JP2017152243A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2017152243A
JP2017152243A JP2016034200A JP2016034200A JP2017152243A JP 2017152243 A JP2017152243 A JP 2017152243A JP 2016034200 A JP2016034200 A JP 2016034200A JP 2016034200 A JP2016034200 A JP 2016034200A JP 2017152243 A JP2017152243 A JP 2017152243A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
positive electrode
electrode current
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016034200A
Other languages
Japanese (ja)
Other versions
JP6725261B2 (en
Inventor
利絵 寺西
Rie Teranishi
利絵 寺西
正史 加納
Masashi Kano
正史 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016034200A priority Critical patent/JP6725261B2/en
Publication of JP2017152243A publication Critical patent/JP2017152243A/en
Application granted granted Critical
Publication of JP6725261B2 publication Critical patent/JP6725261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery superior in battery characteristics, which enables the effective conduction of a pre-doping process without reducing the mechanical strength of an electrode.SOLUTION: A lithium ion secondary battery comprises at least, one or more positive electrodes 1, and one or more negative electrodes 3. The positive electrode 1 has a plate-like positive electrode current collector 11, and a positive electrode active material layer 12 provided on each or one of faces of the positive electrode current collector. The negative electrode 3 has a plate-like negative electrode current collector 31, and a negative electrode active material layer 32 provided on each or one of faces of the negative electrode current collector. The positive electrode current collector 11 and the negative electrode current collector 31 are each composed of a porous plate having through-holes 11a, 31a. The positive electrode current collector 11 and the negative electrode current collector 31 are arranged so that when the rate of a total area of the through-holes 11a, 31a to a one-side total area of each electrode current collector in plan view is defined as an open porosity K(K1, K2), the open porosity K1 of the positive electrode current collector 11 is lower than the open porosity K2 of the negative electrode current collector 31.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

一般に、リチウムイオン二次電池は、正極、負極及び電解質を備えて構成される。この正極及び負極としては、各々、電極活物質層を有する電極が使用される。この電極活物質層は、通常、電極活物質、導電助剤及びバインダーが配合された組成物が集電体に塗布されて形成される。リチウムイオン二次電池において、電極活物質は電池容量に関わる重要な因子であり、負極活物質としては、例えば黒鉛(グラファイト)、ケイ素、酸化ケイ素等が使用される。   Generally, a lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte. As the positive electrode and the negative electrode, electrodes each having an electrode active material layer are used. This electrode active material layer is usually formed by applying a composition containing an electrode active material, a conductive additive and a binder to a current collector. In the lithium ion secondary battery, the electrode active material is an important factor related to the battery capacity, and as the negative electrode active material, for example, graphite (graphite), silicon, silicon oxide or the like is used.

上記の負極活物質は、充放電時にリチウムイオンを吸蔵又は放出する機能を有するが、初期充電の際にリチウムイオンが負極活物質と不可逆的に反応し、電池容量(放電容量)が低下してしまうという問題がある。このような減少を回避し、高容量化を実現するため、従来から、初期充電以前に、負極を構成する負極活物質層にリチウムイオンを予めドープする処理(プレドープ処理)が行われている。プレドープ処理を行うことで、上記のような不可逆反応を予め生じさせておけば、その後の初期充電時においては、上記の不可逆反応及び副生成物の発生を抑制することができる。   The negative electrode active material has a function of occluding or releasing lithium ions during charge / discharge, but lithium ions react irreversibly with the negative electrode active material during initial charging, resulting in a decrease in battery capacity (discharge capacity). There is a problem of end. In order to avoid such a decrease and realize high capacity, conventionally, a treatment (pre-doping treatment) of previously doping lithium ions into the negative electrode active material layer constituting the negative electrode has been performed before the initial charge. If the irreversible reaction as described above is caused in advance by performing the pre-doping treatment, the generation of the irreversible reaction and by-products can be suppressed during the subsequent initial charging.

また、負極活物質層に上記のプレドープ処理を行うリチウムイオン二次電池では、プレドープ処理時のリチウムイオンの拡散効率を高めるため、従来から、正極及び負極を構成する正極集電体及び負極集電体の両方に、複数の貫通孔が形成されたパンチングメタル等が用いられている(例えば、特許文献1を参照)。特許文献1に記載の電池のように、各集電体にパンチングメタルを使用することにより、複数の貫通孔を通じてリチウムが電池内で拡散及び移動し、効果的にプレドープ処理を行うことができる。   In addition, in a lithium ion secondary battery in which the negative electrode active material layer is subjected to the above pre-doping treatment, in order to increase the diffusion efficiency of lithium ions during the pre-doping treatment, conventionally, a positive electrode current collector and a negative electrode current collector that constitute the positive electrode and the negative electrode A punching metal or the like in which a plurality of through holes are formed is used for both bodies (see, for example, Patent Document 1). By using a punching metal for each current collector as in the battery described in Patent Document 1, lithium diffuses and moves in the battery through a plurality of through holes, so that the pre-doping treatment can be performed effectively.

特開2009−188141号公報JP 2009-188141 A

しかしながら、集電体に複数の貫通孔が形成されていると、集電体の機械的強度、特に引張強度が低下するため、例えば、充放電に伴って各電極の膨張又は収縮が生じた際に、何れかの電極の物理的損壊が発生し、電池特性が劣化するという問題があった。このような電極の物理的損壊は、各集電体としてアルミ箔からなるパンチングメタルを用いる正極側において、特に顕著であった。   However, when a plurality of through-holes are formed in the current collector, the mechanical strength, particularly the tensile strength, of the current collector is reduced. For example, when each electrode expands or contracts due to charge / discharge In addition, there is a problem that any of the electrodes is physically damaged to deteriorate the battery characteristics. Such physical damage of the electrode was particularly remarkable on the positive electrode side using a punching metal made of aluminum foil as each current collector.

本発明は上記課題に鑑みてなされたものであり、電極の機械的強度を低下させることなく効果的にプレドープ処理を行うことができ、電池特性に優れたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and can provide a lithium ion secondary battery that can be effectively pre-doped without lowering the mechanical strength of the electrode and has excellent battery characteristics. Objective.

本発明者等は、電極の機械的強度を低下させることなく、効果的なプレドープ処理を行うことが可能なリチウムイオン二次電池を実現するため、鋭意検討を行った。この結果、各集電体に形成される貫通孔の開孔率の関係を最適化することにより、プレドープ処理によるリチウムイオンの拡散効果を維持しながら、電極強度を高めることが可能となることを見出し、本発明を完成させた。   The inventors of the present invention have made extensive studies in order to realize a lithium ion secondary battery capable of performing an effective pre-doping process without reducing the mechanical strength of the electrode. As a result, it is possible to increase the electrode strength while maintaining the diffusion effect of lithium ions by the pre-doping process by optimizing the relationship between the opening ratios of the through holes formed in each current collector. The headline and the present invention were completed.

即ち、請求項1に記載の発明は、少なくとも、1以上の正極と、1以上の負極と、を備え、前記正極は、板状の正極集電体と、その両面又は片面に設けられた正極活物質層と、を有し、前記負極は、板状の負極集電体と、その両面又は片面に設けられた負極活物質層と、を有し、前記正極集電体及び前記負極集電体は、複数の貫通孔を有する有孔板からなり、さらに、前記正極集電体及び前記負極集電体は、それぞれ、片面の全面積に対する、複数の前記貫通孔を平面視した合計面積の割合を各々の開孔率としたとき、前記負極集電体の開孔率よりも前記正極集電体の開孔率が低いリチウムイオン二次電池であることを特徴とする。   That is, the invention described in claim 1 includes at least one or more positive electrodes and one or more negative electrodes, and the positive electrode is a plate-shaped positive electrode current collector and a positive electrode provided on both surfaces or one surface thereof. An active material layer, and the negative electrode includes a plate-shaped negative electrode current collector and a negative electrode active material layer provided on both sides or one side of the negative electrode current collector, and the positive electrode current collector and the negative electrode current collector The body comprises a perforated plate having a plurality of through holes, and each of the positive electrode current collector and the negative electrode current collector has a total area in plan view of the plurality of through holes with respect to the entire area of one side. It is a lithium ion secondary battery in which the opening ratio of the positive electrode current collector is lower than the opening ratio of the negative electrode current collector when the ratio is the respective open area ratio.

本発明によれば、負極集電体における貫通孔の開孔率よりも、正極集電体における貫通孔の開孔率を低くすることで、この正極集電体の機械的強度と伸び率の両方を向上させることができる。この時、正極の最大引張強度が負極の膨張による最大応力よりも大きく、かつ、正極の伸び率が負極の最大伸び率よりも大きくなるようにすることが好ましい。これにより、充放電に伴って各電極に膨張収縮が生じた際に、特に強度が低めである正極集電体を含む正極の物理的損壊が生じるのが抑制されるので、電池特性の低下を防止できる。また、正極集電体及び負極集電体に、最適化された開孔率で複数の貫通孔が設けられているので、プレドープ処理によって負極活物質層にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性に優れたリチウムイオン二次電池が実現できる。   According to the present invention, the mechanical strength and elongation of the positive electrode current collector are reduced by lowering the open hole ratio of the through hole in the positive electrode current collector than the open hole ratio of the through hole in the negative electrode current collector. Both can be improved. At this time, it is preferable that the maximum tensile strength of the positive electrode is larger than the maximum stress due to expansion of the negative electrode, and the elongation of the positive electrode is larger than the maximum elongation of the negative electrode. This suppresses physical damage to the positive electrode including the positive electrode current collector having a low strength when each electrode expands and contracts with charge and discharge, thereby reducing the battery characteristics. Can be prevented. In addition, since the positive electrode current collector and the negative electrode current collector are provided with a plurality of through holes with an optimized open area ratio, lithium ions can be effectively diffused into the negative electrode active material layer by pre-doping treatment. And a sufficient discharge capacity can be secured. Therefore, it is possible to realize a lithium ion secondary battery that is excellent in battery characteristics because the discharge capacity is suppressed from being reduced when the battery is repeatedly used for charging and discharging.

請求項2の発明は、請求項1に記載のリチウムイオン二次電池であって、前記負極集電体における複数の前記貫通孔の開孔率が15%超50%以下であり、前記正極集電体における複数の前記貫通孔の開孔率が0%超30%以下であることを特徴とする。   A second aspect of the present invention is the lithium ion secondary battery according to the first aspect, wherein an opening ratio of the plurality of through holes in the negative electrode current collector is more than 15% and 50% or less, and the positive electrode collector The opening ratio of the plurality of through holes in the electric body is more than 0% and 30% or less.

本発明によれば、負極集電体における複数の貫通孔の開孔率、正極集電体における複数の貫通孔の開孔率の両方を最適化することで、各電極の機械的強度を確実に確保し、さらに伸び率を向上させながら、効果的なプレドープ処理を行うことが可能となる。従って、上記のような、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性が向上する効果が顕著に得られる。   According to the present invention, the mechanical strength of each electrode is ensured by optimizing both the aperture ratio of the plurality of through holes in the negative electrode current collector and the aperture ratio of the plurality of through holes in the positive electrode current collector. It is possible to carry out an effective pre-doping process while further ensuring the elongation and further improving the elongation rate. Therefore, when the charging / discharging is used repeatedly as described above, the reduction of the discharge capacity is suppressed, and the effect of improving the battery characteristics is remarkably obtained.

請求項3の発明は、1以上の正極と、1以上の負極と、を備え、前記正極は、板状の正極集電体と、その両面又は片面に設けられた正極活物質層と、を有し、前記負極は、板状の負極集電体と、その両面又は片面に設けられた負極活物質層と、を有し、前記正極集電体は、貫通孔を有さない無孔板からなり、前記負極集電体は、複数の貫通孔を有する有孔板からなるリチウムイオン二次電池であることを提供とする。   The invention of claim 3 comprises one or more positive electrodes and one or more negative electrodes, wherein the positive electrode comprises a plate-shaped positive electrode current collector and a positive electrode active material layer provided on both sides or one side thereof. The negative electrode has a plate-like negative electrode current collector and a negative electrode active material layer provided on both sides or one side thereof, and the positive electrode current collector has no through hole. The negative electrode current collector is a lithium ion secondary battery comprising a perforated plate having a plurality of through holes.

本発明によれば、正極集電体が無孔板からなり、負極集電体が複数の貫通孔を有する有孔板からなる構成なので、上記のように、負極集電体における貫通孔の開孔率よりも、正極集電体における貫通孔の開孔率を低く構成した場合と同様、正極集電体の機械的強度、特に引張強度の確保及び伸び率の向上を達成できる。これにより、この正極集電体が用いられる正極の機械的強度及び伸び率が向上する。従って、上記同様、充放電の際に、特に、強度の低い正極集電体を含む正極の物理的損壊が生じるのを抑制でき、電池特性の低下を防止できる。一方、負極集電体には複数の貫通孔が設けられているので、プレドープ処理によって負極活物質層にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性に優れたリチウムイオン二次電池が実現できる。   According to the present invention, since the positive electrode current collector is composed of a non-perforated plate and the negative electrode current collector is composed of a perforated plate having a plurality of through holes, as described above, the through holes of the negative electrode current collector are opened. As in the case where the opening ratio of the through holes in the positive electrode current collector is lower than the porosity, the mechanical strength of the positive electrode current collector, in particular, the tensile strength can be ensured and the elongation rate can be improved. Thereby, the mechanical strength and elongation rate of the positive electrode in which the positive electrode current collector is used are improved. Therefore, in the same manner as described above, it is possible to suppress physical damage of the positive electrode including the positive current collector having a low strength, and to prevent deterioration of battery characteristics, particularly during charging and discharging. On the other hand, since the negative electrode current collector is provided with a plurality of through holes, lithium ions can be effectively diffused into the negative electrode active material layer by the pre-doping treatment, and a sufficient discharge capacity can be ensured. Therefore, it is possible to realize a lithium ion secondary battery that is excellent in battery characteristics because the discharge capacity is suppressed from being reduced when the battery is repeatedly used for charging and discharging.

請求項4の発明は、請求項3に記載のリチウムイオン二次電池であって、前記負極集電体が、片面の全面積に対する、複数の前記貫通孔を平面視した合計面積の割合である開孔率が15%超50%以下の範囲であることを特徴とする。   Invention of Claim 4 is a lithium ion secondary battery of Claim 3, Comprising: The said negative electrode collector is a ratio of the total area which planarly viewed the said several through-hole with respect to the whole area of one side. The open area ratio is more than 15% and not more than 50%.

本発明によれば、正極集電体を無孔板としたうえで、負極集電体における複数の貫通孔の開孔率を最適化することで、各電極の機械的強度を確実に確保し、さらに伸び率を向上させながら、効果的なプレドープ処理を行うことが可能となる。従って、上記同様、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性が向上する効果が顕著に得られる。   According to the present invention, the positive electrode current collector is made a non-porous plate, and the aperture ratio of the plurality of through holes in the negative electrode current collector is optimized to ensure the mechanical strength of each electrode. Further, it is possible to perform an effective pre-doping process while further improving the elongation rate. Therefore, similarly to the above, when the charge and discharge are repeatedly used, the discharge capacity is prevented from decreasing, and the effect of improving the battery characteristics is remarkably obtained.

請求項5の発明は、請求項1〜請求項4の何れか一項に記載のリチウムイオン二次電池であって、前記負極活物質層に、初期充電前に、リチウムがプレドープされていることを特徴とする。   The invention of claim 5 is the lithium ion secondary battery according to any one of claims 1 to 4, wherein the negative electrode active material layer is pre-doped with lithium before initial charging. It is characterized by.

本発明によれば、まず、複数の貫通孔の有無及び開孔率が最適化された正極集電体及び負極集電体を採用した構成なので、初期充電前のリチウムイオン二次電池に対するリチウムのプレドープにより、リチウムイオンを効果的に拡散させることができる。従って、十分な放電容量が確保でき、電池特性に優れたリチウムイオン二次電池が実現できる。   According to the present invention, first of all, since the configuration adopts a positive electrode current collector and a negative electrode current collector that are optimized for the presence or absence of a plurality of through holes and an open area ratio, lithium of the lithium ion secondary battery before the initial charge can be obtained. By pre-doping, lithium ions can be effectively diffused. Therefore, a sufficient discharge capacity can be secured and a lithium ion secondary battery excellent in battery characteristics can be realized.

本発明に係るリチウムイオン二次電池によれば、上記した解決手段によって以下の効果を奏する。
すなわち、本発明によれば、負極集電体における貫通孔の開孔率よりも、正極集電体における貫通孔の開孔率が低い構成とすることで、この正極集電体の機械的強度、特に引張強度を確保し、伸び率を高めることができるので、正極集電体が用いられる正極の機械的強度及び伸び率も向上する。これにより、充放電に伴って各電極に膨張収縮が生じた際に、特に強度が低めである正極集電体を含む正極の物理的損壊が生じるのが抑制され、電池特性の低下を防止できる。また、正極集電体及び負極集電体に、最適化された開孔率で複数の貫通孔が設けられていることで、プレドープ処理によって負極活物質層にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。
従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性に優れたリチウムイオン二次電池が実現できる。
According to the lithium ion secondary battery of the present invention, the following effects can be obtained by the above-described solving means.
That is, according to the present invention, the mechanical strength of the positive electrode current collector is obtained by adopting a configuration in which the open area ratio of the through holes in the positive electrode current collector is lower than the open area ratio of the through holes in the negative electrode current collector. In particular, since the tensile strength can be secured and the elongation rate can be increased, the mechanical strength and the elongation rate of the positive electrode using the positive electrode current collector are also improved. Thereby, when expansion and contraction occur in each electrode with charge / discharge, it is possible to suppress physical damage of the positive electrode including the positive electrode current collector having a particularly low strength, and to prevent deterioration of battery characteristics. . In addition, the positive electrode current collector and the negative electrode current collector are provided with a plurality of through holes with an optimized opening ratio, so that lithium ions can be effectively diffused into the negative electrode active material layer by pre-doping treatment. And a sufficient discharge capacity can be secured.
Therefore, it is possible to realize a lithium ion secondary battery that is excellent in battery characteristics because the discharge capacity is suppressed from being reduced when the battery is repeatedly used for charging and discharging.

本発明に係るリチウムイオン二次電池の一例を模式的に説明する断面図である。It is sectional drawing which illustrates typically an example of the lithium ion secondary battery which concerns on this invention. 本発明に係るリチウムイオン二次電池の一例を模式的に説明する断面図であり、図1の要部を拡大して示す図である。FIG. 2 is a cross-sectional view schematically illustrating an example of a lithium ion secondary battery according to the present invention, and is an enlarged view of a main part of FIG. 1. 本発明に係るリチウムイオン二次電池の他の例を模式的に説明する断面図であり、図1の要部を拡大して示す図である。It is sectional drawing which illustrates typically the other example of the lithium ion secondary battery which concerns on this invention, and is a figure which expands and shows the principal part of FIG.

以下、図面を参照して本発明に係るリチウムイオン二次電池の実施の形態について、図1〜図3を適宜参照しながら、その構成を詳細に説明する。なお、以下の説明で用いる図面は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は、実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the configuration of an embodiment of a lithium ion secondary battery according to the present invention will be described in detail with reference to FIGS. 1 to 3 as appropriate. Note that the drawings used in the following description may show the characteristic parts in an enlarged manner for the sake of convenience in order to make the characteristics easy to understand. There is. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.

[リチウムイオン二次電池]
図1は、本発明の一実施形態である積層型のリチウムイオン二次電池10を示す断面図であり、図2は、図1に示したリチウムイオン二次電池10の要部を拡大して示す断面図である。
[Lithium ion secondary battery]
FIG. 1 is a cross-sectional view showing a stacked lithium ion secondary battery 10 according to an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of the lithium ion secondary battery 10 shown in FIG. It is sectional drawing shown.

図1に示すように、本実施形態のリチウムイオン二次電池10は、正極1と、電解質層を形成するセパレータ2と、負極3と、をそれぞれ複数備えている。また、図示例のリチウムイオン二次電池10は、平面視矩形状の負極3、セパレータ2、正極1が順次積層されてなる電極ユニットを複数で有する電極積層体9が備えられている。図示例の電極積層体9は、負極3/セパレータ2/正極1が順に積層されてなる電極ユニットを4つ、即ち、第1電極ユニットU1〜第4電極ユニットU4を有してなる。また、電極積層体9において積層された各電極ユニットの間にはセパレータ2が配置されている。さらに、第1電極ユニットU1の外部側には、セパレータ2を介して、片面側にリチウム金属箔4が配置された負極3が、該負極3が最外層となるように積層されている。   As shown in FIG. 1, the lithium ion secondary battery 10 of this embodiment includes a plurality of positive electrodes 1, separators 2 that form an electrolyte layer, and negative electrodes 3. The illustrated lithium ion secondary battery 10 includes an electrode laminate 9 having a plurality of electrode units in which a negative electrode 3 having a rectangular shape in plan view, a separator 2 and a positive electrode 1 are sequentially laminated. The illustrated electrode laminate 9 includes four electrode units in which the negative electrode 3 / the separator 2 / the positive electrode 1 are sequentially laminated, that is, the first electrode unit U1 to the fourth electrode unit U4. A separator 2 is disposed between the electrode units stacked in the electrode stack 9. Furthermore, on the outer side of the first electrode unit U1, a negative electrode 3 in which a lithium metal foil 4 is arranged on one side is laminated via a separator 2 so that the negative electrode 3 is the outermost layer.

さらに、図2に示すように、本実施形態のリチウムイオン二次電池10においては、正極1が、板状の正極集電体11と、その両面又は片面に設けられた正極活物質層12とを有してなり、負極3が、板状の負極集電体31と、その両面又は片面に設けられた負極活物質層32とを有して構成される。また、図示例では、正極集電体11及び負極集電体31が、複数の貫通孔11a,31aを有する有孔板から構成される。   Furthermore, as shown in FIG. 2, in the lithium ion secondary battery 10 of the present embodiment, the positive electrode 1 includes a plate-like positive electrode current collector 11 and a positive electrode active material layer 12 provided on both sides or one side thereof. The negative electrode 3 includes a plate-shaped negative electrode current collector 31 and a negative electrode active material layer 32 provided on both sides or one side thereof. In the illustrated example, the positive electrode current collector 11 and the negative electrode current collector 31 are formed of a perforated plate having a plurality of through holes 11a and 31a.

本実施形態のリチウムイオン二次電池10に備えられる各々の正極1は、複数の貫通孔が形成された(パンチングされた)有孔板からなる正極集電体11を有し、この正極集電体の両面に正極材からなる正極活物質層12,12が形成されている。正極活物質層12,12の厚さは、例えば、5μm〜80μmが好ましい。   Each positive electrode 1 provided in the lithium ion secondary battery 10 of the present embodiment includes a positive electrode current collector 11 formed of a perforated plate in which a plurality of through holes are formed (punched). Positive electrode active material layers 12 and 12 made of a positive electrode material are formed on both surfaces of the body. The thickness of the positive electrode active material layers 12, 12 is preferably 5 μm to 80 μm, for example.

各々の正極1に用いられる正極集電体11としては、例えば、アルミニウム箔が用いられ、図2に示す例では、このアルミニウム箔に、一方の面から反対側の面に貫通するように、複数の貫通孔11aが形成されてなる。   As the positive electrode current collector 11 used for each positive electrode 1, for example, an aluminum foil is used. In the example shown in FIG. 2, a plurality of such aluminum foils are penetrated from one surface to the opposite surface. The through-hole 11a is formed.

各々のセパレータ2は、多孔性樹脂シートにリチウムイオンを含有する電解質液が含浸されてなる電解質層を形成している。セパレータ2の厚さは、例えば、5μm〜30μmが好ましい。   Each separator 2 forms an electrolyte layer in which a porous resin sheet is impregnated with an electrolyte solution containing lithium ions. The thickness of the separator 2 is preferably 5 μm to 30 μm, for example.

各々の負極3は、貫通孔が複数形成された銅箔からなる負極集電体を有し、この負極集電体の両面に、酸化ケイ素等のシリコン化合物が含まれた負極材からなる負極活物質層32,32が形成されている。負極活物質層32,32の厚さは、例えば、5μm〜50μmが好ましい。   Each negative electrode 3 has a negative electrode current collector made of a copper foil having a plurality of through-holes, and a negative electrode active material made of a negative electrode material containing a silicon compound such as silicon oxide on both surfaces of the negative electrode current collector. Material layers 32 are formed. The thickness of the negative electrode active material layers 32, 32 is preferably, for example, 5 μm to 50 μm.

各々の負極3に用いられる負極集電体31としては、例えば、銅箔が用いられ、この銅箔に、一方の面からから反対側の面に貫通するように、複数の貫通孔31aが形成されてなる。   As the negative electrode current collector 31 used for each negative electrode 3, for example, a copper foil is used, and a plurality of through holes 31a are formed in the copper foil so as to penetrate from one surface to the opposite surface. Being done.

また、リチウムイオン二次電池10の電極積層体9には、各々の負極3の片面側にそれぞれ接触するようにリチウム金属箔4が設けられている。これらリチウム金属箔4は、プレドープ処理におけるリチウムイオンの供給源となる。各リチウム金属箔4の厚さは、例えば、10μm〜500μmが好ましい。
本実施形態においては、全ての負極3に隣接してリチウム金属箔4が設けられているが、リチウム金属箔4は必須構成ではなく、任意の負極3に隣接して又はその近傍に設けることができる。
Moreover, the lithium metal foil 4 is provided in the electrode laminated body 9 of the lithium ion secondary battery 10 so that it may contact the single side | surface side of each negative electrode 3, respectively. These lithium metal foils 4 serve as a lithium ion supply source in the pre-doping process. As for the thickness of each lithium metal foil 4, 10 micrometers-500 micrometers are preferable, for example.
In the present embodiment, the lithium metal foil 4 is provided adjacent to all the negative electrodes 3, but the lithium metal foil 4 is not an essential configuration, and may be provided adjacent to or in the vicinity of any negative electrode 3. it can.

図2に示すように、正極集電体11及び負極集電体31を構成する金属板(金属箔)には、多数の貫通孔11a,31aが設けられている。本実施形態においては、正極1及び負極3の各集電体に貫通孔11a,31aが設けられていることにより、正極1及び負極3が積層された状態において、リチウムイオンが各電極間を容易に拡散して移動する。これにより、リチウムのプレドープ処理が各電極に対してムラなく行われると共に、電池使用時の電荷移動抵抗が低減され、電池容量維持率が向上する。   As shown in FIG. 2, the metal plate (metal foil) constituting the positive electrode current collector 11 and the negative electrode current collector 31 is provided with a large number of through holes 11 a and 31 a. In the present embodiment, the through holes 11 a and 31 a are provided in the current collectors of the positive electrode 1 and the negative electrode 3, so that lithium ions can easily pass between the electrodes in a state where the positive electrode 1 and the negative electrode 3 are stacked. To diffuse and move. Thus, the pre-doping treatment of lithium is performed uniformly on each electrode, the charge transfer resistance during battery use is reduced, and the battery capacity retention rate is improved.

正極集電体11の開口率(K1)とは、その片面側の全面積に対する、複数の貫通孔11aを平面視した合計面積の割合をいう。同様に、負極集電体31の開口率(K2)とは、その片面側の全面積に対する、複数の貫通孔31aを平面視した合計面積の割合をいう。本実施形態においては、負極集電体31の開孔率K2よりも正極集電体31の開孔率K1が低い構成(K2>K1)とされている。
なお、図2においては、貫通孔11aを視認しやすくするために、各貫通孔11aを便宜上大きく描いており、K2>K1を正確に描いてはいない。
The aperture ratio (K1) of the positive electrode current collector 11 refers to the ratio of the total area in plan view of the plurality of through holes 11a to the total area on one side. Similarly, the aperture ratio (K2) of the negative electrode current collector 31 refers to the ratio of the total area in plan view of the plurality of through holes 31a to the total area on one side. In the present embodiment, the aperture ratio K1 of the positive electrode current collector 31 is lower than the aperture ratio K2 of the negative electrode current collector 31 (K2> K1).
In FIG. 2, in order to make the through holes 11a easily visible, each through hole 11a is drawn large for convenience, and K2> K1 is not drawn accurately.

上記構成のように、負極集電体31における貫通孔31aの開孔率K2よりも、正極集電体11における貫通孔11aの開孔率K1を低くすることで、まず、通常、アルミ箔等の軟質金属材料から形成され、負極集電体31に比べて強度が低めである正極集電体11の機械的強度、特に引張強度を確保できる。さらに伸び率を向上させることができる。これにより、正極集電体11が用いられる正極1の機械的強度及び伸び率が向上し、充放電に伴って各電極に膨張収縮が生じた際に、正極集電体11を含む正極1の物理的損壊が生じるのを抑制できるので、電池特性が低下するのを防止することが可能となる。また、正極集電体11及び負極集電体31には、最適化された開孔率K1,K2で複数の貫通孔11a,31aが設けられているので、電池製造時のプレドープ処理によって負極活物質層32にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、高い容量発現率及び優れた充放電特性を有し、電池特性に優れたリチウムイオン二次電池10が実現できる。   As in the above-described configuration, first, the opening ratio K1 of the through-hole 11a in the positive electrode current collector 11 is made lower than the opening ratio K2 of the through-hole 31a in the negative electrode current collector 31. It is possible to ensure the mechanical strength, in particular, the tensile strength, of the positive electrode current collector 11 which is made of the above soft metal material and has a lower strength than the negative electrode current collector 31. Further, the elongation rate can be improved. Thereby, the mechanical strength and elongation rate of the positive electrode 1 in which the positive electrode current collector 11 is used are improved, and when the respective electrodes expand and contract with charge / discharge, the positive electrode 1 including the positive electrode current collector 11 Since physical damage can be suppressed, battery characteristics can be prevented from deteriorating. In addition, since the positive electrode current collector 11 and the negative electrode current collector 31 are provided with a plurality of through holes 11a and 31a with the optimized open area ratios K1 and K2, the negative electrode active is performed by pre-doping treatment during battery manufacture. Lithium ions can be effectively diffused into the material layer 32, and a sufficient discharge capacity can be secured. Therefore, when the charge / discharge is used repeatedly, the discharge capacity is suppressed from decreasing, and the lithium ion secondary battery 10 having a high capacity expression rate and excellent charge / discharge characteristics and excellent battery characteristics can be realized.

本実施形態のリチウムイオン二次電池10においては、負極集電体31における複数の貫通孔31aの開孔率K2が15%超50%以下であり、且つ、正極集電体11における複数の貫通孔11aの開孔率K1が0%超30%以下であることが好ましい。
リチウムイオン二次電池10において、まず、負極集電体31における複数の貫通孔31aの開孔率K2が上記範囲であることで、リチウムのプレドープ処理をより効果的に実施できる。一方、正極集電体11における複数の貫通孔11aの開孔率K1が上記範囲であることで、正極集電体11の機械的強度をより確実に確保できる。さらに伸び率を向上させることができる。即ち、各集電体における貫通孔11a,31aの開孔率K1,K2の最適化により、電極の物理的損壊が生じることがなく、また、充放電を繰り返して使用した場合に放電容量が低下するのが抑制されるので、リチウムイオン二次電池10の電池特性が顕著に向上する。
In the lithium ion secondary battery 10 of the present embodiment, the aperture ratio K2 of the plurality of through holes 31a in the negative electrode current collector 31 is more than 15% and 50% or less, and the plurality of through holes in the positive electrode current collector 11 is used. It is preferable that the opening ratio K1 of the holes 11a is more than 0% and not more than 30%.
In the lithium ion secondary battery 10, first, when the open area ratio K <b> 2 of the plurality of through holes 31 a in the negative electrode current collector 31 is in the above range, the lithium pre-doping treatment can be more effectively performed. On the other hand, when the aperture ratio K1 of the plurality of through holes 11a in the positive electrode current collector 11 is in the above range, the mechanical strength of the positive electrode current collector 11 can be ensured more reliably. Further, the elongation rate can be improved. That is, by optimizing the aperture ratios K1 and K2 of the through holes 11a and 31a in each current collector, there is no physical damage of the electrodes, and the discharge capacity is reduced when charging and discharging are repeatedly used. Therefore, the battery characteristics of the lithium ion secondary battery 10 are remarkably improved.

リチウムイオンのフッ化物塩が含まれる電解液の存在下でリチウムドープ処理又は初期充電が施されると、シリコン化合物が含まれる負極活物質層を構成する負極活物質の表面には、フッ化リチウム(LiF)を含むSEI(Solid Electrolyte Interphase) が形成される。一般に、このSEIは、使用時に充放電時が繰り返される際に、リチウムイオンに溶媒和された溶媒分子が負極中に進入するのを阻止し、負極構造の損壊を抑制して、リチウムイオン二次電池のサイクル特性の向上に寄与するとされる。   When lithium doping treatment or initial charging is performed in the presence of an electrolyte solution containing a lithium ion fluoride salt, lithium fluoride is formed on the surface of the negative electrode active material layer constituting the negative electrode active material layer containing a silicon compound. A SEI (Solid Electrolyte Interface) containing (LiF) is formed. In general, this SEI prevents the entry of solvent molecules solvated with lithium ions into the negative electrode when charging and discharging are repeated during use, and suppresses damage of the negative electrode structure, thereby preventing secondary recharge of lithium ions. This is considered to contribute to the improvement of the cycle characteristics of the battery.

図1に示す例においては、各々の正極1は引出配線を有し、各引出配線は互いに接続されて束ねられて、リードタブ1zが形成されている。
また、各々の負極3は引出配線を有し、各引出配線は互いに接続されて束ねられて、リードタブ3zが形成されている。
電極積層体9は、電解液とともに、不図示のアルミラミネート製の外装体に収納されている。リードタブ1z及びリードタブ3zは外装体の外部へ延設されており、外装体は内部の電解液が漏出しないように封止されている。
In the example shown in FIG. 1, each positive electrode 1 has a lead wire, and each lead wire is connected and bundled to form a lead tab 1z.
Each negative electrode 3 has a lead wire, and each lead wire is connected and bundled to form a lead tab 3z.
The electrode laminate 9 is housed in an exterior body made of aluminum laminate (not shown) together with the electrolytic solution. The lead tab 1z and the lead tab 3z are extended to the outside of the exterior body, and the exterior body is sealed so that the electrolyte solution inside does not leak.

図1に例示するリチウムイオン二次電池10の電極積層体9には、5つの負極3が備えられている。また、図2の要部拡大図に示すように、各々の負極3には、それぞれ、セパレータ2とは反対側の片面に接触するか又は離間して近接する位置で、リチウム金属箔4が設置されている。   The electrode laminate 9 of the lithium ion secondary battery 10 illustrated in FIG. 1 includes five negative electrodes 3. Further, as shown in the enlarged view of the main part of FIG. 2, each of the negative electrodes 3 is provided with a lithium metal foil 4 at a position in contact with one side opposite to the separator 2 or at a distance close to each other. Has been.

図1に示す例では、リチウムイオン二次電池10の電極積層体9には、負極3が5つ備えられているが、負極3の積層数は特に限定されず、例えば1〜20個の負極3が積層された構成とすることもできる。また、図示例におけるリチウムイオン二次電池10の電極積層体9の両端の最外層は、一方の最外層が負極3であり、他方の最外層は負極3の片面側に設けられたリチウム金属箔4とされているが、これには限定されず、正極1であってもよい。   In the example shown in FIG. 1, the electrode laminate 9 of the lithium ion secondary battery 10 includes five negative electrodes 3, but the number of stacked negative electrodes 3 is not particularly limited, and for example, 1 to 20 negative electrodes 3 may be laminated. In the illustrated example, the outermost layer at both ends of the electrode laminate 9 of the lithium ion secondary battery 10 is such that one outermost layer is the negative electrode 3 and the other outermost layer is a lithium metal foil provided on one side of the negative electrode 3. Although it is set to 4, it is not limited to this, The positive electrode 1 may be sufficient.

また、図1中に示した、各々の負極3の片面側に接して設けられたリチウム金属箔4は、例えば、電池製造時(初期充電前)のリチウムのプレドープ処理により、これらリチウム金属箔4の一部又は全部が溶解していても構わない。   In addition, the lithium metal foil 4 provided in contact with one side of each negative electrode 3 shown in FIG. 1 is obtained by, for example, lithium pre-doping treatment at the time of battery manufacture (before initial charging). A part or all of the above may be dissolved.

なお、図1に示す例のリチウムイオン二次電池10においては、各々の負極3の片面側にリチウム金属箔4を設けた構成を示しているが、これには限定されない。図1及び図2に示す例のように、正極集電体11及び負極集電体31の何れにも貫通孔11a,31aを設けた構成であれば、例えば、電極積層体9の両端の最外層近傍の負極3にのみ、その片面側にリチウム金属箔4を設けることで、各々の負極3に備えられる全ての負極活物質層32に対してリチウムをプレドープ処理することが可能になる。   In addition, in the lithium ion secondary battery 10 of the example shown in FIG. 1, although the structure which provided the lithium metal foil 4 in the single side | surface side of each negative electrode 3 is shown, it is not limited to this. As in the example shown in FIGS. 1 and 2, if both the positive electrode current collector 11 and the negative electrode current collector 31 are provided with through holes 11 a and 31 a, for example, By providing the lithium metal foil 4 on only one side of the negative electrode 3 in the vicinity of the outer layer, all the negative electrode active material layers 32 provided in each negative electrode 3 can be pre-doped.

また、図2においては、正極1の正極集電体11及び負極3の負極集電体31の何れもが、複数の貫通孔11a,31aを備えた構成のリチウムイオン二次電池10について説明しているが、本発明においては、このような構成には限定されない。
例えば、図1に示した、正極1、セパレータ2及び負極3をそれぞれ複数備えた電極積層体を有するリチウムイオン二次電池において、図3の要部拡大断面図に示す構成を適用し、正極1A(正極集電体11A)及び負極3(負極集電体31)を備えた電極積層体9Aを有するリチウムイオン二次電池10Aを構成することも可能である。図3に示す例の電極積層体9Aは、正極1Aの正極集電体11Aが貫通孔を有さない無孔板からなり、一方、負極3の負極集電体31が、上記同様、複数の貫通孔31aを有する有孔板からなる構成とされている。
In FIG. 2, the lithium ion secondary battery 10 having a configuration in which both of the positive electrode current collector 11 of the positive electrode 1 and the negative electrode current collector 31 of the negative electrode 3 are provided with a plurality of through holes 11 a and 31 a will be described. However, the present invention is not limited to such a configuration.
For example, in the lithium ion secondary battery having an electrode laminate including a plurality of positive electrodes 1, separators 2, and negative electrodes 3 shown in FIG. 1, the configuration shown in the enlarged cross-sectional view of the main part in FIG. It is also possible to constitute a lithium ion secondary battery 10A having an electrode laminate 9A provided with (positive electrode current collector 11A) and negative electrode 3 (negative electrode current collector 31). In the example of the electrode laminate 9A shown in FIG. 3, the positive electrode current collector 11A of the positive electrode 1A is made of a non-perforated plate having no through holes, while the negative electrode current collector 31 of the negative electrode 3 is composed of a plurality of It is the structure which consists of a perforated board which has the through-hole 31a.

図3に示すように、正極集電体11Aが無孔板からなり、負極集電体31が複数の貫通孔31aを有する有孔板からなる構成とすることで、上記のように、負極集電体における貫通孔の開孔率よりも、正極集電体における貫通孔の開孔率を低く構成した場合と同様に、正極集電体11Aの機械的強度、特に引張強度の確保及び伸び率の向上を達成できる。これにより、正極集電体11Aが用いられる正極1Aの機械的強度及び伸び率が向上するので充放電に伴って各電極に膨張収縮が生じた際に、正極集電体11Aを含む正極1Aの物理的損壊が生じるのを抑制でき、電池特性が低下するのを防止することが可能となる。一方、負極集電体31には複数の貫通孔31aが設けられているので、プレドープ処理によって負極活物質層32にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性に優れたリチウムイオン二次電池10Aが得られる。   As shown in FIG. 3, the negative electrode current collector 11A is made of a non-porous plate, and the negative electrode current collector 31 is made of a perforated plate having a plurality of through holes 31a. Similarly to the case where the opening ratio of the through hole in the positive electrode current collector is lower than the opening ratio of the through hole in the electric current collector, the mechanical strength of the positive electrode current collector 11A, particularly the securing of the tensile strength and the elongation rate Can be improved. This improves the mechanical strength and elongation of the positive electrode 1A in which the positive electrode current collector 11A is used, so that when each electrode expands and contracts due to charge / discharge, the positive electrode 1A including the positive electrode current collector 11A The occurrence of physical damage can be suppressed, and the battery characteristics can be prevented from deteriorating. On the other hand, since the negative electrode current collector 31 is provided with a plurality of through holes 31a, lithium ions can be effectively diffused into the negative electrode active material layer 32 by the pre-doping process, and a sufficient discharge capacity can be secured. Therefore, when the charge / discharge is used repeatedly, the discharge capacity is prevented from decreasing, and the lithium ion secondary battery 10A having excellent battery characteristics can be obtained.

図3に例示する構成においては、上記と同様にして求められる、負極集電体31における複数の貫通孔31aの開孔率K2が15%超50%以下の範囲であることが好ましく、30%以上50%以下であることがより好ましい。このように、負極集電体31における複数の貫通孔31aの開孔率K2を上記範囲に最適化することで、効果的にリチウムのプレドープ処理を行うことが可能となる。従って、上記同様、電極の物理的損壊が生じることがなく、また、充放電を繰り返して使用した場合に放電容量が低下するのが抑制されるので、リチウムイオン二次電池10Aの電池特性が顕著に向上する。   In the configuration illustrated in FIG. 3, the open area ratio K2 of the plurality of through holes 31a in the negative electrode current collector 31 obtained in the same manner as described above is preferably in the range of more than 15% and 50% or less, and 30% More preferably, it is 50% or less. Thus, by optimizing the aperture ratio K2 of the plurality of through holes 31a in the negative electrode current collector 31 within the above range, it is possible to effectively perform the lithium pre-doping treatment. Therefore, as described above, the electrode is not physically damaged, and the discharge capacity is suppressed from being lowered when repeated charging and discharging are used. Therefore, the battery characteristics of the lithium ion secondary battery 10A are remarkable. To improve.

なお、図3に例示したような、無孔板からなる正極集電体11Aを用いた正極1Aを備えた電極積層体9Aを採用した場合には、リチウムのプレドープ処理を行う際に、リチウムイオンが正極集電体11Aを通過し難くなるため、図1及び図3に示すように、各々の負極3の全てにリチウム金属箔4を設けることが好ましい。   In addition, when the electrode laminate 9A including the positive electrode 1A using the positive electrode current collector 11A made of a non-porous plate as illustrated in FIG. 3 is employed, when the lithium pre-doping treatment is performed, the lithium ion Is difficult to pass through the positive electrode current collector 11A, it is preferable to provide a lithium metal foil 4 on each of the negative electrodes 3 as shown in FIGS.

本発明にかかるリチウムイオン二次電池は、上記で説明した、有孔板からなる正極集電体を備えた正極と、無孔板からなる正極集電体を備えた正極の両方を併有していてもよい。   The lithium ion secondary battery according to the present invention has both the positive electrode provided with the positive electrode current collector composed of the perforated plate and the positive electrode equipped with the positive electrode current collector composed of the non-porous plate as described above. It may be.

<リチウムイオン二次電池の製造方法>
以下、リチウムイオン二次電池10の製造方法の一例について説明する。
リチウムイオン二次電池10の製造方法としては、例えば、負極3、セパレータ2及び正極1を公知の方法で順次積層し、さらに、負極3のセパレータ2側とは反対側の片面にリチウム金属箔4を接触又は近接させた状態とし、電極ユニットとする。そして、これらの電極ユニットを複数、図1に示す例では4個の電極ユニットを公知の方法で積層し、電極積層体9を形成する。
次いで、電極積層体9全体が電解液に含浸された状態で、負極3を構成する負極活物質層32にリチウムをプレドープ処理する。
<Method for producing lithium ion secondary battery>
Hereinafter, an example of the manufacturing method of the lithium ion secondary battery 10 will be described.
As a manufacturing method of the lithium ion secondary battery 10, for example, the negative electrode 3, the separator 2, and the positive electrode 1 are sequentially laminated by a known method, and the lithium metal foil 4 is further provided on one side of the negative electrode 3 opposite to the separator 2 side. Are in contact or in proximity to each other to form an electrode unit. Then, a plurality of these electrode units, in the example shown in FIG. 1, four electrode units are laminated by a known method to form an electrode laminate 9.
Next, lithium is pre-doped on the negative electrode active material layer 32 constituting the negative electrode 3 in a state where the entire electrode laminate 9 is impregnated with the electrolytic solution.

負極3の作製方法としては、特に限定されないが、例えば、以下のような方法が挙げられる。
まず、上記のように、貫通孔31aの開孔率K2を適正に設定してパンチングされた板状の負極集電体31を準備する。そして、この負極集電体31の一方の面に、シリコン化合物を含有する負極材を塗工して負極活物質層32を設け、他方の面にも必要に応じて負極活物質層32を設ける。
Although it does not specifically limit as a preparation method of the negative electrode 3, For example, the following methods are mentioned.
First, as described above, a plate-shaped negative electrode current collector 31 punched by appropriately setting the opening ratio K2 of the through hole 31a is prepared. Then, a negative electrode material containing a silicon compound is applied to one surface of the negative electrode current collector 31 to provide a negative electrode active material layer 32, and a negative electrode active material layer 32 is also provided to the other surface as necessary. .

同様に、正極1の作製方法としても、特に限定されないが、例えば、上記の負極3と同様の作製方法とすることができる。
即ち、まず、上記のように、貫通孔11aの開孔率K1を適正に設定してパンチングされた板状の正極集電体11を準備する。そして、この正極集電体11の一方の面及び/又は他方の面に正極材を塗工して正極活物質層12を設ける。
Similarly, the manufacturing method of the positive electrode 1 is not particularly limited, and for example, a manufacturing method similar to that of the negative electrode 3 can be used.
That is, first, as described above, the plate-like positive electrode current collector 11 punched by setting the aperture ratio K1 of the through hole 11a appropriately is prepared. Then, a positive electrode material is applied to one surface and / or the other surface of the positive electrode current collector 11 to provide the positive electrode active material layer 12.

図1に示す電極積層体9は、正極1と負極3の間にセパレータ2を介在させて積層することで図2に示すような電極ユニットを作製し、さらに、この電極ユニットを複数積層することによって得られる。この際、電極積層体9の最外層に配置された負極3を構成する負極集電体31の外部側に向く面に負極活物質層32が設けられていると、電極が湾曲し難くなり、活物質層の剥離が生じ難くなる効果が得られる。また、上述したように、図1及び図2に示す例では、各々の負極3において、セパレータ2と反対側の片面に接触するか又は離間するように、リチウム供給体であるリチウム金属箔4が設けられている。   The electrode laminate 9 shown in FIG. 1 is produced by laminating a separator 2 between a positive electrode 1 and a negative electrode 3 to produce an electrode unit as shown in FIG. 2, and further laminating a plurality of this electrode unit. Obtained by. At this time, if the negative electrode active material layer 32 is provided on the surface facing the outside of the negative electrode current collector 31 constituting the negative electrode 3 disposed in the outermost layer of the electrode laminate 9, the electrode is difficult to bend, An effect is obtained in which peeling of the active material layer hardly occurs. In addition, as described above, in the example illustrated in FIGS. 1 and 2, the lithium metal foil 4 that is a lithium supply body is in contact with or separated from one surface on the opposite side of the separator 2 in each negative electrode 3. Is provided.

リチウムのプレドープ処理においては、電極積層体9の全体が電解液に浸漬されていることが好ましい。各々のリチウム金属箔4から溶出したリチウムイオンは、各々の負極3へ拡散及び移動し、負極活物質層32にドープされる。電解液の種類としては、リチウムイオンが溶出可能な溶媒を含むものであればよく、例えば、リチウム塩等の公知の電解質を含む電解液が好ましい。   In the lithium pre-doping treatment, the entire electrode laminate 9 is preferably immersed in the electrolytic solution. Lithium ions eluted from each lithium metal foil 4 diffuse and move to each negative electrode 3, and are doped into the negative electrode active material layer 32. The type of the electrolytic solution may be any as long as it contains a solvent capable of eluting lithium ions. For example, an electrolytic solution containing a known electrolyte such as a lithium salt is preferable.

リチウムのプレドープ処理は、リチウム金属箔4から溶出したリチウムイオンが負極活物質の不可逆容量分を埋めた時点で完了する。このようなリチウムのプレドープ処理の完了の目安は、経験的に設定される。即ち、ドープ処理の時間や温度を適宜変更して、試験的に製造した電池の容量維持率を測定することによって、最良の容量維持率が得られる条件を設定する。通常、リチウムのプレドープ処理の完了時において、各々のリチウム金属箔4の一部又は全部が溶解して無くなる。   The lithium pre-doping treatment is completed when the lithium ions eluted from the lithium metal foil 4 fill the irreversible capacity of the negative electrode active material. The standard of completion of such lithium pre-doping treatment is set empirically. That is, by appropriately changing the time and temperature of the dope treatment and measuring the capacity retention rate of the experimentally manufactured battery, conditions for obtaining the best capacity retention rate are set. Usually, at the completion of the lithium pre-doping treatment, a part or all of each lithium metal foil 4 is dissolved and disappears.

リチウムのプレドープ処理の温度、即ち、電極積層体9が浸漬された電解液の温度は、例えば、20℃以下が好ましく、15℃以下がより好ましく、10℃以下がさらに好ましい。また、リチウムのプレドープ処理温度の下限値は、電解液が凍結しない温度であり、通常、0℃以上が好ましい。上記の温度範囲でリチウムのプレドープ処理を行うことにより、ドープ速度を穏やかにできるため、電極積層体9に備えられた各々の負極3に備えられる負極活物質層32に対し、均一にリチウムがドープされる。このように、負極活物質32に対してリチウムが均一にドープされることで、電池使用時の容量維持率に優れたリチウムイオン二次電池10が得られる。   The temperature of the pre-doping treatment of lithium, that is, the temperature of the electrolytic solution in which the electrode laminate 9 is immersed is preferably 20 ° C. or less, more preferably 15 ° C. or less, and further preferably 10 ° C. or less. Moreover, the lower limit of the pre-doping temperature of lithium is a temperature at which the electrolytic solution does not freeze, and is usually preferably 0 ° C. or higher. By performing the pre-doping treatment of lithium in the above temperature range, the doping rate can be moderated, so that the negative electrode active material layer 32 provided in each negative electrode 3 provided in the electrode laminate 9 is uniformly doped with lithium. Is done. Thus, lithium is uniformly doped with respect to the negative electrode active material 32, whereby the lithium ion secondary battery 10 having an excellent capacity retention rate when the battery is used is obtained.

以上で説明した製造方法によって製造可能なリチウムイオン二次電池としては、例えば、酸化ケイ素、導電助剤、及びバインダーが配合されてなる負極材を用いて形成された負極活物質層を有し、且つリチウムがプレドープされている負極を備えた電池が挙げられる。   As a lithium ion secondary battery that can be manufactured by the manufacturing method described above, for example, it has a negative electrode active material layer formed using a negative electrode material in which silicon oxide, a conductive additive, and a binder are blended, In addition, a battery including a negative electrode pre-doped with lithium can be given.

上記の製造方法によって得られるリチウムイオン二次電池10は、負極集電体31における貫通孔31aの開孔率K2と、正極集電体11における貫通孔11aの開孔率K1との関係が最適化されたものとなる。
これにより、正極集電体11の機械的強度の確保及び伸び率の向上を達成でき、正極1の機械的強度及び伸び率も向上することから、充放電に伴って各電極に膨張収縮が生じた際に正極1の物理的損壊が生じるのを抑制できるので、電池特性の低下を防止することが可能となる。また、正極集電体11及び負極集電体31に、最適化された開孔率K1,K2で複数の貫通孔11a,31aが設けられているので、電池製造時のプレドープ処理によって負極活物質層32にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。
従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、高い容量発現率及び優れた充放電特性を有し、電池特性に優れたリチウムイオン二次電池10が得られる。
さらに、上記方法によって製造されるリチウムイオン二次電池10は、正極集電体11及び負極集電体31に貫通孔11a,31aが複数設けられているため、当該電池の製造時だけでなく、電池使用時においても電解質(電解液)が効率的に拡散する。これにより、リチウムイオン二次電池10電池特性をさらに向上させることが可能になる。
In the lithium ion secondary battery 10 obtained by the above manufacturing method, the relationship between the aperture ratio K2 of the through hole 31a in the negative electrode current collector 31 and the aperture ratio K1 of the through hole 11a in the positive electrode current collector 11 is optimal. It becomes a thing.
As a result, the mechanical strength of the positive electrode current collector 11 can be ensured and the elongation rate can be improved, and the mechanical strength and the elongation rate of the positive electrode 1 can also be improved. In this case, it is possible to prevent physical damage of the positive electrode 1 from occurring, and thus it is possible to prevent deterioration of battery characteristics. In addition, since the positive electrode current collector 11 and the negative electrode current collector 31 are provided with a plurality of through holes 11a and 31a with optimized aperture ratios K1 and K2, the negative electrode active material is obtained by pre-doping at the time of battery manufacture. Lithium ions can be effectively diffused into the layer 32, and a sufficient discharge capacity can be secured.
Therefore, when the charge / discharge is repeatedly used, the discharge capacity is prevented from decreasing, and the lithium ion secondary battery 10 having a high capacity expression rate and excellent charge / discharge characteristics and excellent battery characteristics is obtained.
Furthermore, since the lithium ion secondary battery 10 manufactured by the above method is provided with a plurality of through holes 11a and 31a in the positive electrode current collector 11 and the negative electrode current collector 31, not only at the time of manufacturing the battery, Even when the battery is used, the electrolyte (electrolytic solution) diffuses efficiently. Thereby, it becomes possible to further improve the battery characteristics of the lithium ion secondary battery 10.

なお、本実施形態で説明する製造方法においては、例えば、図3に示すようなリチウムイオン二次電池10Aを製造する場合においても、正極1Aに含まれる正極集電体11Aに無孔板を用いる点を除き、上記同様の方法で製造することが可能である。   In the manufacturing method described in the present embodiment, for example, even when a lithium ion secondary battery 10A as shown in FIG. 3 is manufactured, a non-porous plate is used for the positive electrode current collector 11A included in the positive electrode 1A. Except for this point, it can be produced by the same method as described above.

以下に、本発明に係るリチウムイオン二次電池において使用可能な材料について例示するが、本発明はこれらに限定されるものではない。   Although the material which can be used in the lithium ion secondary battery which concerns on this invention is illustrated below, this invention is not limited to these.

[負極材]
各々の負極3に用いられる負極材としては、例えば、負極活物質としてのシリコン化合物、粒子状導電助剤、繊維状導電助剤及びバインダーが配合されてなるものが挙げられる。
負極活物質としてのシリコン化合物は、酸化ケイ素であることが好ましい。
[Negative electrode material]
Examples of the negative electrode material used for each negative electrode 3 include a material in which a silicon compound as a negative electrode active material, a particulate conductive auxiliary, a fibrous conductive auxiliary, and a binder are blended.
The silicon compound as the negative electrode active material is preferably silicon oxide.

(酸化ケイ素)
酸化ケイ素としては、一般式「SiO(式中、zは0.5〜1.5のいずれかの数である。)」で表されるものが例示できる。ここで酸化ケイ素を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiOのモル比が約1:1となるように、ナノクラスターのSiの周囲にSiOが存在する、Si及びSiOの複合物である。SiOは、充放電時におけるSiの膨張及び収縮に対して緩衝作用を有すると推測される。
(Silicon oxide)
Examples of the silicon oxide include those represented by the general formula “SiO z (wherein z is any number from 0.5 to 1.5)”. Here, when the silicon oxide is viewed in “SiO” units, this SiO is amorphous SiO, or around the Si of the nanocluster so that the molar ratio of Si: SiO 2 is about 1: 1. This is a composite of Si and SiO 2 in which SiO 2 exists. SiO 2 is presumed to have a buffering action against the expansion and contraction of Si during charging and discharging.

酸化ケイ素の形状は特に制限されず、例えば、粉末状、粒子状等の酸化ケイ素を使用することができる。   The shape of the silicon oxide is not particularly limited, and for example, silicon oxide such as powder or particles can be used.

負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、酸化ケイ素の配合量の割合は、例えば、40〜85質量%とすることができる。酸化ケイ素の配合量の割合が上記範囲の下限値以上であることで、リチウムイオン二次電池の放電容量がより向上し、酸化ケイ素の配合量の割合が上記範囲の上限値以下であることで、負極構造の安定した維持が容易となる。   In the negative electrode material, the ratio of the amount of silicon oxide to the total amount of silicon oxide, particulate conductive auxiliary, fibrous conductive auxiliary and binder can be, for example, 40 to 85% by mass. By the proportion of the silicon oxide blending amount being not less than the lower limit of the above range, the discharge capacity of the lithium ion secondary battery is further improved, and the proportion of the silicon oxide blending amount is not more than the upper limit of the above range. Thus, stable maintenance of the negative electrode structure is facilitated.

(粒子状導電助剤)
粒子状導電助剤は、導電助剤として機能する粒子状のものであり、好ましいものとしては、アセチレンブラック、ケッチェンブラック等のカーボンブラック;黒鉛(グラファイト);フラーレン等が例示できる。
粒子状導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
(Particulate conductive aid)
The particulate conductive aid is in the form of particles functioning as a conductive aid, and preferred examples include carbon black such as acetylene black and ketjen black; graphite (graphite); fullerene and the like.
A particulate conductive support agent may be used individually by 1 type, and may use 2 or more types together.

負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、粒子状導電助剤の配合量の割合は、例えば、3〜30質量%とすることができる。粒子状導電助剤の配合量の割合が上記範囲の下限値以上であることで、粒子状導電助剤を用いたことによる効果がより顕著に得られ、粒子状導電助剤の配合量の割合が上記範囲の上限値以下であることで、繊維状導電助剤との併用による効果がより顕著に得られる。   In the negative electrode material, the ratio of the amount of the particulate conductive additive to the total amount of silicon oxide, the particulate conductive additive, the fibrous conductive additive and the binder can be, for example, 3 to 30% by mass. . When the proportion of the particulate conductive additive is equal to or more than the lower limit of the above range, the effect of using the particulate conductive assistant is more significantly obtained, and the proportion of the particulate conductive assistant is blended. Is less than or equal to the upper limit of the above range, the effect of the combined use with the fibrous conductive additive can be more remarkably obtained.

(繊維状導電助剤)
繊維状導電助剤は、導電助剤として機能する繊維状のものであり、好ましいものとしては、カーボンナノチューブ、カーボンナノホーンが例示できる。
(Fibrous conductive aid)
The fibrous conductive auxiliary agent is a fibrous one that functions as a conductive auxiliary agent, and preferable examples include carbon nanotubes and carbon nanohorns.

繊維状導電助剤は、後述する負極活物質層中において、好ましくは負極活物質層全体に網目構造を形成することで、負極活物質層の構造安定化に寄与すると共に、負極活物質層中に導電ネットワークを形成して、導電性の向上に寄与していると推測される。
繊維状導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
In the negative electrode active material layer, which will be described later, the fibrous conductive auxiliary agent preferably contributes to structural stabilization of the negative electrode active material layer by forming a network structure throughout the negative electrode active material layer, and in the negative electrode active material layer. It is presumed that a conductive network is formed on the surface to contribute to improvement of conductivity.
A fibrous conductive support agent may be used individually by 1 type, and may use 2 or more types together.

負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、繊維状導電助剤の配合量の割合は、例えば、1〜25質量%とすることができる。繊維状導電助剤の配合量の割合が上記範囲の下限値以上であることで、繊維状導電助剤を用いたことによる効果がより顕著に得られ、繊維状導電助剤の配合量の割合が上記範囲の上限値以下であることで、粒子状導電助剤との併用による導電性向上の効果がより顕著に得られる。   In the negative electrode material, the ratio of the amount of the fibrous conductive additive to the total amount of silicon oxide, particulate conductive additive, fibrous conductive assistant and binder can be, for example, 1 to 25% by mass. . The effect of using the fibrous conductive additive is more prominent because the proportion of the fibrous conductive additive is equal to or more than the lower limit of the above range, and the proportion of the fibrous conductive assistant is blended. Is less than or equal to the upper limit of the above range, the effect of improving the conductivity by the combined use with the particulate conductive additive can be obtained more remarkably.

負極材において、「粒子状導電助剤:繊維状導電助剤」の配合量の質量比率(配合質量比)は、例えば、90:10〜30:70とすることができる。粒子状導電助剤及び繊維状導電助剤の配合質量比がこのような範囲であることで、粒子状導電助剤及び繊維状導電助剤の併用による導電性向上の効果がより顕著に得られる。   In the negative electrode material, the mass ratio (blending mass ratio) of the blending amount of “particulate conduction aid: fibrous conduction aid” can be, for example, 90:10 to 30:70. When the blending mass ratio of the particulate conductive additive and the fibrous conductive additive is in such a range, the effect of improving the conductivity by the combined use of the particulate conductive additive and the fibrous conductive additive can be obtained more remarkably. .

(バインダー)
負極材に含まれるバインダーとしては、公知のものでよく、好ましいものとしては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン−六フッ化プロピレン共重合体(PVDF−HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。
バインダーは、一種を単独で用いてもよいし、二種以上を併用してもよく、二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すればよい。
(binder)
The binder contained in the negative electrode material may be a known one, and preferable ones are polyacrylic acid (PAA), lithium polyacrylate (PAALi), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride. Copolymer (PVDF-HFP), styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethylcellulose (CMC), polyacrylonitrile (PAN), polyimide (PI) ) Etc. can be illustrated.
A binder may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio may be suitably selected according to the objective.

負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、バインダーの配合量の割合は、例えば、3〜30質量%とすることができる。バインダーの配合量の割合が上記範囲の下限値以上であることで、負極構造がより安定して維持され、バインダーの配合量の割合が上記範囲の上限値以下であることで、放電容量がより向上する。   In the negative electrode material, the ratio of the blending amount of the binder to the total blending amount of silicon oxide, particulate conductive additive, fibrous conductive additive, and binder can be, for example, 3 to 30% by mass. The negative electrode structure is more stably maintained when the proportion of the binder is equal to or higher than the lower limit of the above range, and the discharge capacity is more when the proportion of the binder is equal to or lower than the upper limit of the above range. improves.

(その他の成分)
負極材には、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダー以外に、これらに該当しないその他の成分がさらに配合されていてもよい。
その他の成分としては、目的に応じて任意に選択でき、好ましいものとしては、上記の配合成分(酸化ケイ素、粒子状導電助剤、繊維状導電助剤、バインダー)を溶解又は分散させるための溶媒が例示できる。
このように、さらに溶媒が配合されてなる負極材は、使用時において流動性を有する液状組成物であることが好ましい。
(Other ingredients)
The negative electrode material may further contain other components not corresponding to these, in addition to silicon oxide, particulate conductive auxiliary, fibrous conductive auxiliary and binder.
The other components can be arbitrarily selected according to the purpose, and as a preferable one, a solvent for dissolving or dispersing the above-described compounding components (silicon oxide, particulate conductive assistant, fibrous conductive assistant, binder) Can be illustrated.
Thus, it is preferable that the negative electrode material further blended with a solvent is a liquid composition having fluidity at the time of use.

溶媒は、配合成分の種類に応じて任意に選択でき、好ましいものとしては、水、有機溶媒が例示できる。
有機溶媒で好ましいものとしては、メタノール、エタノール、1−プロパノール、2−プロパノール等のアルコール;N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。
溶媒は、一種を単独で用いてもよいし、二種以上を併用してもよく、二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すればよい。
A solvent can be arbitrarily selected according to the kind of compounding component, and water and an organic solvent can be illustrated as a preferable thing.
Preferred organic solvents include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone (NMP) and N, N-dimethylformamide (DMF); acetone and the like Can be exemplified.
A solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio may be suitably selected according to the objective.

負極材における溶媒の配合量は、特に限定されず、目的に応じて適宜調節すればよい。例えば、溶媒が配合された液状組成物である負極材を塗工及び乾燥させて負極活物質層を形成する場合には、この液状組成物が塗工に適した粘度となるように、溶媒の配合量を調節すればよい。具体的には、負極材において、配合成分の総量に対する、溶媒以外の配合成分の総量の割合が、好ましくは5〜60質量%、より好ましくは10〜35質量%となるように、溶媒の配合量を調節するとよい。   The amount of the solvent in the negative electrode material is not particularly limited, and may be adjusted as appropriate according to the purpose. For example, when a negative electrode material that is a liquid composition containing a solvent is applied and dried to form a negative electrode active material layer, the solvent composition is adjusted so that the liquid composition has a viscosity suitable for coating. What is necessary is just to adjust a compounding quantity. Specifically, in the negative electrode material, the blending of the solvent so that the ratio of the total amount of the blending components other than the solvent to the total amount of the blending components is preferably 5 to 60% by mass, more preferably 10 to 35% by mass. Adjust the amount.

上記のその他の成分として、溶媒以外の成分(その他の固体成分)を配合する場合には、負極材において、溶媒以外の配合成分の総量に対する、その他の固体成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。   When a component other than the solvent (other solid component) is blended as the other component, the proportion of the blended amount of the other solid component with respect to the total amount of the blended component other than the solvent in the negative electrode material is 10 mass. % Or less, and more preferably 5% by mass or less.

負極材は、酸化ケイ素、粒子状導電助剤、繊維状導電助剤、バインダー、及び必要に応じてその他の成分を配合することで製造できる。   A negative electrode material can be manufactured by mix | blending a silicon oxide, a particulate-form conductive support agent, a fibrous conductive support agent, a binder, and another component as needed.

負極活物質層が形成される負極集電体の材料として、例えば、銅(Cu)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼等が挙げられる。
負極集電体はシート状(板状)であることが好ましく、その厚さは、5μm〜20μmであることが好ましい。
Examples of the material of the negative electrode current collector on which the negative electrode active material layer is formed include copper (Cu), titanium (Ti), nickel (Ni), and stainless steel.
The negative electrode current collector is preferably in the form of a sheet (plate), and the thickness is preferably 5 μm to 20 μm.

負極集電体における複数の貫通孔の直径(穴径)は、例えば、0.01mm〜5mmが好ましく、0.1mm〜1mmがより好ましく、0.2mm〜0.5mmがさらに好ましい。上記範囲の下限値以上であると、リチウムイオン等の電解質が集電体を容易に透過することができ、上記範囲の上限値以下であると、負極活物質層を充分に保持することができる。複数の貫通孔の大きさは同じであってもよいし、異なっていてもよい。複数の貫通孔は、集電体の全体に偏りなく分布していることが好ましい。   The diameter (hole diameter) of the plurality of through holes in the negative electrode current collector is, for example, preferably 0.01 mm to 5 mm, more preferably 0.1 mm to 1 mm, and still more preferably 0.2 mm to 0.5 mm. When it is at least the lower limit of the above range, an electrolyte such as lithium ion can easily pass through the current collector, and when it is at most the upper limit of the above range, the negative electrode active material layer can be sufficiently retained. . The size of the plurality of through holes may be the same or different. The plurality of through holes are preferably distributed evenly throughout the current collector.

[正極材]
正極材としては、例えば、正極活物質、バインダー及び溶媒、並びに必要に応じて導電助剤等が配合されてなる正極材が挙げられる。
[Positive electrode material]
Examples of the positive electrode material include a positive electrode material in which a positive electrode active material, a binder, a solvent, and a conductive auxiliary agent are blended as necessary.

正極活物質としては、一般式「LiM(式中、Mは金属であり;x及びyは、金属Mと酸素Oとの組成比である。)」で表される金属酸リチウム化合物が例示できる。
このような金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示でき、類似の組成であるオリビン型リン酸鉄リチウム(LiFePO)を用いることもできる。
金属酸リチウム化合物は、上記の一般式において、Mが複数種のものであってもよく、このような金属酸リチウム化合物としては、一般式「LiM (式中、M、M及びMは互いに異なる種類の金属であり;p、q、r及びyは、金属M、M及びMと酸素Oとの組成比である。)」で表されるものが例示できる。ここで、p+q+r=xである。このような金属酸リチウム化合物としては、LiNi0.33Mn0.33Co0.33等が例示できる。
正極活物質は、一種を単独で用いてもよいし、二種以上を併用してもよい。
As the positive electrode active material, a lithium metal acid compound represented by the general formula “LiM x O y (wherein M is a metal; x and y are composition ratios of metal M and oxygen O)” Can be illustrated.
Examples of such a metal acid lithium compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like, and olivine iron phosphate having a similar composition. Lithium (LiFePO 4 ) can also be used.
In the above general formula, M may be a plurality of metal acid lithium compounds. As such a metal acid lithium compound, the general formula “LiM 1 p M 2 q M 3 r O y (formula Where M 1 , M 2 and M 3 are different types of metals; p, q, r and y are the composition ratios of the metals M 1 , M 2 and M 3 and oxygen O). What is represented can be exemplified. Here, p + q + r = x. Examples of such a metal acid lithium compound include LiNi 0.33 Mn 0.33 Co 0.33 O 2 .
A positive electrode active material may be used individually by 1 type, and may use 2 or more types together.

正極材における導電助剤としては、例えば、黒鉛(グラファイト);ケッチェンブラック、アセチレンブラック等のカーボンブラック;カーボンナノチューブ;カーボンナノホーン;グラフェン;フラーレン等が挙げられる。
正極における導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
Examples of the conductive aid in the positive electrode material include graphite (graphite); carbon black such as ketjen black and acetylene black; carbon nanotube; carbon nanohorn; graphene; fullerene.
The conductive auxiliary in a positive electrode may be used individually by 1 type, and may use 2 or more types together.

正極材におけるバインダー、溶媒及び集電体は、いずれも負極におけるバインダー、溶媒及び集電体と同様のものでよい。
正極活物質層が形成される正極集電体の材料として、例えば、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼等が挙げられる。
正極集電体はシート状(板状)であることが好ましく、その厚さは、2μm〜50μmが好ましく、5μm〜20μmがより好ましい。薄い方が電池の軽量化及び薄型化に有利である一方、薄過ぎると引張強度が劣り、充放電に伴う正極活物質層の膨張収縮により破損し易くなる。上記好適な範囲であると、電池の軽量化及び薄型化と、集電体の強度保持及び伸び率とのバランスが良好となる。
The binder, the solvent and the current collector in the positive electrode material may all be the same as the binder, the solvent and the current collector in the negative electrode.
Examples of the material of the positive electrode current collector on which the positive electrode active material layer is formed include aluminum (Al), titanium (Ti), nickel (Ni), and stainless steel.
The positive electrode current collector is preferably in the form of a sheet (plate), and the thickness is preferably 2 μm to 50 μm, and more preferably 5 μm to 20 μm. While the thinner is advantageous for reducing the weight and thickness of the battery, if it is too thin, the tensile strength is inferior, and the positive electrode active material layer is easily damaged due to expansion / contraction due to charge / discharge. Within the preferred range, the balance between the weight reduction and thickness reduction of the battery and the strength retention and elongation rate of the current collector are good.

正極集電体における複数の貫通孔の直径(穴径)は、例えば、0.01mm〜5mmが好ましく、0.1mm〜1mmがより好ましく、0.2mm〜0.5mmがさらに好ましい。上記範囲の下限値以上であると、リチウムイオン等の電解質が集電体を容易に透過することができ、上記範囲の上限値以下であると、正極活物質層を充分に保持するとともに、集電体の引張強度が極度に低下することを防止できる。複数の貫通孔の大きさは同じであってもよいし、異なっていてもよい。複数の貫通孔は、集電体の全体に偏りなく分布していることが好ましい。   For example, the diameter (hole diameter) of the plurality of through holes in the positive electrode current collector is preferably 0.01 mm to 5 mm, more preferably 0.1 mm to 1 mm, and still more preferably 0.2 mm to 0.5 mm. When it is at least the lower limit of the above range, an electrolyte such as lithium ion can easily pass through the current collector, and when it is below the upper limit of the above range, the positive electrode active material layer can be sufficiently retained and It can prevent that the tensile strength of an electric body falls extremely. The size of the plurality of through holes may be the same or different. The plurality of through holes are preferably distributed evenly throughout the current collector.

正極材における、配合成分の総量に対する、正極活物質、バインダー、溶媒、及び導電助剤のそれぞれの配合量の割合は、負極材における、配合成分の総量に対する、負極活物質、バインダー、溶媒、及び導電助剤のそれぞれの配合量の割合と同様とすることができる。   The ratio of the amount of each of the positive electrode active material, the binder, the solvent, and the conductive additive to the total amount of the blending components in the positive electrode material is the ratio of the negative electrode active material, the binder, the solvent, and the total amount of the blending components in the negative electrode material. The ratio can be the same as the ratio of the respective amounts of the conductive assistant.

[電解液]
電解液としては、公知のリチウムイオン二次電池に使用されるものが適用可能であり、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、リチウムビスフルオロスルホニルイミド(LiFSI)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SOCF、LiTFSI)等の公知のリチウム塩が有機溶媒に溶解されてなるものが挙げられる。
電解液における電解質は、一種を単独で用いてもよいし、二種以上を併用してもよい。
[Electrolyte]
As the electrolytic solution, those used in known lithium ion secondary batteries can be applied. For example, lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium bisfluorosulfonyl Examples include those prepared by dissolving a known lithium salt such as imide (LiFSI), bis (trifluoromethanesulfonyl) imide lithium (LiN (SO 2 CF 3 ) 2 , LiTFSI) in an organic solvent.
The electrolyte in the electrolytic solution may be used alone or in combination of two or more.

電解液における有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ビニレンカーボネート等の炭酸エステル化合物;γ−ブチロラクトン等のラクトン化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物が例示できる。
有機溶媒は、一種を単独で用いてもよいし、二種以上を併用してもよい。
電解液中のリチウム濃度は、公知のリチウムイオン二次電池の場合と同様でよい。
電解液には、本発明の効果を損なわない範囲内において、公知のリチウムイオン二次電池の電解液に使用される任意成分が配合されていてもよい。
Examples of the organic solvent in the electrolytic solution include carbonate compounds such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and vinylene carbonate; lactone compounds such as γ-butyrolactone; methyl formate, methyl acetate And carboxylic acid ester compounds such as methyl propionate; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; and sulfone compounds such as sulfolane.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
The lithium concentration in the electrolytic solution may be the same as that of a known lithium ion secondary battery.
In the electrolytic solution, an optional component used for the electrolytic solution of a known lithium ion secondary battery may be blended within a range not impairing the effects of the present invention.

[セパレータ]
セパレータ2の材料としては、例えば、多孔性樹脂膜、不織布、ガラスファイバー等が挙げられる。
また、セパレータ2として、正極活物質層の表面又は負極活物質層の表面に形成され、正極1と負極3を絶縁し、電解液を保持及び透過させることが可能な多孔性絶縁層も適用可能である。多孔性絶縁層は、例えば、絶縁性無機粒子及びバインダー樹脂を含む組成物を負極3又は正極1の表面に塗工して乾燥させる公知方法によって形成される。多孔性絶縁層の厚みとしては、例えば0.5μm〜50μm程度が好ましい。
[Separator]
Examples of the material of the separator 2 include a porous resin film, a nonwoven fabric, and glass fiber.
Further, as the separator 2, a porous insulating layer formed on the surface of the positive electrode active material layer or the surface of the negative electrode active material layer, which can insulate the positive electrode 1 and the negative electrode 3 and can hold and permeate the electrolytic solution is also applicable. It is. The porous insulating layer is formed by, for example, a known method in which a composition containing insulating inorganic particles and a binder resin is applied to the surface of the negative electrode 3 or the positive electrode 1 and dried. The thickness of the porous insulating layer is preferably about 0.5 μm to 50 μm, for example.

<作用効果>
本発明に係るリチウムイオン二次電池10によれば、上記したように、 負極集電体31における貫通孔31aの開孔率K2よりも、正極集電体11における貫通孔11aの開孔率K1が低い構成とすることで、この正極集電体11の機械的強度、特に引張強度の確保及び伸び率の向上を達成できるので、正極集電体11が用いられる正極1の機械的強度及び伸び率も向上する。これにより、充放電に伴って各電極に膨張収縮が生じた際に、特に強度が低めである正極集電体11を含む正極1の物理的損壊が生じるのが抑制され、電池特性の低下を防止できる。また、正極集電体11及び負極集電体31に、最適化された開孔率K1,K2で複数の貫通孔11a,31aが設けられていることで、プレドープ処理によって負極活物質層32にリチウムイオンを効果的に拡散させることができ、十分な放電容量を確保できる。従って、充放電を繰り返して使用した際に放電容量が低下するのが抑制され、電池特性に優れたリチウムイオン二次電池10が実現できる。
<Effect>
According to the lithium ion secondary battery 10 according to the present invention, as described above, the opening ratio K1 of the through hole 11a in the positive electrode current collector 11 is higher than the opening ratio K2 of the through hole 31a in the negative electrode current collector 31. Since the mechanical strength of the positive electrode current collector 11, in particular, the tensile strength can be ensured and the elongation rate can be improved, the mechanical strength and elongation of the positive electrode 1 in which the positive electrode current collector 11 is used. The rate is also improved. Thereby, when expansion and contraction occurs in each electrode with charge / discharge, the physical damage of the positive electrode 1 including the positive electrode current collector 11 having particularly low strength is suppressed, and the battery characteristics are reduced. Can be prevented. In addition, since the positive electrode current collector 11 and the negative electrode current collector 31 are provided with a plurality of through holes 11a and 31a with optimized aperture ratios K1 and K2, the negative electrode active material layer 32 is subjected to pre-doping treatment. Lithium ions can be effectively diffused and a sufficient discharge capacity can be secured. Therefore, when the charge and discharge are repeatedly used, the discharge capacity is prevented from being reduced, and the lithium ion secondary battery 10 having excellent battery characteristics can be realized.

以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<実施例1>
[負極の作製]
一酸化ケイ素(SiO、平均粒子径1.0μm、69質量部)、SBR(3質量部)、及びポリアクリル酸(12質量部)を試薬瓶に入れ、さらに蒸留水を添加して濃度調整した後、自公転ミキサーを用いて2000rpmで2分間混合した。次いで、この混合物にアセチレンブラック(10質量部)を加え、自公転ミキサーを用いて2000rpmで2分間混合した。そして、この混合物を超音波ホモジナイザーで10分間、分散処理した後、再度、自公転ミキサーを用いてこの分散物を2000rpmで2分間混合することにより、負極材のスラリーを得た。
<Example 1>
[Production of negative electrode]
Silicon monoxide (SiO, average particle size 1.0 μm, 69 parts by mass), SBR (3 parts by mass), and polyacrylic acid (12 parts by mass) were placed in a reagent bottle, and distilled water was added to adjust the concentration. Then, it mixed for 2 minutes at 2000 rpm using the self-revolving mixer. Subsequently, acetylene black (10 mass parts) was added to this mixture, and it mixed for 2 minutes at 2000 rpm using the self-revolving mixer. Then, this mixture was subjected to a dispersion treatment with an ultrasonic homogenizer for 10 minutes, and then this dispersion was again mixed at 2000 rpm for 2 minutes using a self-revolving mixer to obtain a slurry of a negative electrode material.

[正極材の調製]
コバルト酸リチウム(LiCoO)(93質量部)と、ポリフッ化ビニリデン(PVDF)(4質量部)と、導電助剤であるカーボンブラック(3質量部)とを混合して正極合材を調製し、これをN−メチルピロリドン(NMP)中に分散させて、正極材のスラリーを得た。
[Preparation of cathode material]
Lithium cobaltate (LiCo 2 O) (93 parts by mass), polyvinylidene fluoride (PVDF) (4 parts by mass), and carbon black (3 parts by mass) as a conductive additive are mixed to prepare a positive electrode mixture. This was dispersed in N-methylpyrrolidone (NMP) to obtain a positive electrode material slurry.

[負極の作製]
まず、負極集電体31として、複数の貫通孔31aが形成されたパンチング銅箔(縦×横=40mm×55mm,厚さ10μm,穴径0.35mm,開孔率30%、福田金属箔粉工業株式会社製)を準備した。
そして、負極集電体31の両面に、塗工厚み30μmで上記の負極材を塗布し、乾燥させた後、プレスすることで、負極集電体31とほぼ同面積の負極活物質層32が形成された負極3を得た。
[Production of negative electrode]
First, as the negative electrode current collector 31, a punched copper foil having a plurality of through holes 31a (vertical × horizontal = 40 mm × 55 mm, thickness 10 μm, hole diameter 0.35 mm, aperture ratio 30%, Fukuda metal foil powder Industrial Co., Ltd.) was prepared.
And after apply | coating said negative electrode material with the coating thickness of 30 micrometers on both surfaces of the negative electrode collector 31 and making it dry, the negative electrode active material layer 32 of the substantially the same area as the negative electrode collector 31 is obtained. The formed negative electrode 3 was obtained.

[正極の作製]
まず、正極集電体11として、複数の貫通孔11aが形成されたパンチングアルミニウム箔(縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,開孔率15%、福田金属箔粉工業株式会社製)を準備した。
そして、正極集電体11の両面に、塗工厚み42.5μmで上記の正極材を塗布し、乾燥させた後、プレスすることで、正極集電体11とほぼ同面積の正極活物質層12が形成された正極1を得た。
[Production of positive electrode]
First, as the positive electrode current collector 11, a punched aluminum foil having a plurality of through holes 11a (vertical × horizontal = 40 mm × 55 mm, thickness 15 μm, hole diameter 0.35 mm, open area ratio 15%, Fukuda metal foil powder Industrial Co., Ltd.) was prepared.
Then, the positive electrode material is applied to the both sides of the positive electrode current collector 11 with a coating thickness of 42.5 μm, dried, and then pressed to form a positive electrode active material layer having substantially the same area as the positive electrode current collector 11. The positive electrode 1 in which 12 was formed was obtained.

[電解液の作製]
EC及びPCの混合溶媒(EC:PC=30:70(体積比))に、濃度1.0モル/kgとなるようにシュウ酸リチウム−三フッ化ホウ素錯体を加え、23℃で混合することにより、電解液を得た。
[Preparation of electrolyte]
To a mixed solvent of EC and PC (EC: PC = 30: 70 (volume ratio)), add a lithium oxalate-boron trifluoride complex to a concentration of 1.0 mol / kg, and mix at 23 ° C. Thus, an electrolytic solution was obtained.

[電極積層体の作製]
図1及び図2に示す電極積層体9を、以下の方法で製造した。
まず、上記で作製した負極3及び正極1の間に、厚さ25μm、表面積42cm×57cmのセパレータ2(積水化学工業株式会社製)を配置して積層して電極ユニット(負極/セパレータ/正極)を得た。
次いで、上記の電極ユニットを4つ準備し、負極3におけるセパレータ2側とは反対側の片面に、この負極3とほぼ同面積とされた、厚みが100μmのリチウム金属箔4を設置した。
そして、上記の各電極ユニットを、隣接するユニット同士の正極1と負極3(リチウム金属箔4)とが向い合うように、各電極ユニット間にセパレータ2を配置しながら、第1〜第4電極ユニットU1〜U4を積層した。この積層体の最外層は、第1ユニットU1の正極1と、第4ユニットU4の負極3の片面に配置されたリチウム金属箔4である。
さらに、最外層の第1ユニットU1の正極1の表面に、セパレータ2を介して、片面側にリチウム金属箔4が配置された負極3を、該負極3が最外層となるように設置し、電極積層体9を得た(図1参照)。
[Production of electrode laminate]
The electrode laminate 9 shown in FIGS. 1 and 2 was manufactured by the following method.
First, a separator 2 (manufactured by Sekisui Chemical Co., Ltd.) having a thickness of 25 μm and a surface area of 42 cm × 57 cm is disposed between the negative electrode 3 and the positive electrode 1 produced above and laminated to form an electrode unit (negative electrode / separator / positive electrode). Got.
Next, four electrode units were prepared, and a lithium metal foil 4 having a thickness of 100 μm and having substantially the same area as that of the negative electrode 3 was placed on one surface of the negative electrode 3 opposite to the separator 2 side.
Then, the first to fourth electrodes are arranged with the separator 2 disposed between the electrode units so that the positive electrode 1 and the negative electrode 3 (lithium metal foil 4) of the adjacent units face each other. Units U1 to U4 were stacked. The outermost layer of this laminate is a lithium metal foil 4 disposed on one side of the positive electrode 1 of the first unit U1 and the negative electrode 3 of the fourth unit U4.
Furthermore, on the surface of the positive electrode 1 of the first unit U1 of the outermost layer, the negative electrode 3 in which the lithium metal foil 4 is arranged on one side via the separator 2 is installed so that the negative electrode 3 becomes the outermost layer, An electrode laminate 9 was obtained (see FIG. 1).

[電池の組み立て]
電極積層体9を構成する各々の負極3を電気的に接続するリードタブ3zと、各々の正極1を電気的に接続するリードタブ1zとを外部へ突出させた状態で、電極積層体9をアルミラミネート製の図示略の外装体へ収納して該外装体を仮封止し、外装体内部に電解液を注入した後、本封止することにより、図1及び図2に示すリチウムイオン二次電池10を得た。
[Battery assembly]
With the lead tab 3z electrically connecting each negative electrode 3 constituting the electrode laminate 9 and the lead tab 1z electrically connecting each positive electrode 1 protruding outward, the electrode laminate 9 is aluminum laminated. The lithium ion secondary battery shown in FIG. 1 and FIG. 2 is housed in an unillustrated exterior body and temporarily sealed, and the electrolyte is injected into the exterior body and then sealed. 10 was obtained.

[リチウムのプレドープ工程]
上記で製造したリチウムイオン二次電池10を加圧治具で加圧した状態で固定し、25℃の恒温槽中にて72時間静置することにより、リチウムのプレドープ処理を行った。
[Lithium pre-doping process]
The lithium ion secondary battery 10 produced above was fixed in a state where it was pressurized with a pressure jig, and was left in a thermostatic bath at 25 ° C. for 72 hours to perform a lithium pre-doping treatment.

<実施例2>
実施例2では、実施例1で作製した電極積層体9において、各々の正極1における正極集電体11に用いられるパンチングアルミニウム箔(縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,福田金属箔粉工業株式会社製)として、貫通孔11aによる開孔率が10%であるものを採用した点を除き、実施例1と同様の条件及び手順で正極1並びに電極積層体9を製造し、実施例1と同様にリチウムイオン二次電池10を作製した(図1参照)。
そして、実施例1と同様の条件及び手順により、リチウムのプレドープ処理を行った。
<Example 2>
In Example 2, in the electrode laminate 9 produced in Example 1, punching aluminum foil (length × width = 40 mm × 55 mm, thickness 15 μm, hole diameter 0. 0 mm) used for the positive electrode current collector 11 in each positive electrode 1. 35 mm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), the positive electrode 1 and the electrode laminate 9 were subjected to the same conditions and procedures as in Example 1 except that one having a through-hole ratio of 10% was adopted. A lithium ion secondary battery 10 was produced in the same manner as in Example 1 (see FIG. 1).
Then, a lithium pre-doping treatment was performed under the same conditions and procedures as in Example 1.

<実施例3>
実施例3では、実施例1で作製した電極積層体9において、各々の正極1における正極集電体11に用いられるパンチングアルミニウム箔(縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,福田金属箔粉工業株式会社製)として、貫通孔の無い無孔板を採用した点を除き、実施例1と同様の条件及び手順で正極1並びに電極積層体9を製造し、実施例1と同様にリチウムイオン二次電池10を作製した。
そして、実施例1と同様の条件及び手順により、リチウムのプレドープ処理を行った。
<Example 3>
In Example 3, punching aluminum foil (length × width = 40 mm × 55 mm, thickness 15 μm, hole diameter 0. 0 mm) used for the positive electrode current collector 11 in each positive electrode 1 in the electrode laminate 9 produced in Example 1. 35 mm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), the positive electrode 1 and the electrode laminate 9 were produced under the same conditions and procedures as in Example 1, except that a non-perforated plate without through holes was adopted. A lithium ion secondary battery 10 was produced in the same manner as in Example 1.
Then, a lithium pre-doping treatment was performed under the same conditions and procedures as in Example 1.

<比較例>
比較例では、実施例1で作製した電極積層体において、各々の正極における正極集電体に用いられるパンチングアルミニウム箔(縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,福田金属箔粉工業株式会社製)として、貫通孔による開孔率が30%であるものを採用し、正極集電体及び負極集電体における開孔率を同じに設定した点を除き、実施例1と同様の条件及び手順で正極1並びに電極積層体9を製造し、実施例1と同様にリチウムイオン二次電池を作製した。
そして、実施例1と同様の条件及び手順により、リチウムのプレドープ処理を行った。
<Comparative example>
In the comparative example, in the electrode laminate produced in Example 1, punching aluminum foil (vertical × horizontal = 40 mm × 55 mm, thickness 15 μm, hole diameter 0.35 mm, Fukuda Metal, used for the positive electrode current collector in each positive electrode Example 1 except that the aperture ratio of the through-holes is 30%, and the aperture ratios of the positive electrode current collector and the negative electrode current collector are set to be the same. The positive electrode 1 and the electrode laminate 9 were produced under the same conditions and procedures as in Example 1, and a lithium ion secondary battery was produced in the same manner as in Example 1.
Then, a lithium pre-doping treatment was performed under the same conditions and procedures as in Example 1.

<評価方法>
[リチウムイオン二次電池の充放電特性の評価]
上記の実施例1〜3及び比較例で作製したリチウムイオン二次電池について、25℃において0.1Cの定電流定電圧充電を、上限電圧4.35Vとして電流値が0.05Cに収束するまで行った後、0.1Cの定電流放電を2.5Vまで行った。
次いで、充放電電流を0.5Cとして、上記同様の方法で充放電サイクルを3回繰り返し行い、リチウムイオン二次電池の状態を安定させた。
<Evaluation method>
[Evaluation of charge / discharge characteristics of lithium ion secondary battery]
About the lithium ion secondary battery produced by said Examples 1-3 and the comparative example, until the electric current value converges to 0.05C by making constant current constant voltage charge of 0.1C in 25 degreeC into the upper limit voltage 4.35V Then, a constant current discharge of 0.1 C was performed up to 2.5V.
Subsequently, the charge / discharge current was set to 0.5 C, and the charge / discharge cycle was repeated three times in the same manner as described above to stabilize the state of the lithium ion secondary battery.

次いで、充放電電流を0.2Cとして、上記同様の方法で充放電を行なった。
そして、この結果に基づいて、容量発現率(%):{[1サイクル目の放電容量(mAh)]/[定格容量(mAh)]}×100)、及び、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、100サイクルでの容量維持率(%):({[100サイクル目の放電容量(mAh)]/[1サイクル目の放電容量(mAh)]}×100)を算出した。
Subsequently, charging / discharging was performed by the method similar to the above by setting charging / discharging electric current as 0.2C.
And based on this result, the capacity expression rate (%): {[discharge capacity (mAh) at the first cycle] / [rated capacity (mAh)]} × 100) and the charge / discharge current as 1 C are the same. The capacity retention rate at 100 cycles (%): ({[discharge capacity at the 100th cycle (mAh)] / [discharge capacity at the 1st cycle (mAh)]} × 100) Was calculated.

[リチウムイオン二次電池の充放電特性試験後の電極崩壊の有無]
上記手順で充放電特性を評価した実施例1〜3及び比較例のリチウムイオン二次電池を分解し、充放電に伴って膨張収縮が生じる正極及び負極を目視確認し、物理的損壊の有無を確認した。
[Presence or absence of electrode collapse after charge / discharge characteristics test of lithium ion secondary battery]
Disassembling the lithium ion secondary batteries of Examples 1 to 3 and the comparative example evaluated for charge / discharge characteristics according to the above procedure, visually confirming the positive electrode and the negative electrode where expansion and contraction occur with charge / discharge, and whether there is physical damage confirmed.

<評価結果>
上記の評価試験の結果、まず、正極集電体に設けられた貫通孔の開孔率が10%とされた実施例2、及び、無孔板(開孔率0%)を正極集電体に用いた実施例3においては、正極における割れ等の物理的損壊は生じていなかった。一方、正極集電体に設けられた貫通孔の開孔率が15%とされた実施例1においては、正極の一部に割れが生じているのが確認されたものの、電池としての性能には影響の無い程度であった。これは、正極集電体として、貫通孔が無いか、あるいは、貫通孔の開孔率が低いものと採用することで、アルミニウム金属箔からなる正極集電体の機械的強度及び伸び率が改善されたため、充放電に伴う正極及び負極の膨張又は収縮が発生した際に、割れ等の物理的損壊が生じるのが抑制されたためと考えられる。
<Evaluation results>
As a result of the above-described evaluation test, first, Example 2 in which the aperture ratio of the through holes provided in the positive electrode current collector was 10% and the non-perforated plate (the aperture ratio 0%) were changed to the positive electrode current collector. In Example 3 used for the above, no physical damage such as cracking in the positive electrode occurred. On the other hand, in Example 1 in which the aperture ratio of the through holes provided in the positive electrode current collector was 15%, it was confirmed that cracks occurred in a part of the positive electrode, but the performance as a battery was improved. Was insignificant. This is because the positive electrode current collector has no through-holes or has a low open-hole ratio, improving the mechanical strength and elongation of the positive electrode current collector made of aluminum metal foil. For this reason, it is considered that physical damage such as cracking is suppressed when expansion or contraction of the positive electrode and the negative electrode accompanying charging / discharging occurs.

これに対し、正極集電体に設けられた貫通孔の開孔率が30%と、負極集電体と同じ開孔率とされた比較例においては、充放電特性(サイクル特性)試験後の分解確認において、正極全体に割れが生じていることが確認された。これは、正極集電体に設けられた貫通孔の開孔率が大きいため、アルミニウム金属箔からなる正極集電体の機械的強度が低下するのに伴って正極全体の強度が低下したため、充放電の繰り返しによって正極及び負極の膨張又は収縮が発生した際に、強度の低い正極全体に割れが生じたものと考えられる。   On the other hand, in the comparative example in which the aperture ratio of the through holes provided in the positive electrode current collector was 30% and the same aperture ratio as that of the negative electrode current collector, the charge and discharge characteristics (cycle characteristics) after the test In the confirmation of decomposition, it was confirmed that the entire positive electrode was cracked. This is because the opening ratio of the through holes provided in the positive electrode current collector is large, and the mechanical strength of the positive electrode current collector made of aluminum metal foil is reduced. It is considered that when the positive electrode and the negative electrode expanded or contracted due to repeated discharge, the entire positive electrode with low strength was cracked.

また、正極集電体に設けられた貫通孔の開孔率(0%を含む)と、負極集電体に設けられた貫通孔の開孔率との関係が、本発明で規定する範囲とされた実施例1〜3においては、100サイクルの充放電を繰り返した後の容量維持率が80(%)(実施例1)、85(%)(実施例2)、90(%)(実施例3)と、全ての例において80(%)以上であり、サイクル特性に優れていることが確認できた。これは、まず、負極集電体に貫通孔が設けられており、電池製造時のリチウムのプレドープ処理においてリチウムイオンが効果的に拡散して移動することから、放電容量が増大したことが考えられる。また、上記のように、実施例1〜3においては、電極における大きな物理的損壊が発生しなかったため、優れたサイクル特性が得られていると考えられる。   In addition, the relationship between the aperture ratio (including 0%) of the through holes provided in the positive electrode current collector and the aperture ratio of the through holes provided in the negative electrode current collector is within the range specified in the present invention. In Examples 1-3, the capacity retention ratio after repeating 100 cycles of charge / discharge was 80 (%) (Example 1), 85 (%) (Example 2), 90 (%) In Example 3) and in all examples, it was 80 (%) or more, and it was confirmed that the cycle characteristics were excellent. This is probably because the negative electrode current collector is provided with a through-hole, and lithium ions are effectively diffused and moved in the lithium pre-doping process during battery production, which increases the discharge capacity. . Further, as described above, in Examples 1 to 3, it was considered that excellent cycle characteristics were obtained because no large physical damage occurred in the electrodes.

これに対し、正極集電体及び負極集電体における貫通孔の開孔率を同じ(30%)に設定した比較例においては、100サイクルの充放電を繰り返した後の容量維持率が55(%)と、実施例1〜3に比べて著しく劣るものとなった。これは、上記のように、比較例においては、正極全体に割れが生じたため、電池特性が著しく低下し、サイクル特性に劣るものになったと考えられる。上記の結果を表1に示す。   On the other hand, in the comparative example in which the aperture ratio of the through holes in the positive electrode current collector and the negative electrode current collector was set to be the same (30%), the capacity retention rate after repeating 100 cycles of charge / discharge was 55 ( %) And remarkably inferior to Examples 1-3. As described above, in the comparative example, cracking occurred in the entire positive electrode, so that the battery characteristics were remarkably deteriorated and the cycle characteristics were inferior. The results are shown in Table 1.

Figure 2017152243
Figure 2017152243

以上説明した実施例の結果より、本発明に係る構成を備えるリチウムイオン二次電池が、電極の機械的強度を低下させることなく効果的にプレドープ処理を行うことができ、電池特性に優れていることが明らかである。   From the results of the examples described above, the lithium ion secondary battery having the configuration according to the present invention can be effectively pre-doped without reducing the mechanical strength of the electrode, and has excellent battery characteristics. It is clear.

10,10A…リチウムイオン二次電池、1,1A…正極、11,11A…正極集電体、11a…貫通孔(複数の貫通孔)、12…正極活物質層、1z…リードタブ、2…セパレータ、3…負極、31…負極集電体、31a…貫通孔(複数の貫通孔)、32…負極活物質層、3z…リードタブ、4…リチウム金属箔、9…電極積層体、U1,U2,U3,U4…電極ユニット DESCRIPTION OF SYMBOLS 10,10A ... Lithium ion secondary battery, 1, 1A ... Positive electrode, 11, 11A ... Positive electrode collector, 11a ... Through-hole (several through-holes), 12 ... Positive electrode active material layer, 1z ... Lead tab, 2 ... Separator DESCRIPTION OF SYMBOLS 3 ... Negative electrode, 31 ... Negative electrode collector, 31a ... Through-hole (several through-holes), 32 ... Negative electrode active material layer, 3z ... Lead tab, 4 ... Lithium metal foil, 9 ... Electrode laminated body, U1, U2, U3, U4 ... Electrode unit

Claims (5)

少なくとも、1以上の正極と、1以上の負極と、を備え、
前記正極は、板状の正極集電体と、その両面又は片面に設けられた正極活物質層と、を有し、
前記負極は、板状の負極集電体と、その両面又は片面に設けられた負極活物質層と、を有し、
前記正極集電体及び前記負極集電体は、複数の貫通孔を有する有孔板からなり、
さらに、前記正極集電体及び前記負極集電体は、それぞれ、片面の全面積に対する、複数の前記貫通孔を平面視した合計面積の割合を各々の開孔率としたとき、前記負極集電体の開孔率よりも前記正極集電体の開孔率が低いことを特徴とするリチウムイオン二次電池。
At least one or more positive electrodes and one or more negative electrodes,
The positive electrode has a plate-shaped positive electrode current collector and a positive electrode active material layer provided on both sides or one side thereof,
The negative electrode has a plate-shaped negative electrode current collector and a negative electrode active material layer provided on both sides or one side thereof,
The positive electrode current collector and the negative electrode current collector are composed of a perforated plate having a plurality of through holes,
Further, each of the positive electrode current collector and the negative electrode current collector has a ratio of a total area in a plan view of the plurality of through-holes with respect to the total area of one surface, and the negative electrode current collector A lithium ion secondary battery, wherein the positive electrode current collector has a lower porosity than a body.
前記負極集電体における複数の前記貫通孔の開孔率が15%超50%以下であり、前記正極集電体における複数の前記貫通孔の開孔率が0%超30%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。   The opening ratio of the plurality of through holes in the negative electrode current collector is more than 15% and 50% or less, and the opening ratio of the plurality of through holes in the positive electrode current collector is more than 0% and 30% or less. The lithium ion secondary battery according to claim 1. 1以上の正極と、1以上の負極と、を備え、
前記正極は、板状の正極集電体と、その両面又は片面に設けられた正極活物質層と、を有し、
前記負極は、板状の負極集電体と、その両面又は片面に設けられた負極活物質層と、を有し、
前記正極集電体は、貫通孔を有さない無孔板からなり、
前記負極集電体は、複数の貫通孔を有する有孔板からなることを特徴とするリチウムイオン二次電池。
One or more positive electrodes and one or more negative electrodes,
The positive electrode has a plate-shaped positive electrode current collector and a positive electrode active material layer provided on both sides or one side thereof,
The negative electrode has a plate-shaped negative electrode current collector and a negative electrode active material layer provided on both sides or one side thereof,
The positive electrode current collector is a non-porous plate having no through holes,
The negative electrode current collector is formed of a perforated plate having a plurality of through holes.
前記負極集電体は、片面の全面積に対する、複数の前記貫通孔を平面視した合計面積の割合である開孔率が15%超50%以下の範囲であることを特徴とする請求項3に記載のリチウムイオン二次電池。   4. The negative electrode current collector has a hole area ratio, which is a ratio of a total area of the plurality of through holes in a plan view with respect to the entire area of one side, in a range of more than 15% and 50% or less. 5. The lithium ion secondary battery described in 1. 前記負極活物質層には、初期充電前に、リチウムがプレドープされていることを特徴とする請求項1〜請求項4の何れか一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the negative electrode active material layer is pre-doped with lithium before initial charging.
JP2016034200A 2016-02-25 2016-02-25 Lithium ion secondary battery Active JP6725261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034200A JP6725261B2 (en) 2016-02-25 2016-02-25 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034200A JP6725261B2 (en) 2016-02-25 2016-02-25 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017152243A true JP2017152243A (en) 2017-08-31
JP6725261B2 JP6725261B2 (en) 2020-07-15

Family

ID=59742011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034200A Active JP6725261B2 (en) 2016-02-25 2016-02-25 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6725261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075302A (en) * 2017-10-17 2019-05-16 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery, and short circuit inspection method
US11217846B2 (en) 2017-03-16 2022-01-04 Eaglepicher Technologies, Llc Electrochemical cell
CN113948829A (en) * 2020-07-15 2022-01-18 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007255A1 (en) * 1998-07-27 2000-02-10 Kanebo, Limited Organic electrolytic cell
JP2006286218A (en) * 2005-03-31 2006-10-19 Asahi Kasei Corp Nonaqueous lithium power storage element and manufacturing method thereof
JP2010212092A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2011086448A (en) * 2009-10-14 2011-04-28 Nec Energy Devices Ltd Lithium ion secondary battery
JP2012009333A (en) * 2010-06-25 2012-01-12 Panasonic Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2012127991A1 (en) * 2011-03-18 2012-09-27 Jmエナジー株式会社 Power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007255A1 (en) * 1998-07-27 2000-02-10 Kanebo, Limited Organic electrolytic cell
JP2006286218A (en) * 2005-03-31 2006-10-19 Asahi Kasei Corp Nonaqueous lithium power storage element and manufacturing method thereof
JP2010212092A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2011086448A (en) * 2009-10-14 2011-04-28 Nec Energy Devices Ltd Lithium ion secondary battery
JP2012009333A (en) * 2010-06-25 2012-01-12 Panasonic Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2012127991A1 (en) * 2011-03-18 2012-09-27 Jmエナジー株式会社 Power storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217846B2 (en) 2017-03-16 2022-01-04 Eaglepicher Technologies, Llc Electrochemical cell
JP2019075302A (en) * 2017-10-17 2019-05-16 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery, and short circuit inspection method
JP7000791B2 (en) 2017-10-17 2022-01-19 株式会社豊田自動織機 Lithium-ion secondary battery manufacturing method and short-circuit inspection method
CN113948829A (en) * 2020-07-15 2022-01-18 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN113948829B (en) * 2020-07-15 2024-03-29 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6725261B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP5756063B2 (en) Non-aqueous secondary battery
JP5216936B1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY
JP6253411B2 (en) Lithium secondary battery
CN110707287B (en) Metal lithium negative electrode, preparation method thereof and lithium battery
JP2012190625A (en) Nonaqueous secondary battery
JP2011129352A (en) Nonaqueous electrolyte secondary battery
JPWO2014141875A1 (en) Lithium secondary battery pack, electronic device using the same, charging system and charging method
JP2012084426A (en) Nonaqueous electrolyte secondary battery
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery
JP6725261B2 (en) Lithium ion secondary battery
JP2013157318A (en) Anode, method for manufacturing the same, and lithium battery including the same
US10566650B2 (en) Lithium ion secondary battery
JP5395350B2 (en) Sheet-like negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2019164965A (en) Lithium ion secondary battery
JP6698374B2 (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
WO2017094526A1 (en) Electrode for electrochemical elements and lithium ion secondary battery
KR20180058633A (en) Nonaqueous liquid electrolyte and lithium secondary battery including the same
JP2017152139A (en) Lithium ion secondary battery
JP2017098141A (en) Lithium ion secondary battery
JP6739737B2 (en) Positive electrode material, negative electrode material, positive electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, electrolyte for lithium-ion secondary battery, electrode slurry for lithium-ion secondary battery
US20230318056A1 (en) Method for charging and discharging secondary battery
JP2015049984A (en) Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode
JP2024036866A (en) Electrolytic solution and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R151 Written notification of patent or utility model registration

Ref document number: 6725261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151