JP2017150755A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2017150755A
JP2017150755A JP2016034353A JP2016034353A JP2017150755A JP 2017150755 A JP2017150755 A JP 2017150755A JP 2016034353 A JP2016034353 A JP 2016034353A JP 2016034353 A JP2016034353 A JP 2016034353A JP 2017150755 A JP2017150755 A JP 2017150755A
Authority
JP
Japan
Prior art keywords
air
humidity control
state
passage
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016034353A
Other languages
Japanese (ja)
Other versions
JP6594227B2 (en
Inventor
健太郎 植田
Kentaro Ueda
健太郎 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016034353A priority Critical patent/JP6594227B2/en
Publication of JP2017150755A publication Critical patent/JP2017150755A/en
Application granted granted Critical
Publication of JP6594227B2 publication Critical patent/JP6594227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system capable of quickly adjusting temperature and humidity.SOLUTION: An air conditioning system 100 includes: humidity control elements D1, D2 that include a humidity control unit DS configured to adsorb moisture of passing adsorption air and desorb moisture to passing regeneration air, and a cooling unit CS configured to absorb adsorption heat with adsorption of the humidity control unit DS in passing cooling air, in such as manner that adsorption heat can be absorbed at the cooling unit CS when the humidity control unit DS adsorbs moisture; and a switching mechanism capable of switching between a circulation state of air to the humidity control element D1 on one side and a circulation state of air to the humidity control unit D2 on the other side.SELECTED DRAWING: Figure 1

Description

本発明は、室外空間から取り込んだ空気を室内空間へ供給する給気通路と、当該給気通路へ室外空間から取り込んだ空気を通流させる給気手段と、室内空間から取り込んだ空気を室外空間へ排気する排気通路と、当該排気通路へ室内空間から取り出した空気を通流させる排気手段と、通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する調湿部と、通過する冷却空気にて前記調湿部の吸着に伴う吸着熱を吸収する冷却部とを、前記調湿部にて水分を吸着しているときに前記冷却部にて吸着熱を吸収可能に備えた調湿素子を一対備えた空調システムに関する。   The present invention relates to an air supply passage for supplying air taken in from an outdoor space to the indoor space, an air supply means for flowing air taken from the outdoor space into the air supply passage, and air taken from the indoor space to the outdoor space An exhaust passage for exhausting to the exhaust passage, an exhaust means for passing the air taken out from the indoor space to the exhaust passage, a humidity control section for adsorbing moisture of the adsorbed air passing through and desorbing moisture to the regenerating air passing through, A cooling unit that absorbs the heat of adsorption accompanying the adsorption of the humidity control unit by the cooling air that is capable of absorbing the heat of adsorption by the cooling unit when moisture is adsorbed by the humidity control unit The present invention relates to an air conditioning system including a pair of humidity control elements.

現在、新たに建設されるマンションや戸建て住宅等においては、24時間換気が義務づけられており、室外空間から取り込んだ空気を室内空間へ供給する給気通路及び給気手段を備えると共に、室内空間の空気を室外空間へ排気する排気通路及び排気手段が設けられている。
更に、このような24時間換気システムにおいて、換気する空気の温湿度を調整するべく、一つ以上のデシカントロータを備えた空調システムが知られている。
図6に示すように、当該空調システム200は、基本的な構成として、室外空間から取り込んだ空気を室内空間へ供給する給気通路R1と、当該給気通路R1へ室外空間から取り込んだ空気を通流させる第1ファンF1と、室内空間から取り込んだ空気を室外空間へ排気する排気通路R2と、当該排気通路R2へ室内空間から取り出した空気を通流させる第2ファンF2と、給気通路R1に配置される給気領域Daと排気通路R2に配置される排気領域Dbとの間で通気性吸湿体から成るデシカントロータDrを回転駆動して、給気領域Daを通過する空気の除湿と排気領域Dbを通過する空気におけるデシカントロータDrの再生とを行うロータ部Dと、給気通路R1における給気領域Daの下流側を通流する空気と排気通路R2における排気領域Dbの上流側を通流する空気とを熱交換する顕熱熱交換器EX1と、排気通路R2における顕熱熱交換器EX1と排気領域Dbとの間を通流する空気を、熱媒ポンプ(図示せず)にて供給される熱媒との熱交換により加熱する加熱部EX2とを、備えて構成されている(以下、従来技術1と呼ぶことがある。また、基本的な構成であるため、先行技術文献を開示できない)。
当該従来技術1では、室外空間から取り込まれた空気が、デシカントロータDrの給気領域Daにて除湿され、当該除湿に伴って発生する吸着熱を顕熱熱交換器EX1で放熱する形態で降温された後に、空調空気として室内空間へ供給する。
尚、当該従来技術1において、一定の除湿量(例えば、6〜7g/kg’の除湿量)を確保しようとすると、デシカントロータDrの排気領域Dbへ十分高い温度の空気を通流させる必要があるため、加熱部EX2においては約80℃以上の温水を媒体として用いなければならなかった。このため、従来技術では、加熱部EX2において、排熱として豊富に存在する(有効に利用されていない)中温(例えば、50℃以上70℃以下、より詳しくは60℃程度)の温水を熱媒として用いることはできなかった。
Currently, newly built condominiums and detached houses are obligated to provide 24-hour ventilation, and are equipped with an air supply passage and an air supply means for supplying air taken from the outdoor space to the indoor space. An exhaust passage and exhaust means for exhausting air to the outdoor space are provided.
Further, in such a 24-hour ventilation system, an air conditioning system including one or more desiccant rotors is known in order to adjust the temperature and humidity of the air to be ventilated.
As shown in FIG. 6, the air conditioning system 200 has, as a basic configuration, an air supply passage R1 that supplies air taken in from an outdoor space to the indoor space, and air that is taken into the air supply passage R1 from the outdoor space. A first fan F1 to be circulated, an exhaust passage R2 for exhausting air taken in from the indoor space to the outdoor space, a second fan F2 for allowing air taken from the indoor space to flow to the exhaust passage R2, and an air supply passage A desiccant rotor Dr made of a breathable hygroscopic material is rotationally driven between an air supply region Da disposed in R1 and an exhaust region Db disposed in the exhaust passage R2, thereby dehumidifying the air passing through the air supply region Da. The rotor portion D that performs regeneration of the desiccant rotor Dr in the air that passes through the exhaust region Db, the air that flows downstream of the air supply region Da in the air supply passage R1, and the exhaust passage R2 The sensible heat exchanger EX1 that exchanges heat with the air that flows through the upstream side of the air region Db, and the air that flows between the sensible heat exchanger EX1 and the exhaust region Db in the exhaust passage R2 A heating unit EX2 that heats by heat exchange with a heat medium supplied by a pump (not shown) is provided (hereinafter, may be referred to as Conventional Technology 1. Also, the basic configuration) Therefore, prior art documents cannot be disclosed).
In the related art 1, the air taken in from the outdoor space is dehumidified in the air supply area Da of the desiccant rotor Dr, and the heat of adsorption generated by the dehumidification is reduced in the form of radiating heat by the sensible heat exchanger EX1. Then, it is supplied to the indoor space as conditioned air.
In the related art 1, in order to secure a constant dehumidification amount (for example, a dehumidification amount of 6 to 7 g / kg ′), it is necessary to flow air having a sufficiently high temperature to the exhaust region Db of the desiccant rotor Dr. For this reason, in the heating unit EX2, warm water of about 80 ° C. or more has to be used as a medium. For this reason, in the prior art, in the heating unit EX2, hot water having a medium temperature (for example, 50 ° C. or more and 70 ° C. or less, more specifically about 60 ° C.) that exists abundantly (is not effectively used) as exhaust heat is used as a heating medium. It could not be used as.

一方、デシカントを用いる他の空調システムとしては、特許文献1に記載の如く、比較的低い再生温度で再生できる空冷デシカント素子を用いたものが知られている(以下、従来技術2と略称することがある)。
図7に示すように、当該従来技術2に係る空調システム300は、室外空間から取り込んだ空気を室内空間へ供給する給気通路R1と、当該給気通路R1へ室外空間から取り込んだ空気を通流させる給気手段F1と、室内空間から取り込んだ空気を室外空間へ排気する排気通路R2と、当該排気通路R2へ室内空間から取り出した空気を通流させる排気手段F2とを備えると共に、通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する調湿部DSと、通過する冷却空気にて前記調湿部の吸着に伴う吸着熱を吸収する冷却部CSとを、前記調湿部DSにて水分を吸着しているときに前記冷却部CSにて吸着熱を吸収可能に備えた調湿素子D1と調湿素子D2を一対備えている。
更に、当該従来技術2は、圧縮機(図示せず)と凝縮器Gと膨張弁(図示せず)と蒸発器Jとに冷媒を循環させるヒートポンプ装置を備えると共に、一方側の調湿素子D1への空気の通流状態と、他方側の調湿素子D2への空気の通流状態とを、一定時間毎に切り換える切換機構Kが設けられている。
説明を追加すると、切換機構Kは、図7に示すように、給気通路R1を、室外空間から取り込んだ空気が、一方側の調湿素子D1の調湿部DSを通流する状態とし、排気通路R2を、室内空間から取り出した空気が、蒸発器Jと、一方側の調湿素子D1の冷却部CSと、凝縮器Gと、他方側の調湿素子D2の調湿部DSとを、記載の順に通流する状態とする第1通流状態と、図示は省略するが、給気通路R1を、室外空間から取り込んだ空気が、他方側の調湿素子D2の調湿部DSを通流する状態とし、排気通路R2を、室内空間から取り出した空気が、蒸発器Jと、他方側の調湿素子D2の冷却部CSと、凝縮器Gと、一方側の調湿素子D1の調湿部DSとを、記載の順に通流する状態とする第2通流状態とを、切換可能に構成されている。
因みに、切換機構Kが、空気の通流状態を、第1通流状態に切り換えている場合には、室外空気OAは、調湿素子D1の調湿部DSを通過することで除湿されつつ、冷却部CSを通過する室内空気RAにて冷却され、空調空気SAとして室内空間へ供給される。一方、調湿素子D2の調湿部DSは、凝縮器Gで加熱された室内空気RAが供給されるため、再生される。
以上の構成にあっては、調湿素子D1の調湿部DSでは、空調空気SAとして供給される室外空気OAが、冷却部CSを通流する室内空気RAにて吸着熱を吸熱されながら、除湿されるため、従来技術1に比べ、高い除湿能力を発揮できるから、調湿素子D2での調湿部DSを再生するために供給する空気の温度を低下できる。
On the other hand, as another air-conditioning system using a desiccant, one using an air-cooled desiccant element that can be regenerated at a relatively low regeneration temperature as described in Patent Document 1 is known (hereinafter referred to as Prior Art 2). There).
As shown in FIG. 7, the air conditioning system 300 according to the related art 2 includes an air supply passage R1 that supplies air taken in from an outdoor space to the indoor space, and air that is taken in from the outdoor space into the air supply passage R1. The air supply means F1 for flowing, the exhaust passage R2 for exhausting the air taken in from the indoor space to the outdoor space, and the exhaust means F2 for allowing the air taken out from the indoor space to flow to the exhaust passage R2 are passed through. A humidity control unit DS that adsorbs moisture from the adsorbed air and desorbs the moisture to the regenerated air that passes through, and a cooling unit CS that absorbs the heat of adsorption accompanying the adsorption of the humidity control unit by the passing cooling air. A pair of humidity control element D1 and humidity control element D2 are provided so as to be able to absorb heat of adsorption by the cooling part CS when moisture is adsorbed by the wet part DS.
Further, the related art 2 includes a heat pump device that circulates refrigerant through a compressor (not shown), a condenser G, an expansion valve (not shown), and an evaporator J, and a humidity control element D1 on one side. Is provided with a switching mechanism K that switches between a state of air flow to and a state of air flow to the humidity control element D2 on the other side at regular intervals.
When the description is added, as shown in FIG. 7, the switching mechanism K sets the air supply passage R1 in a state in which the air taken in from the outdoor space flows through the humidity control section DS of the humidity control element D1 on one side, The air taken out from the indoor space through the exhaust passage R2 passes through the evaporator J, the cooling part CS of the humidity control element D1 on one side, the condenser G, and the humidity control part DS of the humidity control element D2 on the other side. Although not shown in the drawing, the first flow state in which the flow is performed in the order described, and the air taken in from the outdoor space through the air supply passage R1, the humidity control unit DS of the humidity control element D2 on the other side. The air taken out from the indoor space through the exhaust passage R2 is brought into the evaporator J, the cooling part CS of the humidity control element D2 on the other side, the condenser G, and the humidity control element D1 on the one side. The humidity control unit DS is configured to be switchable between a second flow state in which the humidity control unit DS flows in the order described.
Incidentally, when the switching mechanism K switches the air flow state to the first flow state, the outdoor air OA is dehumidified by passing through the humidity control section DS of the humidity control element D1, It is cooled by room air RA passing through the cooling unit CS and supplied to the indoor space as conditioned air SA. On the other hand, the humidity control section DS of the humidity control element D2 is regenerated because the room air RA heated by the condenser G is supplied.
In the above-described configuration, in the humidity control unit DS of the humidity control element D1, the outdoor air OA supplied as the conditioned air SA is absorbed by the indoor air RA flowing through the cooling unit CS, Since the dehumidification is performed, a higher dehumidifying ability can be exhibited as compared with the prior art 1. Therefore, the temperature of the air supplied to regenerate the humidity control section DS in the humidity control element D2 can be reduced.

特開2003−148768号公報     JP 2003-148768 A

上述した従来技術1に示される空調システムでは、デシカントロータDrにて必要な除湿量を確保できる程度にデシカントロータDrを再生するために、80℃以上の熱媒(湯水)を加熱器EX2に供給する必要があり、排熱として豊富に存在する中温の湯水を再生熱源として用いることはできなかった。   In the air conditioning system shown in the prior art 1 described above, a heating medium (hot water) of 80 ° C. or higher is supplied to the heater EX2 in order to regenerate the desiccant rotor Dr to such an extent that the desiccant rotor Dr can secure a necessary dehumidification amount. Therefore, it has been impossible to use medium-temperature hot water, which is abundant as exhaust heat, as a regeneration heat source.

一方で、特許文献1に係る空調システムにおいては、温湿度を調整する運転中において、調湿素子D1及び調湿素子D2の夫々の再生について鑑みた場合、切換機構Kにより、除湿しつつ冷却される状態と、凝縮器Gで加熱される状態とが順次切り換えられる。したがって、冷却されたものを加熱し、加熱されたものを冷却するので、調湿素子D1及び調湿素子D2の夫々が所期の温度に達するまで時間が掛かり、温湿度の調整に時間を要する可能性があった。   On the other hand, in the air conditioning system according to Patent Document 1, in the operation of adjusting the temperature and humidity, when the regeneration of the humidity control element D1 and the humidity control element D2 is considered, the switching mechanism K is cooled while dehumidifying. And the state heated by the condenser G are sequentially switched. Accordingly, since the cooled one is heated and the heated one is cooled, it takes time until each of the humidity control element D1 and the humidity control element D2 reaches a predetermined temperature, and it takes time to adjust the temperature and humidity. There was a possibility.

そこで、迅速に温湿度の調整を行うことができる空調システムが求められる。   Therefore, an air conditioning system that can quickly adjust the temperature and humidity is required.

本発明に係る空調システムの特徴構成は、
室外空間から取り込んだ空気を室内空間へ供給する給気通路と、
当該給気通路へ室外空間から取り込んだ空気を通流させる給気手段と、
室内空間から取り出した空気を室外空間へ排気する排気通路と、
当該排気通路へ室内空間から取り出した空気を通流させる排気手段と、
通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する調湿部と、通過する冷却空気にて前記調湿部の吸着に伴う吸着熱を吸収する冷却部とを、前記調湿部にて水分を吸着しているときに前記冷却部にて吸着熱を吸収可能に備えた調湿素子を一対備えた空調システムであって、
室外空間から取り込んだ空気を室外空間へ送り出す作用通路と、
前記作用通路へ室外空間から取り出した空気を通流させる作用空気供給手段と、
二流体の顕熱を熱交換させる顕熱熱交換部と、
排熱を保有する熱媒との熱交換により空気を加熱する加熱部とを備え、
一方側の前記調湿素子への空気の通流状態と、他方側の前記調湿素子の空気の通流状態とを互いに切り換え可能な切換機構を備え、
前記切換機構が、
前記給気通路を、室外空間から取り込んだ空気が、吸着空気として一方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記排気通路を、室内空間から取り出した空気が、前記顕熱熱交換部及び前記加熱部を記載の順に通流した後に、再生空気として他方側の前記調湿素子の前記調湿部を通流する状態とし、
前記作用通路を、室外空間から取り込んだ空気が、冷却空気として一方側の前記調湿素子の前記冷却部を通流する状態とする第1通流状態と、
前記給気通路を、室外空間から取り込んだ空気が、吸着空気として他方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記排気通路を、室内空間から取り出した空気が、前記顕熱熱交換部及び前記加熱部を記載の順に通流した後に、再生空気として一方側の前記調湿素子の前記調湿部を通流する状態とし、
前記作用通路を、室外空間から取り込んだ空気が、冷却空気として他方側の前記調湿素子の前記冷却部を通流する状態とする第2通流状態とを、切り換えると共に、
前記第1通流状態から前記第2通流状態に切り換える際に、前記第1通流状態と前記第2通流状態との間において、前記作用通路を、室外空間から取り込んだ空気が、前記冷却空気として他方側の前記調湿素子の前記冷却部を通流する状態とする第1遷移状態に切り換え、
前記第2通流状態から前記第1通流状態に切り換える際に、前記第2通流状態と前記第1通流状態との間において、前記作用通路を、室外空間から取り込んだ空気が、前記冷却空気として一方側の前記調湿素子の前記冷却部を通流する状態とする第2遷移状態に切り換える点にある。
The characteristic configuration of the air conditioning system according to the present invention is:
An air supply passage for supplying air taken from the outdoor space to the indoor space;
An air supply means for passing air taken from the outdoor space into the air supply passage;
An exhaust passage for exhausting air taken from the indoor space to the outdoor space;
Exhaust means for passing air taken out from the indoor space to the exhaust passage;
A humidity control unit that adsorbs moisture from the adsorbed air passing therethrough and desorbs moisture from the regenerated air that passes through, and a cooling unit that absorbs heat of adsorption accompanying the adsorption of the humidity control unit by the passing cooling air. An air conditioning system comprising a pair of humidity control elements equipped to absorb heat of adsorption in the cooling unit when moisture is adsorbed in the wet unit,
An action passage for sending air taken from the outdoor space to the outdoor space;
Working air supply means for passing air taken out from the outdoor space to the working passage;
A sensible heat exchange section for exchanging sensible heat of two fluids;
A heating unit that heats the air by heat exchange with a heat medium having exhaust heat,
A switching mechanism capable of switching between the air flow state to the humidity control element on one side and the air flow state of the humidity control element on the other side;
The switching mechanism is
The air taken in from the outdoor space through the air supply passage is in a state of flowing through the sensible heat exchange section after flowing through the humidity control section of the humidity control element on one side as adsorbed air,
After the air taken out from the indoor space through the exhaust passage passes through the sensible heat exchange part and the heating part in the order described, it passes through the humidity control part of the humidity control element on the other side as regenerated air. State
A first flow state where the air taken in the outdoor space from the outdoor space is in a state of flowing through the cooling portion of the humidity control element on one side as cooling air;
After the air taken in from the outdoor space through the air supply passage flows as the adsorbed air through the humidity control section of the humidity control element on the other side, the air flows through the sensible heat exchange section.
After the air taken out from the indoor space through the exhaust passage passes through the sensible heat exchange section and the heating section in the order described, the air passes through the humidity control section of the humidity control element on one side as regenerated air. State
And switching the second passage state where the air taken in the outdoor space from the outdoor space flows through the cooling part of the humidity control element on the other side as cooling air,
When switching from the first flow state to the second flow state, between the first flow state and the second flow state, the air taken in the outdoor space from the outdoor space is Switch to the first transition state in which the cooling part of the humidity control element on the other side flows as cooling air,
When switching from the second flow state to the first flow state, between the second flow state and the first flow state, the air that has taken in the working passage from the outdoor space is The cooling air is switched to the second transition state in which the cooling portion of the humidity control element on one side flows.

例えば、1つの調湿素子に着目すると、吸着空気と冷却空気とを通流させる第1通流状態と、再生空気を通流させる第2通流状態とで切り換えが行われた場合、第2通流状態が終了した直後は調湿素子の温度が高いため、当該温度が低下するまでは調湿素子の吸着能力が十分に発揮できず、除湿効果が低下する。しかしながら、上述した特徴構成とすれば、第1通流状態から第2通流状態に切り換える際に、第1通流状態と第2通流状態との間において第1遷移状態を設け、第2通流状態から第1通流状態に切り換える際に、第2通流状態と第1通流状態との間において第2遷移状態を設けることにより、夫々の吸湿素子に対して吸着空気と冷却空気との双方を通流させる前に冷却空気で予備的に冷却することができる。このため、吸着空気の通流開始直後から調湿素子の吸着能力を活かすことができるので、除湿効果の低下を抑制できる。したがって、本空調システムによれば、迅速に温湿度の調整を行うことが可能となる。   For example, focusing on one humidity control element, when switching is performed between a first flow state in which the adsorbed air and the cooling air are flown and a second flow state in which the regeneration air is flowed, Since the temperature of the humidity control element is high immediately after the end of the flow-through state, the adsorption capacity of the humidity control element cannot be sufficiently exerted until the temperature decreases, and the dehumidification effect decreases. However, with the above-described characteristic configuration, when switching from the first flow state to the second flow state, the first transition state is provided between the first flow state and the second flow state, and the second When switching from the flow state to the first flow state, by providing a second transition state between the second flow state and the first flow state, the adsorbed air and the cooling air are provided to the respective moisture absorption elements. Can be preliminarily cooled with cooling air before passing through both. For this reason, since the adsorption capability of the humidity control element can be utilized immediately after the start of the flow of the adsorption air, it is possible to suppress a decrease in the dehumidification effect. Therefore, according to the present air conditioning system, it is possible to quickly adjust the temperature and humidity.

また、上記特徴構成によれば、空冷式のデシカント素子として一対の調湿素子を備えた構成を採用しており、当該一対の調湿素子で、吸湿側として働く調湿素子では、その調湿部を通過する空気の湿分を吸着するときに冷却部にて吸着熱を吸熱するから、例えば、一対の調湿素子で、被再生側の調湿素子へ供給される再生空気の温度が比較的低い場合であっても、高い除湿能力を発揮できる。
この様な構成に加え、排熱を保有する熱媒との熱交換により空気を加熱する加熱部が、被再生側の調湿素子へ供給される再生空気を加熱するように構成されているから、例えば、当該加熱部へ、排熱として豊富に存在する中温(例えば、50℃以上70℃以下、より詳しくは60℃程度)の熱媒を供給して、被再生側の調湿素子を良好に再生できる。
尚、中温の熱媒(例えば、成層貯湯される貯湯槽の中間部に貯湯される湯水)は、従来有効に使われずに捨てられていた場合が多かった点から考えると、当該構成によれば、加熱部に対する入力熱量を零とみなすことができ、この場合には、実質的な意味でのCOPを向上できているとみなすことができる。
また、除湿側の調湿素子にて除湿された後の空気は、更に、顕熱熱交換部にて、夏場においては室外空気よりも温度が低い場合が多い室内空気と熱交換して冷却されるから、低湿・低温の空気を、空調空気として、室内空間へ供給できる。
このような構成にあっては、消費電力が大きく且つ機械的な耐久性が問題となる場合があるヒートポンプ装置を備えない構成とでき、豊富に存在する中温の排熱を有効に利用できつつ、電力の使用を十分に抑制して、経済性を確保しつつ、実質的な意味でのCOPを向上し得る空調システムを実現できる。
Further, according to the above characteristic configuration, a configuration including a pair of humidity control elements as an air-cooled desiccant element is employed, and the humidity control element that functions as the moisture absorption side with the pair of humidity control elements has its humidity control Since the adsorption heat is absorbed by the cooling unit when the moisture of the air passing through the unit is adsorbed, for example, the temperature of the regenerated air supplied to the regenerated side humidity control element is compared between a pair of humidity control elements. High dehumidifying ability can be exhibited even when the temperature is low.
In addition to such a configuration, the heating unit that heats the air by heat exchange with the heat medium that retains the exhaust heat is configured to heat the regeneration air supplied to the humidity control element on the regeneration target side. For example, by supplying a heating medium having a medium temperature (for example, 50 ° C. or more and 70 ° C. or less, more specifically about 60 ° C.) abundant as exhaust heat to the heating unit, the humidity control element on the reproduction side is good Can be played.
In view of the fact that the medium-temperature heat medium (for example, hot water stored in the intermediate part of the stratified hot water storage tank) has often been discarded without being used effectively, according to this configuration, The amount of heat input to the heating unit can be regarded as zero. In this case, it can be regarded that the COP in a substantial sense can be improved.
In addition, the air after being dehumidified by the dehumidifying element on the dehumidifying side is further cooled in the sensible heat exchange section by exchanging heat with indoor air, which is often lower in temperature than outdoor air in summer. Therefore, low-humidity and low-temperature air can be supplied to the indoor space as conditioned air.
In such a configuration, it can be configured without a heat pump device that consumes a large amount of power and mechanical durability may be a problem, while effectively utilizing the abundant medium temperature exhaust heat, It is possible to realize an air conditioning system capable of improving COP in a substantial sense while sufficiently suppressing the use of electric power and ensuring economic efficiency.

また、前記切換機構は、
前記第1遷移状態において、前記給気通路を、室外空間から取り込んだ空気が、前記吸着空気として一方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記第2遷移状態において、前記給気通路を、室外空間から取り込んだ空気が、前記吸着空気として他方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とすると好適である。
The switching mechanism is
In the first transition state, after the air taken from the outdoor space through the air supply passage flows through the humidity control section of the humidity control element on one side as the adsorbed air, the sensible heat exchange section is Let it flow,
In the second transition state, after the air taken from the outdoor space through the air supply passage flows through the humidity control section of the humidity control element on the other side as the adsorbed air, the sensible heat exchange section is It is preferable that the air flows.

このような構成とすれば、他方側の吸湿素子を予備的に冷却する第1遷移状態では、一方側の調湿素子に吸着空気を通流させ、一方側の吸湿素子を予備的に冷却する第2遷移状態では、他方側の調湿素子に吸着空気を通流させることができる。したがって、第1遷移状態及び第2遷移状態においても継続して除湿を行って、空調システムの除湿能力をより高めることが可能となる。   With such a configuration, in the first transition state in which the other moisture absorbing element is preliminarily cooled, the adsorbed air is passed through the one humidity adjusting element and the one moisture absorbing element is preliminarily cooled. In the second transition state, the adsorbed air can be passed through the humidity control element on the other side. Therefore, it is possible to continue dehumidification even in the first transition state and the second transition state, and to further increase the dehumidifying capacity of the air conditioning system.

また、前記第1遷移状態及び前記第2遷移状態は、前記第1通流状態及び前記第2通流状態の期間の半分の期間であると好適である。   In addition, it is preferable that the first transition state and the second transition state are half the period of the first flow state and the second flow state.

このような構成とすれば、第1遷移状態及び第2遷移状態において、吸湿素子を予備的に冷却するにあたり、冷却効果を高めることができる。したがって、吸湿素子に冷却空気を通流させた際に、吸湿素子を十分に冷却することが可能となる。   With such a configuration, the cooling effect can be enhanced in preliminarily cooling the hygroscopic element in the first transition state and the second transition state. Therefore, when the cooling air is allowed to flow through the hygroscopic element, the hygroscopic element can be sufficiently cooled.

また、前記加熱部は、前記給気通路にて前記顕熱熱交換部へ導かれる空気の温度よりも高く、且つ排熱として有効に利用される排熱利用下限閾値より低い温度の熱媒を、空気と熱交換するように構成されていると好適である。   In addition, the heating unit has a heating medium having a temperature higher than the temperature of the air guided to the sensible heat exchange unit in the air supply passage and lower than the exhaust heat utilization lower limit threshold that is effectively used as exhaust heat. It is preferable to be configured to exchange heat with air.

このような構成とすれば、加熱部は、給気通路にて顕熱熱交換部へ導かれる空気の温度よりも高く、且つ排熱として有効に利用される排熱利用下限閾値温度より低い温度の熱媒を、空気と熱交換するように構成されているから、加熱部では、顕熱熱交換部にて給気通路から導かれる空気と熱交換した空気を良好に加熱できる。また、排熱として有効に利用される排熱利用下限閾値(例えば、65℃程度)より低い温度の熱媒を用いて空気を加熱するから、これまで、排熱として有効に利用されない場合が多かった温度の熱媒を用いて空気を加熱し、当該加熱された空気により、被再生側の調湿素子を再生できる。   With such a configuration, the heating unit has a temperature that is higher than the temperature of the air led to the sensible heat exchange unit in the air supply passage and lower than the exhaust heat utilization lower limit threshold temperature that is effectively used as exhaust heat. Since the heat medium is configured to exchange heat with air, the heating unit can satisfactorily heat the air heat-exchanged with the air guided from the supply air passage at the sensible heat exchange unit. In addition, since air is heated using a heat medium having a temperature lower than the lower limit threshold for using exhaust heat (for example, about 65 ° C.) that is effectively used as exhaust heat, it has often not been used effectively as exhaust heat. The air can be heated using a heat medium at a high temperature, and the humidity control element on the playback side can be regenerated with the heated air.

また、前記加熱部は、湯水を成層貯湯する貯湯槽の下方領域と上方領域との間の中間領域から取り出される湯水を熱媒として、空気と熱交換するように構成されていると好適である。   Further, it is preferable that the heating unit is configured to exchange heat with air using hot water taken out from an intermediate region between a lower region and an upper region of a hot water tank for stratified hot water storage as a heat medium. .

このような構成とすれば、加熱部へ熱媒として導かれる湯水を、成層貯湯される貯湯槽の中間領域から取り出す構成を採用するから、従来、排熱として豊富に存在すると共にその利用先が限定されていた中温の湯水を積極的に取り出して、本発明の空調システムの熱源として有効に利用できる。   With such a configuration, a configuration in which hot water guided to the heating unit as a heat medium is taken out from an intermediate region of the stratified hot water storage tank is employed. The limited medium temperature hot water can be actively taken out and used effectively as a heat source of the air conditioning system of the present invention.

また、前記作用通路は、前記給気通路の最上流部位から分岐した分岐通路であり、当該分岐通路は、前記排気通路で前記排気手段の上流側に接続される通路であり、
前記作用空気供給手段と前記排気手段とを、単一のファンから構成すると好適である。
The working passage is a branch passage branched from the most upstream part of the air supply passage, and the branch passage is a passage connected to the upstream side of the exhaust means by the exhaust passage,
The working air supply means and the exhaust means are preferably constituted by a single fan.

このような構成とすれば、作用通路を、給気通路の最上流部位から分岐した分岐通路として構成し、当該分岐通路を、排気通路で排気手段の上流側に接続される通路として構成することで、排気通路の排気手段を働かせることにより、当該作用通路に空気を通流させることができる。
これにより、作用空気供給手段と排気手段とを単一のファンから構成することができる。
With such a configuration, the working passage is configured as a branch passage branched from the most upstream portion of the air supply passage, and the branch passage is configured as a passage connected to the upstream side of the exhaust means by the exhaust passage. Thus, by operating the exhaust means of the exhaust passage, air can be passed through the working passage.
Thereby, a working air supply means and an exhaust means can be comprised from a single fan.

また、前記空調システムは、少なくとも、一対の前記調湿素子と、前記加熱部とを第1ユニットとして構成し、
少なくとも、前記顕熱熱交換部を前記第1ユニットとは別の第2ユニットとして構成していると好適である。
Further, the air conditioning system includes at least a pair of the humidity control elements and the heating unit as a first unit,
It is preferable that at least the sensible heat exchange unit is configured as a second unit different from the first unit.

このような構成とすれば、例えば、第1ユニットと第2ユニットとを各別に配設することができるから、第1ユニットを室外ユニットとして室外に配設し、第2ユニットを室内の床下等に配置するような構成を採用できる。
尚、上記特徴構成にあっては、給気手段、排気手段、及び作用空気供給手段は、第1ユニットと第2ユニットの何れに設けていても構わない。
With such a configuration, for example, the first unit and the second unit can be separately provided. Therefore, the first unit is provided as an outdoor unit, and the second unit is provided under the floor in the room. It is possible to adopt a configuration that is arranged in
In the above characteristic configuration, the air supply means, the exhaust means, and the working air supply means may be provided in any of the first unit and the second unit.

空調システムの概略構成図である。It is a schematic block diagram of an air conditioning system. 空調システムの概略構成図である。It is a schematic block diagram of an air conditioning system. 空調システムの概略構成図である。It is a schematic block diagram of an air conditioning system. 切換機構による空気を通流する状態の切り換えを示す図である。It is a figure which shows switching of the state through which air flows by the switching mechanism. 空調システムによる効果の一例を示す図である。It is a figure which shows an example of the effect by an air conditioning system. 従来技術1に係る空調システムの概略構成図である。It is a schematic block diagram of the air conditioning system which concerns on the prior art 1. FIG. 従来技術2に係る空調システムの概略構成図である。It is a schematic block diagram of the air conditioning system which concerns on the prior art 2. FIG.

本発明の実施形態に係る空調システム100は、豊富に存在する中温(例えば、50℃以上70℃以下、より詳しくは60℃程度)の排熱を有効に利用しつつ、電力の使用を十分に抑制して、経済性を確保しつつ、実質的な意味でのCOP(Coefficient Of Performance)を向上し得るものに関する。
当該空調システム100は、図1に示すように、主要な機器構成として、比較的低温の再生温度でも良好に温湿度調整を実行できる空冷式の一対の調湿素子D1、D2と、当該一対の調湿素子D1、D2への空気の通流状態を切り換える形態で、一対の調湿素子D1、D2を、吸湿側と被再生側とに所定時間毎(例えば、5分毎)に交互に切り換える切換機構Kと、二流体の顕熱を交換可能な顕熱熱交換器EX1(顕熱熱交換器の一例)と、熱媒通流路R4を通流する熱媒と空気とを熱交換する熱交換器として構成され且つ排熱を保有する熱媒との熱交換により空気を加熱する加熱器EX2(加熱部の一例)とを備えるものである。
一対の調湿素子D1、D2の夫々は、図1に示すように、通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する平板状の調湿部DSと、通過する冷却空気にて調湿部DSの吸着に伴う吸着熱を吸収する平板状の冷却部CSとを、交互に積層して構成されている。
調湿部DSと冷却部CSとには、アルミやポリプロピレン等の薄板を波板状に加工した波板部材が波面が板面に沿う状態で配設されており、調湿部DSに配設される波板部材と、冷却部CSに配設される波板部材とは波面の波が互いに直交する状態で配設されている。
尚、調湿部DSに配設される波板部材には吸湿材が塗布されており、当該調湿部DSを通流する空気の湿分を吸着可能に構成されている。
これにより、調湿素子D1、D2には、調湿部DSと冷却部CSの積層方向視で、調湿部DSに対し特定方向から空気を通流させて吸湿している状態で、冷却部CSに対し特定方向と直交する方向から空気を通流させて調湿部DSでの吸湿に伴う吸湿熱を回収可能に構成されている。
The air-conditioning system 100 according to the embodiment of the present invention sufficiently uses electric power while effectively utilizing exhaust heat at an abundant medium temperature (for example, about 50 ° C. to 70 ° C., more specifically about 60 ° C.). The present invention relates to what can be suppressed and improve COP (Coefficient Of Performance) in a substantial sense while securing economic efficiency.
As shown in FIG. 1, the air conditioning system 100 includes a pair of air-cooled humidity control elements D1 and D2 that can perform temperature and humidity adjustment well even at a relatively low regeneration temperature, By switching the air flow state to the humidity control elements D1 and D2, the pair of humidity control elements D1 and D2 are alternately switched between the moisture absorption side and the regenerated side every predetermined time (for example, every 5 minutes). Heat exchange is performed between the switching mechanism K, the sensible heat exchanger EX1 (an example of the sensible heat exchanger) that can exchange the sensible heat of the two fluids, and the heat medium flowing through the heat medium passage R4. It comprises a heater EX2 (an example of a heating unit) that is configured as a heat exchanger and heats air by heat exchange with a heat medium that has exhaust heat.
As shown in FIG. 1, each of the pair of humidity control elements D1 and D2 includes a flat humidity control section DS that adsorbs moisture of the adsorbed air passing therethrough and desorbs moisture from the regenerated air that passes therethrough, and cooling that passes therethrough. A flat plate-like cooling unit CS that absorbs heat of adsorption accompanying adsorption of the humidity control unit DS with air is alternately stacked.
In the humidity control section DS and the cooling section CS, a corrugated plate member obtained by processing a thin plate of aluminum, polypropylene, or the like into a corrugated plate is disposed in a state where the wave front is along the plate surface. The corrugated plate member and the corrugated plate member disposed in the cooling part CS are disposed in a state where the waves on the wave front are orthogonal to each other.
The corrugated plate member disposed in the humidity control section DS is coated with a hygroscopic material so that moisture of the air flowing through the humidity control section DS can be adsorbed.
As a result, the humidity control elements D1 and D2 have the cooling unit in a state where air is passed from the specific direction to the humidity control unit DS in a stacking direction of the humidity control unit DS and the cooling unit CS. Air is allowed to flow from the direction orthogonal to the specific direction with respect to the CS so as to recover the heat of moisture absorption due to moisture absorption in the humidity control section DS.

当該実施形態に係る空調システム100にあっては、室外空間から取り込んだ空気を室内空間へ供給する給気通路R1と、当該給気通路R1へ室外空間から取り込んだ空気を通流させる第1ファンF1(給気手段の一例)と、室内空間から取り込んだ空気を室外空間へ排気する排気通路R2と、排気通路R2へ室内空間から取り出した空気を通流させる第2ファン(排気手段の一例)と、室外空間から取り込んだ空気を室外空間へ送り出す作用通路R3と、作用通路R3へ室外空間から取り込んだ空気を通流させる第2ファンF2(作用空気供給手段の一例)とが設けられている。詳細な説明は後述するが、当該実施形態においては、排気手段と作用空気供給手段とは、単一の第2ファンF2にて構成されている。   In the air conditioning system 100 according to the embodiment, the air supply passage R1 that supplies the air taken in from the outdoor space to the indoor space, and the first fan that allows the air taken in from the outdoor space to flow into the air supply passage R1. F1 (an example of an air supply unit), an exhaust passage R2 that exhausts air taken in from the indoor space to the outdoor space, and a second fan that causes the air taken out from the indoor space to flow into the exhaust passage R2 (an example of the exhaust unit) And a working path R3 for sending air taken in from the outdoor space to the outdoor space, and a second fan F2 (an example of working air supply means) for causing the air taken in from the outdoor space to flow to the working path R3. . Although detailed description will be given later, in the present embodiment, the exhaust means and the working air supply means are configured by a single second fan F2.

切換機構Kは、図1に示すように、一方側の調湿素子D1を吸湿側とすると共に他方側の調湿素子D2を被再生側とする第1通流状態と、図示は省略するが、他方側の調湿素子D2を吸湿側とすると共に一方側の調湿素子D1を被再生側とする第2通流状態とを、切り換え可能に構成されている。
説明を追加すると、第1通流状態は、図1に示すように、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として一方側の調湿素子D1の調湿部DSを通流した後に、顕熱熱交換器EX1を通流する状態とし、排気通路R2を、室内空間から取り出した空気が、顕熱熱交換器EX1及び加熱器EX2を記載の順に通流した後に、再生空気として他方側の調湿素子D2の調湿部DSを通流する状態とし、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態とするものである。
一方、第2通流状態は、図面としては、図1において一方側の調湿素子D1と他方側の調湿素子D2とを入れ換えた状態であり、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として他方側の調湿素子D2の調湿部DSを通流した後に、顕熱熱交換器EX1を通流する状態とし、排気通路R2を、室内空間から取り出した空気が、顕熱熱交換器EX1及び加熱器EX2を記載の順に通流した後に、再生空気として一方側の調湿素子D1の調湿部DSを通流する状態とし、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D2の冷却部CSを通流する状態とするものである。
以上より、第1通流状態にあっては、一方側の調湿素子D1が吸湿側として働くと共に他方側の調湿素子D2が被再生側となり、第2通流状態にあっては、一方側の調湿素子D1が被再生側となり、他方側の調湿素子D2が吸湿側として働くこととなる。
尚、以下の説明では、特に記載がない限り、切換機構Kが第1通流状態に切り換えている状態にあるとして説明する。
As shown in FIG. 1, the switching mechanism K is not shown in the first flow state in which the humidity control element D1 on one side is the moisture absorption side and the humidity control element D2 on the other side is the regenerated side. The second flow state in which the humidity control element D2 on the other side is the moisture absorption side and the humidity control element D1 on the one side is the regenerated side is switchable.
When the explanation is added, as shown in FIG. 1, the first flow state is that air taken in the outdoor passage through the air supply passage R1 passes through the humidity control section DS of the humidity control element D1 on one side as adsorbed air. After the flow, the sensible heat exchanger EX1 is made to flow, and the exhaust passage R2 is regenerated after the air taken out from the indoor space flows through the sensible heat exchanger EX1 and the heater EX2 in the order described. The air is passed through the humidity control section DS of the humidity control element D2 on the other side, and the air that has taken in the working path R3 from the outdoor space passes through the cooling section CS of the humidity control element D1 on the one side as cooling air. It will be in a state of flowing.
On the other hand, the second flow state is a state in which the humidity control element D1 on one side and the humidity control element D2 on the other side in FIG. 1 are interchanged, and the air supply passage R1 is taken in from the outdoor space. After the air has passed through the humidity control section DS of the humidity control element D2 on the other side as adsorbed air, the air is passed through the sensible heat exchanger EX1, and the air taken out from the indoor space through the exhaust passage R2 is After passing the sensible heat exchanger EX1 and the heater EX2 in the order described, the humidity control section DS of the humidity control element D1 on one side is made to flow as regenerated air, and the working path R3 is taken from the outdoor space. This is a state in which the air flows through the cooling part CS of the humidity control element D2 on the other side as cooling air.
From the above, in the first flow state, the humidity control element D1 on one side functions as the moisture absorption side and the humidity control element D2 on the other side becomes the regenerated side, and in the second flow state, The humidity control element D1 on the side serves as the playback target side, and the humidity control element D2 on the other side functions as the moisture absorption side.
In the following description, the switching mechanism K is assumed to be in a state where it is switched to the first flow state unless otherwise specified.

作用通路R3について説明を追加すると、作用通路R3は、その上流端を給気通路R1で一方側の調湿素子D1の上流側に接続すると共に、その下流端を排気通路R2で他方側の調湿素子D2の下流側で第2ファンF2の上流側に接続する形態で、備えられている。作用通路R3には、第2ファンF2に吸引されることにより空気が通流することとなり、当該空気は、吸湿側としての一方の調湿素子D1の冷却部CSを通過する。即ち、当該実施形態では、第2ファンF2が作用空気供給手段として働く。   When the description of the working channel R3 is added, the working channel R3 has an upstream end connected to the upstream side of the humidity control element D1 on the one side by the air supply channel R1, and a downstream end connected to the other side by the exhaust channel R2. It is provided in the form of connecting to the upstream side of the second fan F2 on the downstream side of the wet element D2. The air flows through the working passage R3 by being sucked by the second fan F2, and the air passes through the cooling part CS of one humidity control element D1 on the moisture absorption side. That is, in this embodiment, the second fan F2 functions as working air supply means.

当該実施形態にあっては、第1ファンF1は、給気通路R1において、一方の調湿素子D1と顕熱熱交換器EX1との間に設けられ、第2ファンF2は、排気通路R2において、他方の調湿素子D2の下流側に設けられている。   In the embodiment, the first fan F1 is provided between the one humidity control element D1 and the sensible heat exchanger EX1 in the air supply passage R1, and the second fan F2 is provided in the exhaust passage R2. , Provided on the downstream side of the other humidity control element D2.

作用通路R3について説明を追加すると、作用通路R3は、給気通路R1の第1ファンF1よりも上流側の最上流部位から分岐した分岐通路であり、当該分岐通路は、排気通路R2で第2ファンF2の上流側で他方側の調湿素子D2の下流側に接続される流路である。当該構成により、排気通路R2に設けられる第2ファンF2を働かせることで、作用通路R3としての分岐通路に対し、給気通路R1から空気を取り込むことができる。   When the description of the working passage R3 is added, the working passage R3 is a branch passage branched from the most upstream portion upstream of the first fan F1 of the air supply passage R1, and the branch passage is the second exhaust passage R2. The flow path is connected to the upstream side of the fan F2 and the downstream side of the humidity control element D2 on the other side. With this configuration, by operating the second fan F2 provided in the exhaust passage R2, air can be taken from the supply passage R1 into the branch passage as the working passage R3.

以上のような構成を採用することで、給気通路R1を通流する空気は、吸湿側の一方の調湿素子D1の調湿部DSを通過するときに、冷却部CSを通過する空気にて吸着熱を吸収されながら除湿されることになるから、例えば、従来技術1に比べ、比較的低い再生温度で調湿素子D1、D2を再生したとしても、高い除湿能力を発揮できる。
即ち、当該実施形態に係る加熱器EX2では、再生空気を比較的低い温度である中温(例えば、50℃以上70℃以下、より詳しくは60℃程度)に加熱できれば良いから、例えば、湯水を成層貯湯する貯湯槽(図示せず)の下方領域と上方領域との間の中間領域に貯留される中温の湯水を熱媒として利用可能に構成されている。
これにより、加熱器EX2では、例えば、給気通路R1にて顕熱熱交換器EX1へ導かれる空気の温度よりも高く、排熱として有効に利用される排熱利用下限閾値(例えば、60℃)よりも低い温度の湯水(熱媒)を、調湿素子D1、D2の再生熱源として利用している。
By adopting the above-described configuration, the air flowing through the air supply passage R1 is converted into the air passing through the cooling unit CS when passing through the humidity control unit DS of one humidity control element D1 on the moisture absorption side. Thus, dehumidification is performed while absorbing the heat of adsorption. For example, even if the humidity control elements D1 and D2 are regenerated at a relatively low regeneration temperature as compared with the prior art 1, a high dehumidification capability can be exhibited.
That is, in the heater EX2 according to the present embodiment, it is sufficient that the regenerative air can be heated to an intermediate temperature that is a relatively low temperature (for example, 50 ° C. or more and 70 ° C. or less, more specifically about 60 ° C.). Medium temperature hot water stored in an intermediate region between a lower region and an upper region of a hot water storage tank (not shown) for storing hot water is configured to be usable as a heat medium.
Thereby, in the heater EX2, for example, the exhaust heat utilization lower limit threshold (for example, 60 ° C.) that is higher than the temperature of the air guided to the sensible heat exchanger EX1 in the supply passage R1 and is effectively used as exhaust heat. Hot water (heat medium) having a temperature lower than that of the humidity control elements D1 and D2 is used as a regeneration heat source.

尚、図示は省略するが、当該実施形態に係る空調システム100は、少なくとも、一対の調湿素子D1、D2と加熱器EX2とを第1ユニットとして構成し、顕熱熱交換器EX1を第1ユニットとは別の第2ユニットとして構成している。当該実施形態にあっては、第1ファンF1及び第2ファンF2は、第1ユニットに含んで構成している。   In addition, although illustration is abbreviate | omitted, the air conditioning system 100 which concerns on the said embodiment comprises at least a pair of humidity control elements D1 and D2 and a heater EX2 as a first unit, and the sensible heat exchanger EX1 is the first. The second unit is separate from the unit. In the embodiment, the first fan F1 and the second fan F2 are included in the first unit.

切換機構Kは、上述したように第1通流状態と第2通流状態とに切り換えるが、更に、第1通流状態から第2通流状態に切り換える際に、第1通流状態と第2通流状態との間において第1遷移状態に切り換え、第2通流状態から第1通流状態に切り換える際に、第2通流状態と第1通流状態との間において第2遷移状態に切り換える。第1遷移状態とは、図2に示されるように、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D2の冷却部CSを通流する状態である。一方、第2遷移状態とは、図面としては、図2において他方側の調湿素子D2と一方側の調湿素子D1とを入れ換えた状態であり、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態である。   The switching mechanism K switches between the first flow state and the second flow state as described above, and further, when switching from the first flow state to the second flow state, the first flow state and the second flow state. When switching from the second flow state to the first flow state between the two flow states and when switching from the second flow state to the first flow state, the second transition state between the second flow state and the first flow state Switch to. As shown in FIG. 2, the first transition state is a state in which the air taken in the outdoor space through the working passage R3 flows through the cooling portion CS of the humidity control element D2 on the other side as cooling air. On the other hand, the second transition state is a state in which the humidity control element D2 on the other side and the humidity control element D1 on the one side are interchanged in FIG. 2, and the air that has taken in the action passage R3 from the outdoor space. Is a state in which the cooling part CS of the humidity control element D1 on one side flows as cooling air.

更に、本実施形態では、切換機構Kは、図3に示されるように、第1遷移状態において、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として一方側の調湿素子D1の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態とする。一方、図3において一方側の調湿素子D1と他方側の調湿素子D2とを入れ換えた状態である、第2遷移状態において、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として他方側の調湿素子D2の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態とする。
以上より、第1遷移状態にあっては、一方側の調湿素子D1が吸湿側として働くと共に他方側の調湿素子D2が予備冷却状態(吸湿準備状態)となり、第2遷移状態にあっては、一方側の調湿素子D1が予備冷却状態(吸湿準備状態)となり、他方側の調湿素子D2が吸湿側として働くこととなる。なお、実際には、図2の状態と図3と状態とが同時に成立するように構成される。
Further, in the present embodiment, as shown in FIG. 3, the switching mechanism K is configured such that, in the first transition state, the air taken into the air supply passage R1 from the outdoor space is the humidity control element D1 on one side as adsorbed air. After passing through the humidity control section DS, the sensible heat exchange section EX1 is passed. On the other hand, in the second transition state in which the humidity control element D1 on one side and the humidity control element D2 on the other side are interchanged in FIG. 3, the air taken into the air supply passage R1 from the outdoor space is adsorbed air. As described above, after passing the humidity control section DS of the humidity control element D2 on the other side, the sensible heat exchange section EX1 is passed.
As described above, in the first transition state, the humidity control element D1 on one side works as the moisture absorption side, and the humidity control element D2 on the other side enters the precooling state (moisture absorption preparation state), and is in the second transition state. The humidity control element D1 on one side is in a precooled state (moisture absorption preparation state), and the humidity control element D2 on the other side functions as a moisture absorption side. In practice, the state shown in FIG. 2 and the state shown in FIG. 3 are established at the same time.

図4には、切換機構Kによる空気を通流する状態(以下「通流状態」とする)の切り換えを示すタイムチャートが示される。図4に示されるように、空調システム100の運転を開始したタイミングをt=t0とする。まず、切換機構Kは、t0からt1までの期間T1に亘って通流状態を第1通流状態にする。具体的には、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として一方側の調湿素子D1の調湿部DSを通流した後に、顕熱熱交換器EX1を通流する状態(#01)とし、排気通路R2を、室内空間から取り出した空気が、顕熱熱交換器EX1及び加熱器EX2を記載の順に通流した後に、再生空気として他方側の調湿素子D2の調湿部DSを通流する状態(#02)とし、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態(#03)とする。   FIG. 4 shows a time chart showing switching of a state (hereinafter referred to as “flow state”) through which air is passed by the switching mechanism K. As shown in FIG. 4, the timing at which the operation of the air conditioning system 100 is started is assumed to be t = t0. First, the switching mechanism K changes the flow state to the first flow state over a period T1 from t0 to t1. Specifically, the air taken from the outdoor space through the air supply passage R1 flows through the humidity control section DS of the humidity control element D1 on one side as adsorbed air, and then flows through the sensible heat exchanger EX1. In the state (# 01), after the air taken out from the indoor space through the exhaust passage R2 passes through the sensible heat exchanger EX1 and the heater EX2 in the order described, the regenerated air of the humidity control element D2 on the other side A state in which the humidity control unit DS flows (# 02), and a state in which the air taken in the outdoor space through the working passage R3 flows as cooling air through the cooling unit CS of the humidity control element D1 on one side (# 03). ).

次に、切換機構Kは、t1からt2までの期間T2に亘って通流状態を第1遷移状態にする。すなわち、切換機構Kは、第1通流状態の次に第1遷移状態に切り換える。具体的には、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D2の冷却部CSを通流する状態(#04)とし、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として一方側の調湿素子D1の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態(#05)とする。   Next, the switching mechanism K changes the flow state to the first transition state over a period T2 from t1 to t2. That is, the switching mechanism K switches to the first transition state after the first flow state. Specifically, the action passage R3 is in a state (# 04) in which the air taken in from the outdoor space flows through the cooling part CS of the humidity control element D2 on the other side as cooling air, and the air supply passage R1 is After the air taken in from the space flows as the adsorbed air through the humidity control section DS of the humidity control element D1 on one side, the sensible heat exchange section EX1 is flowed (# 05).

続いて、切換機構Kは、t2からt3までの期間T3に亘って通流状態を第2通流状態にする。すなわち、切換機構Kは、第1遷移状態の次に第2通流状態に切り換える。具体的には、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として他方側の調湿素子D2の調湿部DSを通流した後に、顕熱熱交換器EX1を通流する状態(#06)とし、排気通路R2を、室内空間から取り出した空気が、顕熱熱交換器EX1及び加熱器EX2を記載の順に通流した後に、再生空気として一方側の調湿素子D1の調湿部DSを通流する状態(#07)とし、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D2の冷却部CSを通流する状態(#08)とする。   Subsequently, the switching mechanism K changes the flow state to the second flow state over a period T3 from t2 to t3. That is, the switching mechanism K switches to the second flow state after the first transition state. Specifically, the air taken from the outdoor space through the air supply passage R1 flows through the humidity control section DS of the humidity control element D2 on the other side as adsorbed air, and then flows through the sensible heat exchanger EX1. In the state (# 06), after the air taken out from the indoor space through the exhaust passage R2 passes through the sensible heat exchanger EX1 and the heater EX2 in the order described, the regenerated air of the humidity control element D1 on one side A state in which the humidity control section DS flows (# 07), and a state in which the air taken in the outdoor space through the working passage R3 flows as cooling air through the cooling section CS of the humidity control element D2 on the other side (# 08). ).

更に、切換機構Kは、t3からt4までの期間T4に亘って通流状態を第2遷移状態にする。すなわち、切換機構Kは、第2通流状態の次に第2遷移状態に切り換える。具体的には、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態(#09)とし、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として他方側の調湿素子D2の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態(#10)とする。切換機構Kは、このような第1通流状態から第2遷移状態の一連の流れに沿った切り換えを繰り返して行う。   Further, the switching mechanism K changes the flow state to the second transition state over a period T4 from t3 to t4. That is, the switching mechanism K switches to the second transition state after the second flow state. Specifically, the action passage R3 is set in a state (# 09) in which the air taken in from the outdoor space flows through the cooling portion CS of the humidity control element D1 on one side as cooling air, and the air supply passage R1 is connected to the outdoor passage. After the air taken in from the space flows as the adsorbed air through the humidity control section DS of the humidity control element D2 on the other side, it is in a state of flowing through the sensible heat exchange section EX1 (# 10). The switching mechanism K repeatedly performs such switching along a series of flows from the first flow state to the second transition state.

なお、第1遷移状態及び第2遷移状態は、第1通流状態及び第2通流状態の期間の半分の期間とすると良い。すなわち、図4に示されるように、第1通流状態の期間をT1、第1遷移状態の期間をT2、第2通流状態の期間をT3、第2遷移状態の期間をT4とすると、T2=T4=T1/2=T3/2となるようにすると良い。   Note that the first transition state and the second transition state are preferably half the period of the first flow state and the second flow state. That is, as shown in FIG. 4, when the period of the first flow state is T1, the period of the first transition state is T2, the period of the second flow state is T3, and the period of the second transition state is T4, It is preferable that T2 = T4 = T1 / 2 = T3 / 2.

図5には、本実施形態に係る通流状態の切り換えを行った場合の出口湿度(室内へ供給される空調空気の湿度)の変化を示すデータが示される。このデータの取得にあたり使用したサンプルは、吸湿剤塗布量:30〔g/m〕、セル寸法:段高1.6×ピッチ3.2〔mm〕、吸着剤:ポリアクリル酸ナトリウム系吸湿剤、基材:アルミニウムである。このようなサンプルを用いて、高さ:100〔mm〕、被除湿空気側流路幅:125〔mm〕、冷却用空気側流路幅:250〔mm〕の調湿素子D1,D2を作成した。また、取得条件(評価条件)は、被除湿空気温湿度:30〔℃〕、60〔%RH〕、被除湿空気風量:24〔m/h〕、冷却用空気温度:27〔℃〕、冷却用空気風量:48〔m/h〕、再生用空気温度:50〔℃〕、13〔%RH〕、再生用空気風量:24〔m/h〕とした。 FIG. 5 shows data indicating a change in outlet humidity (humidity of conditioned air supplied to the room) when the flow state is switched according to the present embodiment. The sample used for acquiring this data was a moisture absorbent coating amount: 30 [g / m 2 ], a cell dimension: 1.6 step height × 3.2 pitch [mm], and an adsorbent: sodium polyacrylate moisture absorbent. , Substrate: aluminum. Using such samples, humidity control elements D1 and D2 having a height of 100 [mm], a dehumidified air side channel width: 125 [mm], and a cooling air side channel width: 250 [mm] are prepared. did. The acquisition conditions (evaluation conditions) are as follows: dehumidified air temperature and humidity: 30 [° C.], 60 [% RH], dehumidified air flow rate: 24 [m 3 / h], cooling air temperature: 27 [° C.], Air volume for cooling: 48 [m 3 / h], air temperature for regeneration: 50 [° C.], 13 [% RH], air volume for regeneration: 24 [m 3 / h]

なお、図5では、縦軸を出口湿度、横軸を時間としている。また、本空調システム100によるデータ(以下「本件データ」とする)は実線で示され、比較結果として通流状態を第1通流状態及び第2通流状態の間で切り換えた場合(すなわち、第1遷移状態及び第2遷移状態を設けない場合)のデータ(以下「比較データ」とする)が破線で示される。本件データを取得した際のT1及びT3は60秒であり、T2及びT4は30秒である。また、比較データを取得した際の第1通流状態及び第2通流状態の期間は90秒である。   In FIG. 5, the vertical axis represents outlet humidity and the horizontal axis represents time. In addition, data by the air conditioning system 100 (hereinafter referred to as “present data”) is indicated by a solid line, and as a comparison result, the flow state is switched between the first flow state and the second flow state (that is, Data (hereinafter referred to as “comparison data”) in the case where the first transition state and the second transition state are not provided is indicated by a broken line. T1 and T3 when this data is acquired are 60 seconds, and T2 and T4 are 30 seconds. Further, the period of the first flow state and the second flow state when the comparison data is acquired is 90 seconds.

図5に示されるように、比較データでは出口付近の湿度が最も下がるのは運転開始から30秒後、すなわち冷却するのに30秒要していた。一方、本件データでは、第1遷移状態及び第2遷移状態からなる予備冷却状態を設けることにより、出口付近の湿度が最も下がるのは運転開始から15秒後に短縮することができた。   As shown in FIG. 5, in the comparative data, it was 30 seconds after the start of operation that the humidity near the outlet was the lowest, that is, 30 seconds were required for cooling. On the other hand, in the present data, the provision of the preliminary cooling state composed of the first transition state and the second transition state, the humidity near the outlet can be reduced most 15 seconds after the start of operation.

ここで、本件データの取得時には比較データの取得時に対して、上述した予備冷却(先行冷却)を行っている。このような予備冷却を行う場合、再生時間が短くなる。再生時間が短くなると、調湿素子D1,D2に与える熱の総量が少なくなるので、再生時間が短くなった分の熱量を補完するために風量の増加も行ってみた。例えば、30〔秒〕の先行冷却では、再生時間が元の90〔秒〕から60〔秒〕になる。そうすると、RA風量が1〔倍〕のままでは熱の総量が少ないため、風量を90/60=1.5〔倍〕にすることで条件が揃えられる。このように取得された平均除湿量は以下の通りである。   Here, the above-described preliminary cooling (preceding cooling) is performed at the time of acquisition of the present data with respect to the acquisition of the comparison data. When such preliminary cooling is performed, the regeneration time is shortened. When the regeneration time is shortened, the total amount of heat given to the humidity control elements D1 and D2 is reduced. Therefore, in order to complement the amount of heat corresponding to the shortening of the regeneration time, the air volume was also increased. For example, in the preliminary cooling of 30 [seconds], the regeneration time is changed from the original 90 [seconds] to 60 [seconds]. Then, since the total amount of heat is small if the RA air volume remains 1 [times], the condition can be adjusted by setting the air volume to 90/60 = 1.5 [times]. The average dehumidification amount acquired in this way is as follows.

先行時間:0〔秒〕、RA風量倍率:1.00〔倍〕の時の平均除湿量は6.65〔g/kg’〕、先行時間:0〔秒〕、RA風量倍率:1.25〔倍〕の時の平均除湿量は6.95〔g/kg’〕、先行時間:0〔秒〕、RA風量倍率:1.50〔倍〕の時の平均除湿量は6.87〔g/kg’〕であった。また、先行時間:30〔秒〕、RA風量倍率:1.00〔倍〕の時の平均除湿量は6.81〔g/kg’〕、先行時間:30〔秒〕、RA風量倍率:1.25〔倍〕の時の平均除湿量は6.92〔g/kg’〕、先行時間:30〔秒〕、RA風量倍率:1.50〔倍〕の時の平均除湿量は7.05〔g/kg’〕であった。これらの結果から、例えばRA風量倍率が1.00〔倍〕のときには、比較データに係る従来システムを用いた場合(先行時間:0〔秒〕の場合)には平均除湿量が6.65g/kg’であったものが、本空調システム100(先行時間:30〔秒〕の場合)では6.81g/kg’と増加することもできた。このように本空調システム100によれば、除湿効果及び冷却効果を高めることが可能である。   Leading time: 0 [seconds], RA air volume magnification: 1.00 [times], average dehumidification amount is 6.65 [g / kg '], preceding time: 0 [seconds], RA air volume magnification: 1.25 The average dehumidification amount at [times] is 6.95 [g / kg '], the preceding time: 0 [seconds], and the RA air volume magnification: 1.50 [times], the average dehumidification amount is 6.87 [g] / Kg ']. Moreover, when the preceding time is 30 [seconds] and the RA air volume magnification is 1.00 [times], the average dehumidification amount is 6.81 [g / kg '], the preceding time is 30 [seconds], and the RA air volume magnification is 1 The average dehumidification amount at 6.25 [times] is 6.92 [g / kg '], the preceding time: 30 [seconds], and the RA air volume magnification: 1.50 [times], the average dehumidification amount is 7.05. [G / kg ']. From these results, for example, when the RA air volume magnification is 1.00 [times], the average dehumidification amount is 6.65 g / in the case where the conventional system related to the comparison data is used (when the preceding time is 0 [seconds]). What was kg ′ could also be increased to 6.81 g / kg ′ in the air conditioning system 100 (in the case of the preceding time: 30 [seconds]). Thus, according to the air conditioning system 100, it is possible to enhance the dehumidifying effect and the cooling effect.

〔別実施形態〕
(1)上記実施形態にあっては、第1ファンF1の配設位置を給気通路R1上で特定の位置に限定すると共に、第2ファンF2の配設位置を排気通路R2上で特定の位置に限定した。
しかしながら、第1ファンF1の配設位置は、給気通路R1上であれば、どの位置に設けても良く、第2ファンF2の配設位置は、排気通路R2上であれば、どの位置に設けても構わない。
ただし、作用通路R3の排気通路R2への接続部位は、第2ファンF2の上流側とすることとする。
[Another embodiment]
(1) In the above embodiment, the arrangement position of the first fan F1 is limited to a specific position on the air supply passage R1, and the arrangement position of the second fan F2 is specified on the exhaust passage R2. Limited to position.
However, the first fan F1 may be provided at any position on the supply passage R1, and the second fan F2 may be provided at any position on the exhaust passage R2. It may be provided.
However, the connection portion of the working passage R3 to the exhaust passage R2 is upstream of the second fan F2.

(2)作用通路R3は、別に給気通路R1及び排気通路R2に接続されていなくても構わない。この場合、作用通路R3に、作用空気供給手段として、第2ファンF2とは別に第3ファン(作用空気供給手段の一例)を設けることとなる。 (2) The working passage R3 may not be connected to the air supply passage R1 and the exhaust passage R2. In this case, a third fan (an example of the working air supply means) is provided in the working passage R3 as the working air supply means in addition to the second fan F2.

(3)上記実施形態では、切換機構Kは、一対の調湿素子D1、D2への空気の通流状態を切り換える形態、即ち、給気通路R1と排気通路R2と作用通路R3を切換弁等により切り換える形態で、一対の調湿素子D1、D2の吸湿側と被再生側とを切り換える、即ち、第1通流状態と第2通流状態とを切り換える例を示した。
しかしながら、切換機構Kは、一対の調湿素子D1、D2自体の配置を、置き換えることで、第1通流状態と第2通流状態とを切り換える構成を採用しても構わない。
(3) In the above embodiment, the switching mechanism K is configured to switch the air flow state to the pair of humidity control elements D1, D2, that is, the supply valve R1, the exhaust passage R2, and the working passage R3 are switched valves, etc. Thus, the example of switching between the moisture absorption side and the regenerated side of the pair of humidity control elements D1 and D2, that is, switching between the first flow state and the second flow state is shown.
However, the switching mechanism K may be configured to switch between the first flow state and the second flow state by replacing the arrangement of the pair of humidity control elements D1 and D2 itself.

(4)上記実施形態では、加熱器EX2へは、貯湯槽(図示せず)の中間領域に貯留される湯水を熱媒として通流させる構成例を示した。しかしながら、例えば、当該加熱器EX2へ導かれる熱媒としては、エンジンや燃料電池での発生熱を回収するように循環している冷却水を通流する構成を採用しても構わない。また、上記実施形態では、加熱器EX2へ導かれる熱媒として、豊富に存在する中温の排熱を保有する熱媒(例えば、60℃程度の熱媒)を用いる例を示したが、別に高温の排熱を保有する熱媒を用いても構わない。 (4) In the above embodiment, the configuration example in which hot water stored in the intermediate region of the hot water storage tank (not shown) is passed as a heat medium to the heater EX2. However, for example, as the heating medium guided to the heater EX2, a configuration in which circulating cooling water is passed so as to recover the heat generated in the engine or the fuel cell may be adopted. Moreover, although the example which uses the heat medium (for example, about 60 degreeC heat medium) which has abundant medium temperature exhaust heat was shown as a heat medium guide | induced to the heater EX2 in the said embodiment, it was high temperature separately. You may use the heat medium which holds the waste heat of.

(5)上記実施形態では、空調システム100に係る構成を、第1ユニットと第2ユニットとに分割して設ける構成を採用したが、別に、分割することなく、一体のユニットして構成しても構わない。 (5) In the above embodiment, the configuration related to the air conditioning system 100 is divided into the first unit and the second unit. However, the unit is configured as an integrated unit without being divided. It doesn't matter.

(6)上記実施形態では、切換機構Kは、第1遷移状態では、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D1の冷却部CSを通流する状態とすると共に、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として一方側の調湿素子D1の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態とし、第2遷移状態では、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態とすると共に、給気通路R1を、室外空間から取り込んだ空気が、吸着空気として他方側の前記調湿素子D2の調湿部DSを通流した後に、顕熱熱交換部EX1を通流する状態とするとして説明した。しかしながら、切換機構Kは、第1遷移状態では、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として他方側の調湿素子D1の冷却部CSを通流する状態のみとし、第2遷移状態では、作用通路R3を、室外空間から取り込んだ空気が、冷却空気として一方側の調湿素子D1の冷却部CSを通流する状態のみとするように構成することも可能である。 (6) In the above embodiment, in the first transition state, the switching mechanism K causes the air that has taken in the action passage R3 from the outdoor space to flow as the cooling air through the cooling unit CS of the humidity control element D1 on the other side. At the same time, the air taken from the outdoor space through the air supply passage R1 flows as the adsorbed air through the humidity control section DS of the humidity control element D1 on one side, and then flows through the sensible heat exchange section EX1. In the second transition state, in the second transition state, the air taken in from the outdoor space is brought into a state in which the cooling portion CS of the humidity control element D1 on the one side flows as cooling air, and the air supply passage R1 is In the above description, the air taken in from the outdoor space flows through the humidity control section DS of the humidity control element D2 on the other side as adsorbed air, and then flows through the sensible heat exchange section EX1. However, in the first transition state, the switching mechanism K makes the working passage R3 only in a state where the air taken in from the outdoor space flows as cooling air through the cooling portion CS of the humidity control element D1 on the other side. In the transition state, it is also possible to configure the working passage R3 so that the air taken in from the outdoor space is only in a state in which the cooling portion CS of the humidity control element D1 on one side flows as cooling air.

(7)上記実施形態では、第1遷移状態及び第2遷移状態は、第1通流状態及び第2通流状態の期間の半分の期間であるとして説明したが、第1遷移状態及び第2遷移状態は、第1通流状態及び第2通流状態の期間の半分の期間以外で設定することも可能である。 (7) In the above embodiment, the first transition state and the second transition state have been described as being half the period of the first flow state and the second flow state. The transition state can be set in a period other than half the period of the first flow state and the second flow state.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明は、室外空間から取り込んだ空気を室内空間へ供給する給気通路と、当該給気通路へ室外空間から取り込んだ空気を通流させる給気手段と、室内空間から取り込んだ空気を室外空間へ排気する排気通路と、当該排気通路へ室内空間から取り出した空気を通流させる排気手段と、通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する調湿部と、通過する冷却空気にて前記調湿部の吸着に伴う吸着熱を吸収する冷却部とを、前記調湿部にて水分を吸着しているときに前記冷却部にて吸着熱を吸収可能に備えた調湿素子を一対備えた空調システムに用いることが可能である。   The present invention relates to an air supply passage for supplying air taken in from an outdoor space to the indoor space, an air supply means for flowing air taken from the outdoor space into the air supply passage, and air taken from the indoor space to the outdoor space An exhaust passage for exhausting to the exhaust passage, an exhaust means for passing the air taken out from the indoor space to the exhaust passage, a humidity control section for adsorbing moisture of the adsorbed air passing through and desorbing moisture to the regenerating air passing through, A cooling unit that absorbs the heat of adsorption accompanying the adsorption of the humidity control unit by the cooling air that is capable of absorbing the heat of adsorption by the cooling unit when moisture is adsorbed by the humidity control unit It can be used for an air conditioning system including a pair of humidity control elements.

100:空調システム
D1:調湿素子
D2:調湿素子
CS:冷却部
DS:調湿部
EX1:顕熱熱交換部
EX2:加熱器(加熱部)
F1:第1ファン(給気手段)
F2:第2ファン(排気手段)
K:切換機構
R1:給気通路
R2:排気通路
R3:作用通路
100: Air-conditioning system D1: Humidity adjustment element D2: Humidity adjustment element CS: Cooling part DS: Humidity adjustment part EX1: Sensible heat exchange part EX2: Heater (heating part)
F1: First fan (air supply means)
F2: Second fan (exhaust means)
K: switching mechanism R1: air supply passage R2: exhaust passage R3: working passage

Claims (7)

室外空間から取り込んだ空気を室内空間へ供給する給気通路と、
当該給気通路へ室外空間から取り込んだ空気を通流させる給気手段と、
室内空間から取り出した空気を室外空間へ排気する排気通路と、
当該排気通路へ室内空間から取り出した空気を通流させる排気手段と、
通過する吸着空気の水分を吸着すると共に通過する再生空気へ水分を脱着する調湿部と、通過する冷却空気にて前記調湿部の吸着に伴う吸着熱を吸収する冷却部とを、前記調湿部にて水分を吸着しているときに前記冷却部にて吸着熱を吸収可能に備えた調湿素子を一対備えた空調システムであって、
室外空間から取り込んだ空気を室外空間へ送り出す作用通路と、
前記作用通路へ室外空間から取り出した空気を通流させる作用空気供給手段と、
二流体の顕熱を熱交換させる顕熱熱交換部と、
排熱を保有する熱媒との熱交換により空気を加熱する加熱部とを備え、
一方側の前記調湿素子への空気の通流状態と、他方側の前記調湿素子の空気の通流状態とを互いに切り換え可能な切換機構を備え、
前記切換機構が、
前記給気通路を、室外空間から取り込んだ空気が、吸着空気として一方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記排気通路を、室内空間から取り出した空気が、前記顕熱熱交換部及び前記加熱部を記載の順に通流した後に、再生空気として他方側の前記調湿素子の前記調湿部を通流する状態とし、
前記作用通路を、室外空間から取り込んだ空気が、冷却空気として一方側の前記調湿素子の前記冷却部を通流する状態とする第1通流状態と、
前記給気通路を、室外空間から取り込んだ空気が、吸着空気として他方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記排気通路を、室内空間から取り出した空気が、前記顕熱熱交換部及び前記加熱部を記載の順に通流した後に、再生空気として一方側の前記調湿素子の前記調湿部を通流する状態とし、
前記作用通路を、室外空間から取り込んだ空気が、冷却空気として他方側の前記調湿素子の前記冷却部を通流する状態とする第2通流状態とを、切り換えると共に、
前記第1通流状態から前記第2通流状態に切り換える際に、前記第1通流状態と前記第2通流状態との間において、前記作用通路を、室外空間から取り込んだ空気が、前記冷却空気として他方側の前記調湿素子の前記冷却部を通流する状態とする第1遷移状態に切り換え、
前記第2通流状態から前記第1通流状態に切り換える際に、前記第2通流状態と前記第1通流状態との間において、前記作用通路を、室外空間から取り込んだ空気が、前記冷却空気として一方側の前記調湿素子の前記冷却部を通流する状態とする第2遷移状態に切り換える空調システム。
An air supply passage for supplying air taken from the outdoor space to the indoor space;
An air supply means for passing air taken from the outdoor space into the air supply passage;
An exhaust passage for exhausting air taken from the indoor space to the outdoor space;
Exhaust means for passing air taken out from the indoor space to the exhaust passage;
A humidity control unit that adsorbs moisture from the adsorbed air passing therethrough and desorbs moisture from the regenerated air that passes through, and a cooling unit that absorbs heat of adsorption accompanying the adsorption of the humidity control unit by the passing cooling air. An air conditioning system comprising a pair of humidity control elements equipped to absorb heat of adsorption in the cooling unit when moisture is adsorbed in the wet unit,
An action passage for sending air taken from the outdoor space to the outdoor space;
Working air supply means for passing air taken out from the outdoor space to the working passage;
A sensible heat exchange section for exchanging sensible heat of two fluids;
A heating unit that heats the air by heat exchange with a heat medium having exhaust heat,
A switching mechanism capable of switching between the air flow state to the humidity control element on one side and the air flow state of the humidity control element on the other side;
The switching mechanism is
The air taken in from the outdoor space through the air supply passage is in a state of flowing through the sensible heat exchange section after flowing through the humidity control section of the humidity control element on one side as adsorbed air,
After the air taken out from the indoor space through the exhaust passage passes through the sensible heat exchange part and the heating part in the order described, it passes through the humidity control part of the humidity control element on the other side as regenerated air. State
A first flow state where the air taken in the outdoor space from the outdoor space is in a state of flowing through the cooling portion of the humidity control element on one side as cooling air;
After the air taken in from the outdoor space through the air supply passage flows as the adsorbed air through the humidity control section of the humidity control element on the other side, the air flows through the sensible heat exchange section.
After the air taken out from the indoor space through the exhaust passage passes through the sensible heat exchange section and the heating section in the order described, the air passes through the humidity control section of the humidity control element on one side as regenerated air. State
And switching the second passage state where the air taken in the outdoor space from the outdoor space flows through the cooling part of the humidity control element on the other side as cooling air,
When switching from the first flow state to the second flow state, between the first flow state and the second flow state, the air taken in the outdoor space from the outdoor space is Switch to the first transition state in which the cooling part of the humidity control element on the other side flows as cooling air,
When switching from the second flow state to the first flow state, between the second flow state and the first flow state, the air that has taken in the working passage from the outdoor space is The air conditioning system which switches to the 2nd transition state made into the state which flows the said cooling part of the said humidity control element of one side as cooling air.
前記切換機構は、
前記第1遷移状態において、前記給気通路を、室外空間から取り込んだ空気が、前記吸着空気として一方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とし、
前記第2遷移状態において、前記給気通路を、室外空間から取り込んだ空気が、前記吸着空気として他方側の前記調湿素子の前記調湿部を通流した後に、前記顕熱熱交換部を通流する状態とする請求項1に記載の空調システム。
The switching mechanism is
In the first transition state, after the air taken from the outdoor space through the air supply passage flows through the humidity control section of the humidity control element on one side as the adsorbed air, the sensible heat exchange section is Let it flow,
In the second transition state, after the air taken from the outdoor space through the air supply passage flows through the humidity control section of the humidity control element on the other side as the adsorbed air, the sensible heat exchange section is The air conditioning system according to claim 1, wherein the air conditioning system is in a state of allowing flow.
前記第1遷移状態及び前記第2遷移状態は、前記第1通流状態及び前記第2通流状態の期間の半分の期間である請求項1又は2に記載の空調システム。   3. The air conditioning system according to claim 1, wherein the first transition state and the second transition state are half of a period of the first flow state and the second flow state. 前記加熱部は、前記給気通路にて前記顕熱熱交換部へ導かれる空気の温度よりも高く、且つ排熱として有効に利用される排熱利用下限閾値より低い温度の熱媒を、空気と熱交換するように構成されている請求項1から3のいずれか一項に記載の空調システム。   The heating unit is a heating medium having a temperature higher than the temperature of the air led to the sensible heat exchange unit in the air supply passage and lower than the exhaust heat utilization lower limit threshold that is effectively used as exhaust heat. The air conditioning system according to any one of claims 1 to 3, wherein the air conditioning system is configured to exchange heat with the air. 前記加熱部は、湯水を成層貯湯する貯湯槽の下方領域と上方領域との間の中間領域から取り出される湯水を熱媒として、空気と熱交換するように構成されている請求項1から4のいずれか一項に記載の空調システム。   The heating unit is configured to exchange heat with air using hot water taken from an intermediate region between a lower region and an upper region of a hot water storage tank for storing hot water as a stratified hot water as a heat medium. The air conditioning system according to any one of the above. 前記作用通路は、前記給気通路の最上流部位から分岐した分岐通路であり、当該分岐通路は、前記排気通路で前記排気手段の上流側に接続される通路であり、
前記作用空気供給手段と前記排気手段とを、単一のファンから構成する請求項1から5のいずれか一項に記載の空調システム。
The working passage is a branch passage branched from the most upstream portion of the air supply passage, and the branch passage is a passage connected to the upstream side of the exhaust means in the exhaust passage,
The air conditioning system according to any one of claims 1 to 5, wherein the working air supply unit and the exhaust unit are configured by a single fan.
少なくとも、一対の前記調湿素子と、前記加熱部とを第1ユニットとして構成し、
少なくとも、前記顕熱熱交換部を前記第1ユニットとは別の第2ユニットとして構成している請求項1から6のいずれか一項に記載の空調システム。
At least a pair of the humidity control elements and the heating unit are configured as a first unit,
The air conditioning system according to any one of claims 1 to 6, wherein at least the sensible heat exchange unit is configured as a second unit different from the first unit.
JP2016034353A 2016-02-25 2016-02-25 Air conditioning system Active JP6594227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034353A JP6594227B2 (en) 2016-02-25 2016-02-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034353A JP6594227B2 (en) 2016-02-25 2016-02-25 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2017150755A true JP2017150755A (en) 2017-08-31
JP6594227B2 JP6594227B2 (en) 2019-10-23

Family

ID=59741581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034353A Active JP6594227B2 (en) 2016-02-25 2016-02-25 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6594227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140976A (en) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 Fresh air conditioning system and control method thereof
US11872522B2 (en) 2018-03-29 2024-01-16 Osaka Gas Co., Ltd. Humidity control element and method for using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263729A (en) * 2000-03-23 2001-09-26 Daikin Ind Ltd Adsorption/desorption device and moisture adjusting system using same
JP2003014252A (en) * 2001-06-28 2003-01-15 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2005172272A (en) * 2003-12-08 2005-06-30 Daikin Ind Ltd Humidity controller
US20090165485A1 (en) * 2007-12-27 2009-07-02 Walter Stark Hybrid dehumidification system for applications with high internally-generated moisture loads
JP2011012846A (en) * 2009-06-30 2011-01-20 Daikin Industries Ltd Humidity controller
JP2013130389A (en) * 2013-01-07 2013-07-04 Univ Of Tokyo Air source heat pump device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263729A (en) * 2000-03-23 2001-09-26 Daikin Ind Ltd Adsorption/desorption device and moisture adjusting system using same
JP2003014252A (en) * 2001-06-28 2003-01-15 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2005172272A (en) * 2003-12-08 2005-06-30 Daikin Ind Ltd Humidity controller
US20090165485A1 (en) * 2007-12-27 2009-07-02 Walter Stark Hybrid dehumidification system for applications with high internally-generated moisture loads
JP2011012846A (en) * 2009-06-30 2011-01-20 Daikin Industries Ltd Humidity controller
JP2013130389A (en) * 2013-01-07 2013-07-04 Univ Of Tokyo Air source heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872522B2 (en) 2018-03-29 2024-01-16 Osaka Gas Co., Ltd. Humidity control element and method for using the same
CN111140976A (en) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 Fresh air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP6594227B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP3864982B2 (en) Air conditioning system
KR101201010B1 (en) Humidity control device
JP3861902B2 (en) Humidity control device
JP3891207B2 (en) Humidity control device
JP2003161465A (en) Humidity conditioning device
JP3992051B2 (en) Air conditioning system
US10544948B2 (en) Air conditioner with dehumidification and humidification function and method of dehumidified cooling and humidified heating using the same
JP5786646B2 (en) Humidity control device
JP2009275955A (en) Desiccant air-conditioning device
JP4075950B2 (en) Air conditioner
JP4273555B2 (en) Air conditioning system
JP6550121B2 (en) Adsorption type hybrid dehumidifying cooling system
JP6594227B2 (en) Air conditioning system
JP5063745B2 (en) Air conditioner
JP5332534B2 (en) Air conditioner
JP4525138B2 (en) Humidity control device
JP4496821B2 (en) Humidity control device
JP6120759B2 (en) Air conditioning system
JP6452368B2 (en) Fuel cell equipment type air conditioning system
JP2005134005A (en) Humidity conditioning device
JP6468911B2 (en) Air conditioning system
JP2005140372A (en) Air conditioner
JP5473404B2 (en) Regenerative humidity control air conditioning system
JP2005164220A (en) Air conditioner
JP5917787B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190924

R150 Certificate of patent or registration of utility model

Ref document number: 6594227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150