JP2017150937A - Substrate inspection device and sluice valve device - Google Patents

Substrate inspection device and sluice valve device Download PDF

Info

Publication number
JP2017150937A
JP2017150937A JP2016033438A JP2016033438A JP2017150937A JP 2017150937 A JP2017150937 A JP 2017150937A JP 2016033438 A JP2016033438 A JP 2016033438A JP 2016033438 A JP2016033438 A JP 2016033438A JP 2017150937 A JP2017150937 A JP 2017150937A
Authority
JP
Japan
Prior art keywords
substrate
inspected
vacuum chamber
carrier
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016033438A
Other languages
Japanese (ja)
Inventor
藤井 佳詞
Yoshiji Fujii
佳詞 藤井
克徳 藤井
Katsunori Fujii
克徳 藤井
達矢 森
Tatsuya Mori
達矢 森
真規 伊藤
Masaki Ito
真規 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2016033438A priority Critical patent/JP2017150937A/en
Publication of JP2017150937A publication Critical patent/JP2017150937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate inspection device and a sluice valve detection with which it is possible to accurately detect a crack or a chip having occurred in an edge portion of a substrate to be inspected, without being affected by the surface condition of the substrate to be inspected.SOLUTION: This substrate inspection device IV, provided with conveyance means for conveying a substrate W to be inspected that is held by a robot hand 13 in one direction and detection means 25 for capturing the image of a substrate to be inspected and detecting a crack or a chip having occurred in an edge portion, further includes a light source 24 for irradiating one face of the substrate to be inspected with a linear light spreading across the substrate to be inspected in the radial direction, one that passes through the robot hand and is cut off by the substrate to be inspected being selected as an irradiation light from the light source, with an imaging unit 25a of the detection means arranged on the other face side of the substrate to be inspected.SELECTED DRAWING: Figure 2

Description

本発明は、被検査基板のエッジ部分に生じた割れや欠けを検出する基板検査装置及び仕切弁装置に関する。   The present invention relates to a substrate inspection device and a gate valve device that detect cracks and chips generated at an edge portion of a substrate to be inspected.

従来、処理すべき基板に対し、真空雰囲気下で熱処理、成膜処理やエッチング処理といった複数の処理を施す真空処理装置として、基板を保持するキャリアとしてのロボットハンドを有する搬送ロボットが配置される中央の搬送室と、この搬送室を囲うように配置される複数の処理室とを備える所謂クラスターツールが知られている。通常、搬送室と各処理室とは、両室を選択的に隔絶できる仕切弁装置を介して連設される。   Conventionally, a transfer robot having a robot hand as a carrier for holding a substrate is disposed as a vacuum processing apparatus that performs a plurality of processes such as heat treatment, film formation process and etching process on a substrate to be processed in a vacuum atmosphere. There is known a so-called cluster tool comprising a transfer chamber and a plurality of processing chambers arranged so as to surround the transfer chamber. Usually, the transfer chamber and each processing chamber are connected via a gate valve device that can selectively isolate both chambers.

ところで、処理対象物としての基板はその大型化や薄肉化が進んでおり、これに伴い、所定の処理に起因した歪や応力で基板のエッジ部分に割れや欠けが生じることがある。このような割れや欠けが生じていると、例えば搬送時に基板の破損を招き易く、搬送室や処理室で基板が破損すると、当該基板を取り除く必要が生じ、生産性が低下するという問題がある。このため、基板の破損につながるエッジ部分の割れや欠けを可及的速やかに検出できるようにしておくことが望まれている。   By the way, the substrate as a processing object has been increased in size and thickness, and accordingly, the edge portion of the substrate may be cracked or chipped due to distortion or stress caused by the predetermined processing. If such a crack or chipping occurs, for example, the substrate is likely to be damaged at the time of transfer, and if the substrate is damaged in the transfer chamber or the processing chamber, the substrate needs to be removed, resulting in a decrease in productivity. . For this reason, it is desired to be able to detect as much as possible a crack or chip in the edge portion that leads to breakage of the substrate.

基板の割れを検出する検出装置は例えば特許文献1で知られている。このものでは、搬送手段として搬送ベルトを用い、この搬送ベルト上に基板を保持して一方向に搬送し、基板の上面側に配置された撮像部により被検査基板を撮像して基板のエッジ部分に生じた割れや欠けが検出される。然し、被検査基板としての基板には、所定の処理を施すことで、例えば、金属膜のように反射率の高い膜が表出している場合がある。このため、上記従来例のように撮像部で被検査基板を撮像しようとしても、当該撮像部が写り込むことで割れや欠けを精度よく検出できないという問題がある。   A detection apparatus for detecting a crack in a substrate is known from Patent Document 1, for example. In this apparatus, a conveyance belt is used as a conveyance means, the substrate is held on the conveyance belt and conveyed in one direction, and the substrate to be inspected is imaged by the imaging unit disposed on the upper surface side of the substrate. Cracks and chips generated in are detected. However, the substrate as the substrate to be inspected may be exposed to a film having a high reflectance such as a metal film by performing a predetermined process. For this reason, even if it is going to image a to-be-inspected board | substrate with an imaging part like the said prior art example, there exists a problem that a crack and a chip | tip cannot be detected accurately because the said imaging part is reflected.

特開2008−102062号公報JP 2008-102062 A

本発明は、以上の点に鑑み、被検査基板の表面状態に影響されることなく、被検査基板のエッジ部分に生じた割れや欠けを精度よく検出することが可能な基板検査装置及び仕切弁装置を提供することをその課題とするものである。   In view of the above, the present invention provides a substrate inspection apparatus and a gate valve that can accurately detect cracks and chips generated in an edge portion of a substrate to be inspected without being affected by the surface state of the substrate to be inspected. It is an object of the present invention to provide an apparatus.

上記課題を解決するために、キャリアで保持された被検査基板を一方向に搬送する搬送手段と、被検査基板を撮像してエッジ部分に生じた割れや欠けを検出する検出手段とを備える本発明の基板検査装置は、被検査基板の一方の面に向けて当該被検査基板を径方向で跨ぐライン状の光を照射する光源を更に備え、光源からの照射光として、キャリアを透過する一方で被検査基板で遮断されるものから選択され、検出手段の撮像部が被検査基板の他方の面側に配置されることを特徴とする。   In order to solve the above-mentioned problems, a book comprising transport means for transporting a substrate to be inspected held by a carrier in one direction, and detection means for detecting a crack or a chip generated at an edge portion by imaging the substrate to be inspected. The substrate inspection apparatus according to the present invention further includes a light source that irradiates a line-shaped light straddling the inspection substrate in a radial direction toward one surface of the inspection substrate, and transmits the carrier as irradiation light from the light source. And the image pickup unit of the detecting means is arranged on the other surface side of the substrate to be inspected.

本発明によれば、光源からの照射光はキャリアを透過するが被検査基板を透過しないため、撮像部で得られた画像では被検査基板とキャリアとの間のコントラストが大きくなり、被検査基板とキャリアとの境界部分である被検査基板のエッジ部分が浮き上がるように見える。このため、当該エッジ部分に生じた割れや欠けを精度よく検出することができる。しかも、被検査基板の表面での反射光から画像を取得しないため、被検査基板の表面状態に影響されることもない。   According to the present invention, the irradiation light from the light source passes through the carrier but does not pass through the substrate to be inspected, so that the contrast between the substrate to be inspected and the carrier increases in the image obtained by the imaging unit. It seems that the edge part of the substrate to be inspected, which is the boundary part between the carrier and the carrier, is lifted. For this reason, the crack and the chip | tip which arose in the said edge part can be detected accurately. Moreover, since an image is not acquired from the reflected light on the surface of the substrate to be inspected, the surface state of the substrate to be inspected is not affected.

本発明において、被検査基板がシリコンウエハであり、前記キャリアが真空チャンバ内に配置される搬送ロボットのロボットハンドである場合、前記ロボットハンドを0.5mm〜5.0mmの板厚を持つ酸化アルミニウムからなる透光性セラミックスで構成し、前記光源を380〜750nmの範囲の中心波長の照射光を照射するもので構成することが好ましい。これによれば、ロボットハンドを発光させることができることを後述する実験により確認した。   In the present invention, when the substrate to be inspected is a silicon wafer and the carrier is a robot hand of a transfer robot disposed in a vacuum chamber, the robot hand is made of aluminum oxide having a plate thickness of 0.5 mm to 5.0 mm. It is preferable that the light source is made of a material that emits irradiation light having a central wavelength in the range of 380 to 750 nm. According to this, it was confirmed by an experiment described later that the robot hand can emit light.

また、一方向に連設された第1真空室と第2真空室との間に介設され、第1真空室と第2真空室とを選択的に隔絶する本発明の仕切弁装置は、弁箱とこの弁箱内に往復動自在に設けられる弁体とを備え、弁体の往復動方向に直交する第1真空室と第2真空室との連設方向にキャリアで保持された被検査基板が搬送され、往復動方向一側に位置する弁箱の壁面に設けられ、キャリアで保持されて搬送される被検査基板の一方の面に向けて当該被検査基板を径方向で跨ぐライン状の光を照射する光源と、往復動方向他側に位置する弁箱の壁面に設けられて被検査基板を撮像する撮像部を有し、被検査基板のエッジ部分に生じた割れや欠けを検出する検出手段とを更に備えることを特徴とする。   Further, the gate valve device of the present invention, which is interposed between the first vacuum chamber and the second vacuum chamber which are continuously provided in one direction and selectively isolates the first vacuum chamber and the second vacuum chamber, A valve body and a valve body provided in the valve box so as to be able to reciprocate, and is held by a carrier in a connecting direction of the first vacuum chamber and the second vacuum chamber perpendicular to the reciprocating direction of the valve body. A line that is provided on the wall surface of the valve box that is transported and located on one side of the reciprocating direction, and that straddles the substrate to be inspected in the radial direction toward one surface of the substrate to be inspected that is held and transported by the carrier A light source that irradiates a shaped light and an imaging unit that is provided on the wall surface of the valve box that is located on the other side of the reciprocating direction, and that captures cracks and chips generated at the edge of the substrate to be inspected. And detecting means for detecting.

これによれば、仕切弁装置の弁箱内を被検査基板が通過する間に撮像した被検査基板の画像から基板のエッジ部に生じた割れや欠けを検出することができ、割れや欠けを検出した場合には、被検査基板の搬送を直ちに禁止することで、被検査基板の破損を防止できる。   According to this, it is possible to detect cracks and chips generated at the edge portion of the substrate from the image of the substrate to be inspected while the substrate to be inspected passes through the valve box of the gate valve device. If detected, the substrate can be prevented from being damaged by immediately prohibiting the conveyance of the substrate to be inspected.

本発明の実施形態の仕切弁装置を適用したクラスターツールを説明する図。The figure explaining the cluster tool to which the gate valve apparatus of embodiment of this invention is applied. 図1に示す第1真空室Tと第2真空室C1との間に介設された仕切弁装置IVを基板Wが通過する状態を示す図。The figure which shows the state which the board | substrate W passes the gate valve apparatus IV interposed between the 1st vacuum chamber T shown in FIG. 1, and the 2nd vacuum chamber C1. 照射光が基板Wにより遮断される領域Raとロボットハンド13を透過する領域Rbとを説明する図。The figure explaining area | region Ra where irradiation light is interrupted | blocked by the board | substrate W, and area | region Rb which permeate | transmits the robot hand 13. FIG. 撮像部により撮像された画像から得られた基板W全体の画像を示す模式図。The schematic diagram which shows the image of the whole board | substrate W obtained from the image imaged by the imaging part. 仕切弁装置の変形例を示す図。The figure which shows the modification of a gate valve apparatus. (a)及び(b)は、本発明の実験結果を示す写真。(A) And (b) is the photograph which shows the experimental result of this invention.

以下、図面を参照して、クラスターツールで構成された真空処理装置に組み付けられる仕切弁装置IVを例に、本発明の実施形態の基板検査装置について説明する。図1に示すように、真空処理装置たるスパッタリング装置Mは、基板Wを保持する搬送ロボットRが配置される中央の搬送室Tと、この搬送室Tを囲うように配置される処理室C1,C2及びロードロック室L1,L2とを備える。これら搬送室T、ロードロック室L1,L2及び処理室C1,C2は、図示省略の真空ポンプにより夫々真空引きできるようになっている。搬送ロボットRは、図示省略の2個のモータを有し、同心に配置された各モータの回転軸11a,11bにはロボットアーム12が図示省略のリンク機構を介して連結され、ロボットアーム12の先端に基板Wを保持するロボットハンド13が取り付けられている。そして、回転軸11a,11bの各回転角を適宜制御することで、ロボットアーム12が伸縮及び旋回自在となり、ロボットハンド13で保持した基板Wを各室の所定位置に搬送できるようになっている。   Hereinafter, a substrate inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking as an example a gate valve apparatus IV assembled to a vacuum processing apparatus constituted by a cluster tool. As shown in FIG. 1, a sputtering apparatus M as a vacuum processing apparatus includes a central transfer chamber T in which a transfer robot R that holds a substrate W is disposed, and processing chambers C1 and C1 that are disposed so as to surround the transfer chamber T. C2 and load lock chambers L1 and L2. The transfer chamber T, the load lock chambers L1 and L2, and the processing chambers C1 and C2 can be evacuated by a vacuum pump (not shown). The transport robot R has two motors (not shown), and the robot arms 12 are connected to the rotation shafts 11a and 11b of the motors arranged concentrically via a link mechanism (not shown). A robot hand 13 that holds the substrate W is attached to the tip. By appropriately controlling the rotation angles of the rotation shafts 11a and 11b, the robot arm 12 can be expanded and contracted and swiveled, and the substrate W held by the robot hand 13 can be transported to a predetermined position in each chamber. .

搬送室Tとロードロック室L1,L2及び処理室C1,C2とは、本実施形態の仕切弁装置IVを介してそれぞれ連結され、各室が相互に隔絶できるようになっている。図2も参照して、仕切弁装置IVは、弁箱21と、この弁箱21内で、図中実線で示す開弁位置と仮想線で示す閉弁位置との間で往復動自在に設けられる弁体22とを備える。以下においては、弁体22の往復動方向をZ軸方向、このZ軸方向に直交する搬送室(第1真空室)Tと処理室(第2真空室)C1との連設方向をX軸方向として説明する。   The transfer chamber T, the load lock chambers L1 and L2, and the processing chambers C1 and C2 are connected to each other via the gate valve device IV of the present embodiment so that the chambers can be isolated from each other. Referring also to FIG. 2, the gate valve device IV is provided so as to freely reciprocate between a valve box 21 and a valve opening position indicated by a solid line and a valve closing position indicated by a virtual line in the valve box 21. The valve body 22 is provided. In the following, the reciprocating direction of the valve body 22 is the Z-axis direction, and the connecting direction of the transfer chamber (first vacuum chamber) T and the processing chamber (second vacuum chamber) C1 orthogonal to the Z-axis direction is the X-axis. This will be described as a direction.

弁箱21のX軸方向の壁面部分には互いに対向させて透孔21a,21aが夫々開設されている。弁体22が開弁位置に移動した状態では、これらの透孔21a,21aを通じて搬送室Tと処理室C1とが連通し、両室T,C1の間でロボットハンド13で保持された基板Wの搬送が可能となる。   Through holes 21a and 21a are formed in the wall surface portion of the valve box 21 in the X-axis direction so as to face each other. In a state where the valve element 22 is moved to the valve opening position, the transfer chamber T and the processing chamber C1 communicate with each other through the through holes 21a and 21a, and the substrate W held by the robot hand 13 between the chambers T and C1. Can be transported.

処理室C1を画成する真空チャンバ1の底壁には、排気口30が設けられ、この排気口30に図示省略の真空ポンプに通じる排気管が接続され、処理室C1内を真空引きできるようになっている。また、図示省略するが、真空チャンバ1側壁にはガス源に通じるガス管が接続され、このガス管に介設されたマスフローコントローラにより、Arなどの希ガス(または希ガスと酸素ガスの混合ガス)からなるスパッタガスを処理室C1内に所定流量で導入できる。真空チャンバ1の天井部には、成膜しようとする薄膜の組成に応じて適宜選択されるターゲット32が配置され、ターゲット32の上面にはインジウム等のボンディング材を介して金属製(例えば、銅製)のバッキングプレート33が接合され、成膜時にターゲット32が冷却される。ターゲット32には、公知の構造を有するスパッタ電源Eからの出力が接続され、スパッタリング時、ターゲット32に直流電力が投入される。バッキングプレート33の上方には、ターゲット32の下面(スパッタ面)の下方空間に磁場を発生させる公知構造を有する磁石ユニット34が配置され、ターゲット32からのスパッタ粒子を効率よくイオン化している。真空チャンバ1の底部には、ターゲット32に対向させてステージ35が配置され、基板Wがその成膜面を上側にして位置決め保持されるようにしている。また、処理室C1内には、上下の防着板36u,36dが配置され、真空チャンバ1内壁面にスパッタ粒子が付着しないようにしている。尚、防着板36dは、基板W搬送時の下降位置と、成膜時の上昇位置との間で、昇降手段37により昇降自在となっている。   An exhaust port 30 is provided in the bottom wall of the vacuum chamber 1 that defines the processing chamber C1, and an exhaust pipe connected to a vacuum pump (not shown) is connected to the exhaust port 30 so that the processing chamber C1 can be evacuated. It has become. Although not shown, a gas pipe leading to a gas source is connected to the side wall of the vacuum chamber 1, and a rare gas such as Ar (or a mixed gas of rare gas and oxygen gas) is connected by a mass flow controller interposed in the gas pipe. Can be introduced into the processing chamber C1 at a predetermined flow rate. A target 32 that is appropriately selected according to the composition of the thin film to be deposited is disposed on the ceiling of the vacuum chamber 1. ) And the target 32 is cooled during film formation. An output from a sputtering power source E having a known structure is connected to the target 32, and DC power is input to the target 32 during sputtering. Above the backing plate 33, a magnet unit 34 having a known structure for generating a magnetic field in a space below the lower surface (sputtering surface) of the target 32 is arranged, and the sputtered particles from the target 32 are efficiently ionized. A stage 35 is disposed at the bottom of the vacuum chamber 1 so as to face the target 32 so that the substrate W is positioned and held with its film formation surface facing upward. In addition, upper and lower deposition prevention plates 36u and 36d are disposed in the processing chamber C1, so that sputter particles do not adhere to the inner wall surface of the vacuum chamber 1. The deposition preventing plate 36d can be moved up and down by an elevating means 37 between a lowered position at the time of transporting the substrate W and an elevated position at the time of film formation.

ところで、基板Wのエッジ部分に割れや欠けが生じることがあり、このような割れや欠けが生じていると、例えば搬送時に基板Wの破損を招き易く、搬送室Tや処理室C1で基板が破損すると、当該基板Wを取り除く必要が生じ、生産性が低下する。   By the way, the edge portion of the substrate W may be cracked or chipped. If such a crack or chipped portion is generated, for example, the substrate W is easily damaged at the time of transport. When it breaks, it becomes necessary to remove the substrate W, and productivity is lowered.

そこで、本実施形態では、弁箱21のZ軸方向下側に位置する壁面にガラス窓23aを設け、このガラス窓23aにロボットハンド13で保持されて搬送される基板Wの下面に向けて基板Wを径方向(Y軸方向)に跨ぐライン状の光を照射する光源24を設けた。さらに、弁箱21のZ軸方向上側に位置する壁面にガラス窓23bを設け、このガラス窓23bに、基板Wを撮像する撮像部25aを有し、基板Wのエッジ部分に生じた割れや欠けを検出する検出手段25を設けた。光源24としては、少なくとも1つのレーザ投光器を用いることができ、このレーザ投光器からの照射光として、ロボットハンド13を透過する一方で基板Wで遮蔽されるものを選択することができる。基板WをY軸方向にライン状の光が跨ぐためには、複数のレーザ投光器24を用いることが好ましい。また、撮像部25aとしては、ラインカメラを用いることができる。これらレーザ投光器24やラインカメラ25aとしては、公知のものを用いることができるため、ここでは詳細な説明を省略する。   Therefore, in the present embodiment, a glass window 23a is provided on the wall surface located on the lower side in the Z-axis direction of the valve box 21, and the substrate is directed toward the lower surface of the substrate W held and transported by the robot hand 13 in the glass window 23a. A light source 24 for irradiating linear light straddling W in the radial direction (Y-axis direction) was provided. Further, a glass window 23b is provided on the wall surface located on the upper side in the Z-axis direction of the valve box 21, and the glass window 23b has an image pickup unit 25a for picking up an image of the substrate W. The detection means 25 which detects this is provided. As the light source 24, at least one laser projector can be used. As the irradiation light from the laser projector, one that passes through the robot hand 13 and is shielded by the substrate W can be selected. In order for the linear light to straddle the substrate W in the Y-axis direction, it is preferable to use a plurality of laser projectors 24. Further, a line camera can be used as the imaging unit 25a. As these laser projector 24 and line camera 25a, since a well-known thing can be used, detailed description is abbreviate | omitted here.

尚、上記スパッタリング装置Mは、特に図示しないが、マイクロコンピュータやシーケンサ等を備えた公知の制御手段を有し、この制御手段により、搬送ロボットRの作動のほか、電源Eの稼働、マスフローコントローラの稼働や真空ポンプの稼働等を統括管理するようになっている。さらに、上記制御手段は、搬送ロボットRの作動に関する制御信号を取得し、その制御信号に基づき基板Wが弁箱21内を通過する通過時間を求め、この通過時間から上記光源24からの照射光の照射開始及び照射終了を制御すると共に、検出手段25の検出結果に基づき搬送ロボットRを停止できるようになっている。以下、仕切弁装置IVを介して連設される搬送室Tから処理室C1に基板Wを搬送する場合を例に、本実施形態の基板搬送方法を説明する。   The sputtering apparatus M has a known control means (not shown) having a microcomputer, a sequencer, and the like. By this control means, in addition to the operation of the transfer robot R, the operation of the power supply E, the mass flow controller It is designed to oversee operation and operation of vacuum pumps. Further, the control means obtains a control signal related to the operation of the transfer robot R, obtains a passing time for the substrate W to pass through the valve box 21 based on the control signal, and irradiates light from the light source 24 from this passing time. Is controlled so that the transfer robot R can be stopped based on the detection result of the detection means 25. Hereinafter, the substrate transfer method of the present embodiment will be described by taking as an example the case where the substrate W is transferred from the transfer chamber T provided continuously via the gate valve device IV to the processing chamber C1.

先ず、大気中でロードロック室L1に基板Wを投入し、ロードロック室L1が真空引きした後、搬送ロボットRによりロードロック室L1から搬送室Tに基板Wを搬送する。   First, the substrate W is put into the load lock chamber L1 in the atmosphere, and after the load lock chamber L1 is evacuated, the substrate W is transferred from the load lock chamber L1 to the transfer chamber T by the transfer robot R.

次に、搬送室Tの基板Wを処理室C1に搬送する搬送ロボットRの作動に関する制御信号を取得し(取得工程)、この取得した制御信号に基づき基板Wが弁箱21内を通過する通過時間(通過タイミング)を求める。そして、弁箱21内を基板Wが通過するとき、光源24からの光照射をオンにする。これにより、弁箱21内を通過する基板Wの下面に対してZ軸方向から光照射される。   Next, a control signal related to the operation of the transfer robot R that transfers the substrate W in the transfer chamber T to the processing chamber C1 is acquired (acquisition step), and the substrate W passes through the valve box 21 based on the acquired control signal. Find time (passing timing). Then, when the substrate W passes through the valve box 21, light irradiation from the light source 24 is turned on. Thereby, light is irradiated from the Z-axis direction to the lower surface of the substrate W passing through the valve box 21.

ここで、光源24からの照射光として、ロボットハンド13を透過する一方で基板Wで遮蔽されるものを選択するため、光源24からの照射光は、ロボットハンド13を透過するが基板Wを透過しない。これにより、図3に示すように、撮像部24aから基板Wを見ると、基板Wで照射光が遮断された領域Raは比較的暗くなり、ロボットハンド13の照射光が透過する領域Rbは比較的明るくなる。その結果、撮像部24aで撮像された画像では、基板Wとロボットハンド13との間のコントラストが大きくなる。そして、図4に示すように、ロボットハンド13を搬送室Tから処理室C1に向かって移動させながら、撮像部24aで連続して撮像すると、複数の画像I1,I2,・・・,I(n−1),Inが得られ、これら複数の画像I1,I2,・・・,I(n−1),Inを繋げることで基板Wの画像Iwが得られる。この画像Iwでは、基板Wとロボットハンド13との間のコントラストが大きくなり、基板Wとロボットハンド13との境界部分である基板Wのエッジ部分が浮き上がるように見える。従って、この画像Iwに基づき、検出手段25により基板Wのエッジ部分に生じた割れや欠けを精度よく検出することができる。検出手段25により割れや欠けが検出されると、搬送ロボットRによる搬送を禁止し、搬送ロボットRを搬送室Tに戻す。これにより、基板Wの破損を可及的速やかに防止することができる。しかも、本実施形態によれば、基板W表面での反射光から画像を取得しないため、基板Wの表面状態に影響されることもない。   Here, the irradiation light from the light source 24 is selected so as to pass through the robot hand 13 while being shielded by the substrate W, so that the irradiation light from the light source 24 passes through the robot hand 13 but passes through the substrate W. do not do. Accordingly, as shown in FIG. 3, when the substrate W is viewed from the imaging unit 24a, the region Ra where the irradiation light is blocked by the substrate W becomes relatively dark, and the region Rb through which the irradiation light from the robot hand 13 passes is compared. Become brighter. As a result, the contrast between the substrate W and the robot hand 13 increases in the image captured by the imaging unit 24a. Then, as shown in FIG. 4, when the robot hand 13 is moved continuously from the transfer chamber T toward the processing chamber C1, and continuously captured by the imaging unit 24a, a plurality of images I1, I2,. n-1), In are obtained, and an image Iw of the substrate W is obtained by connecting the plurality of images I1, I2,..., I (n-1), In. In this image Iw, the contrast between the substrate W and the robot hand 13 increases, and the edge portion of the substrate W that is the boundary portion between the substrate W and the robot hand 13 appears to float. Therefore, based on this image Iw, the detection means 25 can accurately detect cracks and chips generated at the edge portion of the substrate W. When the detection means 25 detects a crack or a chip, the transfer by the transfer robot R is prohibited, and the transfer robot R is returned to the transfer chamber T. Thereby, damage to the substrate W can be prevented as quickly as possible. In addition, according to the present embodiment, since an image is not acquired from the reflected light on the surface of the substrate W, the surface state of the substrate W is not affected.

基板Wがシリコンウエハである場合、ロボットハンド13を0.5mm〜5.0mmの板厚を持つ酸化アルミニウムからなる透孔性セラミックスで構成し、光源24を、380〜750nmの範囲の中心波長の照射光を照射するもので構成することが好ましい。これによれば、ロボットハンド13をバックライトの如く発光させることができ、シリコンウエハWとロボットハンド13との間のコントラストを更に大きくすることができるため、より一層高精度に欠けや割れを検出することができる。   When the substrate W is a silicon wafer, the robot hand 13 is made of porous ceramics made of aluminum oxide having a thickness of 0.5 mm to 5.0 mm, and the light source 24 has a central wavelength in the range of 380 to 750 nm. It is preferable to use an irradiation light. According to this, since the robot hand 13 can emit light like a backlight and the contrast between the silicon wafer W and the robot hand 13 can be further increased, chipping and cracking can be detected with higher accuracy. can do.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、基板Wの下面に対して基板Wの下側に配置された光源24から照射光を照射する場合を例に説明したが、基板Wの上側に光源を配置して基板Wの上面に照射光を照射し、基板Wの下側に配置した撮像部により撮像してもよい。また、光源24のY方向外側に補助光源を配置し、補助光源からの光を撮像部25aに入射させるように構成してもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the case where irradiation light is irradiated from the light source 24 disposed below the substrate W to the lower surface of the substrate W has been described as an example. The upper surface may be irradiated with irradiation light, and an image may be captured by an imaging unit disposed on the lower side of the substrate W. Further, an auxiliary light source may be disposed outside the light source 24 in the Y direction, and light from the auxiliary light source may be incident on the imaging unit 25a.

上記実施形態では、光源24としてのレーザ投光器からの照射光を基板Wに照射する場合を例に説明したが、図5に示すように、レーザ投光器24からの光を拡散レンズ26に照射し、拡散レンズ26によりライン状に拡散した光を基板Wの下面に照射するように構成してもよい。   In the above embodiment, the case where the irradiation light from the laser projector as the light source 24 is applied to the substrate W has been described as an example, but as shown in FIG. 5, the light from the laser projector 24 is applied to the diffusion lens 26, You may comprise so that the light diffused in the line form by the diffuser lens 26 may be irradiated to the lower surface of the board | substrate W. FIG.

上記実施形態では、基板WをY軸方向に跨ぐライン状の光を照射しているが、基板Wだけでなくロボットハンド13をY軸方向に跨ぐようにライン状の光を照射してもよい。   In the above-described embodiment, the line-shaped light straddling the substrate W in the Y-axis direction is irradiated. However, the line-shaped light may be irradiated so as to straddle not only the substrate W but also the robot hand 13 in the Y-axis direction. .

上記実施形態では、搬送室Tから処理室C1に搬送する際に欠けや割れを検出する場合を例に説明したが、ロードロック室L1から搬送室Tに搬送する際に検出してもよい。また、上記実施形態では、クラスターツールを例に説明したが、インライン式の装置にも本発明を適用することができる。   In the above-described embodiment, the case where chipping or cracking is detected when transferring from the transfer chamber T to the processing chamber C1 has been described as an example, but detection may be performed when transferring from the load lock chamber L1 to the transfer chamber T. In the above embodiment, the cluster tool has been described as an example. However, the present invention can be applied to an inline apparatus.

次に、本発明者らが行った実験について説明する。本実験では、図6(a)に示すように、レーザ投光器24から中心波長650nmのレーザ光を拡散レンズ(樹脂透明丸棒)26に照射して拡散し、拡散したライン状の光を、2mm厚の酸化アルミニウム製のロボットハンド13の上面に投光した。このとき、図6(b)に示すように、ロボットハンド13の下面側にて、ライン状の光がロボットハンド13を透過し、このとき、ロボットハンド13がバックライトの如く発光することが確認された。   Next, experiments conducted by the present inventors will be described. In this experiment, as shown in FIG. 6A, a laser beam having a center wavelength of 650 nm is irradiated from a laser projector 24 onto a diffusion lens (resin transparent round bar) 26 to diffuse, and the diffused line-shaped light is 2 mm. The light was projected onto the upper surface of a robot hand 13 made of thick aluminum oxide. At this time, as shown in FIG. 6B, on the lower surface side of the robot hand 13, the line-shaped light is transmitted through the robot hand 13, and at this time, it is confirmed that the robot hand 13 emits light like a backlight. It was done.

C1…処理室(第2真空室)、IV…仕切弁装置、T…搬送室(第1真空室)、R…搬送ロボット(搬送手段)、W…基板(被検査基板)、13…ロボットハンド(キャリア)、21…弁箱、22…弁体、24…光源、25…検出手段、25a…撮像部。   C1 ... processing chamber (second vacuum chamber), IV ... gate valve device, T ... transfer chamber (first vacuum chamber), R ... transfer robot (transfer means), W ... substrate (substrate to be inspected), 13 ... robot hand (Carrier), 21 ... Valve box, 22 ... Valve body, 24 ... Light source, 25 ... Detection means, 25a ... Imaging unit.

Claims (3)

被検査基板をキャリアで保持して一方向に搬送する搬送手段と、被検査基板を撮像してエッジ部分に生じた割れや欠けを検出する検出手段とを備える基板検査装置において、
被検査基板の一方の面に向けて当該被検査基板を径方向で跨ぐライン状の光を照射する光源を更に備え、光源からの照射光が、キャリアを透過する一方で被検査基板で遮断されるものから選択され、検出手段の撮像部が被検査基板の他方の面側に配置されることを特徴とする基板検査装置。
In a substrate inspection apparatus comprising a transport unit that holds a substrate to be inspected by a carrier and transports the substrate in one direction, and a detection unit that captures an image of the substrate to be inspected and detects a crack or a chip generated in an edge portion.
It further includes a light source that irradiates a line-shaped light straddling the inspected substrate in the radial direction toward one surface of the inspected substrate, and the irradiation light from the light source is blocked by the inspected substrate while passing through the carrier. A substrate inspection apparatus, characterized in that the imaging unit of the detection means is selected on the other surface side of the substrate to be inspected.
請求項1記載の基板検査装置であって、被検査基板がシリコンウエハ、前記キャリアが真空室内に配置される搬送ロボットのロボットハンドであるものにおいて、
前記ロボットハンドが、0.5mm〜5.0mmの板厚を持つ酸化アルミニウムからなる透光性セラミックスで構成され、前記光源が、380〜750nmの範囲の中心波長の照射光を照射するもので構成されることを特徴とする請求項1記載の基板検査装置。
The substrate inspection apparatus according to claim 1, wherein the substrate to be inspected is a silicon wafer, and the carrier is a robot hand of a transfer robot in which the carrier is disposed in a vacuum chamber.
The robot hand is composed of translucent ceramics made of aluminum oxide having a plate thickness of 0.5 mm to 5.0 mm, and the light source irradiates irradiation light having a center wavelength in the range of 380 to 750 nm. The substrate inspection apparatus according to claim 1, wherein:
一方向に連設された第1真空室と第2真空室との間に介設され、第1真空室と第2真空室とを選択的に隔絶する仕切弁装置であって、弁箱とこの弁箱内に往復動自在に設けられる弁体とを備え、弁体の往復動方向に直交する第1真空室と第2真空室との連設方向にキャリアで保持された被検査基板が搬送されるものにおいて、
往復動方向一側に位置する弁箱の壁面に設けられ、キャリアで保持されて搬送される被検査基板の一方の面に向けて当該被検査基板を径方向で跨ぐライン状の光を照射する光源と、往復動方向他側に位置する弁箱の壁面に設けられて被検査基板を撮像する撮像部を有し、被検査基板のエッジ部分に生じた割れや欠けを検出する検出手段とを更に備えることを特徴とする仕切弁装置。
A gate valve device that is interposed between a first vacuum chamber and a second vacuum chamber that are connected in one direction and selectively isolates the first vacuum chamber and the second vacuum chamber, A valve body provided in the valve box so as to freely reciprocate, and a substrate to be inspected held by a carrier in a connecting direction of the first vacuum chamber and the second vacuum chamber perpendicular to the reciprocating direction of the valve body. In what is transported,
A line-shaped light that is provided on the wall surface of the valve box located on one side of the reciprocating direction and that straddles the substrate to be inspected in the radial direction is irradiated toward one surface of the substrate to be inspected that is held and transported by the carrier. A light source, and a detection unit that is provided on a wall surface of a valve box located on the other side of the reciprocating direction and has an imaging unit that images a substrate to be inspected, and that detects a crack or a chip generated at an edge portion of the substrate to be inspected. A gate valve device further comprising:
JP2016033438A 2016-02-24 2016-02-24 Substrate inspection device and sluice valve device Pending JP2017150937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033438A JP2017150937A (en) 2016-02-24 2016-02-24 Substrate inspection device and sluice valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033438A JP2017150937A (en) 2016-02-24 2016-02-24 Substrate inspection device and sluice valve device

Publications (1)

Publication Number Publication Date
JP2017150937A true JP2017150937A (en) 2017-08-31

Family

ID=59739050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033438A Pending JP2017150937A (en) 2016-02-24 2016-02-24 Substrate inspection device and sluice valve device

Country Status (1)

Country Link
JP (1) JP2017150937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660693A (en) * 2018-06-29 2020-01-07 佳能特机株式会社 Substrate inspection system and inspection method, electronic device manufacturing system and manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660693A (en) * 2018-06-29 2020-01-07 佳能特机株式会社 Substrate inspection system and inspection method, electronic device manufacturing system and manufacturing method
JP2020003469A (en) * 2018-06-29 2020-01-09 キヤノントッキ株式会社 Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method
JP7220060B2 (en) 2018-06-29 2023-02-09 キヤノントッキ株式会社 Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method
CN110660693B (en) * 2018-06-29 2023-05-12 佳能特机株式会社 Substrate inspection system, inspection method, electronic device manufacturing system, and electronic device manufacturing method

Similar Documents

Publication Publication Date Title
KR102651554B1 (en) Bonding apparatus, bonding system, bonding method and computer storage medium
JP5241245B2 (en) Inspection apparatus and inspection method
JP5907180B2 (en) Solar cell inspection device and solar cell processing device
TW201904702A (en) Laser processing apparatus and laser processing method
WO2012115012A1 (en) Observation device, inspection device, method for manufacturing semiconductor device, and substrate support member
JP6483152B2 (en) Substrate monitoring apparatus and substrate monitoring method
KR101785790B1 (en) Alignment apparatus
TW202036746A (en) Cutting apparatus and wafer processing method using cutting apparatus
JP2015018920A (en) Joining device, joining system, joining method, program and computer storage medium
JP2009004474A (en) Carrying mechanism for wafer
TWI679414B (en) Workpiece detection device, film forming device, and workpiece detection method
JP2017150937A (en) Substrate inspection device and sluice valve device
JP5899153B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
JP5194040B2 (en) Display device and inspection device
KR102469678B1 (en) Film formation system, film formation method, and computer storage medium
JP5657039B2 (en) Sample loading device
JP6310704B2 (en) Film forming apparatus and film forming method
JP6408349B2 (en) Substrate transfer method
KR101409216B1 (en) Substrate inspection apparatus, substrate inspection method using the same and substrate attaching method using the apparatus
JP7203918B2 (en) Joining device, joining system, joining method and computer storage medium
JP6929427B2 (en) Joining equipment, joining systems, joining methods, programs and computer storage media
WO2023243174A1 (en) Substrate inspection device, film forming device, substrate inspection method, and film forming method
TW202301400A (en) Particle monitor system, particle monitor method and monitor device
JP6596342B2 (en) Ultraviolet processing apparatus, bonding system, ultraviolet processing method, program, and computer storage medium
TW202109659A (en) Workpiece checking method and processing method reliably and automatically discriminating chipping and cracking on the back side based on a captured image on the back side of the workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331