JP2017154947A - Selectin method for gypsum and method for producing portland cement - Google Patents

Selectin method for gypsum and method for producing portland cement Download PDF

Info

Publication number
JP2017154947A
JP2017154947A JP2016041614A JP2016041614A JP2017154947A JP 2017154947 A JP2017154947 A JP 2017154947A JP 2016041614 A JP2016041614 A JP 2016041614A JP 2016041614 A JP2016041614 A JP 2016041614A JP 2017154947 A JP2017154947 A JP 2017154947A
Authority
JP
Japan
Prior art keywords
gypsum
portland cement
reducing agent
polycarboxylic acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016041614A
Other languages
Japanese (ja)
Other versions
JP6611640B2 (en
Inventor
智矢 馬場
Tomoya Baba
智矢 馬場
嘉史 扇
Yoshifumi Ogi
嘉史 扇
麻衣子 大野
Maiko Ono
麻衣子 大野
佳史 細川
Yoshifumi Hosokawa
佳史 細川
中島 卓哉
Takuya Nakajima
卓哉 中島
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016041614A priority Critical patent/JP6611640B2/en
Publication of JP2017154947A publication Critical patent/JP2017154947A/en
Application granted granted Critical
Publication of JP6611640B2 publication Critical patent/JP6611640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a selection method for gypsum and the like that can simply select gypsum for allowing mortar and concrete including a polycarboxylic acid-based water-reducing agent to exhibit high fluidity.SOLUTION: The selection method for gypsum is a method for selecting gypsum by using as an index an electric conductivity of a slurry prepared by adding gypsum to a saturated aqueous solution of calcium hydroxide including a polycarboxylic acid-based water-reducing agent. The method for producing Portland cement is a method for producing Portland cement by mixing/pulverizing gypsum selected by the selection method for gypsum and Portland cement clinker to produce Portland cement or pulverizing gypsum and Portland cement clinker separately and then mixing pulverized gypsum and pulverized Portland cement clinker to produce Portland cement.SELECTED DRAWING: None

Description

本発明は、ポリカルボン酸系高性能減水剤やポリカルボン酸系高性能AE減水剤(以下「ポリカルボン酸系減水剤」という。)を用いたモルタルおよびコンクリート(以下「セメント系水硬性組成物」という。)が、高い流動性を発現するための石膏を選別する方法に関する。   The present invention relates to mortar and concrete (hereinafter referred to as “cement-based hydraulic composition”) using a polycarboxylic acid-based high-performance water reducing agent or a polycarboxylic acid-based high-performance AE water reducing agent (hereinafter referred to as “polycarboxylic acid-based water reducing agent”). ") Relates to a method for selecting gypsum for exhibiting high fluidity.

ポルトランドセメントは、一般に、ポルトランドセメントクリンカーと数%の石膏を混合して、粉砕して製造し、また、混合セメントは、該ポルトランドセメントと高炉スラグ、フライアッシュ等の混和材を混合して製造する。そして、該セメントを用いてセメント系水硬性組成物を製造する際には、通常、作業性の確保、材料分離の抑制、および硬化体の強度の向上等を目的に、減水剤、増粘剤、空気連行剤等の混和剤が多用され、特に減水剤は、コンクリート等の製造において不可欠な材料になっている。
そして、現在、用いられている減水剤の中で、ポリカルボン酸系減水剤は、減水性能と流動性の保持能力に優れているため、高強度コンクリートや高流動コンクリート等の高性能コンクリートの製造において、また、骨材事情が劣悪なため単位水量が増加せざるを得ない状況の下で、単位水量の増加を抑制する手段として、極めて有用である。
Portland cement is generally produced by mixing Portland cement clinker and several percent of gypsum and pulverizing, and mixed cement is produced by mixing Portland cement with admixtures such as blast furnace slag and fly ash. . And when manufacturing a cement-type hydraulic composition using this cement, a water reducing agent and a thickener are usually used for the purpose of ensuring workability, suppressing material separation, and improving the strength of a cured product. Admixtures such as air entraining agents are often used, and water reducing agents are indispensable materials in the production of concrete and the like.
Among the water reducing agents currently used, polycarboxylic acid-based water reducing agents are superior in water reducing performance and fluidity retention ability, and therefore produce high-performance concrete such as high-strength concrete and high-fluidity concrete. In addition, it is extremely useful as a means for suppressing the increase in the unit water amount under the situation where the unit water amount has to be increased because the aggregate situation is inferior.

例えば、特許文献1に記載の高流動性水硬性組成物は、クリンカーの鉱物組成、石膏の種類、および石膏の含有量を特定の範囲に調整してなるポルトランドセメントを含む水硬性組成物であり、ポリカルボン酸系減水剤を用いることにより高い流動性を示す。
しかし、前記文献に記載の石膏と同様に、二水石膏および半水石膏の混合割合を調整した石膏を、同一のクリンカー粉砕物に混合して用いた場合でも、石膏の銘柄によっては得られる流動性が異なる場合がある。したがって、ポリカルボン酸系減水剤を用いたセメント系水硬性組成物の流動性に対する石膏の効果は、十分には解明されていないため、更なる検討が必要であった。
For example, the highly fluid hydraulic composition described in Patent Document 1 is a hydraulic composition containing Portland cement obtained by adjusting the mineral composition of clinker, the type of gypsum, and the content of gypsum to a specific range. High fluidity is exhibited by using a polycarboxylic acid-based water reducing agent.
However, similar to the gypsum described in the above literature, even when gypsum adjusted for the mixing ratio of dihydrate gypsum and hemihydrate gypsum is mixed and used in the same clinker pulverized product, depending on the brand of gypsum, The gender may be different. Therefore, since the effect of gypsum on the fluidity of cement-based hydraulic compositions using polycarboxylic acid-based water reducing agents has not been fully elucidated, further investigation is necessary.

特開2000−302518号公報JP 2000-302518 A

よって、本発明は、ポリカルボン酸系減水剤を含むセメント系水硬性組成物が、高い流動性を発現するための石膏を簡易に選別できる、石膏の選別方法等を提供することを目的とする。   Therefore, an object of the present invention is to provide a gypsum sorting method and the like, in which a cement hydraulic composition containing a polycarboxylic acid-based water reducing agent can easily sort gypsum for expressing high fluidity. .

そこで、本発明者は、モルタルの流動性と石膏の銘柄の関係等について鋭意検討した結果、
(i)セメント系水硬性組成物中の液相を模擬した溶媒に、二水石膏を添加して調製したスラリーの電気伝導率は、セメント系水硬性組成物中の二水石膏の溶解性を評価するための指標になること、
(ii)流動性が良好なセメント系水硬性組成物に含まれる二水石膏は、前記電気伝導率が高いこと、
(iii)セメント系水硬性組成物の流動性に対する二水石膏の銘柄間の良否が、二水石膏を半水石膏に変化させた場合でも変わらないこと
を見出し、本発明を完成させた。
すなわち、本発明は下記の構成を有する石膏の選別方法等である。
Therefore, as a result of earnestly examining the relationship between the fluidity of mortar and the brand of plaster, etc.,
(i) The electrical conductivity of the slurry prepared by adding dihydrate gypsum to the solvent simulating the liquid phase in the cement-based hydraulic composition indicates the solubility of the dihydrate gypsum in the cement-based hydraulic composition. To be an index to evaluate,
(ii) dihydrate gypsum contained in a cement-based hydraulic composition having good fluidity has a high electrical conductivity;
(iii) The present invention was completed by finding that the quality between the brands of dihydrate gypsum with respect to the fluidity of the cement-based hydraulic composition did not change even when dihydrate gypsum was changed to hemihydrate gypsum.
That is, the present invention is a gypsum sorting method having the following configuration.

[1]ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液に、石膏を添加して作製したスラリーの電気伝導率を、指標に用いて石膏を選別する、石膏の選別方法。
[2]前記石膏のブレーン比表面積が3900〜4300cm/gである、前記[1]に記載の石膏の選別方法。
[3]前記ポリカルボン酸系減水剤の添加量が、前記水酸化カルシウムの飽和水溶液100質量部に対して1質量部である、前記[1]または[2]に記載の石膏の選別方法。
[4]前記石膏の添加量が、前記ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液100質量部あたり0.272質量部である、前記[1]〜[3]のいずれかに記載の石膏の選別方法。
[5]前記スラリーの温度が20℃での前記電気伝導率が、9.0mS/m以上である石膏を、セメント用石膏として選別する、前記[1]〜[4]のいずれかに記載の石膏の選別方法。
[6]前記[1]〜[5]のいずれかに記載の石膏の選別方法を用いて選別された石膏と、ポルトランドセメントクリンカーを混合粉砕してポルトランドセメントを製造するか、または、該石膏とポルトランドセメントクリンカーを分離粉砕した後、粉砕した石膏とポルトランドセメントクリンカーを混合してポルトランドセメントを製造する、ポルトランドセメントの製造方法。
[1] A gypsum sorting method in which gypsum is sorted using the electrical conductivity of a slurry prepared by adding gypsum to a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent as an index.
[2] The gypsum sorting method according to the above [1], wherein the plaster specific surface area of the gypsum is 3900 to 4300 cm 2 / g.
[3] The gypsum sorting method according to [1] or [2], wherein the polycarboxylic acid-based water reducing agent is added in an amount of 1 part by mass with respect to 100 parts by mass of the saturated aqueous solution of calcium hydroxide.
[4] The amount of gypsum is 0.272 parts by mass per 100 parts by mass of a saturated aqueous solution of calcium hydroxide containing the polycarboxylic acid-based water reducing agent, according to any one of [1] to [3]. Sorting method of plaster.
[5] The gypsum whose electrical conductivity at the slurry temperature of 20 ° C. is 9.0 mS / m or more is selected as gypsum for cement, according to any one of the above [1] to [4]. Gypsum sorting method.
[6] A gypsum selected using the gypsum selection method according to any one of [1] to [5] above and Portland cement clinker are mixed and pulverized to produce Portland cement, or A method for producing Portland cement, in which Portland cement clinker is separated and pulverized, and then the pulverized gypsum and Portland cement clinker are mixed to produce Portland cement.

本発明の石膏の選別方法により選別した石膏は、ポリカルボン酸系減水剤を含むセメント系水硬性組成物に、高い流動性を発現させることができる。   The gypsum selected by the gypsum selection method of the present invention can exhibit high fluidity in a cement hydraulic composition containing a polycarboxylic acid-based water reducing agent.

本発明は、前記のとおり、ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液に、石膏を添加して作製したスラリーの電気伝導率を指標に用いて石膏を選別する方法等である。以下、本発明について詳細に説明する。   As described above, the present invention includes a method for selecting gypsum using, as an index, the electrical conductivity of a slurry prepared by adding gypsum to a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent. Hereinafter, the present invention will be described in detail.

本発明の石膏の選別方法は、水酸化カルシウムの飽和水溶液を調製した後、該飽和水溶液に所定量のポリカルボン酸系減水剤を添加してポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液を得た後、さらに該ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液に石膏を加えてスラリーを得る工程(I)と、得られたスラリーの電気伝導度を測定して、該石膏を含むセメント系水硬性組成物の流動性の良否を評価する工程(II)を備える。
そして、工程(II)の結果をもとに、セメントの製造に用いる石膏を選別して、該石膏とポルトランドセメントクリンカーを混合粉砕してポルトランドセメントを製造するか、または、該石膏とポルトランドセメントクリンカーを分離粉砕した後、粉砕した石膏とポルトランドセメントクリンカーを混合してポルトランドセメントを製造する。
In the gypsum sorting method of the present invention, after preparing a saturated aqueous solution of calcium hydroxide, a predetermined amount of a polycarboxylic acid-based water reducing agent is added to the saturated aqueous solution, and the saturated calcium hydroxide containing the polycarboxylic acid-based water reducing agent is saturated. After obtaining an aqueous solution, the step (I) of adding a gypsum to a saturated aqueous solution of calcium hydroxide containing the polycarboxylic acid-based water reducing agent to obtain a slurry, and measuring the electrical conductivity of the obtained slurry, A step (II) for evaluating the fluidity of the cement-based hydraulic composition containing gypsum is provided.
Based on the result of step (II), gypsum used for cement production is selected and the gypsum and Portland cement clinker are mixed and pulverized to produce Portland cement, or the gypsum and Portland cement clinker After separating and pulverizing, the pulverized gypsum and Portland cement clinker are mixed to produce Portland cement.

工程(I)で調製する溶媒は、未だ流動性を有するフレッシュな状態にある、ポリカルボン酸系減水剤を用いたセメント系水硬性組成物に含まれる液相を模擬したものであり、ポリカルボン酸系減水剤を所定量含む水酸化カルシウムの飽和水溶液である。   The solvent prepared in the step (I) simulates a liquid phase contained in a cement-based hydraulic composition using a polycarboxylic acid-based water reducing agent that is still in a fresh state having fluidity. A saturated aqueous solution of calcium hydroxide containing a predetermined amount of an acid-based water reducing agent.

水酸化カルシウムの飽和水溶液は、蒸留水、イオン交換水、または上水道水に、飽和溶解度を超える量の水酸化カルシウム粉末を添加して振盪し混合した後、固液分離して採取した水溶液である。固液分離には、例えば、ブフナー漏斗等の吸引ろ過器を用いるのが簡便である。なお、水酸化カルシウムの飽和水溶液を採取する操作は、大気中の二酸化炭素とろ液中の水酸化カルシウムが反応して炭酸カルシウムが生成するのを避けるため、例えば、窒素ガスを充たしたグローブボックス内で固液分離を行い、採取したろ液は、直ちにスクリューキャップ付きのプラスチック製容器に封入し、恒温水槽や恒温槽に静置して該飽和水溶液を恒温にする。なお、調製した水酸化カルシウムの飽和水溶液は、好ましくは飽和水溶液を調製した日に用いる。   A saturated aqueous solution of calcium hydroxide is an aqueous solution obtained by adding solid amounts of calcium hydroxide powder exceeding the saturation solubility to distilled water, ion-exchanged water, or tap water, shaking and mixing, and then separating by solid-liquid separation. . For the solid-liquid separation, for example, it is convenient to use a suction filter such as a Buchner funnel. In addition, the operation of collecting a saturated aqueous solution of calcium hydroxide is performed, for example, in a glove box filled with nitrogen gas in order to avoid the formation of calcium carbonate by the reaction of carbon dioxide in the atmosphere with calcium hydroxide in the filtrate. The collected filtrate is immediately sealed in a plastic container with a screw cap and left in a constant temperature water bath or a constant temperature bath to bring the saturated aqueous solution to a constant temperature. The prepared saturated aqueous solution of calcium hydroxide is preferably used on the day when the saturated aqueous solution is prepared.

工程(I)で用いるポリカルボン酸系減水剤は、カルボキシル基を有する単量体を単独重合してなる単独重合体、または他の単量体と共重合させてなる共重合体である。前記カルボキシル基を有する単量体は、アクリル酸、およびメタクリル酸等の不飽和モノカルボン酸、マレイン酸、および無水マレイン酸等の不飽和ジカルボン酸、およびこれらの塩から選ばれる1種以上が挙げられる。また、前記の他の単量体とは、不飽和モノカルボン酸または不飽和ジカルボン酸と共重合が可能な単量体をいう。前記単独重合体または共重合体の数平均分子量(GPC法によるプルラン換算の数平均分子量)は、好ましくは500〜50000である。
具体的には、前記単独重合体または共重合体は、例えば、ポリアクリル酸塩、ポリメタクリル酸塩、アクリル酸とアリルエーテルの共重合体、α−オレフィンとエチレン性不飽和ジカルボン酸の共重合体、α−オレフィンとエチレン性不飽和ジカルボン酸の部分エステル化物、部分アミド化物、または部分イミド化物などの水溶性塩が挙げられる。例えば、ポリカルボン酸系減水剤は、マスターグレニウム SP8シリーズ(登録商標、BASFジャパン社製)やチューポール HPシリーズ(登録商標、竹本油脂社製)等が市販されている。
水酸化カルシウムの飽和水溶液へのポリカルボン酸系減水剤の添加量は、水酸化カルシウムの飽和水溶液100質量部に対し、ポリカルボン酸系減水剤が1質量部である。ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液の作製は、スラリーを作製するたびに行う。
The polycarboxylic acid-based water reducing agent used in step (I) is a homopolymer obtained by homopolymerizing a monomer having a carboxyl group, or a copolymer obtained by copolymerizing with another monomer. Examples of the monomer having a carboxyl group include one or more selected from unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, unsaturated dicarboxylic acids such as maleic acid and maleic anhydride, and salts thereof. It is done. The other monomer means a monomer that can be copolymerized with an unsaturated monocarboxylic acid or an unsaturated dicarboxylic acid. The number average molecular weight (number average molecular weight in terms of pullulan by GPC method) of the homopolymer or copolymer is preferably 500 to 50,000.
Specifically, the homopolymer or copolymer is, for example, polyacrylate, polymethacrylate, copolymer of acrylic acid and allyl ether, copolymer of α-olefin and ethylenically unsaturated dicarboxylic acid. Examples thereof include water-soluble salts such as coalesced, partially esterified product of α-olefin and ethylenically unsaturated dicarboxylic acid, partially amidated product, or partially imidized product. For example, master glenium SP8 series (registered trademark, manufactured by BASF Japan), Tupole HP series (registered trademark, manufactured by Takemoto Yushi Co., Ltd.) and the like are commercially available.
The amount of the polycarboxylic acid-based water reducing agent added to the saturated aqueous solution of calcium hydroxide is 1 part by mass of the polycarboxylic acid-based water reducing agent with respect to 100 parts by mass of the saturated aqueous solution of calcium hydroxide. A saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent is prepared each time a slurry is prepared.

工程(I)で用いる石膏は、セメントに添加することを目的とした石膏であれば特に限定されず、例えば、火力発電所から副産される排煙脱硫石膏等の化学石膏や、JIS R 9151「セメント用天然せっこう」に規定される天然石膏等が挙げられる。なお、石膏は、結晶水の含有量によって二水石膏、半水石膏、および無水石膏があり、セメント中には結晶水の含有量が異なる複数の石膏が存在している。ただし、セメント工場が受け入れる石膏のほとんどは二水石膏であり、セメント中に存在する半水石膏と無水石膏のほとんどは、セメントの仕上粉砕工程で、もともと添加された二水石膏が、粉砕における熱やメカノケミカル作用によって、二水石膏の結晶構造から結晶水が乖離して半水石膏や無水石膏に変化したものである。   The gypsum used in step (I) is not particularly limited as long as it is a gypsum intended to be added to cement. For example, chemical gypsum such as flue gas desulfurization gypsum produced as a by-product from a thermal power plant, JIS R 9151 And natural gypsum specified in “natural gypsum for cement”. Note that gypsum includes dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum depending on the content of crystal water, and a plurality of gypsums having different crystal water contents exist in the cement. However, most of the gypsum accepted by cement factories is dihydrate gypsum, and most of the hemihydrate gypsum and anhydrous gypsum present in the cement is the final crushing process of cement. Or by mechanochemical action, the crystal structure of dihydrate gypsum deviates from the crystal structure of dihydrate gypsum and changes to hemihydrate gypsum or anhydrous gypsum.

二水石膏は、スラリーにする前に、乾燥して吸着した水分を取り除いた後、セメントに含まれる石膏の一般的な粉末度である、ブレーン比表面積が3900〜4300cm/gに粉砕する。ブレーン比表面積の測定は、JIS R 5201「セメントの物理試験方法」に準拠して行う。
前記二水石膏の乾燥方法は、二水石膏の結晶水の乖離を抑制するために、例えば、45℃の恒温乾燥器に24時間以上静置するとよい。
また、二水石膏は、ボールミルまたはディスクミル等の通常の粉砕機を用いて粉砕できるが、粉末度の管理が容易であるため、ボールミルの使用が好ましい。
The dihydrate gypsum is dried to remove adsorbed moisture, and then ground to a brane specific surface area of 3900 to 4300 cm 2 / g, which is a general fineness of gypsum contained in cement. The Blaine specific surface area is measured according to JIS R 5201 “Physical Test Method for Cement”.
The method for drying the dihydrate gypsum may be, for example, left in a constant temperature drier at 45 ° C. for 24 hours or more in order to suppress the dissociation of crystal water of the dihydrate gypsum.
The dihydrate gypsum can be pulverized by using a normal pulverizer such as a ball mill or a disk mill. However, the use of a ball mill is preferable since the fineness can be easily controlled.

前記石膏の添加量は、ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液100質量部に対して0.272質量部である。かかる添加量は、純水に対する二水石膏の飽和溶解度から定めた値であって、二水石膏を水酸化カルシウムの飽和水溶液に添加した場合に、少量の溶け残りが生じる程度の量である。石膏の添加は、ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液を攪拌しながら、液温が20℃の条件下で行う。攪拌には、例えばマグネチックスターラーや回転翼を備えた装置等、スラリーの混合を行うことができる通常の撹拌装置が使用できる。   The addition amount of the gypsum is 0.272 parts by mass with respect to 100 parts by mass of a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent. The amount added is a value determined from the saturated solubility of dihydrate gypsum in pure water, and is such an amount that a small amount of undissolved residue is produced when dihydrate gypsum is added to a saturated aqueous solution of calcium hydroxide. Addition of gypsum is performed under the condition of a liquid temperature of 20 ° C. while stirring a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent. For the stirring, for example, an ordinary stirring device capable of mixing the slurry, such as a device equipped with a magnetic stirrer or a rotary blade, can be used.

工程(II)のスラリーの電気伝導率の測定は、石膏の溶解反応等が安定して、電気伝導率が安定した状態で行う。具体的には、石膏の添加から300秒後であれば電気伝導率の変化は小康するので、測定が可能である。測定に使用する電気伝導率計は、μS/m〜ms/mの範囲を測定できるものであれば、特に限定されない。
電気伝導率は温度の影響を受けるため、前記スラリーの温度は20℃で測定するのが好ましいが、スラリーの温度が20℃で測定することができない場合は、下記(1)式を用いて、20℃の電気伝導率を算出してもよい。
20=K/[1+0.02×(t−20)] ・・・(1)
ただし、(1)式中、K20は20℃の電気伝導率、Kはスラリーの温度がt℃の電気伝導率を表す。
The measurement of the electrical conductivity of the slurry in the step (II) is performed in a state where the dissolution reaction of gypsum is stable and the electrical conductivity is stable. Specifically, the change in electrical conductivity is negligible after 300 seconds from the addition of gypsum, and measurement is possible. The electric conductivity meter used for the measurement is not particularly limited as long as it can measure a range of μS / m to ms / m.
Since the electrical conductivity is affected by temperature, the temperature of the slurry is preferably measured at 20 ° C., but when the temperature of the slurry cannot be measured at 20 ° C., the following equation (1) is used: You may calculate the electrical conductivity of 20 degreeC.
K 20 = K t /[1+0.02×(t−20)] (1)
However, representing the (1) formula, K 20 is electric conductivity of 20 ° C., K t is the electrical conductivity of the temperature of the slurry is t ° C..

前記電気伝導率が9.0mS/m以上である石膏を、セメント用石膏として選別する。なお、該値は、好ましくは9.1mS/m以上、より好ましくは9.2mS/m以上、さらに好ましくは9.3mS/m以上である。   The gypsum having an electrical conductivity of 9.0 mS / m or more is selected as cement gypsum. In addition, this value becomes like this. Preferably it is 9.1 mS / m or more, More preferably, it is 9.2 mS / m or more, More preferably, it is 9.3 mS / m or more.

前記の通り、セメントは二水石膏以外に半水石膏や無水石膏を含むが、この半水石膏や無水石膏は、セメントの仕上粉砕工程で添加した二水石膏が、粉砕における熱やメカノケミカル作用によって二水石膏から変化したものである。一般に、ポリカルボン酸系減水剤を含むセメント系水硬性組成物の流動性は、二水石膏が多いと、混錬直後の流動性は高いが経時的に流動性が低下する。一方、半水石膏が多いと、混錬直後の流動性は二水石膏が多い場合よりも劣るが、経時的な流動性の低下は小さい。このように、石膏の種類によって、セメント系水硬性組成物の流動性の発現状態が異なる。
後記の通り、二水石膏の状態で流動性が高い石膏の銘柄は、半水石膏に変化した状態でも、セメント系水硬性組成物の流動性が高い。したがって、流動性に関し石膏の銘柄間の相対的な良否は、二水石膏が半水石膏に変化しても変わらないから、本発明の石膏の選別方法を用いて選別した石膏と、ポルトランドセメントクリンカーからなるポルトランドセメントは、セメントの仕上粉砕工程において二水石膏の一部が半水石膏に変化したとしても、高い流動性を発現できる。したがって、本発明の石膏の選別方法の顕著な特徴は、工場に受け入れた時の二水石膏をそのまま対象にして石膏を選別するだけで、セメント系水硬性組成物の流動性を高めることができる石膏が、簡易に得られる点にある。
As mentioned above, cement contains hemihydrate gypsum and anhydrous gypsum in addition to dihydrate gypsum, and this hemihydrate gypsum and anhydrous gypsum is treated with heat and mechanochemical action in crushing. Is a change from dihydrate gypsum. In general, the fluidity of a cement-based hydraulic composition containing a polycarboxylic acid-based water reducing agent is high when dihydrate gypsum is high, but the fluidity immediately after kneading is high, but the fluidity decreases with time. On the other hand, when the amount of hemihydrate gypsum is large, the fluidity immediately after kneading is inferior to that when dihydrate gypsum is large, but the decrease in fluidity over time is small. Thus, the expression state of the fluidity of the cement-based hydraulic composition varies depending on the type of gypsum.
As will be described later, the brand of gypsum having high fluidity in the state of dihydrate gypsum has high fluidity of the cement-based hydraulic composition even in the state of being changed to hemihydrate gypsum. Therefore, the relative quality of the gypsum brands in terms of fluidity does not change even when dihydrate gypsum is changed to hemihydrate gypsum. Therefore, gypsum sorted using the gypsum sorting method of the present invention and Portland cement clinker Portland cement made of can exhibit high fluidity even if a part of dihydrate gypsum is changed to hemihydrate gypsum in the finish grinding process of cement. Therefore, the salient feature of the gypsum sorting method of the present invention is that the fluidity of the cement-based hydraulic composition can be improved by simply selecting gypsum for the dihydrate gypsum as it is received at the factory. The gypsum is easily obtained.

本発明の石膏の選別方法を用いて選別した石膏と、ポルトランドセメントクリンカーからなるポルトランドセメントの製造方法は、該石膏とポルトランドセメントクリンカーを同時に、同一のミルで粉砕する同時粉砕方式と、該石膏とポルトランドセメントクリンカーを別個に粉砕した後、これらを混合する分離粉砕方式の、どちらを用いてもよい。   A method for producing Portland cement comprising gypsum selected using the gypsum sorting method of the present invention and Portland cement clinker includes a simultaneous pulverization method in which the gypsum and Portland cement clinker are simultaneously pulverized in the same mill, Either a separate pulverization method in which Portland cement clinker is pulverized separately and then mixed may be used.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.石膏
ボールミルを用いてブレーン比表面積4100±100cm/gに粉砕した、表1に示す二水石膏を使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Gypsum The dihydrate gypsum shown in Table 1 that was pulverized to a Blaine specific surface area of 4100 ± 100 cm 2 / g using a ball mill was used.

Figure 2017154947
Figure 2017154947

2.普通ポルトランドセメントクリンカー
ボールミルを用いてブレーン比表面積が3250cm/gに粉砕した、表2に示す普通ポルトランドセメントクリンカーを使用した。
2. Ordinary Portland Cement Clinker Ordinary Portland cement clinker shown in Table 2 pulverized to 3250 cm 2 / g using a ball mill was used.

Figure 2017154947
Figure 2017154947

3.石膏添加スラリーの電気伝導率の測定
下記(1)〜(4)の手順に従って得られた水酸化カルシウムの飽和水溶液に、表1に示す石膏を添加して作製したスラリーの電気伝導率を測定した。その結果を表1に示す。
[水酸化カルシウムの飽和水溶液の作製と電気伝導率の測定]
(1)環境温度20℃の室内において、窒素ガスを充填したグローブボックス内で、2000mLの蒸留水に、10gの水酸化カルシウム粉末(試薬特級、和光純薬工業社製)を添加し、マグネチックスターラーで5分間攪拌した後、ブフナー漏斗を用いて液相をろ過してろ液(水酸化カルシウムの飽和水溶液)を採取した。
(2)前記飽和水溶液を、スクリューキャップ付きのプラスチック製容器に封入して蓋をした後、20℃の恒温水槽に30分静置した。
(3)30分経過後、前記飽和水溶液500gを広口ビーカーに投入し、マグネチックスターラーで攪拌しながら、ポリカルボン酸系高性能AE減水剤(商品名:マスターグレニウムSP8N、BASFジャパン社製)5gを添加して全体が均一に着色した後、石膏1.376gを該飽和水溶液に静かに添加した。ちなみに、前記石膏の添加量は、ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液100質量部あたり0.272質量部である。
(4)石膏を添加した該飽和水溶液(液温は20℃)を攪拌しながら、ビーカー内に電気伝導率計(ES−51、堀場製作所社製)の電極部を静かに挿入し、石膏投入から300秒後に電気伝導率を読み取った。
3. Measurement of electrical conductivity of gypsum-added slurry The electrical conductivity of a slurry prepared by adding gypsum shown in Table 1 to a saturated aqueous solution of calcium hydroxide obtained according to the procedures (1) to (4) below was measured. . The results are shown in Table 1.
[Preparation of saturated aqueous solution of calcium hydroxide and measurement of electrical conductivity]
(1) In a glove box filled with nitrogen gas in a room with an environmental temperature of 20 ° C., 10 g of calcium hydroxide powder (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is added to 2000 mL of distilled water. After stirring for 5 minutes with a stirrer, the liquid phase was filtered using a Buchner funnel to collect a filtrate (saturated aqueous solution of calcium hydroxide).
(2) The saturated aqueous solution was sealed in a plastic container with a screw cap, covered, and then allowed to stand in a constant temperature water bath at 20 ° C. for 30 minutes.
(3) After 30 minutes, 500 g of the saturated aqueous solution was put into a wide-mouth beaker and stirred with a magnetic stirrer, and a polycarboxylic acid-based high-performance AE water reducing agent (trade name: Master Glenium SP8N, manufactured by BASF Japan) After 5 g was added and the whole was uniformly colored, 1.376 g of gypsum was gently added to the saturated aqueous solution. Incidentally, the amount of gypsum added is 0.272 parts by mass per 100 parts by mass of a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent.
(4) While stirring the saturated aqueous solution to which gypsum is added (liquid temperature is 20 ° C.), the electrode part of an electric conductivity meter (ES-51, manufactured by HORIBA, Ltd.) is gently inserted into a beaker, and gypsum is charged. The electric conductivity was read after 300 seconds.

4.モルタルの流動性の測定
(1)二水石膏を含むセメントモルタルの流動性の測定
表1に示す二水石膏4.7質量部と、表2に示す普通ポルトランドセメントクリンカー95.3質量部を混合して、二水石膏をSO換算で2.2質量%含むポルトランドセメントを作製した後、該セメントと前記ポリカルボン酸系減水剤を用いて、下記(i)〜(v)の手順でモルタルを調製して、該モルタルの流動性を測定した。
(i)JIS R 5201「セメントの物理試験方法」 8.1(2)の機械練り用練混ぜ機の練り鉢に、水20gと、セメント強さ試験用標準砂(一般社団法人セメント協会 販売)1350gを投入した後、パドルを用いて低速で1分間攪拌した。
(ii)攪拌を停止して、前記ポルトランドセメント675gを投入した後、パドルを用いて低速で30秒間攪拌した。
(iii)再度、攪拌を停止して、前記減水剤4.4gと、消泡剤(商品名:ニコフレックス800の10倍希釈液、日華化学社製)6.7gを内割りで含む水216.3gを投入し、パドルを用いて低速で1分間攪拌した後、さらに3分間高速で攪拌してモルタルを調製した。
(iv)調製直後のモルタルを用いて、JIS A 1171「ポリマーセメントモルタルの試験方法」 6.2のスランプ試験に準拠してモルタルフローを測定した。
(v)前記(i)の作業開始から30分経過した後、改めて練混ぜ機に投入したモルタルについて、パドルを用いて高速で1分間攪拌した後、前記(iv)と同様にしてモルタルフローを測定した。
4). Measurement of fluidity of mortar (1) Measurement of fluidity of cement mortar containing dihydrate gypsum 4.7 parts by mass of dihydrate gypsum shown in Table 1 and 95.3 parts by mass of ordinary Portland cement clinker shown in Table 2 Then, after preparing Portland cement containing 2.2% by mass of dihydrate gypsum in terms of SO 3 , using the cement and the polycarboxylic acid-based water reducing agent, mortar according to the following procedures (i) to (v) And the fluidity of the mortar was measured.
(I) JIS R 5201 “Physical testing method of cement” 8.1 (2) 20 g of water and standard sand for cement strength test (sold by the Japan Cement Association) After adding 1350 g, the mixture was stirred for 1 minute at low speed using a paddle.
(Ii) After stirring was stopped and 675 g of the Portland cement was added, stirring was performed at a low speed for 30 seconds using a paddle.
(Iii) Stirring is again stopped, and water containing 4.4 g of the water reducing agent and 6.7 g of an antifoaming agent (trade name: Nicoflex 800, 10-fold diluted solution, manufactured by Nikka Chemical Co., Ltd.) 216.3 g was added and stirred at a low speed for 1 minute using a paddle, and further stirred at a high speed for 3 minutes to prepare a mortar.
(Iv) Using the mortar immediately after preparation, the mortar flow was measured in accordance with the slump test of JIS A 1171 “Test method for polymer cement mortar” 6.2.
(V) After 30 minutes have passed since the start of the operation (i), the mortar that has been newly added to the kneader is stirred at a high speed for 1 minute using a paddle, and then the mortar flow is performed in the same manner as in the above (iv). It was measured.

(2)半水石膏を含むセメントモルタルの流動性の測定
また、表1の二水石膏を120℃の恒温乾燥機で24時間加熱した後、大気中で放冷して得られた半水石膏(半水化率100%)と、同一銘柄の表1の二水石膏(半水化率0%)を、半水石膏2.4質量部と二水石膏1.9質量部、および表2に示す普通ポルトランドセメントクリンカー95.7質量部の割合で混合して、半水化率が60%の石膏をSO換算で2.2質量%含むポルトランドセメントを作成した。かかるポルトランドセメントを使用して、前記と同様にしてモルタルを調製して、該モルタルの流動性を測定した。なお、石膏の半水化率は下記式を用いて算出した。
半水化率=(半水石膏由来のSO)/(全石膏由来のSO)×100
ただし、前記式中、SOの単位は質量%である。
表3に、二水石膏および半水化率が60%の石膏を含むセメントモルタルの流動性を測定した結果を示す。
(2) Measurement of fluidity of cement mortar containing hemihydrate gypsum In addition, hemihydrate gypsum obtained by heating the dihydrate gypsum shown in Table 1 for 24 hours in a constant temperature dryer at 120 ° C. and then allowing to cool in the air. (Semihydrate rate 100%) and dihydrate gypsum (semihydrate rate 0%) of Table 1 of the same brand, hemihydrate gypsum 2.4 parts by mass, dihydrate gypsum 1.9 parts by mass, and Table 2 A Portland cement containing 2.2% by mass of gypsum having a semi-hydration ratio of 60% in terms of SO 3 was prepared by mixing at a ratio of 95.7 parts by mass of ordinary Portland cement clinker shown in FIG. Using such Portland cement, a mortar was prepared in the same manner as described above, and the fluidity of the mortar was measured. The gypsum hemihydrate rate was calculated using the following formula.
Hemihydrate rate = (SO 3 derived from hemihydrate gypsum) / (SO 3 derived from whole gypsum) × 100
However, in the above formula, the unit of SO 3 is the mass%.
Table 3 shows the results of measuring the fluidity of cement mortar containing dihydrate gypsum and gypsum having a semi-hydration rate of 60%.

Figure 2017154947
Figure 2017154947

表3に示すように、二水石膏として良好な流動性を示す二水石膏(実施例1〜6)は、半水石膏に変わっても流動性が高い。したがって、本発明の石膏の選別方法を用いて選別した石膏と、ポルトランドセメントクリンカーを混合粉砕して得たポルトランドセメントは、粉砕により二水石膏の一部が半水石膏に変化したとしても、高い流動性を発現できる。よって、本発明の石膏の選別方法を用いれば、工場に受け入れた時の二水石膏をそのまま対象にして石膏を選別するだけで、セメント系水硬性組成物の流動性を高めることができる石膏が、簡易に得られる。

As shown in Table 3, dihydrate gypsum (Examples 1 to 6) showing good fluidity as dihydrate gypsum has high fluidity even when it is changed to hemihydrate gypsum. Therefore, the gypsum selected using the gypsum sorting method of the present invention and the Portland cement obtained by mixing and pulverizing the Portland cement clinker are high even if part of the dihydrate gypsum is changed to hemihydrate gypsum by pulverization. Can exhibit fluidity. Therefore, by using the gypsum sorting method of the present invention, a gypsum that can improve the fluidity of a cement-based hydraulic composition simply by sorting gypsum for dihydrate gypsum as received at a factory. Easy to get.

Claims (6)

ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液に、石膏を添加して作製したスラリーの電気伝導率を、指標に用いて石膏を選別する、石膏の選別方法。   A gypsum sorting method in which gypsum is sorted using, as an index, the electrical conductivity of a slurry prepared by adding gypsum to a saturated aqueous solution of calcium hydroxide containing a polycarboxylic acid-based water reducing agent. 前記石膏のブレーン比表面積が3900〜4300cm/gである、請求項1に記載の石膏の選別方法。 Blaine specific surface area of the gypsum is 3900~4300cm 2 / g, sorting method of plaster of claim 1. 前記ポリカルボン酸系減水剤の添加量が、前記水酸化カルシウムの飽和水溶液100質量部に対して1質量部である、請求項1または2に記載の石膏の選別方法。   The method for selecting gypsum according to claim 1 or 2, wherein the amount of the polycarboxylic acid-based water reducing agent added is 1 part by mass with respect to 100 parts by mass of the saturated aqueous solution of calcium hydroxide. 前記石膏の添加量が、前記ポリカルボン酸系減水剤を含む水酸化カルシウムの飽和水溶液100質量部に対して0.272質量部である、請求項1〜3のいずれか1項に記載の石膏の選別方法。   The gypsum according to any one of claims 1 to 3, wherein the addition amount of the gypsum is 0.272 parts by mass with respect to 100 parts by mass of a saturated aqueous solution of calcium hydroxide containing the polycarboxylic acid-based water reducing agent. Sorting method. 前記スラリーの温度が20℃での前記電気伝導率が、9.0mS/m以上である石膏を、セメント用石膏として選別する、請求項1〜4のいずれか1項に記載の石膏の選別方法。   The gypsum sorting method according to any one of claims 1 to 4, wherein gypsum having a conductivity of 9.0 mS / m or more at a temperature of the slurry of 20 ° C is sorted as cement gypsum. . 請求項1〜5のいずれか1項に記載の石膏の選別方法を用いて選別された石膏と、ポルトランドセメントクリンカーを混合粉砕してポルトランドセメントを製造するか、または、該石膏とポルトランドセメントクリンカーを分離粉砕した後、粉砕した石膏とポルトランドセメントクリンカーを混合してポルトランドセメントを製造する、ポルトランドセメントの製造方法。

A gypsum selected using the gypsum sorting method according to any one of claims 1 to 5 and Portland cement clinker are mixed and pulverized to produce Portland cement, or the gypsum and Portland cement clinker are mixed. A method for producing Portland cement, in which Portland cement is produced by mixing pulverized gypsum and Portland cement clinker after separation and pulverization.

JP2016041614A 2016-03-03 2016-03-03 Gypsum sorting method and Portland cement manufacturing method Active JP6611640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041614A JP6611640B2 (en) 2016-03-03 2016-03-03 Gypsum sorting method and Portland cement manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041614A JP6611640B2 (en) 2016-03-03 2016-03-03 Gypsum sorting method and Portland cement manufacturing method

Publications (2)

Publication Number Publication Date
JP2017154947A true JP2017154947A (en) 2017-09-07
JP6611640B2 JP6611640B2 (en) 2019-11-27

Family

ID=59808038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041614A Active JP6611640B2 (en) 2016-03-03 2016-03-03 Gypsum sorting method and Portland cement manufacturing method

Country Status (1)

Country Link
JP (1) JP6611640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263718A (en) * 2023-09-14 2023-12-22 东北大学 Foam ceramic similar material and preparation method, production device and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645910A (en) * 1987-06-26 1989-01-10 Mitsubishi Heavy Ind Ltd Production of alpha-type gypsum hemihydrate
JP2000203961A (en) * 1998-12-25 2000-07-25 Sumitomo Metal Mining Co Ltd Portland cement for producing alc and production of alc
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JP2013210213A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd QUANTIFICATION METHOD FOR α TYPE HEMIHYDRATE GYPSUM AND β TYPE HEMIHYDRATE GYPSUM IN CEMENT
JP2013234087A (en) * 2012-05-08 2013-11-21 Tokuyama Corp Method for producing hardenablee composition
JP2015141146A (en) * 2014-01-30 2015-08-03 太平洋セメント株式会社 Method for determining powder mixture uniformity
JP2015171974A (en) * 2014-03-12 2015-10-01 住友大阪セメント株式会社 cement composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645910A (en) * 1987-06-26 1989-01-10 Mitsubishi Heavy Ind Ltd Production of alpha-type gypsum hemihydrate
JP2000203961A (en) * 1998-12-25 2000-07-25 Sumitomo Metal Mining Co Ltd Portland cement for producing alc and production of alc
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JP2013210213A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd QUANTIFICATION METHOD FOR α TYPE HEMIHYDRATE GYPSUM AND β TYPE HEMIHYDRATE GYPSUM IN CEMENT
JP2013234087A (en) * 2012-05-08 2013-11-21 Tokuyama Corp Method for producing hardenablee composition
JP2015141146A (en) * 2014-01-30 2015-08-03 太平洋セメント株式会社 Method for determining powder mixture uniformity
JP2015171974A (en) * 2014-03-12 2015-10-01 住友大阪セメント株式会社 cement composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263718A (en) * 2023-09-14 2023-12-22 东北大学 Foam ceramic similar material and preparation method, production device and application thereof
CN117263718B (en) * 2023-09-14 2024-04-19 东北大学 Foam ceramic similar material and preparation method, production device and application thereof

Also Published As

Publication number Publication date
JP6611640B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP5673961B2 (en) Robust polycarboxylates containing ether linkages for grinding preparation of cement materials
Janowska-Renkas The effect of superplasticizers’ chemical structure on their efficiency in cement pastes
Assaad et al. Effect of clinker grinding aids on flow of cement-based materials
CN109455966B (en) Concrete admixture, preparation method thereof and concrete
CN109851259B (en) special cement for masonry mortar and preparation method thereof
ES2863002T3 (en) Use of an auxiliary grinding agent for cement clinker based on polycarboxylate ethers and lignin sulphonates
Kobya et al. Effect of amine and glycol-based grinding aids utilization rate on grinding efficiency and rheological properties of cementitious systems
CN102745924A (en) Phosphogypsum-modifying method capable of shortening coagulating time of phosphogypsum-based cement concrete
JP4308926B2 (en) Cement grinding aid
CN109923087A (en) Cement composition additive and cement composition
Ferrari et al. Improving the performance of PCE superplasticizers in early stiffening Portland cement
JP6611640B2 (en) Gypsum sorting method and Portland cement manufacturing method
CN101805147B (en) Preparation method of liquid cement grinding aid
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
CN100569694C (en) Brushing gypsum
CN110407492A (en) A kind of modified superfine fly ash aggregate
JP2017081763A (en) Silica fume-containing cement composition
JP6249684B2 (en) Method for producing cement composition
JP2013107816A (en) Low-carbon type cement paste composition
CN105481282A (en) Spherical high-molecular water reducing agent and preparation method thereof
JPH01242445A (en) Hydraulic cement composition
JP3698348B2 (en) Hydraulic compound
JPWO2020115790A1 (en) Additives for hydraulic compositions and hydraulic compositions
CN104086103A (en) Cement preparation method
JP3343163B2 (en) Concrete and method for producing high-strength concrete compact using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250