Examples 1-4, Comparative Examples 1-5)
[Method for producing first layer]
Palbond (registered trademark) 3312 manufactured by Nippon Parkerizing Co., Ltd. (zinc phosphate crystals: 10 to 20% by mass, phosphoric acid: 1 to 10% by mass, hydrofluoric acid: 1 to 10% by mass, zinc nitrate: 0.2% by mass) %) Was diluted with pure water to prepare a composition for forming a first layer. Then, the 1st layer was formed with the spray ringer method on both surfaces of the electrogalvanized steel plate (Zn adhesion amount 20g / m < 2 >) using the spray apparatus shown in FIG.

図1に記載のスプレー装置について、具体的に説明する。スプレー装置1は、鋼板が送られる方向に、第一層形成用組成物をスプレー塗布する上流ゾーン2と、純水で鋼板を水洗する中流ゾーン3と、純水で鋼板を水洗する下流ゾーン4とを順に備えている。いずれのゾーンにも、鋼板を上下から挟むリンガーロールが設けられている。最初に、上流ゾーン2で、スプレー圧力0.08MPaで第一層形成用組成物を鋼板に塗布し、上流ゾーン2内のリンガーロールで第一層形成用組成物を絞りとったあと、中流ゾーン3で、水スプレーを用いて、スプレー圧力0.05MPaで鋼板を水洗し、中流ゾーン3内のリンガーロールで残存した水分を絞りとる。その後、下流ゾーン4で、再度水スプレーを用いて、スプレー圧力0.02MPaで鋼板を水洗し、下流ゾーン4内のリンガーロールで残存した水分を絞りとる。最後に、到達板温が90℃となるように、熱風温度250℃、風速10m/secで鋼板を10秒間乾燥した。   The spray device shown in FIG. 1 will be specifically described. The spray device 1 includes an upstream zone 2 for spray-coating the first layer forming composition in a direction in which the steel plate is fed, a midstream zone 3 for washing the steel plate with pure water, and a downstream zone 4 for washing the steel plate with pure water. In order. Each zone is provided with a ringer roll that sandwiches the steel plate from above and below. First, in the upstream zone 2, the composition for forming the first layer is applied to the steel plate at a spray pressure of 0.08 MPa, and after the composition for forming the first layer is squeezed with a ringer roll in the upstream zone 2, 3, using a water spray, the steel sheet is washed with a spray pressure of 0.05 MPa, and the remaining water is squeezed with a ringer roll in the midstream zone 3. Thereafter, in the downstream zone 4, the water spray is used again to wash the steel sheet with a spray pressure of 0.02 MPa, and the remaining water is squeezed with the ringer roll in the downstream zone 4. Finally, the steel plate was dried for 10 seconds at a hot air temperature of 250 ° C. and a wind speed of 10 m / sec so that the ultimate plate temperature was 90 ° C.

リン酸亜鉛結晶の付着量の調整は、以下の各条件を調整して行った。なお、各条件の調整は、以下の表1に記載のリン含有処理液の濃度・温度、通板速度の条件とリン酸亜鉛結晶の付着量との関係に基づいて行われた。これらの条件を適宜調整することによって、リン酸亜鉛結晶の付着量を調整することができる。これらの条件とリン酸亜鉛結晶の付着量との関係を表1に示す。
リン含有処理液の濃度:6%又は3%
リン含有処理液の温度:40℃又は20℃
通板速度:5〜30m/min
The amount of zinc phosphate crystals attached was adjusted by adjusting the following conditions. In addition, adjustment of each condition was performed based on the relationship between the conditions of the concentration and temperature of the phosphorus-containing treatment liquid described in Table 1 below, the condition of the plate feeding speed, and the amount of zinc phosphate crystals attached. By appropriately adjusting these conditions, the amount of zinc phosphate crystals attached can be adjusted. Table 1 shows the relationship between these conditions and the amount of zinc phosphate crystals deposited.
Concentration of phosphorus-containing treatment solution: 6% or 3%
Temperature of phosphorus-containing treatment solution: 40 ° C. or 20 ° C.
Plate speed: 5-30m / min

なお、上記の方法以外に、リン含有処理液に鋼板を浸漬することによって、リン酸亜鉛結晶を付着することも可能である。   In addition to the above method, zinc phosphate crystals can be attached by immersing the steel sheet in a phosphorus-containing treatment solution.

Figure 2017155261
Figure 2017155261

[第二層の作製方法]
撹拌機、温度計、温度コントローラを備えた乳化設備を有するオートクレイブ(内容量0.8L)に、水626部、エチレン−アクリル酸共重合体(アクリル酸20質量%、メルトインデックス(MI)300)160部を加え、さらに、エチレン−アクリル酸共重合体のカルボキシル基1モルに対して、トリエチルアミン(沸点:89.5℃)を0.4モル、水酸化ナトリウムを0.15モル加えて、150℃および0.5MPaで3時間高速撹拌してから、40℃まで冷却した。その後、オートクレイブに、エチレン−アクリル酸共重合体の不揮発性樹脂成分100部に対して、内部架橋剤として、4,4’−ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン(日本触媒製ケミタイト(登録商標)DZ−22E)を5部添加し、10分間撹拌して、ポリエチレン系樹脂が分散された水性分散液を得た。
[Method for producing second layer]
An autoclave having an emulsification facility equipped with a stirrer, a thermometer and a temperature controller (internal capacity 0.8 L), water 626 parts, ethylene-acrylic acid copolymer (acrylic acid 20% by mass, melt index (MI) 300) ) 160 parts, and 0.4 mol of triethylamine (boiling point: 89.5 ° C.) and 0.15 mol of sodium hydroxide are added to 1 mol of the carboxyl group of the ethylene-acrylic acid copolymer. The mixture was stirred at 150 ° C. and 0.5 MPa for 3 hours at high speed, and then cooled to 40 ° C. Thereafter, 4,100′-bis (ethyleneiminocarbonylamino) diphenylmethane (Nippon Catalyst Chemitite (registered trademark)) was used as an internal crosslinking agent for 100 parts of the non-volatile resin component of the ethylene-acrylic acid copolymer. ) 5 parts of DZ-22E) was added and stirred for 10 minutes to obtain an aqueous dispersion in which the polyethylene resin was dispersed.

次に、上記ポリエチレン系樹脂59質量部に対して、平均粒子径4〜6nmのコロイダルシリカ(日産化学工業社製スノーテックス(登録商標)XS)を30質量部加え、さらに外部架橋剤としてグリシジル基含有エポキシ樹脂化合物(DIC社製エピクロン(登録商標)CR5L)を7.5質量部加え、最後に、潤滑剤として球形ポリエチレンワックス(三井化学社製ケミパール(登録商標)W640、粒径1.0μm)を3.5質量部加えて、第二層形成用組成物を作製した。   Next, 30 parts by mass of colloidal silica having an average particle diameter of 4 to 6 nm (Snowtex (registered trademark) XS manufactured by Nissan Chemical Industries, Ltd.) is added to 59 parts by mass of the polyethylene-based resin, and a glycidyl group as an external crosslinking agent. 7.5 parts by mass of an epoxy resin compound (Epiclon (registered trademark) CR5L manufactured by DIC) was added, and finally, spherical polyethylene wax (Chemical (registered trademark) W640 manufactured by Mitsui Chemicals, particle size: 1.0 μm) as a lubricant. Was added to prepare a second layer forming composition.

[表面処理鋼板の作製方法]
第一層の上に、バーコーターで皮膜付着量0.60g/m2(膜厚約0.5μm)になるように第二層形成用組成物を塗布・乾燥して、第一層及び第二層を備えた表面処理鋼板を得た。
[Method for producing surface-treated steel sheet]
On the first layer, the composition for forming the second layer is applied and dried so that the coating amount is 0.60 g / m 2 (film thickness is about 0.5 μm) with a bar coater. A surface-treated steel sheet with two layers was obtained.

第一層の構成及び得られた表面処理鋼板の評価結果を表2に示す。   Table 2 shows the structure of the first layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例5〜8、比較例6〜7)
日本パーカライジング社製パルボンド(登録商標)3312の原液が6質量%となるように純水で希釈し、日産化学工業社製スノーテックス(登録商標)Oを0.5g/L添加して第一層形成用組成物を得た。スプレーリンガー設備で液温約40℃の条件で電気亜鉛めっき鋼板(Zn付着量20g/m2)に第一層形成用組成物をスプレー塗布した後、水洗・乾燥して、リン酸亜鉛結晶の付着量が0.09g/m2であり、リン酸亜鉛結晶の長径が1.30μmである第一層を電気亜鉛めっき鋼板の表面に形成した。すなわち、第一層については、日産化学工業社製スノーテックス(登録商標)O(平均粒子径10〜15nm)を追加した以外は実施例3と同じ製造条件で製造した。続いて、第二層については、第二層形成用組成物の付着量が0.35〜0.90g/m2となるようにした以外は、実施例3と同様にして表面処理鋼板を得た。第一層の構成及び得られた表面処理鋼板の評価結果を表3に示す。
(Examples 5-8, Comparative Examples 6-7)
Dilute with pure water so that the stock solution of Palbond (registered trademark) 3312 manufactured by Nippon Parkerizing Co., Ltd. is 6% by mass, and add 0.5 g / L of Snowtex (registered trademark) O manufactured by Nissan Chemical Industries, Ltd. A forming composition was obtained. After spray-coating the composition for forming the first layer on the electrogalvanized steel sheet (Zn adhesion amount 20 g / m 2 ) at a liquid temperature of about 40 ° C. with a spray ringer facility, A first layer having an adhesion amount of 0.09 g / m 2 and a zinc phosphate crystal major axis of 1.30 μm was formed on the surface of the electrogalvanized steel sheet. That is, about the 1st layer, it manufactured on the same manufacturing conditions as Example 3 except having added Snowtex (trademark) O (average particle diameter of 10-15 nm) by Nissan Chemical Industries. Subsequently, for the second layer, a surface-treated steel sheet was obtained in the same manner as in Example 3 except that the adhesion amount of the composition for forming the second layer was 0.35 to 0.90 g / m 2. It was. Table 3 shows the structure of the first layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例9〜14)
第一層形成用組成物において、日産化学工業社製スノーテックス(登録商標)O(平均粒子径10〜15nm)を0.2〜2.2g/Lとなるように追加した以外は、実施例3と同様にして表面処理鋼板を得た。第一層の構成及び得られた表面処理鋼板の評価結果を表4に示す。
(Examples 9 to 14)
In the composition for forming the first layer, Example except that Snowtex (registered trademark) O (average particle diameter: 10 to 15 nm) manufactured by Nissan Chemical Industries, Ltd. was added so as to be 0.2 to 2.2 g / L. In the same manner as in No. 3, a surface-treated steel sheet was obtained. Table 4 shows the structure of the first layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例15〜21)
第一層形成用組成物において、以下に記載のコロイダルシリカを0.5g/L又は1.0g/Lとなるように追加した以外は、実施例3と同様にして表面処理鋼板を得た。なお、実施例15〜21では、コロイダルシリカとして、日産化学工業社製スノーテックス(登録商標)OXS(平均粒子径4〜6nm)、日産化学工業社製スノーテックス(登録商標)OS(平均粒子径8〜11nm)、日産化学工業社製スノーテックス(登録商標)O(平均粒子径10〜15nm)、日産化学工業社製スノーテックス(登録商標)O−40(平均粒子径20〜25nm)を用いた。第一層の構成及び得られた表面処理鋼板の評価結果を表5に示す。
(Examples 15 to 21)
A surface-treated steel sheet was obtained in the same manner as in Example 3 except that the colloidal silica described below was added at 0.5 g / L or 1.0 g / L in the first layer formation composition. In Examples 15 to 21, as colloidal silica, Snow Chemicals (registered trademark) OXS (average particle diameter 4 to 6 nm) manufactured by Nissan Chemical Industries, Ltd., Snow Snow (registered trademark) OS (average particle diameter) manufactured by Nissan Chemical Industries, Ltd. 8-11 nm), Nissan Chemical Industries Snowtex (registered trademark) O (average particle diameter 10-15 nm), Nissan Chemical Industries Snowtex (registered trademark) O-40 (average particle diameter 20-25 nm) It was. Table 5 shows the structure of the first layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例22〜26)
第二層形成用組成物において、固形分換算で、バインダー樹脂を49.0〜84.0質量部、コロイダルシリカを5.0〜40.0質量部となるように配合した以外は、実施例7と同様にして表面処理鋼板を得た。第二層の構成及び得られた表面処理鋼板の評価結果を表6に示す。
(Examples 22 to 26)
In the composition for forming the second layer, examples were obtained except that the binder resin was blended so as to be 49.0 to 84.0 parts by mass and colloidal silica was 5.0 to 40.0 parts by mass in terms of solid content. In the same manner as in No. 7, a surface-treated steel sheet was obtained. Table 6 shows the structure of the second layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例27〜29)
第二層形成用組成物において、固形分換算で、コロイダルシリカを29.0〜32.5質量部、外部架橋剤を5.0〜8.5質量部となるように配合した以外は、実施例7と同様にして表面処理鋼板を得た。第二層の構成及び得られた表面処理鋼板の評価結果を表7に示す。
(Examples 27 to 29)
In the composition for forming the second layer, it was carried out except that it was blended so that the colloidal silica was 29.0 to 32.5 parts by mass and the external crosslinking agent was 5.0 to 8.5 parts by mass in terms of solid content. A surface-treated steel sheet was obtained in the same manner as in Example 7. Table 7 shows the structure of the second layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

(実施例30〜32)
第二層形成用組成物において、固形分換算で、バインダー樹脂を57.5〜60.5質量部、潤滑剤を2.0〜5.0質量部となるように配合した以外は、実施例7と同様にして表面処理鋼板を得た。第二層の構成及び得られた表面処理鋼板の評価結果を表8に示す。
(Examples 30 to 32)
In the composition for forming the second layer, examples were obtained except that the binder resin was blended in an amount of 57.5 to 60.5 parts by mass and the lubricant was 2.0 to 5.0 parts by mass in terms of solid content. In the same manner as in No. 7, a surface-treated steel sheet was obtained. Table 8 shows the structure of the second layer and the evaluation results of the obtained surface-treated steel sheet.

Figure 2017155261
Figure 2017155261

表2〜表8より、以下のように考察することができる。   From Tables 2 to 8, it can be considered as follows.

本発明の構成要件を満たす実施例1〜32の表面処理鋼板は、外観に優れていた。さらに、耐食性、導電性、耐テープ剥離性、曲げ加工性にも優れていた。   The surface-treated steel sheets of Examples 1 to 32 that satisfy the constituent requirements of the present invention were excellent in appearance. Furthermore, it was excellent in corrosion resistance, conductivity, tape peel resistance, and bending workability.

これに対し、上記以外の鋼板は、下記に詳述する通り、本発明の構成要件を満たさず、所望の特性が得られなかった。   On the other hand, as described in detail below, the steel sheets other than the above did not satisfy the constituent requirements of the present invention, and the desired characteristics were not obtained.

リン酸亜鉛結晶の付着量が多すぎ、リン酸亜鉛結晶の長径が長すぎる比較例1〜3では、外観が劣っており、さらに、耐食性、導電性、曲げ加工性も劣っていた。   In Comparative Examples 1 to 3, in which the amount of zinc phosphate crystals attached was too large and the major axis of the zinc phosphate crystals was too long, the appearance was poor, and the corrosion resistance, conductivity, and bending workability were also poor.

リン酸亜鉛結晶の付着量が少なすぎる比較例4〜5では、外観が劣っており、さらに、耐テープ剥離性も劣っていた。   In Comparative Examples 4 to 5 in which the amount of zinc phosphate crystals attached was too small, the appearance was poor and the tape peel resistance was also poor.

第二層の付着量が少なすぎる比較例6では、外観が劣っており、さらに、耐食性及び耐テープ剥離性も劣っていた。第二層の付着量が多すぎる比較例7では、導電性が劣っていた。   In Comparative Example 6 in which the amount of the second layer attached was too small, the appearance was inferior, and the corrosion resistance and tape peel resistance were also inferior. In Comparative Example 7 in which the amount of adhesion of the second layer was too large, the conductivity was inferior.

Claims (4)

亜鉛系めっき鋼板と、
前記亜鉛系めっき鋼板の少なくとも片面に形成された第一層と、
前記第一層の上に形成された第二層と、を備えた表面処理亜鉛系めっき鋼板であって、
前記第一層は、リン酸亜鉛結晶を含んでおり、
前記リン酸亜鉛結晶の付着量は0.04〜0.4g/m2であり、
前記リン酸亜鉛結晶の長径は2.5μm以下であり、
前記第二層は、樹脂を含んでおり、
前記第二層の付着量は0.35〜0.85g/mである
ことを特徴とする表面処理亜鉛系めっき鋼板。
Galvanized steel sheet,
A first layer formed on at least one side of the galvanized steel sheet;
A surface-treated galvanized steel sheet provided with a second layer formed on the first layer,
The first layer includes zinc phosphate crystals;
The amount of zinc phosphate crystals deposited is 0.04 to 0.4 g / m 2 ,
The major axis of the zinc phosphate crystal is 2.5 μm or less,
The second layer contains a resin,
The adhesion amount of said 2nd layer is 0.35-0.85 g / m < 2 >. The surface treatment zinc-based plated steel plate characterized by the above-mentioned.
前記第一層は、さらにコロイダルシリカを含む請求項1に記載の表面処理亜鉛系めっき鋼板。   The surface-treated zinc-based plated steel sheet according to claim 1, wherein the first layer further contains colloidal silica. 前記第二層を形成する第二層形成用組成物は、バインダー樹脂、コロイダルシリカ、外部架橋剤、及び潤滑剤を含む請求項1又は2に記載の表面処理亜鉛系めっき鋼板。   The surface-treated galvanized steel sheet according to claim 1 or 2, wherein the composition for forming the second layer forming the second layer contains a binder resin, colloidal silica, an external crosslinking agent, and a lubricant. 前記第二層形成用組成物は、前記バインダー樹脂、前記コロイダルシリカ、前記外部架橋剤、及び前記潤滑剤の合計100質量部中、前記バインダー樹脂の含有量が54〜79質量部であり、前記コロイダルシリカの含有量が10〜35質量部であり、前記外部架橋剤の含有量が5〜8.5質量部であり、前記潤滑剤の含有量が2〜5質量部である請求項3に記載の表面処理亜鉛系めっき鋼板。   In the second layer forming composition, the binder resin content is 54 to 79 parts by mass in a total of 100 parts by mass of the binder resin, the colloidal silica, the external crosslinking agent, and the lubricant, The content of colloidal silica is 10 to 35 parts by mass, the content of the external cross-linking agent is 5 to 8.5 parts by mass, and the content of the lubricant is 2 to 5 parts by mass. The surface-treated zinc-based plated steel sheet described.
JP2016037547A 2016-02-29 2016-02-29 Surface treatment galvanized steel sheet excellent in appearance Pending JP2017155261A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016037547A JP2017155261A (en) 2016-02-29 2016-02-29 Surface treatment galvanized steel sheet excellent in appearance
KR1020187027678A KR102292784B1 (en) 2016-02-29 2017-02-02 Surface-treated galvanized steel sheet with excellent appearance
PCT/JP2017/003836 WO2017150067A1 (en) 2016-02-29 2017-02-02 Surface-treated galvanized steel sheet having excellent appearance
CN201780011729.0A CN108699704B (en) 2016-02-29 2017-02-02 Surface-treated zinc-based steel sheet having excellent appearance
TW106106221A TWI650445B (en) 2016-02-29 2017-02-23 Surface treated galvanized steel sheet with excellent appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037547A JP2017155261A (en) 2016-02-29 2016-02-29 Surface treatment galvanized steel sheet excellent in appearance

Publications (1)

Publication Number Publication Date
JP2017155261A true JP2017155261A (en) 2017-09-07

Family

ID=59742712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037547A Pending JP2017155261A (en) 2016-02-29 2016-02-29 Surface treatment galvanized steel sheet excellent in appearance

Country Status (5)

Country Link
JP (1) JP2017155261A (en)
KR (1) KR102292784B1 (en)
CN (1) CN108699704B (en)
TW (1) TWI650445B (en)
WO (1) WO2017150067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018005526A1 (en) 2017-08-10 2019-03-21 Omron Corporation Driver state recognition device, driver state recognition system and driver state recognition method
CN109725493A (en) * 2017-10-31 2019-05-07 罗门哈斯电子材料韩国有限公司 The primer composition being used together with photoresist

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077988A (en) 1983-10-05 1985-05-02 Nippon Steel Corp Manufacture of galvanized steel sheet with blackening resistance
JPH01129991A (en) 1987-11-13 1989-05-23 Kobe Steel Ltd Production of galvanized steel sheet
JP3219453B2 (en) * 1992-03-17 2001-10-15 日本パーカライジング株式会社 Manufacturing method of galvanized steel sheet with excellent blackening resistance
JP3309788B2 (en) 1996-12-02 2002-07-29 日本鋼管株式会社 Manufacturing method of chromate treated electrogalvanized steel sheet with excellent blackening resistance
JP3043336B1 (en) 1999-06-11 2000-05-22 株式会社神戸製鋼所 Electro-galvanized steel sheet excellent in white rust resistance and method for producing the same
US6509099B1 (en) * 1999-08-02 2003-01-21 Nkk Corporation Phosphate-treated steel plate
JP2001179874A (en) * 1999-12-28 2001-07-03 Nkk Corp Zinc phosphate composite treated steel panel
JP2001105528A (en) * 1999-08-02 2001-04-17 Nkk Corp Zinc phosphate composite treated steel panel
JP2001131763A (en) * 1999-11-09 2001-05-15 Nippon Steel Corp Organic composite galvanized steel sheet
JP2002348675A (en) * 2001-05-25 2002-12-04 Nippon Steel Corp Zinc-base plated steel sheet superior in corrosion resistance after working, corrosion resistance after heating, and galling resistance
JP4110750B2 (en) * 2001-06-07 2008-07-02 Jfeスチール株式会社 Organic coated steel sheet with excellent corrosion resistance and conductivity
JP2006009065A (en) * 2004-06-23 2006-01-12 Jfe Steel Kk Phosphate composite coated steel sheet having white rust resistance and coating characteristic
TWI355328B (en) * 2006-03-07 2012-01-01 Kobe Steel Ltd Resin coated metal plate and a surface-treating co
JP5046799B2 (en) * 2007-08-27 2012-10-10 株式会社神戸製鋼所 Non-chromate chemical conversion electroplated steel sheet with excellent white rust resistance
JP5585483B2 (en) 2011-02-14 2014-09-10 Jfeスチール株式会社 Zinc-based plated steel with excellent blackening resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018005526A1 (en) 2017-08-10 2019-03-21 Omron Corporation Driver state recognition device, driver state recognition system and driver state recognition method
CN109725493A (en) * 2017-10-31 2019-05-07 罗门哈斯电子材料韩国有限公司 The primer composition being used together with photoresist
JP2019082681A (en) * 2017-10-31 2019-05-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Underlayer coating compositions for use with photoresists
US11086220B2 (en) 2017-10-31 2021-08-10 Rohm And Haas Electronic Materials Korea Ltd. Underlayer coating compositions for use with photoresists

Also Published As

Publication number Publication date
CN108699704B (en) 2021-02-05
KR20180118709A (en) 2018-10-31
TWI650445B (en) 2019-02-11
KR102292784B1 (en) 2021-08-23
WO2017150067A1 (en) 2017-09-08
TW201742952A (en) 2017-12-16
CN108699704A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
KR102445014B1 (en) painted galvanized steel sheet
TWI642806B (en) Surface treatment liquid for zinc-based plated steel sheet, manufacturing method of zinc-based plated steel sheet with surface-treated film, and zinc-based plated steel sheet with surface-treated film
TWI669415B (en) Metal surface treatment agent for galvanized steel, coating method and coated steel
JP6923432B2 (en) Painted galvanized steel sheet
JP4330638B2 (en) Resin-coated metal plate and surface treatment composition for producing the same
WO2013038643A1 (en) Chemical-conversion-treatment-plated steel sheet and method for manufacturing same
KR100985627B1 (en) Resin-coated metal plate and surface treatment composition for producing same
WO2017150067A1 (en) Surface-treated galvanized steel sheet having excellent appearance
JP5808626B2 (en) Chemical conversion treated steel sheet and method for producing the same
JP4810515B2 (en) Resin-coated metal plate with excellent roll formability
JP6510670B2 (en) Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel
JP6396786B2 (en) Aqueous two-layer coated metal plate
JP6856451B2 (en) Surface-treated metal plate and method for manufacturing surface-treated metal plate
WO2018025651A1 (en) Surface-treated metal plate and method for producing surface-treated metal plate
JP5674606B2 (en) Chemical conversion treated steel sheet and method for producing the same
JP3752116B2 (en) Rust preventive agent for metal surfaces and surface-treated metal products
JP2022039097A (en) Galvanized steel sheet having surface treatment film and method for manufacturing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200225

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200303

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200417

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200422

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210406

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210622

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210816

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220105

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220208

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220208