JP2017152637A - Heat radiation light source - Google Patents

Heat radiation light source Download PDF

Info

Publication number
JP2017152637A
JP2017152637A JP2016035999A JP2016035999A JP2017152637A JP 2017152637 A JP2017152637 A JP 2017152637A JP 2016035999 A JP2016035999 A JP 2016035999A JP 2016035999 A JP2016035999 A JP 2016035999A JP 2017152637 A JP2017152637 A JP 2017152637A
Authority
JP
Japan
Prior art keywords
quantum well
light source
layer
well structure
radiation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016035999A
Other languages
Japanese (ja)
Other versions
JP2017152637A5 (en
JP6618145B2 (en
Inventor
野田 進
Susumu Noda
進 野田
卓也 井上
Takuya Inoue
卓也 井上
ドンヨン カン
Dong Yeon Kang
ドンヨン カン
卓 浅野
Taku Asano
卓 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2016035999A priority Critical patent/JP6618145B2/en
Publication of JP2017152637A publication Critical patent/JP2017152637A/en
Publication of JP2017152637A5 publication Critical patent/JP2017152637A5/ja
Application granted granted Critical
Publication of JP6618145B2 publication Critical patent/JP6618145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation light source excellent in wavelength selectivity, and capable of controlling the intensity of light with high speed of responce.SOLUTION: A heat radiation light source 10 includes a tabular base 11 provided with an n-layer 112 composed of an n-type semiconductor and a p-layer 113 composed of a p-type semiconductor so as to sandwich a quantum well structure layer 111, i.e., a layer having a quantum well structure, a photonic crystal part 12 provided on the surface of the base 11, and formed of lone members (first lone member 121, second lone member 122) arranged periodically so that the light of a wavelength, corresponding to the transition energy between subbands in the quantum well of the quantum well structure layer 111 will resonate, and voltage application means (power supply 14) provided on the base 11, and applying a voltage to the quantum well structure layer 111.SELECTED DRAWING: Figure 1

Description

本発明は熱輻射光源に関する。熱輻射光源は、熱輻射により放射される電磁波を光源とする装置であるが、熱を入力とし、光(電磁波)を出力する熱−光変換装置と捉えることができる。この入力たる熱が電磁波(赤外線)で与えられる場合、波長変換装置とも捉えることができる。また、熱ではなく電気エネルギーを投入することにより熱輻射を発生させる装置と捉えることもできる。本発明における「熱輻射光源」は、これらいずれをも対象とする。   The present invention relates to a heat radiation light source. A heat radiation light source is a device that uses an electromagnetic wave radiated by heat radiation as a light source, but can be regarded as a heat-light conversion device that receives heat and outputs light (electromagnetic waves). When this input heat is given by electromagnetic waves (infrared rays), it can also be regarded as a wavelength converter. Moreover, it can also be regarded as a device that generates thermal radiation by supplying electric energy instead of heat. The “thermal radiation light source” in the present invention targets both of them.

熱輻射光源は、物体に熱を与えるだけで発光を得ることができる、という利点を有する。熱輻射光源は、例えば赤外線を用いた各種センサの光源に用いることができ、特に、エンジンの排ガス中の成分を分析するガスセンサにおいて、エンジンの廃熱をセンシングのための赤外線に変換する光源として好適に用いることができる。   The thermal radiation light source has an advantage that light can be obtained simply by applying heat to an object. The thermal radiation light source can be used as a light source for various sensors using infrared rays, for example, and is particularly suitable as a light source for converting engine waste heat into infrared rays for sensing in a gas sensor for analyzing components in engine exhaust gas. Can be used.

熱が与えられた物体が発する電磁波は、その温度に依存した波長範囲に広がるスペクトルを有する。例えば物体を数十℃〜数百℃に加熱することにより得られる電磁波の波長範囲は数μm〜数十μmとなり、高温になるほど、その範囲は短波長側に広がる。しかし、前述の赤外線センサでは一般に特定の波長の赤外線のみを利用するため、このような熱輻射光源を用いると、特定波長以外の不要な赤外線が被測定物に照射されてしまい、被測定物が加熱されてしまう等の悪影響が生じる。また、電気エネルギーを投入することにより熱輻射を発生させる場合において、広帯域の輻射が生じる光源では消費電力の増大が問題となる。   An electromagnetic wave emitted from an object to which heat is applied has a spectrum extending in a wavelength range depending on the temperature. For example, the wavelength range of electromagnetic waves obtained by heating an object to several tens of degrees Celsius to several hundreds of degrees Celsius is several μm to several tens of μm, and the higher the temperature is, the wider the range is on the short wavelength side. However, since the above-described infrared sensor generally uses only infrared light having a specific wavelength, using such a heat radiation light source irradiates the object to be measured with unnecessary infrared light other than the specific wavelength, Adverse effects such as being heated occur. In addition, when heat radiation is generated by inputting electric energy, an increase in power consumption becomes a problem in a light source that generates broadband radiation.

このような問題点を解決するべく、特許文献1、非特許文献1及び非特許文献2では、フォトニック結晶内に量子井戸構造が形成された熱輻射光源が提案されている。フォトニック結晶とは、周期的な屈折率分布を有する物であって、当該周期に対応した特定の波長を有する光の定在波が形成され得るものである。量子井戸構造とは、エネルギーバンドギャップの大きさが異なる複数種の、厚さ数nm〜十数nm程度の半導体の層を積層することにより井戸型のエネルギーポテンシャル(量子井戸)を形成した物の構造をいう。   In order to solve such problems, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2 propose a heat radiation light source in which a quantum well structure is formed in a photonic crystal. A photonic crystal has a periodic refractive index distribution and can form a standing wave of light having a specific wavelength corresponding to the period. A quantum well structure is a structure in which a well-type energy potential (quantum well) is formed by laminating a plurality of semiconductor layers having a thickness of several nanometers to several tens of nanometers with different energy band gaps. Refers to the structure.

特許文献1では主に、量子井戸構造を有するスラブ(板材)に周期的に空孔が設けられたフォトニック結晶が用いられている。このフォトニック結晶では、スラブと空孔が異なる屈折率を有することから、周期的な屈折率分布が形成されている。一方、非特許文献1及び非特許文献2では、量子井戸構造を有する孤立部材が周期的に並べられたフォトニック結晶を基台上に配置した構成が用いられている。当該孤立部材は、周囲の空間(空気)とは異なる屈折率を有することから、周囲の空間と合わせて周期的な屈折率分布を形成している。孤立部材には、基台上面から上方に延びる部材が複数個孤立して2次元状に配置されたものや、基台上面に平行な方向に長い部材が複数個孤立して、互いに平行に1次元状に配置されたものがある(後者の例は、孤立部材は基台上面に平行な方向と共に、基台正面から上方にも延びているといえる)。以下、特許文献1に記載のフォトニック結晶を「空孔型フォトニック結晶」、非特許文献1及び非特許文献2に記載のフォトニック結晶を「孤立部材型フォトニック結晶」と呼ぶ。   In Patent Document 1, a photonic crystal in which holes are periodically provided in a slab (plate material) having a quantum well structure is mainly used. In this photonic crystal, since the slab and the holes have different refractive indexes, a periodic refractive index distribution is formed. On the other hand, Non-Patent Document 1 and Non-Patent Document 2 use a configuration in which a photonic crystal in which isolated members having a quantum well structure are periodically arranged is arranged on a base. Since the isolated member has a refractive index different from that of the surrounding space (air), a periodic refractive index distribution is formed together with the surrounding space. As the isolated member, a plurality of members extending upward from the upper surface of the base are isolated and arranged two-dimensionally, or a plurality of members that are long in a direction parallel to the upper surface of the base are isolated and parallel to each other. Some of them are arranged in a dimension (in the latter example, it can be said that the isolated member extends upward from the front of the base together with the direction parallel to the top surface of the base). Hereinafter, the photonic crystal described in Patent Document 1 is referred to as “hole-type photonic crystal”, and the photonic crystals described in Non-Patent Document 1 and Non-Patent Document 2 are referred to as “isolated member-type photonic crystals”.

これら各文献に記載の熱輻射光源では、熱源から熱が供給されると、量子井戸構造の量子井戸内に形成される離散的な複数のエネルギー準位(サブバンド)間において遷移(サブバンド間遷移)が生じ、その遷移エネルギーに対応した波長を中心とした有限の波長帯をもつ発光が生じる。そして、当該量子井戸構造が設けられたフォトニック結晶内において、該フォトニック結晶の周期により定まる1つの波長を有する光が共振して増幅される。これにより、各文献に記載の熱輻射光源は、当該特定波長において鋭いピークを有する波長スペクトルを持つ光を生成することができる。   In the thermal radiation light source described in each of these documents, when heat is supplied from the heat source, transitions between multiple discrete energy levels (subbands) formed in the quantum well of the quantum well structure (between subbands) Transition) occurs, and light emission having a finite wavelength band centered on the wavelength corresponding to the transition energy occurs. In the photonic crystal provided with the quantum well structure, light having one wavelength determined by the period of the photonic crystal resonates and is amplified. Thereby, the thermal radiation light source described in each document can generate light having a wavelength spectrum having a sharp peak at the specific wavelength.

また、特許文献1の熱輻射光源では、スラブの表裏両面に電極が設けられている。この熱輻射光源では、当該電極を用いて量子井戸構造に電圧を印加することにより、量子井戸内の電子又は正孔の数を変化させ、それにより上記特定波長の光の強度を制御することができる。光の強度は、量子井戸構造に与える熱の強弱によっても変化するが、その速度は極めて遅く、特許文献1のように電圧を用いて制御することで初めて、1MHzに達する高速の変調動作が可能になる。   Moreover, in the thermal radiation light source of patent document 1, the electrode is provided in the front and back both surfaces of the slab. In this thermal radiation light source, by applying a voltage to the quantum well structure using the electrode, the number of electrons or holes in the quantum well can be changed, thereby controlling the intensity of light of the specific wavelength. it can. The intensity of light changes depending on the intensity of heat applied to the quantum well structure, but the speed is extremely slow, and high-speed modulation operation reaching 1 MHz is possible only by controlling using voltage as in Patent Document 1. become.

国際公開WO2015/129668号International Publication WO2015 / 129668

Takuya Inoue(井上卓也)他、"Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources"(高性能な赤外光源用単一モード狭帯域熱輻射体の設計)、Journal of the Optical Society of America B、(米国)、 Optical Society of America(米国光学会)発行、2013年1月、第30巻第1号第165〜172頁Takuya Inoue et al., "Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources", Journal of the Optical Society of America B, (USA), Optical Society of America (American Optical Society), January 2013, Vol. 30, No. 1, pp. 165-172 Takuya Inoue(井上卓也)他、"Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals"(量子井戸及びフォトニック結晶に基づく単一ピーク狭帯域中赤外線域熱輻射体)、Applied Physics Letters、(米国)、American Institute of Physics(米国物理学協会)発行、2013年5月13日、第102巻第19号第191110-1〜191110-4頁Takuya Inoue et al., “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals”, Applied Physics Letters, (USA), published by American Institute of Physics, May 13, 2013, Vol. 102, No. 19, 191110-1 to 191110-4

空孔型フォトニック結晶を用いた熱輻射光源と孤立部材型フォトニック結晶を用いた熱輻射光源で計算及び実験を行うと、後者の方が、波長スペクトルにおいて幅がより狭く、且つ、目的の波長以外に生じる不要な輻射ピークをほとんど含まない、単一波長に近い発光が生じる。これは、孤立部材が上方に延びていることにより、量子井戸のサブバンド間遷移により生じる光の電界の方向と孤立部材が物理的に延びる方向が一致し、その結果、フォトニック結晶の共振波長の制御(共振波長を所定の値にすること)及び共振により外部に生じる輻射ピークの増強が容易になることによる。従って、波長選択性の点では孤立部材型フォトニック結晶を用いた熱輻射光源の方が望ましい。しかしながら、非特許文献1及び2に記載の孤立部材型フォトニック結晶を用いた熱輻射光源では、量子井戸構造に電圧を印加することができず、光の強度を速い応答速度で制御することができない。   When calculations and experiments are performed with a thermal radiation light source using a hole-type photonic crystal and a thermal radiation light source using an isolated member type photonic crystal, the latter is narrower in the wavelength spectrum and the target Light emission close to a single wavelength is generated, which includes almost no unnecessary radiation peak other than the wavelength. This is because the direction of the electric field of the light generated by the intersubband transition of the quantum well coincides with the direction in which the isolated member physically extends because the isolated member extends upward, and as a result, the resonance wavelength of the photonic crystal This is because it becomes easy to control the radiation peak (set the resonance wavelength to a predetermined value) and to enhance the radiation peak generated by the resonance. Therefore, a thermal radiation light source using an isolated member type photonic crystal is more desirable in terms of wavelength selectivity. However, in the thermal radiation light source using the isolated member type photonic crystal described in Non-Patent Documents 1 and 2, voltage cannot be applied to the quantum well structure, and the light intensity can be controlled at a fast response speed. Can not.

本発明が解決しようとする課題は、波長選択性に優れ、且つ、速い応答速度で光の強度を制御することができる熱輻射光源を提供することである。   The problem to be solved by the present invention is to provide a thermal radiation light source that has excellent wavelength selectivity and can control the intensity of light with a fast response speed.

上記課題を解決するために成された本発明に係る熱輻射光源は、
a) 量子井戸構造を有する層である量子井戸構造層を挟むようにn型半導体から成る層であるn層とp型半導体から成る層であるp層が設けられた板状の基台と、
b) 前記基台の表面に設けられた、前記量子井戸構造層における量子井戸内のサブバンド間における遷移エネルギーに対応する波長の光が共振するように孤立部材が周期的に並んで成るフォトニック結晶部と、
c) 前記基台に接続された、前記量子井戸構造層に電圧を印加する電圧印加手段と
を備えることを特徴とする。
The thermal radiation light source according to the present invention made to solve the above problems is
a) a plate-like base provided with an n layer made of an n-type semiconductor and a p layer made of a p-type semiconductor so as to sandwich a quantum well structure layer which is a layer having a quantum well structure;
b) Photonics comprising isolated members arranged periodically so that light of a wavelength corresponding to the transition energy between subbands in the quantum well in the quantum well structure layer provided on the surface of the base resonates. A crystal part;
c) voltage applying means for applying a voltage to the quantum well structure layer connected to the base.

従来、フォトニック結晶を用いた熱輻射光源では、量子井戸構造に熱が供給されることにより生じる特定波長の光を増幅するためには、光の共振を司るフォトニック結晶の内部に量子井戸構造を設けておく必要があると考えられていた。しかしながら、本発明者が計算及び実験で検証した結果、孤立部材型フォトニック結晶を用いた熱輻射光源において、量子井戸構造をフォトニック結晶の外の基台に設けても、基台内の量子井戸構造から生成された特定波長の光がフォトニック結晶の周期的屈折率分布と結合して共振し、増幅されることが明らかになった。   Conventionally, in a thermal radiation light source using a photonic crystal, in order to amplify light of a specific wavelength generated by supplying heat to the quantum well structure, a quantum well structure is provided inside the photonic crystal that controls light resonance. It was thought that it was necessary to establish. However, as a result of verification by the present inventors through calculations and experiments, in a thermal radiation light source using an isolated member type photonic crystal, even if the quantum well structure is provided on the base outside the photonic crystal, the quantum inside the base is It was revealed that light of a specific wavelength generated from the well structure resonates in combination with the periodic refractive index distribution of the photonic crystal.

本発明では、このように量子井戸構造を基台内に設け、量子井戸構造層に電圧を印加する電圧印加手段を基台に設けることにより、量子井戸内の電子又は正孔の数を変化させ、それにより、加熱時に量子井戸構造から生じてフォトニック結晶部で共振する光の強度を制御することができる。   In the present invention, the quantum well structure is provided in the base as described above, and the number of electrons or holes in the quantum well is changed by providing the base with voltage applying means for applying a voltage to the quantum well structure layer. Thereby, it is possible to control the intensity of light generated from the quantum well structure during the heating and resonating in the photonic crystal part.

フォトニック結晶部(孤立部材型フォトニック結晶)には、基台表面から垂直に延びる孤立部材が2次元状に配置されたものや、基台上面に平行な方向に長い部材が複数個孤立して、互いに平行に1次元状に配置されたものを用いることができる。   In the photonic crystal part (isolated member type photonic crystal), there are two-dimensionally arranged isolated members extending vertically from the surface of the base, or a plurality of members that are long in the direction parallel to the upper surface of the base. Thus, those arranged in a one-dimensional manner in parallel with each other can be used.

単一の孤立部材を周期的に配置したフォトニック結晶では、全ての孤立部材が同位相で共振することにより自由空間への光の回折効果が過度に強まり、フォトニック結晶内に光が留まる時間が短くなるおそれがある。光がフォトニック結晶内に留まる時間と得られる発光スペクトルの線幅は反比例の関係にあるため、上記の構造の場合は、発光線幅が広がるおそれがある。一方、異なる2種類以上の孤立部材を周期的に配置したフォトニック結晶では、異なる孤立部材間で光を逆位相で共振させることが可能であり、光の回折効果が適度に相殺されることにより光が長時間フォトニック結晶部に閉じ込められ、最終的に線幅の狭い発光スペクトルが得られる。従って、フォトニック結晶部は、形状又は大きさが異なる2種類以上の孤立部材を有することが望ましい。   In a photonic crystal in which a single isolated member is periodically arranged, the time for which light remains in the photonic crystal due to excessively strong light diffraction effects in free space due to resonance of all the isolated members in the same phase. May be shortened. Since the time during which light stays in the photonic crystal and the line width of the obtained emission spectrum are inversely proportional, in the case of the above structure, the emission line width may be widened. On the other hand, in photonic crystals in which two or more different types of isolated members are periodically arranged, it is possible to resonate light in opposite phases between different isolated members, and the light diffraction effect can be offset appropriately. Light is confined in the photonic crystal part for a long time, and an emission spectrum with a narrow line width is finally obtained. Therefore, it is desirable that the photonic crystal part has two or more types of isolated members having different shapes or sizes.

量子井戸構造で生成されてフォトニック結晶部で共振する特定波長の光の強度を高くするためには、前記量子井戸構造層の前記基台の前記表面側の面と該表面の距離はできるだけ近いほどよく、例えば100nm以下とすることが望ましい。   In order to increase the intensity of light having a specific wavelength that is generated in the quantum well structure and resonates in the photonic crystal part, the surface side surface of the base of the quantum well structure layer is as close as possible to the surface. For example, it is desirable that the thickness be 100 nm or less.

量子井戸構造を有する熱輻射光源では、加熱温度を高くするほど、量子井戸構造で生成される光の出力を大きくすることができる。また、加熱温度を高くするほど、量子井戸構造からの発光の波長帯を(特に短波長側に)広くすることができ、それに応じてフォトニック結晶部の周期長を定めることにより、共振によって増幅される波長の選択範囲を広くすることができる。そこで、本発明に係る熱輻射光源において、量子井戸構造には、耐熱性に優れた窒化物半導体から成るものを用いることが望ましい。窒化物半導体を用いることにより、加熱温度を600℃程度まで高くすることができ、例えば量子井戸構造にGaAs(電圧制御が可能な最大加熱温度が約250℃)を用いた場合と比較すると光の出力を約10倍にすることができる。また、量子井戸構造に窒化物半導体を用いることにより、発光波長帯を2〜10μmという広い範囲とすることができ、それにより、CO2(吸収波長4.3μm)、CO(同4.8μm)、CH4(同3.3μm)等の様々な気体や化合物のセンシング用の光源として用いることができる。窒化物半導体として、GaN、InN、AlN、あるいはそれらの混晶を用いることができる。 In a thermal radiation light source having a quantum well structure, the output of light generated in the quantum well structure can be increased as the heating temperature is increased. In addition, the higher the heating temperature, the wider the wavelength band of light emission from the quantum well structure (especially on the short wavelength side), and the amplification by resonance by setting the period length of the photonic crystal part accordingly. The range of wavelengths to be selected can be widened. Therefore, in the thermal radiation light source according to the present invention, it is desirable to use a quantum well structure made of a nitride semiconductor having excellent heat resistance. By using a nitride semiconductor, the heating temperature can be increased to about 600 ° C. For example, compared with the case where GaAs (maximum heating temperature capable of voltage control is about 250 ° C) is used for the quantum well structure, The output can be increased about 10 times. In addition, by using a nitride semiconductor in the quantum well structure, the emission wavelength band can be set to a wide range of 2 to 10 μm, so that CO 2 (absorption wavelength 4.3 μm), CO (4.8 μm), CH 4 (3.3μm) It can be used as a light source for sensing various gases and compounds. As the nitride semiconductor, GaN, InN, AlN, or a mixed crystal thereof can be used.

孤立部材には、電子又は正孔がドープされていない半導体材料から成るものを用いることが望ましい。これにより、自由キャリア吸収に由来する不要な広帯域の発光を抑えることができる。   The isolated member is preferably made of a semiconductor material that is not doped with electrons or holes. Thereby, unnecessary broadband light emission derived from free carrier absorption can be suppressed.

本発明に係る熱輻射光源用素子は、
a) 量子井戸構造を有する層である量子井戸構造層を挟むようにn型半導体から成る層であるn層とp型半導体から成る層であるp層が設けられた板状の基台と、
b) 前記基台の表面に設けられた、前記量子井戸構造層における量子井戸内のサブバンド間における遷移エネルギーに対応する波長の光が共振するように孤立部材が周期的に並んで成るフォトニック結晶部と
を備えることを特徴とする。
The element for heat radiation light source according to the present invention is:
a) a plate-like base provided with an n layer made of an n-type semiconductor and a p layer made of a p-type semiconductor so as to sandwich a quantum well structure layer which is a layer having a quantum well structure;
b) Photonics comprising isolated members arranged periodically so that light of a wavelength corresponding to the transition energy between subbands in the quantum well in the quantum well structure layer provided on the surface of the base resonates. And a crystal part.

本発明により、波長選択性に優れた孤立部材型フォトニック結晶を用いて、速い応答速度で光の強度を制御することができる熱輻射光源が得られる。   According to the present invention, it is possible to obtain a thermal radiation light source capable of controlling the intensity of light with a fast response speed using an isolated member type photonic crystal having excellent wavelength selectivity.

本発明に係る熱輻射光源の一実施形態を示す斜視図(a)、A-A'断面図(b)及びフォトニック結晶部のB-B'断面図(c)。The perspective view (a) which shows one Embodiment of the thermal radiation light source concerning this invention, AA 'sectional drawing (b), and BB' sectional drawing (c) of a photonic crystal part. 本発明に係る熱輻射光源につき、電極間に電圧を印加していない状態(a)及び印加した状態(b)における電子のエネルギー状態を示す図。The figure which shows the energy state of the electron in the state (a) which has not applied the voltage between electrodes, and the state (b) which applied the thermal radiation light source which concerns on this invention. 本実施形態の熱輻射光源につき、電極間に電圧を印加していない状態(実線)及び印加した状態(破線)における光の放射率を計算で求めた結果を示すグラフ。The graph which shows the result of having calculated | required the emissivity of the light in the state (solid line) and the state (dashed line) which have not applied the voltage between electrodes about the thermal radiation light source of this embodiment. 基台のn層と同じ材料から成る孤立部材を用いた熱輻射光源につき、電極間に電圧を印加していない状態(実線)及び印加した状態(破線)における光の放射率を計算で求めた結果を示すグラフ。For the thermal radiation light source using an isolated member made of the same material as the n layer of the base, the emissivity of light in the state where no voltage is applied between the electrodes (solid line) and in the state where it is applied (broken line) was calculated. The graph which shows a result. 本実施形態の熱輻射光源につき、n層及びp層の厚みの異なる複数の例で光の放射率を計算で求めた結果を示すグラフ。The graph which shows the result of having calculated | required the emissivity of light in the several example from which the thickness of n layer and p layer differs regarding the heat radiation light source of this embodiment. 本発明に係る熱輻射光源の他の実施形態を示す斜視図(a)及びC-C'断面図(b)。The perspective view (a) and CC 'sectional drawing (b) which show other embodiment of the thermal radiation light source which concerns on this invention. 他の実施形態の熱輻射光源につき、電極間に電圧を印加していない状態(実線)及び印加した状態(破線)における光の放射率を、Ex偏光(a)及びEy偏光(b)に分けて計算で求めた結果を示すグラフ。With respect to the heat radiation light source of another embodiment, the emissivity of light in a state where no voltage is applied between the electrodes (solid line) and in a state where the voltage is applied (broken line) is expressed as E x polarized light (a) and E y polarized light (b). The graph which shows the result calculated | required by dividing into.

図1〜図7を用いて、本発明に係る熱輻射光源の実施形態を示す。   1 to 7 show an embodiment of a thermal radiation light source according to the present invention.

(1) 本発明に係る熱輻射光源の一実施形態の構成
図1に、本発明に係る熱輻射光源の一実施形態を示す。この熱輻射光源10は、基台11と、該基台11の表面に設けられたフォトニック結晶部12を有し、後述のように基台11と一体に形成された電極(n層112及びp層113)が設けられている。
(1) Configuration of Embodiment of Thermal Radiation Light Source According to the Present Invention FIG. 1 shows an embodiment of a thermal radiation light source according to the present invention. This thermal radiation light source 10 has a base 11 and a photonic crystal portion 12 provided on the surface of the base 11, and electrodes (n layer 112 and A p-layer 113) is provided.

基台11は、板状の量子井戸構造体111の表裏両面をn型半導体から成るn層112とp型半導体から成るp層113で挟んだ構成を有している。n層112は量子井戸構造体111よりもフォトニック結晶部12寄りに、p層113はその反対側に設けられている。   The base 11 has a structure in which both front and back surfaces of a plate-like quantum well structure 111 are sandwiched between an n layer 112 made of an n-type semiconductor and a p layer 113 made of a p-type semiconductor. The n layer 112 is provided closer to the photonic crystal part 12 than the quantum well structure 111, and the p layer 113 is provided on the opposite side.

本実施形態では、量子井戸構造体111には、GaNに電子がドープ(1×1018cm-3)されたGaN層と、Al1-xGaxN(0<x<1)のうちx=0.6であるAl0.4Ga0.6Nから成り電子や正孔がドープされていないAlGaN層を交互に50層ずつ積層したものを用いる。GaN層及びAlGaN層の1層あたりの厚みはいずれも3nmとする。GaNとAl0.4Ga0.6Nはバンドギャップが重なり、Al0.4Ga0.6NよりもGaNの方がバンドギャップが小さいため、GaN側を底とする量子井戸が形成され、GaNにサブバンドが形成される。ここで、AlGaN層におけるN原子1個当たりのAl原子の数(1-x)は上記の値には限定されないが、(1-x)の値が大きく(xの値が小さく)なるほどGaNとのバンドギャップの大きさの差が大きくなるため、より高エネルギー(短波長)の発光を得ることができる。一方、(1-x)の値が0.4を超えると作製時に転位やクラックが生じるおそれがある。そのため、本実施形態では、(1-x)の値は0.4とした。 In this embodiment, the quantum well structure 111 includes a GaN layer in which electrons are doped (1 × 10 18 cm −3 ) in GaN, and Al 1-x Ga x N (0 <x <1). A structure in which 50 layers of AlGaN layers made of Al 0.4 Ga 0.6 N with = 0.6 and not doped with electrons or holes are alternately stacked is used. The thickness of each GaN layer and AlGaN layer is 3 nm. GaN and Al 0.4 Ga 0.6 N have overlapping band gaps, and since GaN has a smaller band gap than Al 0.4 Ga 0.6 N, a quantum well with the GaN side at the bottom is formed, and a subband is formed in GaN. . Here, the number of Al atoms per N atom in the AlGaN layer (1-x) is not limited to the above value, but as the value of (1-x) increases (the value of x decreases) Since the difference in the size of the band gap increases, light emission with higher energy (short wavelength) can be obtained. On the other hand, if the value of (1-x) exceeds 0.4, dislocations and cracks may occur during production. Therefore, in the present embodiment, the value of (1-x) is set to 0.4.

本実施形態では、n層112には電子がドープ(5×1018cm-3)されたGaNから成るものを、p層113には正孔がドープ(1×1018cm-3)されたGaNから成るものを、それぞれ用いる。n層112の厚みd1は50nm、p層113の厚みd2は250nmとする。なお、上記実施形態とは逆に、量子井戸構造体111よりもフォトニック結晶部12寄りにp層を設け、その反対側にn層を設けてもよい。量子井戸構造体111とフォトニック結晶部12の間に設ける半導体層(図1の例ではn層112)の厚みは薄いほどよく、例えば100nm以下とすることが望ましい。 In this embodiment, the n layer 112 is made of GaN doped with electrons (5 × 10 18 cm −3 ), and the p layer 113 is doped with holes (1 × 10 18 cm −3 ). Each made of GaN is used. The thickness d 1 of the n layer 112 is 50 nm, and the thickness d 2 of the p layer 113 is 250 nm. In contrast to the above embodiment, a p layer may be provided closer to the photonic crystal part 12 than the quantum well structure 111, and an n layer may be provided on the opposite side. The thickness of the semiconductor layer (n layer 112 in the example of FIG. 1) provided between the quantum well structure 111 and the photonic crystal portion 12 is preferably as small as possible, and is preferably 100 nm or less, for example.

フォトニック結晶部12は、半径r1、厚みdの円柱状の第1孤立部材121が基台11の表面に立設されるように周期長aの正方格子状に配置されると共に、半径r2、厚みdの円柱状の第2孤立部材122が前記表面に立設されるように周期長aの正方格子状に配置されて成る。各第2孤立部材122は、第1孤立部材121が正方格子の格子点に周期長aで並ぶ2方向にそれぞれ、第1孤立部材121からa/2ずれた位置に配置されている。本実施形態では、周期長aは3.0μm、半径r1は0.23a(=0.69μm)、半径r2は0.18a(=0.54μm)、厚みdは1.2μmとした。第1孤立部材121及び第2孤立部材122はいずれも、電子や正孔がドープされていないGaNから成る。 The photonic crystal portions 12 are arranged in a square lattice shape having a periodic length a so that a columnar first isolated member 121 having a radius r 1 and a thickness d is erected on the surface of the base 11, and has a radius r 2. Cylindrical second isolated members 122 having a thickness d are arranged in a square lattice with a periodic length a so as to stand on the surface. Each second isolated member 122 is disposed at a position shifted by a / 2 from the first isolated member 121 in each of two directions in which the first isolated member 121 is arranged at a lattice length of a square lattice with a periodic length a. In this embodiment, the period length a is 3.0 μm, the radius r 1 is 0.23 a (= 0.69 μm), the radius r 2 is 0.18 a (= 0.54 μm), and the thickness d is 1.2 μm. Both the first isolated member 121 and the second isolated member 122 are made of GaN that is not doped with electrons or holes.

n層112には電源14の負極が、p層113には電源14の正極が、それぞれ接続されている。n層112及びp層113が電極として機能している。電源14が上述の電圧印加手段に該当する。熱輻射光源10と電源14を接続する回路中にはスイッチ15が設けられている。   The n layer 112 is connected to the negative electrode of the power source 14, and the p layer 113 is connected to the positive electrode of the power source 14. The n layer 112 and the p layer 113 function as electrodes. The power supply 14 corresponds to the above-described voltage applying means. A switch 15 is provided in a circuit connecting the thermal radiation light source 10 and the power source 14.

(2) 本実施形態の熱輻射光源の動作
図2を用いて、本実施形態の熱輻射光源10の動作を説明する。
熱輻射光源10では、量子井戸構造体111の量子井戸の底側に該当するGaN層に電子がドープされていることから、スイッチ15がOFFの状態で熱源から熱輻射光源10を加熱することにより、量子井戸に形成されているサブバンド間で電子が遷移し、その遷移エネルギーに対応した波長を中心とした有限の波長帯の発光が生じる(図2(a))。この波長帯内の光のうち、フォトニック結晶部12の周期長に対応した特定の波長を有する光のみが、フォトニック結晶部12において共振して増幅され、熱輻射光源10の外部に放出される。
(2) Operation of Thermal Radiation Light Source of the Present Embodiment Operation of the thermal radiation light source 10 of the present embodiment will be described with reference to FIG.
In the thermal radiation light source 10, since electrons are doped in the GaN layer corresponding to the bottom of the quantum well of the quantum well structure 111, the thermal radiation light source 10 is heated from the heat source with the switch 15 being OFF. Electrons transition between subbands formed in the quantum well, and light emission in a finite wavelength band centering on the wavelength corresponding to the transition energy is generated (FIG. 2 (a)). Of the light in this wavelength band, only light having a specific wavelength corresponding to the periodic length of the photonic crystal part 12 is resonated and amplified in the photonic crystal part 12 and emitted to the outside of the thermal radiation light source 10. The

スイッチ15をOFFからONに切り替えると、量子井戸構造体111にドープされた電子がn層112へ移動し、それにより量子井戸内の電子の数が減少する(図2(b))。これにより、量子井戸構造体111からの光の強度が低下し、フォトニック結晶部12で共振して増幅され、熱輻射光源10の外部に放出される光の強度も低下する。このように、電極であるn層112とp層113の間への(すなわち量子井戸構造体111への)電圧の印加のOFF/ONにより、熱輻射光源10の外部に放出される光の強度を制御することができる。   When the switch 15 is switched from OFF to ON, the electrons doped in the quantum well structure 111 move to the n layer 112, thereby reducing the number of electrons in the quantum well (FIG. 2 (b)). Thereby, the intensity of the light from the quantum well structure 111 is reduced, and the intensity of the light that is resonated and amplified by the photonic crystal portion 12 and emitted to the outside of the thermal radiation light source 10 is also reduced. In this way, the intensity of light emitted to the outside of the thermal radiation light source 10 by turning OFF / ON of voltage application between the n layer 112 and the p layer 113 (that is, to the quantum well structure 111) as electrodes. Can be controlled.

本実施形態では、半径が異なる第1孤立部材121と第2孤立部材122がそれぞれ周期長aで配置されているため、フォトニック結晶部12内においてこの周期長aに対応する媒質内波長λi(=3.0μm)を有する光が増幅される。当該波長の光は、空気中では波長λが(neffλi/na)となる。ここでneffはフォトニック結晶部12内の光が感じる有効屈折率であり、naは空気の屈折率(=1)である。当該有効屈折率neffは、第1孤立部材121及び第2孤立部材122の材料の屈折率やそれらがフォトニック結晶部12内で占める体積の割合に依存する。また、フォトニック結晶部12の厚みが薄い場合には、基台11の屈折率が当該有効屈折率neffに影響を与えることもある。当該有効屈折率neffは、これらのパラメータに基づいて計算(シミュレーション)するか、予備実験を行うことにより求められる。 In the present embodiment, since the first isolated member 121 and the second isolated member 122 having different radii are arranged with the periodic length a, the in-medium wavelength λ i corresponding to the periodic length a in the photonic crystal portion 12. Light having (= 3.0 μm) is amplified. The light having the wavelength has a wavelength λ of (n eff λ i / n a ) in the air. Where n eff is the effective refractive index felt by the light within the photonic crystal 12, the n a is the refractive index of air (= 1). The effective refractive index n eff depends on the refractive indexes of the materials of the first isolated member 121 and the second isolated member 122 and the volume ratio that they occupy in the photonic crystal portion 12. Further, when the photonic crystal portion 12 is thin, the refractive index of the base 11 may affect the effective refractive index n eff . The effective refractive index n eff is calculated (simulated) based on these parameters or obtained by conducting a preliminary experiment.

また、本実施形態では、半径が異なる第1孤立部材121と第2孤立部材122を用いているため、異なる孤立部材間で光が逆位相で共振し、光の回折効果が適度に相殺されるため、光が長時間フォトニック結晶に閉じ込められる。その結果、線幅が狭い発光スペクトルが得られる。   In the present embodiment, since the first and second isolated members 121 and 122 having different radii are used, the light resonates between the different isolated members in an opposite phase, and the light diffraction effect is appropriately offset. Therefore, light is confined in the photonic crystal for a long time. As a result, an emission spectrum having a narrow line width is obtained.

本実施形態の熱輻射光源10につき、電極間に電圧を印加していない状態(OFF状態)と印加した状態(ON状態)における外部への光の放射率を計算で求めた。その結果を図3にグラフで示す。ここで放射率とは、光源の熱輻射強度を、同じ温度の黒体輻射強度で規格化した値である。グラフの横軸は空気中における光の波数(波長の逆数)で示した。この結果から、OFF状態では波数が約2500cm-1、波長が約4μmのところに強いピークが存在するのに対して、ON状態では同波数(同波長)のところのピーク高さはわずかであり、電圧のOFF/ONによって光の強度の強弱が制御されることを確認することができる。OFF時のピークのQ値は105である。なお、波数が約2500cm-1以外のところにも弱いピークが存在するが、これはn層112及びp層113の自由キャリア吸収によるものであり、その強度は特許文献1に記載の熱輻射光源よりも弱い。 For the thermal radiation light source 10 of the present embodiment, the emissivity of light to the outside in a state where no voltage is applied between the electrodes (OFF state) and an applied state (ON state) was obtained by calculation. The results are shown graphically in FIG. Here, the emissivity is a value obtained by normalizing the heat radiation intensity of the light source with the black body radiation intensity at the same temperature. The horizontal axis of the graph indicates the wave number of light in air (the reciprocal of the wavelength). From this result, there is a strong peak at a wave number of about 2500 cm -1 and a wavelength of about 4 μm in the OFF state, whereas in the ON state, the peak height at the same wave number (same wavelength) is slight. It can be confirmed that the intensity of the light is controlled by the voltage OFF / ON. The peak Q value when OFF is 105. It should be noted that there is a weak peak at a wave number other than about 2500 cm −1 , which is due to free carrier absorption of the n layer 112 and the p layer 113, and the intensity thereof is a heat radiation light source described in Patent Document 1. Weaker than.

次に、第1孤立部材121及び第2孤立部材122の材料を、上述の電子や正孔がドープされていないGaN(アンドープGaN)の代わりに、n層112と同じ材料(電子がドープされたGaN)とした場合について、同様の計算を行った。この構成は、第1孤立部材121及び第2孤立部材122とn層112を一体で作製した場合に相当する。計算結果を図4に示す。OFF状態ではアンドープGaNの場合と同じ波数に同様の強いピークが存在するのに対して、ON状態では、OFF状態よりは弱いものの、アンドープGaNの場合よりも強いピークが同じ波数に現れる。これは、第1孤立部材121及び第2孤立部材122において自由キャリア吸収による発光が生じることによると考えられる。この結果から、光の強度の強弱をより明確に切り替えるためには、孤立部材には電子又は正孔がドープされていない半導体材料を用いることが望ましいといえる。   Next, the material of the first isolated member 121 and the second isolated member 122 is made of the same material as that of the n layer 112 (electron doped) instead of the above-described GaN not doped with electrons and holes (undoped GaN). The same calculation was performed for GaN). This configuration corresponds to the case where the first isolated member 121 and the second isolated member 122 and the n layer 112 are manufactured integrally. The calculation results are shown in FIG. In the OFF state, a similar strong peak exists at the same wave number as in the case of undoped GaN, whereas in the ON state, a stronger peak appears at the same wave number than in the case of undoped GaN, although it is weaker than the OFF state. This is considered to be caused by light emission due to free carrier absorption in the first isolated member 121 and the second isolated member 122. From this result, it can be said that it is desirable to use a semiconductor material that is not doped with electrons or holes for the isolated member in order to switch the intensity of light more clearly.

次に、n層112の厚みをd1nm、p層113の厚みをd2=(300-d1)nm、量子井戸構造体111の厚みを一定(300nm)として、d1が50〜250nmの範囲内の異なる複数の場合について計算を行った。計算結果を図5に示す。n層112が厚いほど、すなわち量子井戸構造体111の位置がフォトニック結晶部12から離れてゆくほど、光の出力が弱くなってゆく。特に、d1が150nm以上になると、放射率の低下が顕著になる。 Next, assuming that the thickness of the n layer 112 is d 1 nm, the thickness of the p layer 113 is d 2 = (300−d 1 ) nm, and the thickness of the quantum well structure 111 is constant (300 nm), d 1 is 50 to 250 nm. Calculations were made for different cases within the range. The calculation results are shown in FIG. As the n layer 112 is thicker, that is, as the position of the quantum well structure 111 is further away from the photonic crystal portion 12, the light output becomes weaker. In particular, when d 1 is 150 nm or more, the emissivity decreases significantly.

(3) 本発明に係る熱輻射光源の他の実施形態
図6に、本発明に係る熱輻射光源の他の実施形態を示す。この熱輻射光源20は、上記と同じ構成の基台11を有する。基台11のn層112側の表面にはフォトニック結晶部22が設けられている。フォトニック結晶部22は、基台11の表面に直方体の棒状の第1孤立部材221及び第2孤立部材222が平行に、交互に配置されて成る。隣接する第1孤立部材221同士、及び隣接する第2孤立部材222同士の間隔(周期長)aは共に3.1μmである。第1孤立部材221の幅W1は0.27a(=約0.84μm)、第2孤立部材222の幅W2は0.18a(=約0.56μm)である。第1孤立部材221及び第2孤立部材222の基台11からの高さはいずれも1.2μmである。第1孤立部材221及び第2孤立部材222の材料は、アンドープGaNである。なお、これらの数値及び材料は一例であって、適宜変更可能である。
(3) Other Embodiment of Thermal Radiation Light Source According to the Present Invention FIG. 6 shows another embodiment of the thermal radiation light source according to the present invention. The thermal radiation light source 20 has a base 11 having the same configuration as described above. A photonic crystal portion 22 is provided on the surface of the base 11 on the n layer 112 side. The photonic crystal portion 22 is formed by alternately arranging parallelepiped rod-shaped first isolated members 221 and second isolated members 222 on the surface of the base 11. An interval (period length) a between adjacent first isolated members 221 and adjacent second isolated members 222 is 3.1 μm. The width W 1 of the first isolated member 221 is 0.27a (= about 0.84 μm), and the width W 2 of the second isolated member 222 is 0.18a (= about 0.56 μm). The heights of the first isolated member 221 and the second isolated member 222 from the base 11 are both 1.2 μm. The material of the first isolated member 221 and the second isolated member 222 is undoped GaN. These numerical values and materials are examples, and can be changed as appropriate.

本実施形態の熱輻射光源20につき、OFF状態とON状態における外部への光の放射率を計算で求めた。この計算の際、第1孤立部材221及び第2孤立部材222は無限長を有するとした。計算は、第1孤立部材221及び第2孤立部材222の幅方向に電界が振動する偏光(「Ex偏光」とする)と、長さ方向に電界が振動する偏光(「Ey偏光」とする)に分けて行った。計算結果を図7に示す。Ex偏光は、OFF状態において波数2500cm-1(波長4nm)付近に強いピークが見られ、ON状態ではこのピークが弱くなっている。OFF状態でのQ値は116であった。それに対してEy偏光は、OFF状態及びON状態のいずれもおいても強いピークは見られなかった。このように、熱輻射光源20では、第1孤立部材221及び第2孤立部材222の幅方向に電界が振動する直線偏光(Ex偏光)の光を生成して外部に放出することができ、その光の強弱を制御することができる。 For the heat radiation light source 20 of the present embodiment, the emissivity of light to the outside in the OFF state and the ON state was obtained by calculation. In this calculation, the first isolated member 221 and the second isolated member 222 have an infinite length. The calculation is based on polarized light whose electric field oscillates in the width direction of the first isolated member 221 and the second isolated member 222 (referred to as “E x polarized light”) and polarized light whose electric field oscillates in the length direction (“E y polarized light”). To go). The calculation results are shown in FIG. E x polarization is strong peak is observed in the vicinity of wave number 2500 cm -1 (wavelengths 4 nm) in the OFF state, the peaks are weakened in the ON state. The Q value in the OFF state was 116. E y polarization contrast, strong peaks at both the OFF and ON states was observed. As described above, the thermal radiation light source 20 can generate linearly polarized light ( Ex polarized light) whose electric field oscillates in the width direction of the first isolated member 221 and the second isolated member 222 and can emit the light to the outside. The intensity of the light can be controlled.

10、20…熱輻射光源
11…基台
111…量子井戸構造体
112…n層
113…p層
12、22…フォトニック結晶部
121、221…第1孤立部材
122、222…第2孤立部材
14…電源
15…スイッチ
DESCRIPTION OF SYMBOLS 10, 20 ... Thermal radiation light source 11 ... Base 111 ... Quantum well structure 112 ... n layer 113 ... p layer 12, 22 ... Photonic crystal part 121, 221 ... 1st isolation member 122, 222 ... 2nd isolation member 14 ... Power supply 15 ... Switch

Claims (8)

a) 量子井戸構造を有する層である量子井戸構造層を挟むようにn型半導体から成る層であるn層とp型半導体から成る層であるp層が設けられた板状の基台と、
b) 前記基台の表面に設けられた、前記量子井戸構造層における量子井戸内のサブバンド間における遷移エネルギーに対応する波長の光が共振するように孤立部材が周期的に並んで成るフォトニック結晶部と、
c) 前記基台に接続された、前記量子井戸構造層に電圧を印加する電圧印加手段と
を備えることを特徴とする熱輻射光源。
a) a plate-like base provided with an n layer made of an n-type semiconductor and a p layer made of a p-type semiconductor so as to sandwich a quantum well structure layer which is a layer having a quantum well structure;
b) Photonics comprising isolated members arranged periodically so that light of a wavelength corresponding to the transition energy between subbands in the quantum well in the quantum well structure layer provided on the surface of the base resonates. A crystal part,
c) A thermal radiation light source, comprising: a voltage applying means for applying a voltage to the quantum well structure layer connected to the base.
前記フォトニック結晶部が、形状又は大きさが異なる2種類以上の前記孤立部材を有することを特徴とする請求項1に記載の熱輻射光源。   2. The thermal radiation light source according to claim 1, wherein the photonic crystal portion includes two or more kinds of the isolated members having different shapes or sizes. 前記量子井戸構造層の前記基台の前記表面側の面が該表面から100nm以下だけ離れた位置にあることを特徴とする請求項1又は2に記載の熱輻射光源。   The thermal radiation light source according to claim 1 or 2, wherein the surface of the base of the quantum well structure layer is located at a position separated from the surface by 100 nm or less. 前記量子井戸構造層が窒化物半導体から成ることを特徴とする請求項1〜3のいずれかに記載の熱輻射光源。   The thermal radiation light source according to claim 1, wherein the quantum well structure layer is made of a nitride semiconductor. 前記量子井戸構造層がGaNを有することを特徴とする請求項4に記載の熱輻射光源。   The thermal radiation light source according to claim 4, wherein the quantum well structure layer includes GaN. 前記量子井戸構造層がGaNから成る層とAl1-xGaxN(0<x<1)から成る層を交互に複数回積層したものであることを特徴とする請求項5に記載の熱輻射光源。 6. The heat according to claim 5, wherein the quantum well structure layer is formed by alternately laminating a layer made of GaN and a layer made of Al 1-x Ga x N (0 <x <1). Radiation light source. 前記孤立部材が、電子又は正孔がドープされていない半導体材料から成ることを特徴とする請求項1〜6のいずれかに記載の熱輻射光源。   The thermal radiation light source according to claim 1, wherein the isolated member is made of a semiconductor material that is not doped with electrons or holes. a) 量子井戸構造を有する層である量子井戸構造層を挟むようにn型半導体から成る層であるn層とp型半導体から成る層であるp層が設けられた板状の基台と、
b) 前記基台の表面に設けられた、前記量子井戸構造層における量子井戸内のサブバンド間における遷移エネルギーに対応する波長の光が共振するように孤立部材が周期的に並んで成るフォトニック結晶部と
を備えることを特徴とする熱輻射光源用素子。
a) a plate-like base provided with an n layer made of an n-type semiconductor and a p layer made of a p-type semiconductor so as to sandwich a quantum well structure layer which is a layer having a quantum well structure;
b) Photonics comprising isolated members arranged periodically so that light of a wavelength corresponding to the transition energy between subbands in the quantum well in the quantum well structure layer provided on the surface of the base resonates. A thermal radiation light source element comprising a crystal part.
JP2016035999A 2016-02-26 2016-02-26 Thermal radiation light source Active JP6618145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016035999A JP6618145B2 (en) 2016-02-26 2016-02-26 Thermal radiation light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035999A JP6618145B2 (en) 2016-02-26 2016-02-26 Thermal radiation light source

Publications (3)

Publication Number Publication Date
JP2017152637A true JP2017152637A (en) 2017-08-31
JP2017152637A5 JP2017152637A5 (en) 2019-01-17
JP6618145B2 JP6618145B2 (en) 2019-12-11

Family

ID=59742160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035999A Active JP6618145B2 (en) 2016-02-26 2016-02-26 Thermal radiation light source

Country Status (1)

Country Link
JP (1) JP6618145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655813A (en) * 2017-11-09 2018-02-02 东南大学 Based on cardiac muscle cell's detection method of counter opal structure hydrogel and its application
CN112963983A (en) * 2021-02-08 2021-06-15 上海海事大学 Double-structure infrared broadband absorber for daytime radiation cooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655813A (en) * 2017-11-09 2018-02-02 东南大学 Based on cardiac muscle cell's detection method of counter opal structure hydrogel and its application
CN112963983A (en) * 2021-02-08 2021-06-15 上海海事大学 Double-structure infrared broadband absorber for daytime radiation cooling
CN112963983B (en) * 2021-02-08 2022-11-08 上海海事大学 Double-structure infrared broadband absorber for daytime radiation cooling

Also Published As

Publication number Publication date
JP6618145B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US11231318B2 (en) Photoconductive detector device with plasmonic electrodes
CN107800040B (en) Terahertz quantum cascade laser device
Lu et al. GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕ GaN distributed Bragg reflector
US20160233379A1 (en) Terahertz source chip, source device and source assembly, and manufacturing methods thereof
JP6538648B2 (en) Thermal radiation source and two-dimensional photonic crystal used for the source
JP6559000B2 (en) Quantum cascade laser
WO2014136671A1 (en) Thermal radiation light source
JP6618145B2 (en) Thermal radiation light source
JP5268090B2 (en) Electromagnetic radiation element
JPWO2017141682A1 (en) Thermo-light conversion element and thermoelectric conversion element
Kawaguchi et al. Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers
Shafraniuk Unconventional electromagnetic properties of the graphene quantum dots
JP6795853B2 (en) Thermal radiant light source
JP4536490B2 (en) Laser apparatus and control method thereof
US20160190768A1 (en) Antenna feedback scheme for achieving narrow beam emission from plasmonic lasers
JP6274488B2 (en) Multi-wavelength light source device and multi-wavelength light source system
JP6829517B2 (en) Infrared light element
Sęk et al. Optically pumped lasing from a single pillar microcavity with InGaAs/GaAs quantum well potential fluctuation quantum dots
JP2005208470A (en) Optical modulator
Yang Advanced Plasmonic Photoconductive Sources for Pulsed and Continuous-wave Terahertz Generation.
Inoue et al. Dynamic control of narrowband thermal emission

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R150 Certificate of patent or registration of utility model

Ref document number: 6618145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250