JP2017150986A - Tire performance testing method and on-table testing device for tire - Google Patents

Tire performance testing method and on-table testing device for tire Download PDF

Info

Publication number
JP2017150986A
JP2017150986A JP2016034471A JP2016034471A JP2017150986A JP 2017150986 A JP2017150986 A JP 2017150986A JP 2016034471 A JP2016034471 A JP 2016034471A JP 2016034471 A JP2016034471 A JP 2016034471A JP 2017150986 A JP2017150986 A JP 2017150986A
Authority
JP
Japan
Prior art keywords
tire
drum
evaluation method
equal
gradually decreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016034471A
Other languages
Japanese (ja)
Inventor
直人 大石
Naoto Oishi
直人 大石
貴規 住谷
Takanori Sumitani
貴規 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016034471A priority Critical patent/JP2017150986A/en
Publication of JP2017150986A publication Critical patent/JP2017150986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire performance testing method capable of evaluating tire performance with high accuracy, and to provide an on-table testing device for a tire.SOLUTION: A tire performance evaluation method is to measure axial force of a tire T using a rotatable drum 2A having a travel face 3 allowing the tire T to travel, and then evaluate tire performance. The tire performance evaluation method includes an acquisition step to acquire the axial force acting on the tire T when, on a cross section of the drum 2A in the drum circumferential direction, the tire T travels on the travel face 3 including an equal-radius portion 6 with a constant radius, a standing portion 8 that stands from the equal-radius portion 6, and a gradually decreasing portion 9 where a height in the drum radius direction smoothly and gradually decreases from the standing portion 8 in order of the equal-radius portion 6, the standing portion 8 and the gradually decreasing portion 9.SELECTED DRAWING: Figure 1

Description

本発明は、高精度でタイヤ性能を評価できるタイヤ性能の評価方法及びこれに用いられるタイヤの台上試験装置に関する。   The present invention relates to a tire performance evaluation method capable of evaluating tire performance with high accuracy and a tire bench test apparatus used therefor.

従来、タイヤ性能である、例えば、硬さ性に基づく乗り心地性能を評価する方法として、実車による評価方法が知られている。実車評価方法としては、例えば、テストドライバーの官能による評価方法(以下、単に「官能評価方法」という場合がある)や、タイヤの加速度に基づいて評価する評価方法(以下、単に「加速度評価方法」という場合がある)がある。官能評価方法は、例えば、評価するタイヤを車両に装着して、路面から突出した段差(突部)を乗り上げて走行させたときの、入力(衝撃)に対するテストドライバーの主観に基づくものである。また、加速度評価方法は、例えば、評価するタイヤを車両に装着して、路面から突出した突部を乗り上げて走行させたときの、タイヤに作用する鉛直線方向(以下、単に「上下方向」という場合がある)の加速度に基づくものである。そして、これら官能評価方法と加速度評価方法とは、相関性が高いことが知られている。   Conventionally, an evaluation method using an actual vehicle is known as a method for evaluating the ride performance based on hardness, for example, tire performance. As an actual vehicle evaluation method, for example, a test driver sensory evaluation method (hereinafter sometimes simply referred to as “sensory evaluation method”) or an evaluation method based on tire acceleration (hereinafter simply referred to as “acceleration evaluation method”). There is a case). The sensory evaluation method is based on the subjectivity of the test driver with respect to input (impact) when, for example, a tire to be evaluated is mounted on a vehicle and the vehicle runs on a step (projection) protruding from the road surface. The acceleration evaluation method is, for example, a vertical line direction acting on the tire when the tire to be evaluated is mounted on the vehicle and running on a protrusion protruding from the road surface (hereinafter simply referred to as “vertical direction”). It may be based on acceleration). These sensory evaluation methods and acceleration evaluation methods are known to have high correlation.

しかしながら、このような評価方法は、車両をテストドライバーによって走行させる必要があり、例えば、大きなテスト費用が生じる場合がある。このような観点より、タイヤが走行可能な走行面を有するドラムを具えた台上試験装置によるタイヤ性能の評価方法が知られている。この台上試験装置を用いた硬さ性に基づく乗り心地性能の評価方法は、例えば、ドラムの走行面に、走行面からの突出高さ及びドラム周方向の長さが、ともに10〜20mmの矩形状の突部を設け、この突部をタイヤが乗り越えたときのタイヤの軸力に基づいて評価する方法が知られていた。   However, such an evaluation method requires the vehicle to be driven by a test driver, which may cause a large test cost, for example. From such a viewpoint, a tire performance evaluation method using a bench test apparatus including a drum having a running surface on which a tire can travel is known. The evaluation method of the riding comfort performance based on the hardness using this bench test apparatus is, for example, that the protruding height from the running surface and the length in the drum circumferential direction are both 10 to 20 mm on the running surface of the drum. There has been known a method in which a rectangular protrusion is provided and evaluation is performed based on the axial force of the tire when the tire gets over the protrusion.

しかしながら、このような台上試験装置を用いた評価方法では、官能評価方法や加速度評価方法との相関性が小さく、高い精度で評価できないという問題があった。   However, the evaluation method using such a bench test apparatus has a problem that the correlation with the sensory evaluation method and the acceleration evaluation method is small and the evaluation cannot be performed with high accuracy.

特開2012−137419号公報JP 2012-137419 A

本発明は、以上のような問題点に鑑み案出なされたもので、ドラムの走行面を改善することを基本として、タイヤの性能、例えば、硬さ性に基づいて乗り心地性能を高精度で評価し得るタイヤ性能の評価方法及びタイヤの台上試験装置を提供することを主たる目的としている。   The present invention has been devised in view of the above problems, and based on improving the running surface of the drum, the riding comfort performance is highly accurate based on the performance of the tire, for example, the hardness. The main purpose is to provide an evaluation method for tire performance that can be evaluated and a test apparatus for testing a tire.

本発明は、タイヤが走行可能な走行面を有する回転可能なドラムを用いてタイヤの軸力を測定してタイヤ性能を評価するタイヤ性能評価方法であって、前記ドラムのドラム周方向の断面において、一定の半径を有する等径部と、前記等径部から立ち上がる立ち上げ部と、ドラム半径方向の高さが前記立ち上げ部から滑らかに漸減する漸減部とを含む前記走行面を、前記等径部、前記立ち上げ部、及び、前記漸減部の順にタイヤが走行したときの、前記タイヤに作用する軸力を取得する取得工程を有することを特徴とする。   The present invention relates to a tire performance evaluation method for evaluating tire performance by measuring a tire axial force using a rotatable drum having a running surface on which the tire can travel, and in a drum circumferential section of the drum The running surface including an equal-diameter portion having a constant radius, a rising portion rising from the equal-diameter portion, and a gradually decreasing portion whose height in the drum radial direction gradually decreases from the rising portion. It has an acquisition process which acquires the axial force which acts on the tire when a tire runs in order of a diameter part, the starting part, and the taper part.

本発明に係るタイヤ性能の評価方法は、前記漸減部のドラム周方向長さは、前記等径部での前記タイヤの接地面のドラム周方向長さよりも大きいのが望ましい。   In the tire performance evaluation method according to the present invention, it is desirable that the drum circumferential length of the gradually decreasing portion is larger than the drum circumferential length of the ground contact surface of the tire at the equal diameter portion.

本発明に係るタイヤ性能の評価方法は、前記断面において、前記漸減部は、円弧状であるのが望ましい。   In the method for evaluating tire performance according to the present invention, it is desirable that the gradually decreasing portion has an arc shape in the cross section.

本発明に係るタイヤ性能の評価方法は、前記断面において、前記漸減部の曲率半径Raは、前記等径部の半径Rの60%以上であるのが望ましい。   In the tire performance evaluation method according to the present invention, in the cross section, it is desirable that the radius of curvature Ra of the gradually decreasing portion is 60% or more of the radius R of the equal diameter portion.

本発明は、タイヤが走行可能な走行面を有する回転可能なドラムを具えたタイヤの台上試験装置であって、前記ドラムのドラム周方向の断面において、前記走行面は、一定の半径を有する等径部と、前記等径部から立ち上がる立ち上げ部と、ドラム半径方向の高さが前記立ち上げ部から滑らかに漸減する漸減部とを有し、前記等径部、前記立ち上げ部、及び、前記漸減部の順にタイヤと接することを特徴とする。   The present invention is a tire bench test apparatus including a rotatable drum having a running surface on which a tire can run, wherein the running surface has a constant radius in the drum circumferential section of the drum. An equal-diameter portion, a rising portion rising from the equal-diameter portion, and a gradually decreasing portion in which the height in the drum radial direction gradually decreases gradually from the rising portion, the equal-diameter portion, the rising portion, and The tire is in contact with the tire in the order of the gradually decreasing portion.

本発明のタイヤ性能評価方法は、タイヤが走行可能な走行面を有する回転可能なドラムを用いてタイヤの軸力を測定するものである。ドラムのドラム周方向の断面において、一定の半径を有する等径部と、前記等径部から立ち上がる立ち上げ部と、ドラム半径方向の高さが前記立ち上げ部から滑らかに漸減する漸減部とを含む前記走行面を、前記等径部、前記立ち上げ部、及び、前記漸減部の順にタイヤが走行したときの、前記タイヤに作用する軸力を取得する取得工程を有する。このような取得工程では、タイヤが等径部から立ち上げ部を乗り上げによる大きな入力を取得でき、かつ、漸減部では、立ち上げ部からの乗り下げによる入力を小さくできる。これにより、本発明のタイヤ性能評価方法では、タイヤの性能、例えば、硬さ性に基づく乗り心地性能を高精度で評価できる。   The tire performance evaluation method of the present invention measures the axial force of a tire using a rotatable drum having a running surface on which the tire can travel. In a cross section in the drum circumferential direction of the drum, an equal-diameter portion having a constant radius, a rising portion rising from the equal-diameter portion, and a gradually decreasing portion whose height in the drum radial direction gradually decreases gradually from the rising portion. An acquisition step of acquiring an axial force acting on the tire when the tire travels in the order of the equal-diameter portion, the rising portion, and the gradually decreasing portion on the traveling surface including In such an acquisition process, the tire can acquire a large input by climbing the rising portion from the equal-diameter portion, and the gradual decreasing portion can reduce the input by the lowering from the rising portion. Thereby, in the tire performance evaluation method of this invention, the performance of a tire, for example, the riding comfort performance based on hardness, can be evaluated with high accuracy.

本発明の一実施形態のタイヤの台上試験装置を概念的に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view conceptually showing a tire bench test apparatus according to an embodiment of the present invention. ドラムの周方向の断面図である。It is sectional drawing of the circumferential direction of a drum. 実施例1の評価方法によって取得された軸力と、加速度評価方法により取得された加速度との相関図である。It is a correlation diagram of the axial force acquired by the evaluation method of Example 1, and the acceleration acquired by the acceleration evaluation method. 実施例1の評価方法によって取得された軸力の時間変化と、加速度評価方法により取得された加速度の時間変化を表すグラフである。It is a graph showing the time change of the axial force acquired by the evaluation method of Example 1, and the time change of the acceleration acquired by the acceleration evaluation method. 従来例の評価方法によって取得された軸力の時間変化と、加速度評価方法により取得された加速度の時間変化を表すグラフである。It is a graph showing the time change of the axial force acquired by the evaluation method of a prior art example, and the time change of the acceleration acquired by the acceleration evaluation method.

以下、本発明の実施の一形態が図面に基づき説明される。本実施形態のタイヤ性能評価方法(以下、単に「評価方法」ということがある。)は、走行するタイヤTの軸力を取得する取得工程を含んでいる。本実施形態の評価方法で評価されるタイヤ性能とは、タイヤの走行に関する性能であって、例えば、乗り心地性能、操縦安定性能、悪路走行性能、振動性能等が該当する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The tire performance evaluation method of the present embodiment (hereinafter sometimes simply referred to as “evaluation method”) includes an acquisition step of acquiring the axial force of the traveling tire T. The tire performance evaluated by the evaluation method of the present embodiment is a performance related to tire traveling, and includes, for example, riding comfort performance, steering stability performance, rough road traveling performance, vibration performance, and the like.

本実施形態の評価方法に用いられるタイヤTは、特に限定されるものではなく、例えば、重荷重用タイヤ、乗用車用タイヤ又は自動二輪車用タイヤなど種々のカテゴリーの空気入りタイヤや、空気入りタイヤとは異なる構造を有するエアレスタイヤ等が採用される。   The tire T used in the evaluation method of the present embodiment is not particularly limited. Examples of the tire T include various categories of pneumatic tires such as heavy duty tires, passenger tires, and motorcycle tires, and pneumatic tires. An airless tire or the like having a different structure is employed.

図1に示されるように、本実施形態の取得工程では、車両を用いることなくタイヤTが走行可能な台上試験装置(以下、単に「装置」ということがある。)1が用いられる。なお、取得工程で用いられる装置1は、このようなものに限定されるものではなく、例えば、車両に装着されたタイヤTが走行可能な走行面3を有する周知のドラム試験装置(図示省略)を用いても良い。   As shown in FIG. 1, in the acquisition process of the present embodiment, a bench test apparatus (hereinafter simply referred to as “apparatus”) 1 that can travel a tire T without using a vehicle is used. The device 1 used in the acquisition process is not limited to such a device, and for example, a well-known drum testing device (not shown) having a running surface 3 on which a tire T attached to a vehicle can run. May be used.

装置1は、本実施形態では、周方向に回転可能なドラム2と、タイヤTを回転可能に保持するタイヤ保持手段4と、タイヤTの軸力を測定する測定手段5とを具える。   In the present embodiment, the device 1 includes a drum 2 that is rotatable in the circumferential direction, a tire holding means 4 that rotatably holds the tire T, and a measuring means 5 that measures the axial force of the tire T.

ドラム2は、本実施形態では、ドラム周方向にタイヤTが連続走行可能な走行面3を外周面に有する円筒状のドラム本体2Aと、ドラム本体2Aを回転させるドラム回転軸2Bとを含んでいる。ドラム本体2Aの走行面3は、例えば、ISO路面規格の粒度曲線(ISO10844の付属書C設計のガイドラインに記載のアスファルト混合物の粒度曲線許容範囲参照)に合わせた材料(図示省略)で形成されている。   In this embodiment, the drum 2 includes a cylindrical drum body 2A having a running surface 3 on the outer peripheral surface on which the tire T can continuously travel in the drum circumferential direction, and a drum rotation shaft 2B that rotates the drum body 2A. Yes. The running surface 3 of the drum body 2A is formed of, for example, a material (not shown) that conforms to the ISO road surface standard particle size curve (see the asphalt mixture particle size curve allowable range described in the Annex C design guidelines of ISO 10844). Yes.

走行面3は、ドラム2のドラム周方向の断面において、一定の半径(図2に示す)Rを有する等径部6と、等径部6から立ち上がる立ち上げ部8と、ドラム半径方向の高さHが立ち上げ部8から滑らかに漸減する漸減部9とを含んでいる。即ち、走行面3は、立ち上げ部8と漸減部9とで、等径部6からドラム半径方向外側に突出する突部7が形成されている。等径部6の半径Rは、ドラム2の回転軸芯cから等径部6の外面までのドラム半径方向の長さである。   The running surface 3 includes a constant diameter portion 6 having a constant radius (shown in FIG. 2) R in the cross section in the drum circumferential direction of the drum 2, a rising portion 8 rising from the constant diameter portion 6, and a height in the drum radial direction. The length H includes a gradually decreasing portion 9 that gradually decreases from the rising portion 8. That is, the running surface 3 is formed with a projecting portion 7 that protrudes outward in the drum radial direction from the equal diameter portion 6 by the rising portion 8 and the gradually decreasing portion 9. The radius R of the equal diameter portion 6 is the length in the drum radial direction from the rotation axis c of the drum 2 to the outer surface of the equal diameter portion 6.

等径部6、及び、突部7は、本実施形態では、同一の材料で形成されている。なお、等径部6と突部7とは、異なる材料で形成されてもよく、例えば、突部7のみが、金属材料や硬化樹脂材料で形成されても良い。   The equal diameter part 6 and the protrusion part 7 are formed of the same material in this embodiment. In addition, the equal diameter part 6 and the protrusion part 7 may be formed with a different material, for example, only the protrusion part 7 may be formed with a metal material or a cured resin material.

突部7は、本実施形態では、走行面3に2つ設けられている。突部7が1つの場合、前記断面において、ドラム2の回転軸芯cとドラム2の重心(図示省略)とが位置ずれするので、タイヤTの走行が不安定になり、精度良くタイヤ性能を評価できないおそれがある。このため、突部7は、ドラム周方向に等ピッチで2〜8個形成されるのが望ましい。   In the present embodiment, two protrusions 7 are provided on the traveling surface 3. In the case where there is one protrusion 7, the rotational axis c of the drum 2 and the center of gravity (not shown) of the drum 2 are displaced in the cross section, so that the running of the tire T becomes unstable and the tire performance is improved with high accuracy. There is a possibility that it cannot be evaluated. For this reason, it is desirable that 2 to 8 protrusions 7 are formed at equal pitches in the drum circumferential direction.

立ち上げ部8は、その幅方向において、ドラム2の回転軸芯cと平行かつ直線状にのびている。これにより、立ち上げ部8とタイヤTのトレッド面Taとが、その幅方向に亘って、ほぼ同時に接触することができるので、軸力を精度良く取得できる。   The rising portion 8 extends linearly and parallel to the rotational axis c of the drum 2 in the width direction. Thereby, since the starting part 8 and the tread surface Ta of the tire T can contact almost simultaneously over the width direction, axial force can be acquired accurately.

突部7のドラム軸方向の幅Waは、タイヤTの乗り心地性能を高精度で評価するため、例えば、タイヤTの最大幅Wよりも大きいのが望ましく、タイヤTの最大幅Wの110%〜150%程度が、さらに望ましい。   The width Wa in the drum shaft direction of the protrusion 7 is preferably larger than the maximum width W of the tire T, for example, in order to evaluate the riding comfort performance of the tire T with high accuracy, and is 110% of the maximum width W of the tire T. About 150% is more desirable.

図2に示されるように、立ち上げ部8は、本実施形態では、前記断面において、ドラム半径方向に沿ってのびている。なお、立ち上げ部8は、例えば、ドラム半径方向に対し傾斜していても良い。この場合、立ち上げ部8は、突部7の強度やタイヤTの損傷を抑制するため、前記断面において、ドラム半径方向に対して漸減部9の向きとは逆向きに傾斜しているのが望ましい。   As shown in FIG. 2, the rising portion 8 extends in the drum radial direction in the cross section in the present embodiment. The rising portion 8 may be inclined with respect to the drum radial direction, for example. In this case, the rising portion 8 is inclined in the direction opposite to the direction of the gradually decreasing portion 9 with respect to the drum radial direction in the cross section in order to suppress the strength of the protrusion 7 and damage to the tire T. desirable.

立ち上げ部8は、ドラム半径方向の高さHが、例えば、10〜30mm程度、かつ、ドラム周方向の長さL1が、2mm以下が望ましい。これにより、タイヤTが、例えば、等径部6から漸減部9を介することなく立ち上げ部8へ走行した場合、立ち上げ部8とタイヤTとの接触時、立ち上げ部8の上部に接触することができるので、立ち上げ部8への乗り上げによる大きな軸力を取得できる。なお、このように取得される軸力は、後述の実施例で記載される通り、実車走行による評価方法と大きな相関性を有する。   The rising portion 8 preferably has a height H in the drum radial direction of, for example, about 10 to 30 mm, and a length L1 in the drum circumferential direction of 2 mm or less. Thereby, for example, when the tire T travels from the equal-diameter portion 6 to the rising portion 8 without passing through the gradually decreasing portion 9, when the rising portion 8 contacts the tire T, the tire T contacts the upper portion of the rising portion 8. Therefore, it is possible to acquire a large axial force by riding on the rising portion 8. In addition, the axial force acquired in this way has a big correlation with the evaluation method by a real vehicle run, as described in the below-mentioned Example.

漸減部9は、前記断面において、円弧状に形成されている。これにより、漸減部9のドラム周方向長さL2が大きく確保される。漸減部9は、本実施形態では、ドラム半径方向外側に向かって凸となる円弧である。これにより、漸減部9を走行するタイヤTへの入力が小さく維持される。   The gradually decreasing portion 9 is formed in an arc shape in the cross section. Thereby, the drum circumferential direction length L2 of the gradual reduction part 9 is ensured large. In the present embodiment, the gradually decreasing portion 9 is a circular arc that protrudes outward in the drum radial direction. As a result, the input to the tire T traveling through the gradually decreasing portion 9 is kept small.

漸減部9のドラム周方向の長さL2は、等径部6でのタイヤTの接地面のドラム周方向長さLaよりも大きいのが望ましい。これにより、漸減部9のドラム半径方向の高さ変化が緩やかになるので、立ち上げ部8から乗り下げるときの入力の変化を小さくできる。   The length L2 of the gradually decreasing portion 9 in the drum circumferential direction is preferably larger than the drum circumferential length La of the contact surface of the tire T at the equal diameter portion 6. Thereby, since the change in the height of the gradually decreasing portion 9 in the drum radial direction becomes gentle, the change in input when getting on and off from the rising portion 8 can be reduced.

接地面は、タイヤTの正規荷重負荷状態での形状である。「正規荷重負荷状態」とは、本明細書では、正規リムにリム組みしかつ正規内圧を充填したタイヤに、正規荷重を負荷してキャンバー角0゜で等径部6に接地させた状態をいう。前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim"、或いはETRTOであれば "Measuring Rim"を意味する。前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" を意味する。前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。   The contact surface is a shape of the tire T in a normal load state. In this specification, “normal load load state” means a state in which a normal load is applied to a tire that is assembled with a normal rim and filled with a normal internal pressure, and the tire is grounded to the constant diameter portion 6 at a camber angle of 0 °. Say. The “regular rim” is a rim determined for each tire in a standard system including a standard on which a tire is based. For example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO Then means "Measuring Rim". The “regular internal pressure” is the air pressure defined by the standard for each tire. The maximum air pressure for JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” for ETRA, Means "INFLATION PRESSURE". The “regular load” is a load determined by the standard for each tire, and if it is JATMA, the maximum load capacity, and if it is TRA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” If it is ETRTO, it is "LOAD CAPACITY".

漸減部9は、その曲率半径Raが、等径部6の半径Rの60%以上であるのが望ましい。漸減部9の曲率半径Raが等径部6の半径Rの60%未満の場合、立ち上げ部8から乗り下げたときの入力の変化を小さくできないおそれがある。なお、漸減部9の曲率半径Raが過度に大きい場合、漸減部9が直線状になり、逆に、漸減部9のドラム周方向長さL2を大きく確保することができない。このような観点より、漸減部9の曲率半径Raは等径部6の半径Rの150%以下程度が望ましい。   The gradually decreasing portion 9 preferably has a curvature radius Ra of 60% or more of the radius R of the equal diameter portion 6. When the radius of curvature Ra of the gradually decreasing portion 9 is less than 60% of the radius R of the equal-diameter portion 6, there is a possibility that the change in input when getting on and off the rising portion 8 cannot be reduced. If the radius of curvature Ra of the gradually decreasing portion 9 is excessively large, the gradually decreasing portion 9 becomes linear, and conversely, the drum circumferential length L2 of the gradually decreasing portion 9 cannot be ensured to be large. From this point of view, the radius of curvature Ra of the gradually decreasing portion 9 is desirably about 150% or less of the radius R of the equal-diameter portion 6.

なお、漸減部9は、等径部6との接触側の端部9aが、等径部6と実質的に滑らかに接続されている。「実質的」とは、端部9aのドラム半径方向の高さhが1.5mm以下のものを含んでいる。   Note that the gradually decreasing portion 9 has an end portion 9 a on the contact side with the constant diameter portion 6 that is connected to the constant diameter portion 6 substantially smoothly. “Substantially” includes those in which the end portion 9a has a height h in the drum radial direction of 1.5 mm or less.

ドラム回転軸2Bは、回転速度を自在に調節可能なインバータ等を具えた電動機を含む駆動手段(図示省略)で回転駆動される。   The drum rotating shaft 2B is rotationally driven by driving means (not shown) including an electric motor provided with an inverter or the like that can freely adjust the rotational speed.

タイヤ保持手段4は、タイヤTを回転可能に保持する支持軸4Aと、支持軸4Aを昇降又は横移動させる移動装置(図示省略)とを有している。これにより、支持軸4Aに保持されたタイヤTが、ドラム2の走行面3上に押し付けされて走行される。   The tire holding means 4 includes a support shaft 4A that rotatably holds the tire T, and a moving device (not shown) that moves the support shaft 4A up and down or laterally. As a result, the tire T held by the support shaft 4 </ b> A is pressed against the running surface 3 of the drum 2 and runs.

測定手段5としては、例えば、タイヤTが走行面3から受ける入力を直交3分力(軸力)及び3モーメントに分解して検出し得る周知なロードセル等の6分力荷重計を含んでいる。測定手段5は、本実施形態では、支持軸4Aの軸受に取り付けられている。   The measuring means 5 includes, for example, a well-known six-component load cell such as a load cell that can detect the input received by the tire T from the running surface 3 by decomposing the input into three orthogonal component forces (axial force) and three moments. . In this embodiment, the measuring means 5 is attached to the bearing of the support shaft 4A.

本実施形態の測定手段5は、6分力荷重計によって測定された軸力を走行時間毎に表示する周知構造の処理装置(図示省略)に接続されている。なお、処理装置は、例えば、軸力を周波数分析する機能をさらに具えていても良い。   The measuring means 5 of this embodiment is connected to a processing device (not shown) having a known structure that displays the axial force measured by a 6-component force load meter for each traveling time. Note that the processing device may further include, for example, a function of analyzing the axial force frequency.

本実施形態の取得工程では、タイヤTが、ドラム周方向に沿って、等径部6、立ち上げ部8、及び、漸減部9の順に走行したときの、タイヤTに作用する軸力が取得される。なお、取得工程では、このような走行が、複数回繰り返されても良い。   In the acquisition process of the present embodiment, the axial force acting on the tire T is acquired when the tire T travels in the order of the equal diameter portion 6, the rising portion 8, and the gradually decreasing portion 9 along the drum circumferential direction. Is done. In the acquisition process, such traveling may be repeated a plurality of times.

本実施形態では、取得されるタイヤTの軸力は、タイヤTに作用するZ軸方向の荷重(入力)である。なお、本発明の評価方法で取得される軸力は、X軸方向、Y軸方向のいずれかの荷重でもよく、又はこれらX軸、Y軸、及び、Z軸方向の合計荷重や平均荷重でも良い。本明細書では、Z軸方向は、上下方向である。Y軸方向は、タイヤ回転軸と平行な方向である。X軸方向は、Y軸及びZ軸に直交する方向である。   In the present embodiment, the acquired axial force of the tire T is a load (input) in the Z-axis direction that acts on the tire T. The axial force acquired by the evaluation method of the present invention may be a load in either the X-axis direction or the Y-axis direction, or may be a total load or average load in the X-axis, Y-axis, and Z-axis directions. good. In this specification, the Z-axis direction is the vertical direction. The Y-axis direction is a direction parallel to the tire rotation axis. The X axis direction is a direction orthogonal to the Y axis and the Z axis.

次に、取得工程で取得された軸力に基づいて、タイヤ性能を評価する評価工程が行われる。本実施形態では、取得工程で取得された軸力のピークトウピーク値P(図4に示す)で評価される。例えば、ピークトウピーク値Pの大きいタイヤTは、ピークトウピーク値Pの小さいタイヤTに比して、硬さ性に基づく乗り心地性能において、硬いと評価される。逆に、ピークトウピーク値Pの小さいタイヤTは、ピークトウピーク値Pの大きいタイヤTに比して、硬さ性に基づく乗り心地性能において、軟らかいと評価される。   Next, an evaluation process for evaluating tire performance is performed based on the axial force acquired in the acquisition process. In this embodiment, the axial force peak-to-peak value P (shown in FIG. 4) acquired in the acquisition process is evaluated. For example, a tire T having a large peak toe peak value P is evaluated as being harder in ride comfort performance based on hardness than a tire T having a small peak toe peak value P. Conversely, the tire T having a small peak toe peak value P is evaluated as being softer in terms of riding comfort performance based on the hardness than the tire T having a large peak toe peak value P.

以上、本発明の好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施し得る。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the illustrated embodiments, and can be implemented in various forms.

本発明の効果を確認するために、本実施形態のタイヤ性能の評価方法、及び、従来例のタイヤ性能の評価方法によって、走行するタイヤの軸力が取得された。また、同じテストタイヤを用いて、周知の加速度評価方法によって加速度が取得された。そして、これら軸力のピークトウピーク値Pと、加速度のピークトウピーク値P1(図4に示す)との相関係数が算出され、その結果が表1に示される。また、実施例1による上下方向の軸力を横軸、加速度評価方法による加速度を縦軸にとった相関図が図3に示される。共通仕様は以下の通りである。   In order to confirm the effect of the present invention, the axial force of the traveling tire was acquired by the tire performance evaluation method of this embodiment and the conventional tire performance evaluation method. Moreover, acceleration was acquired by a known acceleration evaluation method using the same test tire. The correlation coefficient between the peak toe peak value P of the axial force and the peak toe peak value P1 of acceleration (shown in FIG. 4) is calculated, and the result is shown in Table 1. FIG. 3 shows a correlation diagram in which the vertical axial force according to the first embodiment is taken on the horizontal axis and the acceleration obtained by the acceleration evaluation method is taken on the vertical axis. The common specifications are as follows.

<テストタイヤ>
タイヤサイズ:235/45RF19
リム:19×8.0J
内圧:250kPa
それぞれのテストで、硬さの異なる10本が使用された。
<台上試験装置>
軸力測定具:ロードセル(圧電素子(キスラー社製))
計測軸力:上下方向の軸力
等径部の仕様:骨材と結合材との調合(従来例及び実施例ともに共通)
等径部の半径R:1500mm
タイヤ回転速度:30km/h
接地面のドラム周方向の長さLa:150mm
突部の材料:スチール(SS400)
突部のドラム軸方向の幅:従来例及び実施例ともに同一
<実施例の走行面>
漸減部の端部の高さh:1mm
<実車走行試験(上下方向の加速度)>
速度:50〜70km/h
計測:アスファルト路面に設けられた高さ25mmの段差を乗り上げたときの加速度を取得
加速度計:3軸歪型加速度計(ARF−20A−T(東京測器研究所社製))
計測場所:車両のバネ下
車両:排気量3000ccの乗用車
<Test tire>
Tire size: 235 / 45RF19
Rim: 19 × 8.0J
Internal pressure: 250kPa
In each test, ten different hardnesses were used.
<Bench testing equipment>
Axial force measuring tool: Load cell (Piezoelectric element (Kistler))
Measuring axial force: Vertical axial force Isometric part specification: Mixing of aggregate and binder (common to both conventional and examples)
Radius R of equal diameter part: 1500mm
Tire rotation speed: 30km / h
Drum circumferential length La: 150mm
Protrusion material: Steel (SS400)
The width of the protrusion in the drum axis direction: the same in both the conventional example and the example <Running surface of the example>
Height of the end of the taper part h: 1mm
<Actual vehicle running test (acceleration in the vertical direction)>
Speed: 50-70km / h
Measurement: Acquire acceleration when climbing a step of 25mm height provided on the asphalt road surface Accelerometer: 3-axis strain type accelerometer (ARF-20A-T (manufactured by Tokyo Sokki Kenkyujo Co., Ltd.))
Measurement location: Unsprung vehicle Vehicle: 3000cc passenger car

Figure 2017150986
Figure 2017150986

表1に示されるように、実施形態の評価方法を用いて取得された軸力は、加速度評価方法によって得られた加速度と高い相関性を有している。従って、この評価方法は、官能評価方法と高い相関性を有しているといえるので、高い精度で乗り心地性能を評価することができる。タイヤサイズや、突部の形状を好ましい範囲において変化させてさらにテストを行ったが、テスト結果は、本テストと同じ傾向を示した。   As shown in Table 1, the axial force acquired using the evaluation method of the embodiment has a high correlation with the acceleration obtained by the acceleration evaluation method. Therefore, it can be said that this evaluation method has a high correlation with the sensory evaluation method, so that the ride comfort performance can be evaluated with high accuracy. Further tests were performed by changing the tire size and the shape of the protrusions within a preferable range, and the test results showed the same tendency as the test.

また、実施例1の突部を用いて取得された軸力変化(実線)と上記テストでの加速度評価方法によって取得された加速度変化(破線)とが、図4に示される。さらに、従来例1の突部を用いて取得された軸力変化(実線)と上記テストでの加速度評価方法によって取得された加速度変化(破線)とが図5に示される。各値は、上記テストで用いられた10本のタイヤの平均である。各図は、一方の縦軸を上下軸力、他方の縦軸を加速度、横軸を経過時間とし、図中のAは、突部乗り上げ開始の位置、Bは、突部乗り上げ直後の位置、Cは、A以降で、最初に軸力及び加速度が零になる位置を示している。   Moreover, the axial force change (solid line) acquired using the protrusion of Example 1 and the acceleration change (broken line) acquired by the acceleration evaluation method in the above test are shown in FIG. Furthermore, FIG. 5 shows the axial force change (solid line) acquired using the protrusion of Conventional Example 1 and the acceleration change (broken line) acquired by the acceleration evaluation method in the above test. Each value is an average of 10 tires used in the test. In each figure, one vertical axis is the vertical axial force, the other vertical axis is the acceleration, and the horizontal axis is the elapsed time. In the figure, A is the position where the protrusion starts, B is the position immediately after the protrusion, C indicates a position where the axial force and acceleration first become zero after A.

図4のグラフからは、軸力変化及び加速度変化がともに、A〜Cまで同じ傾向で変化していることが理解できる。また、図5のグラフからは、A〜Bでは、軸力変化及び加速度変化が同じ傾向で変化しているものの、B〜Cにおいて、これら変化の傾向が異なっている。即ち、図5では、B〜Cでは、軸力が一様に小さくなっているのに対し、加速度は大きくなって小さくなっている。このため、漸減部を含む走行面をタイヤが走行する本実施形態の評価方法は、従来例1の評価方法に比して、高い相関性を有していると考えられる。   From the graph of FIG. 4, it can be understood that both the axial force change and the acceleration change change with the same tendency from A to C. Moreover, from the graph of FIG. 5, although the axial force change and the acceleration change are changing with the same tendency in AB, the tendency of these changes is different in BC. That is, in FIG. 5, in B to C, the axial force is uniformly reduced, whereas the acceleration is increased and decreased. For this reason, it is considered that the evaluation method of the present embodiment in which the tire travels on the traveling surface including the gradually decreasing portion has higher correlation than the evaluation method of Conventional Example 1.

2A ドラム
3 走行面
6 等径部
8 立ち上げ部
9 漸減部
T タイヤ
2A Drum 3 Running surface 6 Equi-diameter part 8 Start-up part 9 Gradually decreasing part T Tire

Claims (5)

タイヤが走行可能な走行面を有する回転可能なドラムを用いてタイヤの軸力を測定してタイヤ性能を評価するタイヤ性能評価方法であって、
前記ドラムのドラム周方向の断面において、一定の半径を有する等径部と、前記等径部から立ち上がる立ち上げ部と、ドラム半径方向の高さが前記立ち上げ部から滑らかに漸減する漸減部とを含む前記走行面を、前記等径部、前記立ち上げ部、及び、前記漸減部の順にタイヤが走行したときの、前記タイヤに作用する軸力を取得する取得工程を有することを特徴とするタイヤ性能の評価方法。
A tire performance evaluation method for evaluating tire performance by measuring a tire axial force using a rotatable drum having a running surface on which the tire can travel,
An equal-diameter portion having a constant radius, a rising portion rising from the equal-diameter portion, and a gradually decreasing portion whose height in the drum radial direction gradually decreases from the rising portion in a cross section in the drum circumferential direction of the drum; An acquisition step of acquiring an axial force acting on the tire when the tire travels in the order of the equal-diameter portion, the rising portion, and the gradually decreasing portion. Evaluation method of tire performance.
前記漸減部のドラム周方向長さは、前記等径部での前記タイヤの接地面のドラム周方向長さよりも大きい請求項1記載のタイヤ性能の評価方法。   2. The tire performance evaluation method according to claim 1, wherein a length in the drum circumferential direction of the gradually decreasing portion is larger than a length in the drum circumferential direction of the ground contact surface of the tire at the equal diameter portion. 前記断面において、前記漸減部は、円弧状である請求項1又は2に記載のタイヤ性能の評価方法。   The tire performance evaluation method according to claim 1, wherein the gradually decreasing portion has an arc shape in the cross section. 前記断面において、前記漸減部の曲率半径Raは、前記等径部の半径Rの60%以上である請求項3記載のタイヤ性能の評価方法。   The tire performance evaluation method according to claim 3, wherein, in the cross section, a radius of curvature Ra of the gradually decreasing portion is 60% or more of a radius R of the equal diameter portion. タイヤが走行可能な走行面を有する回転可能なドラムを具えたタイヤの台上試験装置であって、
前記ドラムのドラム周方向の断面において、前記走行面は、一定の半径を有する等径部と、前記等径部から立ち上がる立ち上げ部と、ドラム半径方向の高さが前記立ち上げ部から滑らかに漸減する漸減部とを有し、
前記等径部、前記立ち上げ部、及び、前記漸減部の順にタイヤと接することを特徴とするタイヤの台上試験装置。
A tire bench test apparatus comprising a rotatable drum having a running surface on which the tire can travel,
In the drum circumferential section of the drum, the running surface has an equal-diameter portion having a constant radius, a rising portion that rises from the equal-diameter portion, and a height in the drum radial direction that is smooth from the rising portion. A gradually decreasing portion that gradually decreases,
A tire bench test apparatus, which comes into contact with a tire in the order of the equal-diameter portion, the rising portion, and the gradually decreasing portion.
JP2016034471A 2016-02-25 2016-02-25 Tire performance testing method and on-table testing device for tire Pending JP2017150986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034471A JP2017150986A (en) 2016-02-25 2016-02-25 Tire performance testing method and on-table testing device for tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034471A JP2017150986A (en) 2016-02-25 2016-02-25 Tire performance testing method and on-table testing device for tire

Publications (1)

Publication Number Publication Date
JP2017150986A true JP2017150986A (en) 2017-08-31

Family

ID=59740656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034471A Pending JP2017150986A (en) 2016-02-25 2016-02-25 Tire performance testing method and on-table testing device for tire

Country Status (1)

Country Link
JP (1) JP2017150986A (en)

Similar Documents

Publication Publication Date Title
JP6143882B2 (en) Scalable vehicle model for indoor tire testing
US8424371B2 (en) Method, apparatus and system for analysing a vehicle wheel
CN109752128B (en) Tire rolling resistance testing machine
KR101225830B1 (en) Method and apparatus for analysing vehicle wheels
JP2007003218A (en) Tire characteristic measuring device and tire characteristics measuring method
JP5530421B2 (en) Tire noise test method
JP2012112781A (en) Test apparatus for testing vibration characteristic of tire and test method using the test apparatus
US20120131994A1 (en) Retainer structure for vehicle testing platform, use of the retainer, and specialized vehicle testing platform to test an electronic stability program of a vehicle
CN106918459A (en) Overloading wagon decision method
JP7083068B2 (en) Solid tire with shock absorbers
JP6363920B2 (en) Method for evaluating hydroplaning performance of tires
US6836706B2 (en) Method of forecasting comfort inside a vehicle equipped with a mounted assembly having non-uniformities
KR100827181B1 (en) Device and method for measuring dynamic loaded radius of tire
JP6735254B2 (en) Device and method for calculating tire dynamic load radius
JP2017150986A (en) Tire performance testing method and on-table testing device for tire
JP6922722B2 (en) Evaluation method of uneven wear resistance of rubber members and tire manufacturing method using this
JP6743533B2 (en) Tire test method
JPS643683B2 (en)
JP5848550B2 (en) Tire mud performance evaluation method
JP5548116B2 (en) Test method of tire over bump performance
Ramji et al. Stiffness properties of small-sized pneumatic tyres
JP6922270B2 (en) Tire performance evaluation method
JP2021011241A (en) Evaluation method and evaluation device of spike tire
KR102589846B1 (en) Tire stiffness measuring device
JP2018132449A (en) Method for testing vibration characteristics of tire