JP2017151050A - Calibration method, program, measurement device, and product manufacturing method - Google Patents

Calibration method, program, measurement device, and product manufacturing method Download PDF

Info

Publication number
JP2017151050A
JP2017151050A JP2016036125A JP2016036125A JP2017151050A JP 2017151050 A JP2017151050 A JP 2017151050A JP 2016036125 A JP2016036125 A JP 2016036125A JP 2016036125 A JP2016036125 A JP 2016036125A JP 2017151050 A JP2017151050 A JP 2017151050A
Authority
JP
Japan
Prior art keywords
change
amount
calibration
calibration method
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016036125A
Other languages
Japanese (ja)
Other versions
JP6666037B2 (en
Inventor
寛之 結城
Hiroyuki Yuki
寛之 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016036125A priority Critical patent/JP6666037B2/en
Publication of JP2017151050A publication Critical patent/JP2017151050A/en
Application granted granted Critical
Publication of JP6666037B2 publication Critical patent/JP6666037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a calibration method that is advantageous to improvement in measurement errors.SOLUTION: A calibration method measuring a distance to an object according to a principle of triangulation is configured to obtain an amount of change in baseline length, and an amount of change in angle so that a value of an objective function using the amount of change in baseline length and the amount of change in angle as a variable and set about a location of an image of a calibration reference satisfies an allowable condition under a limitation condition set to one, selected on the basis of a measurement error of the distance about the calibration reference, of an amount of change in baseline length between one optical system and other optical system and an amount of change in angle formed with an optical axis of the one optical system and an optical axis of the other optical system.SELECTED DRAWING: Figure 2

Description

本発明は、校正方法、プログラム、計測装置、および物品の製造方法に関する。   The present invention relates to a calibration method, a program, a measuring device, and an article manufacturing method.

光を用いて非接触に物体の形状を計測する方法として、三角測量の原理を用いた計測装置が知られている。この計測装置としては、例えば、物体にパターン光を投影する投影部と、物体を撮像する撮像部とを備えたものがある。この場合、予め取得した、投影部と撮像部との相対的な位置および姿勢の情報を用いて物体の形状が求められる。計測精度の調整は、投影部と撮像部との相対的な距離および姿勢の調整により行われる。計測精度の調整方法として、計測装置の再投影誤差を求め、再投影誤差が最小となるように投影部と撮像部との位置関係を調整する方法がある(特許文献1)。   As a method for measuring the shape of an object in a non-contact manner using light, a measuring device using the principle of triangulation is known. As this measuring apparatus, for example, there is an apparatus including a projection unit that projects pattern light onto an object and an imaging unit that images the object. In this case, the shape of the object is obtained using information on the relative position and orientation of the projection unit and the imaging unit acquired in advance. The measurement accuracy is adjusted by adjusting the relative distance and posture between the projection unit and the imaging unit. As a method for adjusting the measurement accuracy, there is a method of obtaining a reprojection error of a measurement apparatus and adjusting a positional relationship between a projection unit and an imaging unit so that the reprojection error is minimized (Patent Document 1).

特開2015−106287号公報Japanese Patent Laying-Open No. 2015-106287

しかしながら、例えば、物体の載置面内における計測誤差量が、当該面内で異方性をもつ(方向により異なる)場合、特許文献1の方法により、再投影誤差を最小にしても計測誤差が改善しない場合がある。   However, for example, when the measurement error amount in the object mounting surface has anisotropy in the surface (depending on the direction), the measurement error may be reduced even if the reprojection error is minimized by the method of Patent Document 1. It may not improve.

本発明は、例えば、計測誤差の改善に有利な計測装置の校正方法を提供することを目的とする。   An object of the present invention is, for example, to provide a calibration method for a measurement apparatus that is advantageous for improving measurement errors.

上記課題を解決するために、本発明は、三角測量の原理により物体までの距離を計測する計測装置の校正方法であって、一の光学系と他の光学系との間の基線長の変化量と、一の光学系の光軸と他の光学系の光軸とがなす角の変化量と、のうち校正基準に関する距離の計測誤差に基づいて選択された一方に関して設定された制約条件の下で、基線長の変化量と角の変化量とを変数とする、校正基準の像の位置に関して設定された目的関数の値が許容条件を満たすように、基線長の変化量および角の変化量を得る、ことを特徴とする。   In order to solve the above problems, the present invention is a calibration method of a measuring apparatus that measures the distance to an object based on the principle of triangulation, and changes in the baseline length between one optical system and another optical system. And the amount of change in the angle between the optical axis of one optical system and the optical axis of the other optical system, and the constraint condition set for one selected based on the distance measurement error with respect to the calibration standard. Below, the amount of change in the baseline length and the change in the angle so that the value of the objective function set with respect to the position of the image of the calibration reference, with the amount of change in the baseline length and the amount of change in the angle as variables, satisfies the allowable condition. It is characterized by obtaining an amount.

本発明によれば、例えば、計測誤差の改善に有利な計測装置の校正方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the calibration method of the measuring device advantageous for the improvement of a measurement error can be provided, for example.

第1実施形態に係る計測装置の校正方法を実行する際の校正用物体と計測装置との位置関係を示す図である。It is a figure which shows the positional relationship of the object for calibration at the time of performing the calibration method of the measuring device which concerns on 1st Embodiment, and a measuring device. 第1実施形態に係る校正方法を示すフローチャートである。It is a flowchart which shows the calibration method which concerns on 1st Embodiment. 調整量の許容範囲の決定方法を説明するフローチャートである。It is a flowchart explaining the determination method of the allowable range of adjustment amount. 第2実施形態に係る校正方法を示すフローチャートである。It is a flowchart which shows the calibration method which concerns on 2nd Embodiment. 第3実施形態に係る校正方法を示すフローチャートおよび計測誤差の異方性を説明する図である。It is a figure which shows the anisotropy of the flowchart and the measurement error which show the calibration method which concerns on 3rd Embodiment. 第1実施形態ないし第3実施形態に係る校正方法を実行する校正装置、および計測装置を示す図である。It is a figure which shows the calibration apparatus which performs the calibration method which concerns on 1st Embodiment thru | or 3rd Embodiment, and a measuring device.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本実施形態に係る計測装置の校正方法を実行する際の校正用物体と計測装置との位置関係を示す図である。本実施形態に係る計測装置100は、2つの光学ユニット110および120を有する。光学ユニット110および120は、どちらか一方がパターン光を投影する投影光学部であってもよいし、両方とも物体を撮像する撮像部であってもよい。例えば、一方が投影光学部である場合、投影光のパターンの情報を利用して再投影誤差を求め、求めた再投影誤差を用いた計測装置の調整を行う事が可能である。なお、光学ユニットの数は2つに限られず、2つより多くてもよい。光学ユニット110の光学中心111と光学ユニット120の光学中心121とを結んだ線が基線140である。また、本実施形態では、光学ユニット110の光軸と光学ユニット120の光軸とがなす角のことを2つの光学ユニットの姿勢と表現することとする。基線140の長さ(基線長)および2つの光学ユニットの姿勢から三角測量の原理を用いて物体の計測が可能となる。ここで光学中心とは光学ユニットが有する光学系の物体側の瞳位置の事を表す。ここで、物体が載置された平面内に互いに直交するX軸およびY軸を取り、このXY平面に直交する方向にZ軸を取る。
(First embodiment)
FIG. 1 is a diagram illustrating a positional relationship between a calibration object and a measurement device when the measurement device calibration method according to the present embodiment is executed. The measurement apparatus 100 according to the present embodiment includes two optical units 110 and 120. Either one of the optical units 110 and 120 may be a projection optical unit that projects pattern light, or both may be imaging units that image an object. For example, in the case where one is a projection optical unit, it is possible to obtain a reprojection error using information of a pattern of projection light, and to adjust the measurement apparatus using the obtained reprojection error. The number of optical units is not limited to two and may be more than two. A line connecting the optical center 111 of the optical unit 110 and the optical center 121 of the optical unit 120 is a base line 140. In the present embodiment, the angle formed by the optical axis of the optical unit 110 and the optical axis of the optical unit 120 is expressed as the postures of the two optical units. An object can be measured using the principle of triangulation from the length of the base line 140 (base line length) and the attitudes of the two optical units. Here, the optical center represents the pupil position on the object side of the optical system of the optical unit. Here, an X axis and a Y axis orthogonal to each other are taken in a plane on which the object is placed, and a Z axis is taken in a direction orthogonal to the XY plane.

計測誤差や再投影誤差は、校正基準(校正用物体)151および152を用いて求められる。校正基準151および152は座標位置が既知であり、計測装置100に対して、Z軸方向(物体載置面に垂直な方向)に間隔を空けて配置されている。校正基準151および152の計測装置100による計測結果は、それぞれ計測位置161および計測位置162である。校正基準151の位置と計測位置161との差が計測誤差となる。そのうち、Z軸方向の誤差を示したものが、計測誤差171および172である。   The measurement error and the reprojection error are obtained using calibration standards (calibration objects) 151 and 152. The calibration references 151 and 152 have known coordinate positions, and are arranged at an interval in the Z-axis direction (direction perpendicular to the object placement surface) with respect to the measurement apparatus 100. The measurement results of the calibration standards 151 and 152 by the measuring device 100 are a measurement position 161 and a measurement position 162, respectively. A difference between the position of the calibration reference 151 and the measurement position 161 is a measurement error. Among them, measurement errors 171 and 172 indicate errors in the Z-axis direction.

また、再投影誤差は、各校正基準を撮像した際に得られる各光学ユニットにおける面上(受光面等)での測定位置と、既知の各校正基準の座標位置を透視投影の演算によって当該撮像センサ上に投影した算出位置と、の剥離(誤差)の計算により求められる。なお、光学ユニット110および120のうち、一方が投影光学部である場合には、再投影誤差は投影パターンを生成するパターン生成面上における位置の乖離を示す。計測装置の調整は、計測誤差を最小にするように行われるが、そのための基線長や姿勢(角)の調整量を算出する演算負荷は一般的に過大となる。したがって、再投影誤差が許容条件を満たすような(例えば、最小化となる)調整が行われる。   In addition, the re-projection error is obtained by calculating the projection position of the measurement position on the surface (light-receiving surface, etc.) of each optical unit obtained when each calibration reference is imaged and the coordinate position of each known calibration reference by performing a perspective projection calculation. It is obtained by calculating separation (error) from the calculated position projected on the sensor. When one of the optical units 110 and 120 is a projection optical unit, the reprojection error indicates a deviation in position on the pattern generation surface for generating a projection pattern. Adjustment of the measurement apparatus is performed so as to minimize the measurement error, but the calculation load for calculating the adjustment amount of the base line length and the posture (angle) for that purpose is generally excessive. Therefore, an adjustment is performed so that the reprojection error satisfies the allowable condition (for example, minimization).

図2は、本実施形態に係る計測装置の校正方法を示すフローチャートである。各工程は、計測装置100に含まれる制御部や演算部(いずれも不図示)により実行される。または、計測装置と通信が可能な調整装置により実行される。ステップS010では、計測装置100が校正基準151および152の位置を計測する。計測に用いる基線140の長さ(基線長)や姿勢(角)は計測装置100が予め記憶している値(初期値)とする。ステップS020では、基線長および姿勢のうち、どちらを調整量の制限対象とするかを決定する。ステップS030では、調整量が決定される。ステップS040では、基線長および姿勢の調整量が出力される。出力先は光学ユニット110と光学ユニット120とを駆動する駆動部(不図示)や駆動部と通信可能な記憶部(演算部)等である。   FIG. 2 is a flowchart showing a calibration method of the measuring apparatus according to the present embodiment. Each process is executed by a control unit and a calculation unit (both not shown) included in the measurement apparatus 100. Or it is performed by the adjustment apparatus which can communicate with a measuring device. In step S010, the measuring apparatus 100 measures the positions of the calibration references 151 and 152. The length (baseline length) and posture (angle) of the baseline 140 used for measurement are values (initial values) stored in advance by the measurement apparatus 100. In step S020, it is determined which of the baseline length and the posture is to be subject to adjustment amount limitation. In step S030, the adjustment amount is determined. In step S040, the baseline length and the posture adjustment amount are output. The output destination is a drive unit (not shown) that drives the optical unit 110 and the optical unit 120, a storage unit (calculation unit) that can communicate with the drive unit, and the like.

計測装置の精度の調整は、再投影誤差を最小にするように基線長または姿勢を調整することで行われるが、どちらの調整がより、実際の誤差の減少に影響が大きいかは分からない。たとえば、基線長の調整量と誤差の減少量との相関が少ない場合は、角を調整することが必要となる。また、相関が少ない調整対象の調整量を多くすると、かえって誤差が大きくなる場合がある。したがって、ステップS020にて、調整量を制限する対象が決定されている。   Adjustment of the accuracy of the measuring apparatus is performed by adjusting the base line length or the posture so as to minimize the reprojection error, but it is not known which adjustment has a larger influence on the actual error reduction. For example, if the correlation between the adjustment amount of the baseline length and the reduction amount of the error is small, it is necessary to adjust the corner. Further, when the adjustment amount of the adjustment target with a small correlation is increased, the error may be increased. Therefore, in step S020, a target for limiting the adjustment amount is determined.

ステップS020は、ステップS021とステップS022とを含む。ステップS021では、計測誤差171および172が算出される。ステップS022では、算出結果に基づいて、調整量が制限される調整対象が決定される。   Step S020 includes step S021 and step S022. In step S021, measurement errors 171 and 172 are calculated. In step S022, an adjustment target whose adjustment amount is limited is determined based on the calculation result.

ステップS030は、ステップS031〜ステップS034を含む。ステップS031では、再投影誤差が許容条件を満たす(最小化となる)最適化問題が設定され、テップS032では、最適化問題に対する制約条件が設定され、ステップS033およびステップS034では最適化問題により調整量が算出される。   Step S030 includes steps S031 to S034. In step S031, an optimization problem is set in which the reprojection error satisfies an allowable condition (becomes minimized). In step S032, a constraint condition for the optimization problem is set. In steps S033 and S034, the optimization problem is adjusted by the optimization problem. A quantity is calculated.

ここで、基線長の調整量の制限は、基線140方向の相対的な位置において設定することが望ましい。また、角の調整量の制限は、基線140を含む平面内において設定することが望ましい。さらに、調整量は、基線長や角に限定されず、計測装置100自体の位置や姿勢を含んでいてもよく、基線長や角の調整量に比例する値、光学ユニットの焦点距離、ディスト―ション、収差等の光学パラメータに関する調整量を含んでいてもよい。   Here, it is desirable to set the limit of the adjustment amount of the baseline length at a relative position in the baseline 140 direction. In addition, it is desirable to set the limit of the angle adjustment amount in a plane including the base line 140. Further, the adjustment amount is not limited to the base line length and corner, but may include the position and orientation of the measuring apparatus 100 itself. The value is proportional to the base line length and corner adjustment amount, the focal length of the optical unit, May include adjustment amounts relating to optical parameters such as correction and aberration.

ステップS022における制限する調整対象の決定は、基線長や角を変化させたときの、計測誤差171と校正基準151との関係(または、計測誤差172と校正基準152との関係)に基づいて行われる。光学中心111を原点とすると、たとえば、基線長がBからB+dBへ変化した際のZ軸方向の誤差dzは、計測装置100と校正基準151とのZ軸方向の距離をz、とすると以下の式(1)のように表される。   The adjustment target to be limited in step S022 is determined based on the relationship between the measurement error 171 and the calibration reference 151 (or the relationship between the measurement error 172 and the calibration reference 152) when the baseline length or the angle is changed. Is called. Assuming that the optical center 111 is the origin, for example, the error dz in the Z-axis direction when the base line length changes from B to B + dB is as follows when the distance in the Z-axis direction between the measuring device 100 and the calibration reference 151 is z. It is expressed as equation (1).

Figure 2017151050
Figure 2017151050

同様にして、角がθからθ+dηに変化した際のdzは、上記パラメータに加え、X軸方向の距離xを用いて以下の式(2)のように表される。   Similarly, dz when the angle changes from θ to θ + dη is expressed by the following equation (2) using the distance x in the X-axis direction in addition to the above parameters.

Figure 2017151050
Figure 2017151050

上記式のような、基線長の変化量とZ軸方向の誤差との相関関係(式(1))、角の変化量とZ軸方向の誤差との相関関係(式(2))、を利用して、基線長の変化および角の変化のうちどちらが計測誤差の発生により影響が大きいかを判定することができる。すなわち、Z軸方向の距離が異なる2つ以上の校正基準を計測して、計測結果と、式(1)および式(2)により得られたdzとを比較して、より相関度の高いほうを計測誤差の発生により影響が大きい因子であると判定できる。相関度の具体的な比較方法は例えば、式(1)及び式(2)用いて誤差dzに対し関数フィッティングを行ってフィッティング残差の量の比較する方法などがある。また、これに限定されず、一般に知られている相関度の有無を調査する様々な方法が適用可能である。相関度の低い方の因子(調整対象)が調整量を制限される因子となる。   As in the above formula, the correlation between the change in the baseline length and the error in the Z-axis direction (formula (1)), the correlation between the change in the angle and the error in the Z-axis direction (formula (2)), By utilizing this, it is possible to determine which one of the change in the baseline length and the change in the angle is more affected by the occurrence of the measurement error. In other words, two or more calibration standards having different distances in the Z-axis direction are measured, and the measurement result is compared with dz obtained by Equation (1) and Equation (2). Can be determined to be a factor that is greatly influenced by the occurrence of measurement errors. As a specific comparison method of the correlation degree, for example, there is a method of performing function fitting on the error dz using the equations (1) and (2) and comparing the amount of the fitting residual. Further, the present invention is not limited to this, and various methods for investigating the presence or absence of a generally known correlation degree can be applied. The factor with the lower degree of correlation (adjustment target) is the factor that limits the amount of adjustment.

なお、校正基準の数は2つに限定されず、複数個配置されていてもよい。Z軸方向の距離が異なる校正基準であればよく、数が多いほど精度良く相関を求める事が可能となる。また、校正基準が1つであっても、たとえば1つの校正基準を駆動装置に取り付けて複数の位置に駆動し、駆動装置の駆動位置の情報を校正基準の座標位置として使用する方法でも構わない。   Note that the number of calibration standards is not limited to two, and a plurality of calibration standards may be arranged. It is sufficient that the calibration standard has a different distance in the Z-axis direction, and the larger the number, the more accurately the correlation can be obtained. Even if there is only one calibration reference, for example, a method may be used in which one calibration reference is attached to the drive device and driven to a plurality of positions, and information on the drive position of the drive device is used as the calibration reference coordinate position. .

また、上述の式(1)および式(2)による定式化は一例でありこれに限定されない。例えばXYZ座標軸の取り方や座標原点の取り方に応じて変形しても構わないし、式(2)は複雑な式であるため近似を行って簡略化し、その近似式に置き換えても構わない。以上を換言すれば、2つ以上の校正基準から得られた誤差dZ(奥行き誤差)の情報を基に調整量を制限する対象を決定する事ができる。   Further, the formulation according to the above formulas (1) and (2) is an example and is not limited to this. For example, it may be modified according to how to set the XYZ coordinate axes or the coordinate origin, and since Equation (2) is a complex equation, it may be simplified by approximation and replaced with the approximate equation. In other words, the target for limiting the adjustment amount can be determined based on the error dZ (depth error) information obtained from two or more calibration standards.

ステップS030では、調整量が決定される。図3(A)および図3(B)は、その決定方法の詳細を説明するフローチャートである。図3(A)で示すように、ステップS031では、調整量を変数とする再投影誤差の関数を目的関数とし、再投影誤差が許容条件を満たす(例えば、最小化となる)最適化問題を設定する。最適化問題の解法は、必要とする計算精度と計算負荷に応じて選択可能であり、最小二乗法、Lagrangeの未定乗数法、代入法等を選択することができる。   In step S030, the adjustment amount is determined. FIG. 3A and FIG. 3B are flowcharts illustrating details of the determination method. As shown in FIG. 3A, in step S031, the reprojection error function with the adjustment amount as a variable is used as an objective function, and the reprojection error satisfies an allowable condition (for example, minimizes). Set. The solution to the optimization problem can be selected according to the required calculation accuracy and calculation load, and the least square method, Lagrange's undetermined multiplier method, substitution method, and the like can be selected.

ステップS032では、設定された最適化問題に対する制約条件を定義する。ここでいう制約条件とは、計測誤差が許容条件を満たすために許容される調整量の範囲のことである。許容される範囲は、装置の設計上、経時変化で起き得る計測誤差の最大値に対応した調整量に基づいて決定することが望ましい。また、再投影誤差の最小化によっても誤差が残ってしまう場合がある。この誤差は調整量が小さいほど小さくなる。したがって、経時変化による誤差を小さくすることと、再投影誤差の最小化により残ってしまう誤差を小さくすることとのバランスを考慮して調整量の許容範囲を決定することが望ましい。どちらの比重を重くするかはユーザーが適宜決定可能である。なお、調整量の許容範囲を決定する方法は、計測装置の経時変化に対するリスク設計に応じて様々に変更が可能であり一つの方法に限定されない。また、許容される調整量を固定値としてもよい。   In step S032, a constraint condition for the set optimization problem is defined. Here, the constraint condition is a range of an adjustment amount that is allowed for the measurement error to satisfy the allowable condition. The allowable range is desirably determined based on an adjustment amount corresponding to the maximum value of a measurement error that can occur due to changes over time in the design of the apparatus. In addition, an error may remain even when the reprojection error is minimized. This error becomes smaller as the adjustment amount is smaller. Therefore, it is desirable to determine the allowable range of the adjustment amount in consideration of the balance between reducing the error due to the change over time and reducing the error remaining by minimizing the reprojection error. The user can appropriately determine which specific gravity is to be increased. Note that the method for determining the allowable range of the adjustment amount can be variously changed according to the risk design with respect to the change over time of the measuring device, and is not limited to one method. Further, the allowable adjustment amount may be a fixed value.

ステップS033では、ステップS032で定義された制約条件のもと最適化問題を解き、調整量を算出する。他方、ステップS034では、制約条件なしに最適化問題を解き、調整量を算出する。   In step S033, the optimization problem is solved under the constraint conditions defined in step S032, and the adjustment amount is calculated. On the other hand, in step S034, the optimization problem is solved without constraint conditions, and the adjustment amount is calculated.

図3(B)は、図3(A)のステップS032がステップS035となっている点が異なる。ステップS035では、誤差を変数とする調整量(ステップS022で決定された対象の調整量)の関数を目的関数とし、調整量を最小化する最適化問題を設定する。ステップS031およびステップS035で目的関数を設定する際、再投影誤差を最小にすることと、調整量を最小化することとの重み付けを定義することで調整量の範囲を設定することができる。ステップS033では、設定した2つの最適化問題を解いて調整量を算出する。ステップS040で出力された調整量に基づいて、計測装置が調整され、計測精度の改善が図られる。   FIG. 3B is different in that step S032 of FIG. 3A is set to step S035. In step S035, an optimization problem for minimizing the adjustment amount is set using the function of the adjustment amount (the adjustment amount of the target determined in step S022) with the error as a variable as an objective function. When setting the objective function in step S031 and step S035, the range of the adjustment amount can be set by defining the weighting between minimizing the reprojection error and minimizing the adjustment amount. In step S033, the adjustment amount is calculated by solving the two set optimization problems. Based on the adjustment amount output in step S040, the measurement device is adjusted, and the measurement accuracy is improved.

上記のような校正方法によれば、再投影誤差を校正値として、調整量の制限対象を特定したうえで校正値を最小化して計測装置の計測誤差を改善させることができる。以上のように、本実施形態によれば、計測誤差の改善に有利な計測装置の校正方法を提供することができる。   According to the calibration method as described above, it is possible to improve the measurement error of the measuring device by specifying the reprojection error as a calibration value and specifying the restriction target of the adjustment amount and minimizing the calibration value. As described above, according to the present embodiment, it is possible to provide a calibration method for a measurement apparatus that is advantageous for improving measurement errors.

(第2実施形態)
図4は、本実施形態に係る計測装置の校正方法を示すフローチャートである。本実施形態では、第1実施形態の校正方法と、第1実施形態のような制限を課さない校正方法と、を併用する。本実施形態の方法によれば、計測装置100の部材の固定ネジの緩み等の想定外の変化に対応することができる。想定外の変化が起きた場合、制限された校正量では、誤差を十分に抑えることができない場合がある。本実施形態では、制限を課した場合の校正方法と、制限を課さない校正方法のどちらを校正方法として採用するか決定する工程を含む。
(Second Embodiment)
FIG. 4 is a flowchart showing a calibration method of the measuring apparatus according to this embodiment. In the present embodiment, the calibration method of the first embodiment and the calibration method that does not impose restrictions as in the first embodiment are used in combination. According to the method of the present embodiment, it is possible to cope with unexpected changes such as loosening of fixing screws of members of the measuring device 100. If an unexpected change occurs, the error may not be sufficiently suppressed with a limited calibration amount. In the present embodiment, the method includes a step of determining which one of the calibration method in the case where the restriction is imposed and the calibration method in which the restriction is not employed is adopted as the calibration method.

図4のフローチャートにおいて、第1実施形態と同様の工程に同じ符号を付け、説明は省略する。ステップS050では、第1実施形態の校正方法により得られた調整量のセットが仮の調整量(第1の調整量)として、計測装置100内の記憶部(不図示)に記憶される。なお、記憶部は計測装置100とは別の装置(校正方法を実行する調整装置等)が備えていてもよい。   In the flowchart of FIG. 4, steps similar to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In step S050, the set of adjustment amounts obtained by the calibration method of the first embodiment is stored as a temporary adjustment amount (first adjustment amount) in a storage unit (not shown) in the measurement apparatus 100. Note that the storage unit may be provided in an apparatus (such as an adjustment apparatus that executes the calibration method) different from the measurement apparatus 100.

ステップS020〜S050の工程と並行して、ステップS051では、ステップS031と同様に設定された最適化問題を解くことで仮の調整量(第2の調整量)を得る。このとき、第1実施形態のような制限は課されない。得られた値は、記憶部に記憶される(ステップS052)。ステップS053では、第1の調整量により校正を実施した場合の誤差の残差と、第2の調整量により校正を実施した場合の誤差の残差と、を比較する。なお、各残差は、それぞれステップS033およびS034、ステップS051で算出し、ステップS050およびステップS052で各調整量とともに記憶されていてもよい。この場合は、ステップS053では、記憶された各残差が記憶部から読み出され比較される。ステップS054では、残差が少ないほうの調整量が出力される。   In parallel with the steps S020 to S050, in step S051, a temporary adjustment amount (second adjustment amount) is obtained by solving the optimization problem set in the same manner as in step S031. At this time, no restriction is imposed as in the first embodiment. The obtained value is stored in the storage unit (step S052). In step S053, the residual error when calibration is performed with the first adjustment amount is compared with the residual error when calibration is performed with the second adjustment amount. Each residual may be calculated in steps S033 and S034 and step S051, respectively, and stored together with each adjustment amount in steps S050 and S052. In this case, in step S053, each stored residual is read from the storage unit and compared. In step S054, the adjustment amount with the smaller residual is output.

なお、上述では第1の調整量および第2の調整量を並列で取得する例を示したが、これに限定されず、本実施形態の校正方法を実施する校正装置の演算処理性能によっては両者を順に実施する方法でも構わない。この場合、両者を求める順番は問わない。また、比較する残差を特定方向の残差としてもよい。たとえば、XY平面内の誤差を重視するユーザーはXY平面内の残差を比較してもよいし、Z軸方向の誤差を重視するユーザーはZ軸方向の残差を比較してもよい。   In addition, although the example which acquires 1st adjustment amount and 2nd adjustment amount in parallel was shown above, it is not limited to this, depending on the arithmetic processing performance of the calibration apparatus which implements the calibration method of this embodiment, both It is also possible to perform the methods in order. In this case, the order in which both are obtained does not matter. Further, the residual to be compared may be a residual in a specific direction. For example, a user who places importance on errors in the XY plane may compare residuals in the XY plane, and a user who places importance on errors in the Z-axis direction may compare residuals in the Z-axis direction.

本実施形態の調整方法によれば、計測装置100の固定ネジの緩み等のような設計上の想定を外れた異常な変化が発生した場合にも計測誤差の改善が可能となり、当該校正方法は第1実施形態と同様の効果を奏する。   According to the adjustment method of the present embodiment, it is possible to improve the measurement error even when an abnormal change that does not meet the design assumption such as loosening of the fixing screw of the measuring device 100 occurs, and the calibration method is The same effect as the first embodiment is achieved.

(第3実施形態)
図5(A)および図5(B)は、本実施形態に係る計測装置の校正方法を示すフローチャートおよび計測誤差の異方性を説明する図である。本実施形態では、調整対象に制限を加えることが必要か否かをステップS22の実施前に判断する。この判断は、XY平面内における計測誤差の異方性の有無に基づいて行われる。
(Third embodiment)
FIG. 5A and FIG. 5B are a flowchart illustrating the calibration method of the measuring apparatus according to the present embodiment and a diagram illustrating the anisotropy of the measurement error. In the present embodiment, it is determined whether or not it is necessary to limit the adjustment target before the execution of step S22. This determination is made based on the presence or absence of measurement error anisotropy in the XY plane.

図5(A)は、本実施形態に係る計測装置の校正方法を示すフローチャートである。第1実施形態と同様の工程に同じ符号を付け、説明は省略する。ステップS061では、前工程で取得された計測誤差のX方向の誤差成分およびY方向の誤差成分を算出し、算出した誤差成分が予め設定した閾値以下か否かが判断される。閾値以下の場合(YES)、ステップS051が実施され、ステップS062にて調整量が出力される。閾値を逸脱する場合(NO)、第1実施形態のステップS022以降が実施される。以上の工程により、第2実施形態のように仮の調整量を2つ求める必要がなくなり、より短時間で校正値を求めることが可能となる。   FIG. 5A is a flowchart showing a calibration method of the measuring apparatus according to this embodiment. The same steps as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In step S061, the error component in the X direction and the error component in the Y direction of the measurement error acquired in the previous process are calculated, and it is determined whether the calculated error component is equal to or less than a preset threshold value. If it is equal to or less than the threshold (YES), step S051 is performed, and the adjustment amount is output in step S062. When deviating from the threshold (NO), step S022 and subsequent steps of the first embodiment are performed. Through the above steps, it is not necessary to obtain two provisional adjustment amounts as in the second embodiment, and the calibration value can be obtained in a shorter time.

図5(B)は、計測誤差の異方性を説明する図である。互いにX軸方向の位置が異なる校正基準153および154と、校正基準153とY軸方向の位置が異なる155と、校正基準154とY軸方向の位置が異なる校正基準156とをそれぞれ計測する。校正基準153〜156に対応した計測結果は、計測位置163〜166となる。   FIG. 5B is a diagram for explaining the anisotropy of the measurement error. Calibration standards 153 and 154 having different positions in the X-axis direction, calibration standards 153 having different positions in the Y-axis direction 155, and calibration standards 154 having different positions in the Y-axis direction are measured. The measurement results corresponding to the calibration standards 153 to 156 are the measurement positions 163 to 166.

各校正基準間のX軸方向の距離は、距離180で示され、計測結果のX軸方向の距離は距離181で示される。ここで、距離180は、校正基準153と154との間の距離でもよいし、校正基準155と156との間の距離でもよく、これらの平均値でもよい。距離181は、距離180の算出方法と対応していればよい。Y軸方向ついても同様に、各校正基準間のY軸方向の距離は、距離182で示され、計測結果のY軸方向の距離は距離183で示される。   The distance in the X-axis direction between each calibration reference is indicated by a distance 180, and the distance in the X-axis direction of the measurement result is indicated by a distance 181. Here, the distance 180 may be a distance between the calibration standards 153 and 154, may be a distance between the calibration standards 155 and 156, or may be an average value thereof. The distance 181 only needs to correspond to the calculation method of the distance 180. Similarly, in the Y-axis direction, the distance in the Y-axis direction between the calibration references is indicated by a distance 182, and the distance in the Y-axis direction of the measurement result is indicated by a distance 183.

計測誤差の異方性は、距離180と距離181との差分を距離180で割った値(X軸方向の誤差倍率)と、距離182と距離183との差分を距離182で割った値(Y軸方向の誤差倍率)とを比較して判断される。すなわち、X軸方向の誤差倍率とY軸方向の誤差倍率とが同値であれば計測誤差に異方性はなく、両者の値が異なれば計測誤差に異方性がみられると判断される。ステップS061では、この異方性の大きさが閾値と比較される。異方性の大きさは、両者の差分あるいは両者の比とする。   The anisotropy of the measurement error is a value obtained by dividing the difference between the distance 180 and the distance 181 by the distance 180 (error magnification in the X-axis direction) and a value obtained by dividing the difference between the distance 182 and the distance 183 by the distance 182 (Y (Error magnification in the axial direction). That is, if the error magnification in the X-axis direction and the error magnification in the Y-axis direction are the same value, there is no anisotropy in the measurement error, and if both values are different, it is determined that the measurement error has anisotropy. In step S061, the magnitude of this anisotropy is compared with a threshold value. The magnitude of anisotropy is the difference between them or the ratio between the two.

異方性の大きさによっては、調整対象に制限値を加えずとも再投影誤差の最小化により、計測誤差を最小化できうる。したがって、制限値を加えずとも十分に計測誤差の改善ができるとユーザーが判断した異方性の大きさが閾値とされる。   Depending on the magnitude of the anisotropy, the measurement error can be minimized by minimizing the reprojection error without adding a limit value to the adjustment target. Therefore, the magnitude of anisotropy determined by the user that the measurement error can be sufficiently improved without adding a limit value is set as the threshold value.

なお、図5(B)では4個の校正基準を使用する例を示したがこれに限定されず、少なくともX軸方向の誤差倍率およびY軸方向の誤差倍率、またはこれらに代わる間接的な量が算出可能な個数であれば構ない。例えばX座標位置とY座標位置が両方とも異なる2個の校正基準でも構わないし、多数の校正基準を用意する事で精度を上げても構わない。またX軸方向の倍率成分とY軸方向の倍率成分について上述の定義に限定されず、等方的な伸縮か異方的な伸縮かが判定可能な量で有れば構わない。例えば校正基準の座標値と測定位置との誤差を校正基準の座標値で割ったものでも構わない。また相違量は上記の定義に限定されず、相違を定量化可能な指標で有れば構わない。以上を換言すれば、2つ以上の校正基準から得られた横方向誤差の情報を基に、制約を設ける調整と制約を設けない調整のうちのどちらを行うかを判断する事が可能となる。   Although FIG. 5B shows an example in which four calibration standards are used, the present invention is not limited to this. At least the error magnification in the X-axis direction and the error magnification in the Y-axis direction, or an indirect amount instead of these. Any number can be calculated. For example, two calibration standards having different X-coordinate positions and Y-coordinate positions may be used, or the accuracy may be improved by preparing a large number of calibration standards. Further, the magnification component in the X-axis direction and the magnification component in the Y-axis direction are not limited to the above definitions, and any amount that can determine whether isotropic expansion or contraction is anisotropic is acceptable. For example, the error between the calibration reference coordinate value and the measurement position may be divided by the calibration reference coordinate value. Further, the difference amount is not limited to the above definition, and any difference index may be used as long as the difference can be quantified. In other words, it is possible to determine whether to perform the adjustment with or without the restriction based on the information of the lateral error obtained from two or more calibration standards. .

本実施形態の校正方法によれば、より短時間で調整量の算出が可能となり、当該校正方法は第1実施形態と同様の効果を奏する。   According to the calibration method of the present embodiment, the adjustment amount can be calculated in a shorter time, and the calibration method has the same effect as that of the first embodiment.

(第4実施形態)
図6は、上記実施形態に係る校正方法を実行する校正装置200および計測装置100を示す図である。校正装置200には、上記実施形態に係る校正方法を不図示のコンピュータに実行させるプログラムが格納されている。調整量は、計測装置100の駆動部や駆動部と通信する記憶部等へ出力される。調整の指示は、ユーザーが行ってもよいし、図示しない自己判断プログラムによっても構わず、予めプログラムされた定期的なタイミングで指示を行ってもよい。なお、校正装置200と計測装置100とは一体化していてもよく、計測装置内の処理部等が校正装置を兼ねてもよい。以上のように、本実施形態によれば、計測装置の精度の調整に有利な校正装置を提供することができる。
(Fourth embodiment)
FIG. 6 is a diagram illustrating a calibration apparatus 200 and a measurement apparatus 100 that execute the calibration method according to the embodiment. The calibration device 200 stores a program that causes a computer (not shown) to execute the calibration method according to the embodiment. The adjustment amount is output to a drive unit of the measurement apparatus 100, a storage unit that communicates with the drive unit, and the like. The adjustment instruction may be given by the user or by a self-determination program (not shown) or may be given at a preprogrammed periodic timing. The calibration device 200 and the measurement device 100 may be integrated, and a processing unit or the like in the measurement device may also serve as the calibration device. As described above, according to the present embodiment, it is possible to provide a calibration device that is advantageous for adjusting the accuracy of the measurement device.

(物品製造方法に係る実施形態)
以上に説明した実施形態に係る校正方法または校正装置により精度が調整された計測装置または、上記校正方法を実行する処理部を備えた計測装置は、物品製造方法に使用しうる。当該物品製造方法は、当該計測装置を用いて物体までの距離の計測を行う工程と、当該工程で計測を行われた物体の処理を行う工程と、を含みうる。当該処理は、例えば、加工、切断、搬送、組立(組付)、検査、および選別のうちの少なくともいずれか一つを含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストのうちの少なくとも1つにおいて有利である。
(Embodiment related to article manufacturing method)
The measurement device whose accuracy is adjusted by the calibration method or the calibration device according to the embodiment described above or the measurement device including the processing unit that executes the calibration method can be used for the article manufacturing method. The article manufacturing method may include a step of measuring a distance to an object using the measuring device and a step of processing the object measured in the step. The process can include, for example, at least one of processing, cutting, conveyance, assembly (assembly), inspection, and selection. The article manufacturing method of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

(その他の実施形態)
なお、上記実施形態のステップS022において、調整量の制限対象を特定する精度が悪い場合は、以下のような工程を行うことでも調整量を制限する対象を特定することができる。まず、角を予め設定した値に制限して調整量を算出する。これと並行して基線長を予め設定した値に制限して調整量を算出する。さらに、角および基線長に制限を加えずに調整量を算出する。そして、3つの値によりステップS053およびステップS054と同様の工程を行い、残差が最も少ない調整量が出力される。これら工程は、制約の要否について総当たりで調整量の演算を実施するため、制約対象を指定する必要がない。調整量の算出に時間を要するものの、ノイズ等の影響によりステップS022において調整量の制限対象を特定する精度が悪い場合は有用である。なお、3つの値を算出した後、算出値を予め求めた制約対象の調整量と比較し、当該予め求めた値を逸脱した調整対象の調整量を当該予め求めた値に固定したうえで再度調整量を算出する方法も考えうる。
(Other embodiments)
In step S022 of the above embodiment, if the accuracy of specifying the adjustment amount restriction target is poor, the adjustment amount restriction target can also be specified by performing the following steps. First, the adjustment amount is calculated by limiting the corner to a preset value. In parallel with this, the adjustment amount is calculated by limiting the baseline length to a preset value. Further, the adjustment amount is calculated without limiting the corner and the base line length. Then, the same process as step S053 and step S054 is performed with the three values, and the adjustment amount with the smallest residual is output. In these processes, since the adjustment amount is calculated with brute force as to whether or not the restriction is necessary, it is not necessary to designate the restriction target. Although it takes time to calculate the adjustment amount, it is useful when the accuracy of specifying the restriction target of the adjustment amount in step S022 is poor due to the influence of noise or the like. After calculating the three values, the calculated value is compared with the adjustment amount of the constraint object obtained in advance, and the adjustment amount of the adjustment object that deviates from the previously obtained value is fixed to the value obtained in advance. A method of calculating the adjustment amount is also conceivable.

さらに、計測装置の設計値情報より基線長および角のうち経時変化が発生しやすい方が分かっている場合や、経時変化によって発生する誤差の量が大きい方が分かっている場合には、予め制約対象を決定しておく方法も考え得る。たとえば、角のほうが経時変化で発生する誤差量が大きい場合では、基線長を制約対象として記憶しておく。そして、制約を設けずに調整量の算出を行い、基線長が予め記憶した制限値を逸脱していた場合は、基線長を制限値に固定したうえで再び調整量を算出し他の調整量を決定する方法が考えうる。   Furthermore, if it is known from the design value information of the measuring device that the baseline length and angle are more likely to change over time, or if the amount of error caused by the change over time is known to be larger, there are restrictions beforehand. A method of determining the target can also be considered. For example, when the amount of error generated due to a change with time is larger at the corner, the baseline length is stored as a restriction target. Then, the adjustment amount is calculated without any restrictions, and if the baseline length deviates from the previously stored limit value, the adjustment amount is calculated again after fixing the baseline length to the limit value. A method of determining

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

100 計測装置
110、120 光学ユニット
140 基線
100 Measuring device 110, 120 Optical unit 140 Base line

Claims (10)

三角測量の原理により物体までの距離を計測する計測装置の校正方法であって、
一の光学系と他の光学系との間の基線長の変化量と、前記一の光学系の光軸と前記他の光学系の光軸とがなす角の変化量と、のうち校正基準に関する前記距離の計測誤差に基づいて選択された一方に関して設定された制約条件の下で、
前記基線長の変化量と前記角の変化量とを変数とする、前記校正基準の像の位置に関して設定された目的関数の値が許容条件を満たすように、
前記基線長の変化量および前記角の変化量を得る、
ことを特徴とする校正方法。
A calibration method for a measuring device that measures the distance to an object based on the principle of triangulation,
Calibration standard among the amount of change in baseline length between one optical system and another optical system and the amount of change in angle between the optical axis of the one optical system and the optical axis of the other optical system Under the constraints set for one selected based on the measurement error of the distance with respect to
The objective function value set with respect to the position of the image of the calibration reference, with the change amount of the baseline length and the change amount of the corner as variables, satisfies an allowable condition.
Obtaining a change amount of the baseline length and a change amount of the angle;
A calibration method characterized by that.
前記基線長の変化量と前記計測誤差との相関関係と、前記角の変化量と前記計測誤差との相関関係とに基づいて、前記一方を選択することを特徴とする請求項1に記載の校正方法。   The said one is selected based on the correlation of the variation | change_quantity of the said base line length, and the said measurement error, and the correlation of the variation | change_quantity of the said angle, and the said measurement error, The said one is selected. Calibration method. 前記計測誤差は、互いに異なる複数の距離に関するものであることを特徴とする請求項1または2に記載の校正方法。   The calibration method according to claim 1, wherein the measurement error relates to a plurality of different distances. 前記基線長の変化量および前記角の変化量は、前記目的関数に関する最適化問題を解くことにより得ることを特徴とする請求項1ないし3のうちいずれか1項に記載の校正方法。   4. The calibration method according to claim 1, wherein the change amount of the baseline length and the change amount of the corner are obtained by solving an optimization problem related to the objective function. 5. 前記目的関数は、前記位置に関する項の他に、前記基線長の変化量に比例する項および前記角の変化量に比例する項のうち少なくとも一方を含むことを特徴とする請求項1ないし4のうちいずれか1項に記載の校正方法。   5. The objective function according to claim 1, wherein the objective function includes at least one of a term proportional to the amount of change in the baseline length and a term proportional to the amount of change in the angle, in addition to the term relating to the position. The calibration method according to any one of the above. 前記基線長の変化量に対して制約条件を課した場合に得られた計測誤差および、前記角の変化量に対して制約条件を課した場合に得られた計測誤差のうち、前記基線長の変化量および前記角の変化量のいずれにも制約条件を課さなかった場合に得られた計測誤差との乖離が大きい方の計測誤差を得るために制約条件を課した方の変化量を前記一方として選択する、ことを特徴とする請求項1ないし5のうちいずれか1項に記載の校正方法。   Of the measurement error obtained when the constraint condition is imposed on the change amount of the baseline length and the measurement error obtained when the constraint condition is imposed on the change amount of the corner, the baseline length In order to obtain a measurement error with a larger deviation from the measurement error obtained when no constraint condition is imposed on either the change amount or the change amount of the angle, the change amount of the one with the constraint condition is obtained. The calibration method according to any one of claims 1 to 5, wherein the calibration method is selected. 前記計測誤差の倍率成分の異方性に基づいて、前記一方を選択することを特徴とする請求項1ないし6のうちいずれか1項に記載の校正方法。   The calibration method according to claim 1, wherein the one is selected based on anisotropy of a magnification component of the measurement error. 請求項1ないし請求項7のうちいずれか1項に記載の校正方法をコンピュータに実行させることを特徴とするプログラム。   A program that causes a computer to execute the calibration method according to any one of claims 1 to 7. 処理部を有し、三角測量の原理により前記処理部により物体までの距離を計測する計測装置であって、
前記処理部は、
一の光学系と他の光学系との間の基線長の変化量と、前記一の光学系の光軸と前記他の光学系の光軸とがなす角の変化量とのうち校正基準に関する前記距離の計測誤差に基づいて選択された一方に関して設定された制約条件の下で、
前記基線長の変化量と前記角の変化量とを変数とする、前記校正基準の像の位置に関して設定された目的関数の値が許容条件を満たすように、
前記基線長の変化量および前記角の変化量を得る、
ことを特徴とする計測装置。
A measuring device having a processing unit and measuring the distance to an object by the processing unit according to the principle of triangulation,
The processor is
Of the amount of change in the baseline length between one optical system and the other optical system and the amount of change in the angle between the optical axis of the one optical system and the optical axis of the other optical system, Under the constraints set for one selected based on the distance measurement error,
The objective function value set with respect to the position of the image of the calibration reference, with the change amount of the baseline length and the change amount of the corner as variables, satisfies an allowable condition.
Obtaining a change amount of the baseline length and a change amount of the angle;
A measuring device characterized by that.
請求項1ないし請求項7のうちいずれか1項に記載の校正方法により校正された計測装置または請求項9に記載の計測装置を用いて物体までの距離の計測を行う工程と、
前記工程で前記計測を行われた前記物体の処理を行う工程と、
を含むことを特徴とする物品の製造方法。
A step of measuring a distance to an object using the measuring device calibrated by the calibration method according to any one of claims 1 to 7 or the measuring device according to claim 9;
Processing the object subjected to the measurement in the step;
A method for producing an article comprising:
JP2016036125A 2016-02-26 2016-02-26 Calibration method, program, measuring device, and article manufacturing method Expired - Fee Related JP6666037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016036125A JP6666037B2 (en) 2016-02-26 2016-02-26 Calibration method, program, measuring device, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036125A JP6666037B2 (en) 2016-02-26 2016-02-26 Calibration method, program, measuring device, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2017151050A true JP2017151050A (en) 2017-08-31
JP6666037B2 JP6666037B2 (en) 2020-03-13

Family

ID=59738881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036125A Expired - Fee Related JP6666037B2 (en) 2016-02-26 2016-02-26 Calibration method, program, measuring device, and article manufacturing method

Country Status (1)

Country Link
JP (1) JP6666037B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132870A (en) * 2002-10-11 2004-04-30 Keiji Saneyoshi Regulator for stereoscopic camera, and method of regulating stereoscopic camera
JP2012058188A (en) * 2010-09-13 2012-03-22 Ricoh Co Ltd Calibration device, distance measurement system, calibration method, and calibration program
JP2014074632A (en) * 2012-10-03 2014-04-24 Isuzu Motors Ltd Calibration apparatus of in-vehicle stereo camera and calibration method
JP2015001465A (en) * 2013-06-17 2015-01-05 キヤノン株式会社 Three-dimensional position measurement device and calibration error determination method of three-dimensional position measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132870A (en) * 2002-10-11 2004-04-30 Keiji Saneyoshi Regulator for stereoscopic camera, and method of regulating stereoscopic camera
JP2012058188A (en) * 2010-09-13 2012-03-22 Ricoh Co Ltd Calibration device, distance measurement system, calibration method, and calibration program
JP2014074632A (en) * 2012-10-03 2014-04-24 Isuzu Motors Ltd Calibration apparatus of in-vehicle stereo camera and calibration method
JP2015001465A (en) * 2013-06-17 2015-01-05 キヤノン株式会社 Three-dimensional position measurement device and calibration error determination method of three-dimensional position measurement device

Also Published As

Publication number Publication date
JP6666037B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
US9605961B2 (en) Information processing apparatus that performs three-dimensional shape measurement, information processing method, and storage medium
US10203197B2 (en) Range measurement apparatus and range measurement method
CN111192235B (en) Image measurement method based on monocular vision model and perspective transformation
JP2006329628A (en) Measuring method of deformation amount in structure
JP2011027623A (en) Method and device of measuring position and posture
US20150346471A1 (en) Method for the image-based calibration of multi-camera systems with adjustable focus and/or zoom
JP6677522B2 (en) Information processing apparatus, control method for information processing apparatus, and program
TWI640743B (en) Methods and systems of calibrating a pupil center in scatterometry overlay measurements
Shi et al. A simultaneous calibration technique of the extrinsic and turntable for structured-light-sensor-integrated CNC system
JP2012202694A (en) Camera calibration method
CN109697736B (en) Calibration method and device of measurement system, electronic equipment and readable storage medium
US20190392607A1 (en) Image processing apparatus, system, image processing method, article manufacturing method, and non-transitory computer-readable storage medium
Li et al. Monocular-vision-based contouring error detection and compensation for CNC machine tools
KR20200005119A (en) Apparatus and method for calculating and correcting a mounting error of a single mounting surface
Barnfather et al. Photogrammetric measurement process capability for metrology assisted robotic machining
Rodríguez Online self-calibration for mobile vision based on laser imaging and computer algorithms
JP2012013592A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
Schild et al. Assessing the optical configuration of a structured light scanner in metrological use
JP6666037B2 (en) Calibration method, program, measuring device, and article manufacturing method
Wang et al. Positioning error calibration for two-dimensional precision stages via globally optimized image registration
JP6446009B2 (en) Position and orientation estimation method
JP2009192483A (en) Three dimensional shape measuring method and three dimensional shape measuring device
Jaganmohan et al. VDI/VDE 2634–1 performance evaluation tests and systematic errors in passive stereo vision systems
JP4125074B2 (en) Three-dimensional shape measurement method
Bräuer-Burchardt et al. Comparison of calibration strategies for optical 3D scanners based on structured light projection using a new evaluation methodology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R151 Written notification of patent or utility model registration

Ref document number: 6666037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees