JP2017150711A - Room temperature control system - Google Patents

Room temperature control system Download PDF

Info

Publication number
JP2017150711A
JP2017150711A JP2016032350A JP2016032350A JP2017150711A JP 2017150711 A JP2017150711 A JP 2017150711A JP 2016032350 A JP2016032350 A JP 2016032350A JP 2016032350 A JP2016032350 A JP 2016032350A JP 2017150711 A JP2017150711 A JP 2017150711A
Authority
JP
Japan
Prior art keywords
temperature
outside air
room temperature
window
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016032350A
Other languages
Japanese (ja)
Other versions
JP6673718B2 (en
Inventor
奈美 村松
Nami Muramatsu
奈美 村松
豊 大浦
Yutaka Oura
豊 大浦
貴文 大橋
Takafumi Ohashi
貴文 大橋
明仁 尾崎
Akihito Ozaki
明仁 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Sankyo Tateyama Inc
Original Assignee
Kyushu University NUC
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Sankyo Tateyama Inc filed Critical Kyushu University NUC
Priority to JP2016032350A priority Critical patent/JP6673718B2/en
Publication of JP2017150711A publication Critical patent/JP2017150711A/en
Application granted granted Critical
Publication of JP6673718B2 publication Critical patent/JP6673718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a room temperature control system capable of saving energy with comfort.SOLUTION: A room temperature control system includes two or more windows 1, 1, ..., an outside air temperature sensor 2, a room temperature sensor 3, an outside air humidity sensor 4, a room humidity sensor 5, and control means 6. The control means 6, when a room temperature is equal to or higher than a comfort lower limit temperature TL and an outside air temperature is equal to or higher than a window close temperature TC and lower than the room temperature, opens the windows 1, 1, ..., and when an outside air humidity or outside air enthalpy is higher than room humidity or room enthalpy, closes the windows 1, 1, ... even when the room temperature is equal to or higher than the comfort lower limit temperature TL and the outside air temperature is equal to or higher than the window close temperature TC and lower than the room temperature.SELECTED DRAWING: Figure 1

Description

本発明は、窓の開閉を自動で行って室内を快適に保つ室温制御システムに関する。   The present invention relates to a room temperature control system that automatically opens and closes a window and keeps the room comfortable.

従来から室内の温度調節を行う手段としてエアコンが使われてきたが、エアコンで温度調節を行う場合、その都度ON・OFFの操作が必要で面倒であった。また、エアコンは長時間使用すると、エネルギーの浪費につながるとともに、人体に負荷がかかり健康を害するおそれもあった。   Conventionally, an air conditioner has been used as a means for adjusting the temperature in the room, but when adjusting the temperature with the air conditioner, an ON / OFF operation is required each time, which is troublesome. In addition, if the air conditioner is used for a long time, it leads to waste of energy, and there is a risk that the human body is loaded and health is impaired.

本発明は以上に述べた実情に鑑み、快適で省エネが図れる室温制御システムの提供を目的とする。   The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a room temperature control system that is comfortable and can save energy.

上記の課題を達成するために請求項1記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする。   In order to achieve the above object, a room temperature control system according to the first aspect of the present invention comprises two or more windows, an outdoor air temperature sensor, an indoor temperature sensor, an outdoor air humidity sensor, an indoor humidity sensor, and control means, and control means. Is to open the window when the room temperature is above the comfortable lower limit temperature and the outside air temperature is above the window closing temperature and below the room temperature, and when the outside air humidity or outside air enthalpy is higher than the room humidity or indoor enthalpy, the room temperature is comfortable The window is closed even when the temperature is lower than the lower limit temperature and the outside air temperature is higher than the window closing temperature and lower than the room temperature.

請求項2記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、外気湿度または外気エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする。   A room temperature control system according to a second aspect of the present invention comprises two or more windows, an outside air temperature sensor, an indoor temperature sensor, an outside air humidity sensor, and a control means, and the control means has a room temperature not less than a comfortable lower limit temperature and an outside air temperature. When the outside air humidity or outside enthalpy is higher than the specified value, the room temperature is above the comfortable lower limit temperature and the outside air temperature is above the window closing temperature. It is characterized by closing the window even when it is lower.

請求項3記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、室内湿度または室内エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする。   A room temperature control system according to a third aspect of the present invention comprises two or more windows, an outside air temperature sensor, an indoor temperature sensor, an indoor humidity sensor, and a control means, and the control means has a room temperature not less than a comfortable lower limit temperature and an outside air temperature. When the room humidity is higher than the window closing temperature and lower than the room temperature, and the room humidity or the room enthalpy is higher than the predetermined value, the room temperature is above the comfortable lower limit temperature and the outside air temperature is above the window closing temperature. It is characterized by closing the window even when it is lower.

請求項4記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと雨センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、雨センサが雨を検知したときは、窓を閉めるとともに、雨が止んでから所定の期間、窓開け温度を下げることを特徴とする。   A room temperature control system according to a fourth aspect of the present invention includes two or more windows, an outside air temperature sensor, an indoor temperature sensor, a rain sensor, and a control means. When the rain sensor detects rain, it closes the window and lowers the window opening temperature for a predetermined period after the rain stops. To do.

請求項5記載の発明による室温制御システムは、請求項1,2,3又は4記載の発明の構成に加え、エアコンをさらに備え、制御手段は、窓を開けたときにエアコンをOFFにし、室温が所定温度以上で窓が閉のときにエアコンをONにすることを特徴とする。   The room temperature control system according to the invention described in claim 5 further includes an air conditioner in addition to the configuration of the invention described in claim 1, 2, 3 or 4, and the control means turns off the air conditioner when the window is opened, The air conditioner is turned on when the temperature is higher than a predetermined temperature and the window is closed.

請求項1記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。   The room temperature control system according to the first aspect of the present invention includes two or more windows, an outside air temperature sensor, an indoor temperature sensor, an outside air humidity sensor, an indoor humidity sensor, and a control means, and the control means has a room temperature equal to or higher than a comfortable lower limit temperature. When the outside air temperature is higher than the window closing temperature and lower than the room temperature, the room temperature can be comfortably controlled using the natural wind to the maximum, and the control means is that the outside air humidity or the outside air enthalpy is the room humidity. Or when the temperature is higher than the indoor enthalpy, the window is closed even when the room temperature is above the comfortable lower limit temperature and the outside air temperature is above the window closing temperature and below the room temperature. Comfort can be prevented and energy can be saved because it can be prevented from being lost.

請求項2記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、外気湿度または外気エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。   A room temperature control system according to a second aspect of the present invention comprises two or more windows, an outside air temperature sensor, an indoor temperature sensor, an outside air humidity sensor, and a control means, and the control means has a room temperature not less than a comfortable lower limit temperature and an outside air temperature. By opening the window when the temperature is above the window closing temperature and below the room temperature, it is possible to comfortably control the room temperature by making the best use of natural wind, and the control means has an outside air humidity or an outside air enthalpy higher than a predetermined value When the room temperature is higher than the comfortable lower limit temperature and the outside air temperature is higher than the window closing temperature and lower than the room temperature, the window is closed, so that outside air with high humidity flows into the room and indoor comfort is impaired. Can be prevented, so it is comfortable and energy saving.

請求項3記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、室内湿度または室内エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。   A room temperature control system according to a third aspect of the present invention comprises two or more windows, an outside air temperature sensor, an indoor temperature sensor, an indoor humidity sensor, and a control means, and the control means has a room temperature not less than a comfortable lower limit temperature and an outside air temperature. By opening the window when the temperature is above the window closing temperature and below the room temperature, it is possible to comfortably control the room temperature using the natural wind to the maximum, and the control means is that the room humidity or the room enthalpy is higher than the predetermined value When the room temperature is higher than the comfortable lower limit temperature and the outside air temperature is higher than the window closing temperature and lower than the room temperature, the window is closed, so that outside air with high humidity flows into the room and indoor comfort is impaired. Can be prevented, so it is comfortable and energy saving.

請求項4記載の発明による室温制御システムは、2つ以上の窓と外気温度センサと室内温度センサと雨センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、雨センサが雨を検知したときは、窓を閉めるとともに、雨が止んでから所定の期間、窓開け温度を下げることで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。   A room temperature control system according to a fourth aspect of the present invention includes two or more windows, an outside air temperature sensor, an indoor temperature sensor, a rain sensor, and a control means. By opening the window when the temperature is above the window closing temperature and below the room temperature, the room temperature can be controlled comfortably using the natural wind to the maximum, and the control means closes the window when the rain sensor detects rain. At the same time, by lowering the window opening temperature for a predetermined period after the rain has stopped, it is possible to prevent the outside air with high humidity from flowing into the room and impairing the comfort in the room, so that comfort and energy saving can be achieved.

請求項5記載の発明による室温制御システムは、エアコンをさらに備え、制御手段は、窓を開けたときにエアコンをOFFにし、室温が所定温度以上で窓が閉のときにエアコンをONにするので、エアコンの運転により室内の快適性がより一層向上すると共に、自然の風を取り入れることでエアコンの運転時間を極力減らし、省エネが図れる。   The room temperature control system according to the invention of claim 5 further includes an air conditioner, and the control means turns off the air conditioner when the window is opened, and turns on the air conditioner when the room temperature is equal to or higher than the predetermined temperature and the window is closed. In addition, the comfort of the room can be further improved by operating the air conditioner, and the operation time of the air conditioner can be reduced as much as possible by incorporating the natural wind to save energy.

エアコンなしの場合の制御手段の制御の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of control of the control means in the case of no air conditioner. 図1のフローチャート中の湿度判定に用いられる判定図1,2,3を示す。FIG. 2 shows determination diagrams 1, 2, and 3 used for humidity determination in the flowchart of FIG. 図1のフローチャート中の温度状態判定に用いられる判定図aを示す。FIG. 2 is a determination diagram “a” used for temperature state determination in the flowchart of FIG. 1. エアコンなしの場合の制御手段の制御の流れの他の例を示すフローチャートであって、真夏以外のときのものを示す。It is a flowchart which shows the other example of the control flow of the control means in the case of no air conditioner, Comprising: The thing at the time other than midsummer is shown. 図4のフローチャート中の温度状態判定に用いられる判定図bを示す。FIG. 5 shows a determination diagram b used for temperature state determination in the flowchart of FIG. 4. エアコンなしの場合の制御手段の制御の流れの他の例を示すフローチャートであって、真夏のときのものを示す。It is a flowchart which shows the other example of the control flow of the control means in the case of no air conditioner, Comprising: The thing at the time of midsummer is shown. 図6のフローチャート中の温度状態判定に用いられる判定図cを示す。FIG. 7 shows a determination diagram c used for temperature state determination in the flowchart of FIG. 6. エアコン有りの場合の制御手段の制御の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of control of the control means in the presence of an air conditioner. 図8のフローチャート中の温度状態判定に用いられる判定図Aを示す。FIG. 9 is a determination diagram A used for temperature state determination in the flowchart of FIG. 8. 図8のフローチャート中の温度状態判定に用いられる判定図Bを示す。FIG. 9 is a determination diagram B used for temperature state determination in the flowchart of FIG. 8. 図8のフローチャート中の温度状態判定に用いられる判定図Cを示す。FIG. 9 shows a determination diagram C used for temperature state determination in the flowchart of FIG. 8. エアコン有りの場合の制御手段の制御の流れの他の例を示すフローチャートであって、真夏以外のときのものを示す。It is a flowchart which shows the other example of the flow of control of the control means in the presence of an air conditioner, and shows a case other than midsummer. 図12のフローチャート中の温度状態判定に用いられる判定図Dを示す。FIG. 13 shows a determination diagram D used for temperature state determination in the flowchart of FIG. 図12のフローチャート中の温度状態判定に用いられる判定図D2を示す。FIG. 13 shows a determination diagram D2 used for temperature state determination in the flowchart of FIG. エアコン有りの場合の制御手段の制御の流れの他の例を示すフローチャートであって、真夏のときのものを示す。It is a flowchart which shows the other example of the flow of control of the control means when an air conditioner exists, Comprising: The thing at the time of midsummer is shown. 図15のフローチャート中の温度状態判定に用いられる判定図Eを示す。FIG. 16 is a determination diagram E used for temperature state determination in the flowchart of FIG. 15. 図15のフローチャート中の温度状態判定に用いられる判定図E2を示す。FIG. 16 shows a determination diagram E2 used for temperature state determination in the flowchart of FIG. 本発明の一実施形態に係る室温制御システムを設置した建物を模式的に示す平面図である。It is a top view which shows typically the building which installed the room temperature control system which concerns on one Embodiment of this invention. 同室温制御システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the room temperature control system. 本発明の室温制御システムの冷房負荷削減効果を示すグラフである。It is a graph which shows the cooling load reduction effect of the room temperature control system of this invention. 本発明の室温制御システムについて行ったシミュレーションの結果を示すグラフであって、窓が開いたときの室内の温度と湿度の状態を空気線図上にプロットしたものである。It is a graph which shows the result of the simulation performed about the room temperature control system of this invention, Comprising: The state of the room temperature and humidity when a window opens is plotted on an air diagram. 本発明の室温制御システムについて行ったシミュレーションの結果を示すグラフであって、窓が開いたときの室内の温度と湿度の状態を空気線図上にプロットしたものである。It is a graph which shows the result of the simulation performed about the room temperature control system of this invention, Comprising: The state of the room temperature and humidity when a window opens is plotted on an air diagram. 本発明の室温制御システムについて行った実験の結果を示すグラフであって、窓が開いたときの室外の温度と湿度の状態を空気線図上にプロットしたものである。It is a graph which shows the result of the experiment performed about the room temperature control system of this invention, Comprising: The state of the outdoor temperature and humidity when a window opens is plotted on an air diagram. 本発明の室温制御システムについて行ったシミュレーションの結果を示すグラフであって、快適時間の割合を示す。It is a graph which shows the result of the simulation performed about the room temperature control system of the present invention, and shows the rate of comfortable time.

以下、本発明の実施の形態を図面に基づいて説明する。図18は本発明の一実施形態に係る室温制御システムを設置した建物を模式的に示す平面図であり、図19は同システムの機能構成を示すブロック図である。本実施形態の室温制御システムは、平屋の住宅に適用したものである。
本システムは、屋外に面した複数の窓1,1,…と、室内に設置したエアコン7、集中制御機6、操作パネル8、室内温度センサ3及び室内湿度センサ5と、屋外に設置した雨センサ9、外気温度センサ2及び外気湿度センサ4を備えている。各窓1,1,…とエアコン7と操作パネル8と各センサ2,3,4,5,9は、集中制御機6と有線又は無線で接続されている。
なお、本実施形態はエアコン7を備えたシステムになっているが、エアコン7のないシステムの場合もある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 18 is a plan view schematically showing a building in which a room temperature control system according to an embodiment of the present invention is installed, and FIG. 19 is a block diagram showing a functional configuration of the system. The room temperature control system of this embodiment is applied to a one-story house.
This system includes a plurality of windows 1, 1,... Facing outdoors, an air conditioner 7 installed indoors, a central controller 6, an operation panel 8, an indoor temperature sensor 3 and an indoor humidity sensor 5, and rain installed outdoors. A sensor 9, an outside air temperature sensor 2, and an outside air humidity sensor 4 are provided. The windows 1, 1,..., The air conditioner 7, the operation panel 8, and the sensors 2, 3, 4, 5, 9 are connected to the centralized controller 6 by wire or wirelessly.
In addition, although this embodiment is a system provided with the air conditioner 7, there may be a system without the air conditioner 7.

各窓1は、屋外へと繋がる電動窓であり、集中制御機6からの指令に基づき、図示しないモーターによって自動で開閉される。各窓1は、全開、全閉の他、半開きの状態として通風量を制限することができる。複数の窓1,1,…は、建物の向かい合う又は交差する壁に設けてあり、これらの窓1,1,…を同時に開けることで、風の入口と出口ができて室内を風が流れ、涼しい外気を室内に多く取り入れることができるので、自然の風を最大限利用して室温を快適に制御できる。2つの窓1,1を、1つの壁上の上部と下部に設けることもでき、この場合は2つの窓を同時に開けることで、重力換気による換気が行える。各窓1は、すべり出し窓やオーニング窓、引違い窓など、その種類は問わない。   Each window 1 is an electric window connected to the outdoors, and is automatically opened and closed by a motor (not shown) based on a command from the central controller 6. Each window 1 can restrict the amount of ventilation as a fully open state, a fully closed state, or a half open state. A plurality of windows 1, 1,... Are provided on walls facing or intersecting the building. By opening these windows 1, 1,... Since a lot of cool outdoor air can be taken into the room, it is possible to comfortably control the room temperature by making the best use of the natural wind. Two windows 1 and 1 can be provided at the upper and lower parts on one wall. In this case, ventilation by gravity ventilation can be performed by simultaneously opening the two windows. Each window 1 may be of any kind, such as a sliding window, an awning window, or a sliding window.

操作パネル8は、室内及び室外の温度と湿度の状態をモニターする機能、室温の快適上限温度THと快適下限温度TLと窓閉温度TCを設定する機能、運転モードを設定する機能を備えている。
快適上限温度THと快適下限温度TLは、ユーザーが好きな温度に設定できるが、エコを考慮して快適上限温度THは通常のエアコンの設定温度より若干高めに設定し、快適下限温度TLはユーザーが許容できる温度(寒いと感じない温度)とするのが好ましい。具体的には、例えば昼間は快適上限温度THを27℃、快適下限温度TLを22℃に設定し、夜間は快適上限温度THを29℃、快適下限温度TLを24℃と設定する。快適上限温度THと快適下限温度TLを個々に設定するのではなく、ある一つの設定温度を設定すると、その設定温度±3℃が快適上限温度TH・快適下限温度TLとして自動的に設定されるようにすることもできる。なお、一般的にエアコンにも設定温度を設定する機能があるが、エアコンの設定温度は本システムの快適上限温度THと同じ温度に設定するようにする。窓閉温度TCは、室温が下がり過ぎるのを防ぐために、外気温がその温度よりも下がると窓が開かないようにするために設定するものであり、例えば20℃に設定される。
運転モードとしては、エアコン使用モードと、エアコン不使用モードを選択することができる。エアコン使用モードは、室内に人が居るときに選択されるものであり、エアコン7のON/OFFと窓1,1,…の開閉を自動で行って、室内を快適に制御するものである。エアコン不使用モードは、室内に人が居ないときに選択されるものであって、エアコン7はOFFのままで窓1,1,…の開閉のみを自動で行って、室内を快適に制御するものである。エアコン使用モードとエアコン不使用モードの切り替えは、手動で行ってもよいが、室内に設置した人感センサにより自動で切り替わるようにすることもできる。
The operation panel 8 has a function of monitoring indoor and outdoor temperature and humidity states, a function of setting a comfortable upper limit temperature TH, a comfortable lower limit temperature TL and a window closing temperature TC, and a function of setting an operation mode. .
The comfortable upper limit temperature TH and the comfortable lower limit temperature TL can be set as desired by the user, but considering the ecology, the comfortable upper limit temperature TH is set slightly higher than the normal air conditioner set temperature, and the comfortable lower limit temperature TL is set to the user. Is preferably an acceptable temperature (a temperature at which it does not feel cold). Specifically, for example, the comfortable upper limit temperature TH is set to 27 ° C. and the comfortable lower limit temperature TL is set to 22 ° C. during the daytime, and the comfortable upper limit temperature TH is set to 29 ° C. and the comfortable lower limit temperature TL is set to 24 ° C. at night. Rather than individually setting the comfortable upper limit temperature TH and the comfortable lower limit temperature TL, when a certain set temperature is set, the set temperature ± 3 ° C is automatically set as the comfortable upper limit temperature TH and the comfortable lower limit temperature TL. It can also be done. In general, an air conditioner also has a function of setting a set temperature, but the set temperature of the air conditioner is set to the same temperature as the comfortable upper limit temperature TH of this system. The window closing temperature TC is set to prevent the window from being opened when the outside air temperature falls below the temperature in order to prevent the room temperature from being lowered too much. For example, the window closing temperature TC is set to 20 ° C.
As the operation mode, an air conditioner use mode and an air conditioner non-use mode can be selected. The air conditioner use mode is selected when there is a person in the room, and automatically turns the air conditioner 7 on and off and automatically opens and closes the windows 1, 1,. The air conditioner non-use mode is selected when there is no person in the room, and the air conditioner 7 is automatically turned off and automatically opened and closed to control the room comfortably. Is. Switching between the air conditioner use mode and the air conditioner non-use mode may be performed manually, or may be automatically switched by a human sensor installed in the room.

集中制御機6は、例えばパソコンや専用コントローラー等で構成され、各種データ及びプログラムを記憶する記憶部や、計時動作を行う計時部等を備えており、記憶部に予め格納されたプログラムに従い、室温と外気温の比較等を行い、窓1,1,…の開閉とエアコン7のON・OFFを制御する。また集中制御機6は、外気温度センサ2が検出した外気温と外気湿度センサ4が検出した外気湿度に基づいて外気エンタルピを算出する機能、室内温度センサ3が検出した室温と室内湿度センサ5が検出した室内湿度に基づいて室内エンタルピを算出する機能を有する。   The centralized controller 6 is composed of, for example, a personal computer or a dedicated controller, and includes a storage unit that stores various data and programs, a timer unit that performs timekeeping operation, and the like, according to a program stored in advance in the storage unit. The outside air temperature is compared, and the opening and closing of the windows 1, 1,. The central controller 6 has a function of calculating the outside air enthalpy based on the outside air temperature detected by the outside air temperature sensor 2 and the outside air humidity detected by the outside air humidity sensor 4, and the room temperature and indoor humidity sensor 5 detected by the room temperature sensor 3. It has a function of calculating the indoor enthalpy based on the detected indoor humidity.

次に、集中制御機6が行う制御の流れをフローチャートに基づいて説明する。図1は、エアコンなしの場合の集中制御機6の制御の流れの一例を示すフローチャートである。図1に示すように、制御判定が開始されると、ループ処理が開始され(ステップS1)、続いて雨センサ9により得られる情報から降雨の有無を判定する(ステップS2)。降雨有りと判定されると、窓1,1,…を閉めて(ステップS3)ループ処理を終了する。   Next, the flow of control performed by the centralized controller 6 will be described based on a flowchart. FIG. 1 is a flowchart showing an example of the control flow of the centralized controller 6 when there is no air conditioner. As shown in FIG. 1, when the control determination is started, a loop process is started (step S1), and the presence / absence of rainfall is subsequently determined from information obtained by the rain sensor 9 (step S2). If it is determined that there is rain, the windows 1, 1,... Are closed (step S3), and the loop processing is terminated.

ステップS2で降雨無しと判定されると、図2に示す判定図1,2,3の何れか一つを用いて湿度判定を行う(ステップS4)。判定図1,2,3の何れを用いるかは、予めプログラムで決められている。
図2(a)に示す判定図1は、外気湿度または外気エンタルピが一定の値Hh以上のときは状態1と判定し、外気湿度または外気エンタルピが一定の値Hhより低いときは状態2と判定する(外気湿度定値制御、外気エンタルピ定値制御)。判定図1を用いる場合は、室内湿度及び室内エンタルピを検知する必要がないため、室内湿度センサは不要となる。
図2(b)に示す判定図2は、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも高いときは状態1と判定し、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも低いときは状態2と判定する(湿度比例制御、エンタルピ比例制御)。
図2(c)に示す判定図3は、室内湿度または室内エンタルピが一定の値Hhよりも高いときは状態1と判定し、室内湿度または室内エンタルピが一定の値Hhよりも低いときは状態2と判定する(室内湿度定値制御、室内エンタルピ定値制御)。判定図3を用いる場合は、室外湿度または室外エンタルピを検知する必要がないため、外気湿度センサは不要となる。
If it is determined that there is no rain in step S2, humidity determination is performed using any one of the determination diagrams 1, 2, and 3 shown in FIG. 2 (step S4). Which of the determination diagrams 1, 2, and 3 is used is determined in advance by a program.
The determination shown in FIG. 2A is determined as state 1 when the outside air humidity or outside air enthalpy is equal to or higher than a certain value Hh, and determined as state 2 when the outside air humidity or outside air enthalpy is lower than a certain value Hh. Yes (outside air humidity constant value control, outside air enthalpy constant value control). When the determination diagram 1 is used, it is not necessary to detect the indoor humidity and the indoor enthalpy, and therefore an indoor humidity sensor is not necessary.
FIG. 2B shows a determination diagram 2 in which when the outside air humidity or the outside air enthalpy is higher than the room humidity or the room enthalpy, it is judged as the state 1, and when the outside air humidity or the outside air enthalpy is lower than the room humidity or the room enthalpy. State 2 is determined (humidity proportional control, enthalpy proportional control).
FIG. 3C shows a determination diagram 3 in which state 1 is determined when the room humidity or the room enthalpy is higher than a certain value Hh, and state 2 when the room humidity or the room enthalpy is lower than a certain value Hh. (Indoor humidity constant value control, indoor enthalpy constant value control). When the determination diagram 3 is used, it is not necessary to detect the outdoor humidity or the outdoor enthalpy, and therefore the outdoor humidity sensor is not necessary.

上記の判定図1〜3の何れかによる判定の結果、状態1と判定されたときには、降雨有りのときと同様に、窓1,1,…を閉めて(ステップS3)ループ処理を終了する。状態2と判定されたときは、後述する判定図aによる温度状態判定を行い、外気温と室温の状態によっては窓1,1,…は開となり得る。このような制御を行うことで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できる。エンタルピは湿度に比例するから、エンタルピにより判定を行っても、湿度により判定を行ったときと同様の効果が得られる。   As a result of the determination according to any one of the above determination diagrams 1 to 3, when it is determined that the state 1 is present, the windows 1, 1,... Are closed (step S3) and the loop processing is ended in the same manner as when there is rain. When the state 2 is determined, a temperature state determination is performed based on a determination diagram “a” described later, and the windows 1, 1,... By performing such control, it is possible to prevent outdoor air with high humidity from flowing into the room and impairing indoor comfort. Since enthalpy is proportional to humidity, even if the determination is made by enthalpy, the same effect as when the determination is made by humidity can be obtained.

ステップS4で状態2と判定されると、図3に示す判定図aに外気温と室温を当てはめ(ステップS5)、窓1,1,…の状態を決定する(ステップS6)。判定図aでは、外気温が窓閉温度TC以下のとき、室温が快適下限温度TL以下のとき、及び室温が快適下限温度TL以上で外気温が室温よりも高いときは(図中のA領域)、窓1,1,…は閉となる。室温が快適下限温度TL以上で外気温が室温よりも低いときは(図中のB領域)、窓1,1,…は開となる。
また、外気温が快適下限温度TLよりも低く且つ窓閉温度TCより高く、尚且つ室温が快適下限温度TLより高いときは(図中のC領域)、窓1,1,…は制限開(半開き)となる。
If it is determined in step S4 that the state is 2, the outside air temperature and room temperature are applied to the determination diagram a shown in FIG. 3 (step S5), and the states of the windows 1, 1,... Are determined (step S6). In the determination diagram a, when the outside air temperature is equal to or lower than the window closing temperature TC, when the room temperature is equal to or lower than the comfortable lower limit temperature TL, and when the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside air temperature is higher than the room temperature (A region in the figure). ), Windows 1, 1,... Are closed. When the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside air temperature is lower than the room temperature (B region in the figure), the windows 1, 1,.
When the outside air temperature is lower than the comfortable lower limit temperature TL and higher than the window closing temperature TC and the room temperature is higher than the comfortable lower limit temperature TL (C region in the figure), the windows 1, 1,. Half open).

図4は、エアコンなしの場合の集中制御機6の制御の流れの他の例を示すフローチャートであって、真夏以外のときのものを示している。制御判定が開始されると、ループ処理が開始され(ステップS11)、続いて雨センサ9により得られる情報から降雨の有無を判定する(ステップS12)。降雨有りと判定されると、窓1,1,…を閉めて(ステップS13)ループ処理を終了する。ここまでは、先に説明した図1のフローチャートの制御と同じである。   FIG. 4 is a flowchart showing another example of the control flow of the centralized controller 6 when there is no air conditioner, and shows a case other than midsummer. When the control determination is started, a loop process is started (step S11), and then whether or not there is rainfall is determined from information obtained by the rain sensor 9 (step S12). If it is determined that there is rain, the windows 1, 1,... Are closed (step S13), and the loop processing is terminated. Up to this point, the control is the same as the control of the flowchart of FIG. 1 described above.

ステップS12で降雨無しと判定されると、降雨後所定の期間経過したか否かを判定する(S14)。ここでいう所定の期間は、例えば何時間といった時間の長さで設定してもよいし、期間の終点の時刻で設定してもよい。好ましくは、雨が上がってから翌朝までの期間とするのがよい。
ステップS14で降雨後所定の期間経過したと判定されると、図3に示す判定図aに外気温と室温を当てはめ(ステップS15)、窓1,1,…の状態を決定する(ステップS16)。このステップS15とステップS16は、図1のフローチャートにおけるステップS5とステップS6と同じである。
If it is determined that there is no rain in step S12, it is determined whether or not a predetermined period has elapsed after the rain (S14). The predetermined period here may be set by the length of time, for example, how many hours, or may be set by the time of the end point of the period. Preferably, the period is from the rain until the next morning.
If it is determined in step S14 that a predetermined period has elapsed after the rain, the outside air temperature and room temperature are applied to the determination diagram a shown in FIG. 3 (step S15), and the states of windows 1, 1,... Are determined (step S16). . Steps S15 and S16 are the same as steps S5 and S6 in the flowchart of FIG.

ステップS14で降雨後所定の期間経過していないと判定されると、図5に示す判定図bに外気温と室温を当てはめ(ステップS17)、窓1,1,…の状態を決定する(ステップS16)。判定図bは、図3に示す判定図aと比較すると、室温が快適下限温度TL以上で外気温が室温より低い領域のうち、外気温が快適上限温度THよりもdt4+T以上低くない範囲では、窓1,1,…が閉となる点が異なっている。すなわち、降雨後所定の期間が経過するまでの間は、窓開け温度を下げている。
降雨後は外気の湿度が高くなるから、降雨後所定の期間が経過するまでの間、このように窓開け温度を下げて窓1,1,…が開くときの条件を厳しくすることで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できる。この制御によれば、外気湿度センサ4と室内湿度センサ5が不要となり、コストを削減できる。
If it is determined in step S14 that the predetermined period has not elapsed since the rain, the outside air temperature and the room temperature are applied to the determination diagram b shown in FIG. 5 (step S17), and the states of the windows 1, 1,. S16). Compared to the determination diagram a shown in FIG. 3, the determination diagram b is a range in which the outside air temperature is not lower than the comfortable upper limit temperature TH by dt4 + T or less in the region where the room temperature is not less than the comfortable lower limit temperature TL and the outside air temperature is lower than the room temperature. The difference is that the windows 1, 1,... Are closed. That is, the window opening temperature is lowered until a predetermined period elapses after the rain.
Since the humidity of the outside air increases after the rain, the window opening temperature is lowered and the conditions for opening the windows 1, 1,. High outdoor air can be prevented from flowing into the room and impairing indoor comfort. According to this control, the outside humidity sensor 4 and the indoor humidity sensor 5 become unnecessary, and the cost can be reduced.

図6は、エアコンなしの場合の集中制御機6の制御の流れの他の例を示すフローチャートであって、真夏のときのものを示している。制御の流れとしては、図4に示した真夏以外のときと同じである。異なるのは、降雨後所定の期間が経過した場合の温度状態判定(ステップS15)における判定図を図5に示す判定図bとし、真夏以外のときの判定図aと比較して窓開け温度を下げている点と、降雨後所定の期間が経過していない場合の温度状態判定(ステップS17)における判定図を図7に示す判定図cとし、判定図bと比較して窓開け温度をT2さらに下げている点である。
真夏は、真夏以外のときよりも湿度が全般的に高いため、このように窓開け温度を下げることにより、真夏の間も湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止し、真夏の快適性をより向上させられる。
FIG. 6 is a flowchart showing another example of the control flow of the centralized controller 6 when there is no air conditioner, and shows a case of midsummer. The flow of control is the same as in the case other than midsummer shown in FIG. The difference is that the determination diagram in the temperature state determination (step S15) when a predetermined period has passed after raining is the determination diagram b shown in FIG. 5, and the window opening temperature is compared with the determination diagram a in the case other than midsummer. The determination diagram in the temperature state determination (step S17) in the case where the predetermined period has not elapsed since the point of lowering and the rainfall is the determination diagram c shown in FIG. 7, and the window opening temperature is T2 compared with the determination diagram b. It is further lowered.
In midsummer, the humidity is generally higher than in other than midsummer, so by lowering the window opening temperature in this way, outdoor air with high humidity flows into the room during midsummer and indoor comfort is impaired. And can improve the comfort of midsummer.

図8は、エアコン有りの場合の集中制御機6の制御の流れの一例を示すフローチャートである。図8に示すように、制御判定が開始されると、ループ処理が開始され(ステップS21)、続いて雨センサ9により得られる情報から降雨の有無を判定する(ステップS22)。
降雨有りと判定されると、室内に人が居るかどうかの判定(在・不在判定)を行う(ステップS23)。エアコン不使用モードが選択されているときや人感センサが人を検知しないときは「不在」と判定し、エアコン使用モードが選択されているときや人感センサが人を検知したときは「在」と判定する。「不在」と判定されたときは、窓1,1,…を閉めてエアコン7をOFFする(ステップS24)。「在」と判定されたときは、図11に示す判定図Cに外気温と室温を当てはめ(ステップS25)、窓1,1,…とエアコン7の状態を決定する(ステップS26)。具体的には、室温が快適上限温度THより高い場合は、窓1,1,…は閉でエアコン7はONとなる。室温が、快適上限温度THよりも低い場合は、窓1,1,…は閉でエアコン7はOFFとなる。すなわち判定図Cでは、いずれの場合も窓1,1,…は閉となり、室温に応じてエアコン7をONにするかOFFにするかだけを判定する。
FIG. 8 is a flowchart showing an example of the control flow of the centralized controller 6 when there is an air conditioner. As shown in FIG. 8, when the control determination is started, a loop process is started (step S21), and then whether or not there is rainfall is determined from information obtained by the rain sensor 9 (step S22).
If it is determined that there is rainfall, it is determined whether there is a person in the room (presence / absence determination) (step S23). When the air conditioner non-use mode is selected or the presence sensor does not detect a person, it is judged as “absent”, and when the air conditioner use mode is selected or when the presence sensor detects a person, Is determined. When it is determined as “absent”, the windows 1, 1,... Are closed and the air conditioner 7 is turned off (step S24). When it is determined as “present”, the outside air temperature and the room temperature are applied to the determination diagram C shown in FIG. 11 (step S25), and the states of the windows 1, 1,... And the air conditioner 7 are determined (step S26). Specifically, when the room temperature is higher than the comfortable upper limit temperature TH, the windows 1, 1,... Are closed and the air conditioner 7 is turned on. When the room temperature is lower than the comfortable upper limit temperature TH, the windows 1, 1,... Are closed and the air conditioner 7 is turned off. That is, in the determination diagram C, the windows 1, 1,... Are closed in any case, and it is determined only whether the air conditioner 7 is turned ON or OFF depending on the room temperature.

ステップS22で降雨無しと判定されると、先に説明したエアコンなしの場合と同様に、図2に示す判定図1,2,3の何れか一つを用いて湿度判定を行う(ステップS27)。判定図1,2,3の何れを用いるかは、予めプログラムで決められている。   If it is determined in step S22 that there is no rain, the humidity determination is performed using any one of the determination diagrams 1, 2, and 3 shown in FIG. 2 as in the case of the absence of the air conditioner described above (step S27). . Which of the determination diagrams 1, 2, and 3 is used is determined in advance by a program.

上記の判定図1〜3の何れかによる判定の結果、状態1と判定されたときには、先に説明した降雨有りのときと同様に、在・不在判定を行い(ステップS23)、「不在」のときは窓1,1,…を閉めてエアコン7をOFFし(ステップS24)、「在」のときはステップS25の判定図Cによる温度状態判定を行い、室温が快適上限温度TH以上のときは窓1,1,…を閉めてエアコン7をONし、室温が快適上限温度TH以下のときは窓1,1,…を閉めてエアコン7をOFFする。すなわち、状態1と判定されたときは、外気温と室温の状態にかかわらず、窓1,1,…は閉となる。状態2と判定されたときは、後述する判定図A又は判定図Bによる温度状態判定を行い、外気温と室温の状態によっては窓1,1,…は開となり得る。このような制御を行うことで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できる。エンタルピは湿度に比例するから、エンタルピにより判定を行っても、湿度により判定を行ったときと同様の効果が得られる。   As a result of the determination according to any one of the above determination diagrams 1 to 3, when it is determined that the state 1 is present, the presence / absence determination is performed (step S23) in the same manner as in the case of the rain described above. When the window is closed, the air conditioner 7 is turned off (step S24). When “present”, the temperature state is determined according to the determination diagram C of step S25, and when the room temperature is equal to or higher than the comfortable upper limit temperature TH. .. Are closed and the air conditioner 7 is turned on. When the room temperature is below the comfortable upper limit temperature TH, the windows 1, 1,... Are closed and the air conditioner 7 is turned off. That is, when it is determined as the state 1, the windows 1, 1,... Are closed regardless of the outside air temperature and the room temperature. When the state 2 is determined, a temperature state determination is performed according to a determination diagram A or a determination diagram B which will be described later, and the windows 1, 1,... May be opened depending on the outside air temperature and the room temperature. By performing such control, it is possible to prevent outdoor air with high humidity from flowing into the room and impairing indoor comfort. Since enthalpy is proportional to humidity, even if the determination is made by enthalpy, the same effect as when the determination is made by humidity can be obtained.

上述の湿度判定の結果、状態2と判定されたときは、室内に人が居るかどうかの判定(在・不在判定)を行う(ステップS28)。
「不在」と判定されると、図9に示す判定図Aに外気温と室温を当てはめ(ステップS29)、窓1,1,…とエアコン7の状態を決定する(ステップS26)。判定図Aでは、外気温が窓閉温度TC以下のとき、室温が快適下限温度TL以下のとき、及び室温が快適下限温度TL以上で外気温が室温よりも高いときは(図中のA領域)、窓1,1,…は閉でエアコン7はOFFとなる。室温が快適下限温度TL以上で外気温が室温よりも低く且つ快適下限温度TLより高いときは(図中のB領域)、窓1,1,…は開でエアコン7はOFFとなる。
また、外気温が快適下限温度TLよりも低く且つ窓閉温度TCより高く、尚且つ室温が快適下限温度TLよりも高いときは(図中のC領域)、窓1,1,…を制限開(半開き)としエアコン7はOFFにする。このように判定図Aでは、エアコン7は常にOFFとなり、外気温と室温に応じて窓1,1,…の開閉のみを行う。
As a result of the humidity determination described above, when it is determined that the state 2 is determined, it is determined whether or not there is a person in the room (presence / absence determination) (step S28).
If it is determined as “absent”, the outside air temperature and the room temperature are applied to the determination diagram A shown in FIG. 9 (step S29), and the states of the windows 1, 1,... And the air conditioner 7 are determined (step S26). In the determination diagram A, when the outside air temperature is equal to or lower than the window closing temperature TC, when the room temperature is equal to or lower than the comfortable lower limit temperature TL, and when the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside air temperature is higher than the room temperature (A region in the figure). ), Windows 1, 1,... Are closed and the air conditioner 7 is turned off. When the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside air temperature is lower than the room temperature and higher than the comfortable lower limit temperature TL (B area in the figure), the windows 1, 1,.
When the outside air temperature is lower than the comfortable lower limit temperature TL and higher than the window closing temperature TC and the room temperature is higher than the comfortable lower limit temperature TL (C region in the figure), the windows 1, 1,. The air conditioner 7 is turned off. Thus, in the determination diagram A, the air conditioner 7 is always OFF, and only the windows 1, 1,... Are opened and closed according to the outside air temperature and the room temperature.

ステップS28で「在」と判定されると、図10に示す判定図Bに外気温と室温を当てはめ(ステップS30)、窓1,1,…とエアコン7の状態を決定する(ステップS26)。判定図Bでは、外気温が窓閉温度TC以下のとき及び室温が快適下限温度TL以下のとき、及び室温が快適下限温度TL以上快適上限温度TH以下で外気温が室温より高いときは(図中のD領域)、窓1,1,…は閉でエアコン7はOFFとなる。外気温が快適上限温度TH以上で且つ室温も快適上限温度TH以上のときは(図中のE領域)、窓1,1,…は閉でエアコン7はONとなる。室温が快適上限温度TH以上で外気温が快適下限温度TL以上快適上限温度TH以下のとき、及び室温が快適下限温度TL以上快適上限温度TH以下で外気温が室温より低く且つ快適下限温度TLより高いときは(図中のF領域)、窓1,1,…は開でエアコン7はOFFとなる。
また、外気温が窓閉温度TC以上快適下限温度TL以下で室温が快適下限温度TL以上のときは(図中のG領域)、窓1,1,…を制限開(半開き)としエアコン7はOFFにする。このように判定図Bでは、外気温と室温に応じて窓1,1,…の開閉とエアコン7のON/OFFを連動して行い、室内をより快適に維持する。
以上のようにして窓1,1,…とエアコン7の状態を決定したら、ループ処理を終了し、制御判定開始に戻る。
If it is determined as “present” in step S28, the outside air temperature and room temperature are applied to the determination diagram B shown in FIG. 10 (step S30), and the states of the windows 1, 1,... And the air conditioner 7 are determined (step S26). In the determination diagram B, when the outside air temperature is equal to or lower than the window closing temperature TC, when the room temperature is equal to or lower than the comfortable lower limit temperature TL, and when the room temperature is equal to or higher than the comfortable lower limit temperature TL and equal to or lower than the comfortable upper limit temperature TH (see FIG. (D area), windows 1, 1,... Are closed and the air conditioner 7 is turned off. When the outside air temperature is equal to or higher than the comfortable upper limit temperature TH and the room temperature is equal to or higher than the comfortable upper limit temperature TH (E region in the figure), the windows 1, 1,... Are closed and the air conditioner 7 is turned on. When the room temperature is above the comfortable upper limit temperature TH and the outside air temperature is above the comfortable lower limit temperature TL and below the comfortable upper limit temperature TH, and when the room temperature is above the comfortable minimum temperature TL and below the comfortable upper limit temperature TH, the outside air temperature is lower than the room temperature and below the comfortable lower limit temperature TL When it is high (F area in the figure), the windows 1, 1,... Are open and the air conditioner 7 is OFF.
Further, when the outside air temperature is not less than the window closing temperature TC and not more than the comfortable lower limit temperature TL and the room temperature is not less than the comfortable lower limit temperature TL (G region in the figure), the windows 1, 1,. Turn off. As described above, in the determination diagram B, the opening and closing of the windows 1, 1,... And the ON / OFF of the air conditioner 7 are interlocked according to the outside air temperature and the room temperature to maintain the room more comfortably.
When the states of the windows 1, 1,... And the air conditioner 7 are determined as described above, the loop process is terminated and the process returns to the control determination start.

図12は、エアコン有りの場合の集中制御機6の制御の流れの他の例を示すフローチャートであって、真夏以外のときのものを示している。制御判定が開始されると、ループ処理が開始され(ステップS31)、続いて雨センサ9により得られる情報から降雨の有無を判定する(ステップS32)。
降雨有りと判定されると、室内に人が居るかどうかの判定を行い(ステップS33)、「不在」のときは窓1,1,…を閉めてエアコン7をOFFし(ステップS34)、「在」のとき図11に示す判定図Cによる温度状態判定を行い(ステップS35)、窓とエアコンの状態を決定する(ステップS36)。ここまでは、先に説明した図8のフローチャートの制御と同じである。
FIG. 12 is a flowchart showing another example of the control flow of the centralized controller 6 when there is an air conditioner, and shows a case other than midsummer. When the control determination is started, a loop process is started (step S31), and then it is determined whether or not there is rainfall from the information obtained by the rain sensor 9 (step S32).
If it is determined that there is rain, it is determined whether or not there is a person in the room (step S33). If “absent”, the windows 1, 1,... Are closed and the air conditioner 7 is turned off (step S34). When “current”, the temperature state is determined according to the determination diagram C shown in FIG. 11 (step S35), and the state of the window and the air conditioner is determined (step S36). Up to this point, the control is the same as the control of the flowchart of FIG. 8 described above.

ステップS32で降雨無しと判定されると、降雨後所定の期間経過したか否かを判定する(S37)。
ステップS37で降雨後所定の期間経過したと判定されると、室内に人が居るかどうかの判定を行い(ステップS38)、「不在」と判定した場合は、図9に示す判定図Aに外気温と室温を当てはめ(ステップS39)、窓1,1,…とエアコン7の状態を決定する(ステップS36)。「在」と判定した場合は、図10に示す判定図Bに外気温と室温を当てはめ(ステップS40)、窓1,1,…とエアコン7の状態を決定する(ステップS36)。このステップS38からステップS39又はステップS40を経由してステップS36に至る制御の流れは、図8のフローチャートにおけるステップS28からステップS29又はステップS30を経由してステップS26に至る制御の流れと同じである。
If it is determined that there is no rain in step S32, it is determined whether or not a predetermined period has elapsed after the rain (S37).
If it is determined in step S37 that a predetermined period has elapsed after the rain, it is determined whether or not there is a person in the room (step S38). If it is determined that the user is absent, the determination diagram A shown in FIG. The temperature and room temperature are applied (step S39), and the state of the windows 1, 1,... And the air conditioner 7 is determined (step S36). When it is determined as “present”, the outside air temperature and the room temperature are applied to the determination diagram B shown in FIG. 10 (step S40), and the states of the windows 1, 1,... And the air conditioner 7 are determined (step S36). The control flow from step S38 to step S36 via step S39 or step S40 is the same as the control flow from step S28 to step S29 via step S29 or step S30 in the flowchart of FIG. .

ステップS37で降雨後所定の期間経過していないと判定されると、室内に人が居るかどうかの判定を行い(ステップS41)、在のときは図13に示す判定図Dに外気温と室温を当てはめ(ステップS42)、窓1,1,…とエアコン7の状態を決定する(ステップS36)。判定図Dは、図10に示す判定図Bと比較して、窓1,1,…が開でエアコン7がOFFとなる領域Fの外気温の上限を、快適上限温度THからdt4+Tだけ低い温度とし、窓開け温度を下げている点が異なっている。
降雨後は外気の湿度が高くなるから、降雨後所定の期間が経過するまでの間、このように窓開け温度を下げることで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できる。この制御によれば、外気湿度センサ4と室内湿度センサ5が不要となり、コストを削減できる。
ステップS41で不在と判定されたときは、図14に示す判定図D2に外気温と室温を当てはめ(ステップS43)、窓1,1,…とエアコン7の状態を決定する(ステップS36)。判定図Dとの違いは、窓1,1,…閉でエアコン7がONとなる領域Eがなくなり、その部分が窓1,1,…閉でエアコン7がOFFとなる領域Dとなっている点である。
If it is determined in step S37 that the predetermined period has not elapsed since the rain, it is determined whether or not there is a person in the room (step S41). Are applied (step S42), and the state of the windows 1, 1,... And the air conditioner 7 is determined (step S36). The determination diagram D is lower than the comfortable upper limit temperature TH by dt4 + T, compared to the determination diagram B shown in FIG. 10, in which the upper limit of the outside air temperature in the region F where the windows 1, 1,. The difference is that the window opening temperature is lowered.
Since the humidity of the outside air becomes high after the rain, by reducing the window opening temperature in this way until the predetermined period has passed after the rain, the outside air with high humidity flows into the room and the indoor comfort is impaired. Can be prevented. According to this control, the outside humidity sensor 4 and the indoor humidity sensor 5 become unnecessary, and the cost can be reduced.
When it is determined in step S41 that the user is absent, the outside air temperature and room temperature are applied to the determination diagram D2 shown in FIG. 14 (step S43), and the states of the windows 1, 1,... And the air conditioner 7 are determined (step S36). The difference from the judgment diagram D is that there is no region E where the air conditioner 7 is turned on when the windows 1, 1,... Are closed, and that portion is a region D where the air conditioner 7 is turned off when the windows 1, 1,. Is a point.

図15は、エアコン有りの場合の集中制御機6の制御の流れの他の例を示すフローチャートであって、真夏のときのものを示している。制御の流れとしては、図12に示した真夏以外のときと同じである。異なるのは、降雨後所定の期間が経過した場合で「在」と判定されたときの温度状態判定(S40)における判定図を図13に示す判定図Dとし、「不在」と判定されたときの温度状態判定(S39)における判定図を図14に示す判定図D2とし、それぞれ真夏以外のとき(判定図A,B)よりも窓開け温度を下げており、降雨後所定の期間が経過していない場合で「在」と判定されたときの温度状態判定(S42)における判定図を図16に示す判定図Eとし、「不在」と判定されたときの温度状態判定(S43)における判定図を図17に示す判定図E2とし、それぞれ真夏以外のときの判定図D,D2と比較して窓開け温度をT2だけさらに下げている。
真夏は、真夏以外のときよりも湿度が全般的に高いため、このように窓開け温度閾値を大きくすることにより、真夏の間も湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止し、真夏の快適性をより向上させられる。
FIG. 15 is a flowchart showing another example of the control flow of the centralized controller 6 in the case of the presence of an air conditioner, and shows a case in midsummer. The flow of control is the same as in the case other than midsummer shown in FIG. The difference is that the determination diagram in the temperature state determination (S40) when it is determined to be “present” when a predetermined period has elapsed after the rain is the determination diagram D shown in FIG. 13, and when it is determined to be “absent” The determination diagram in the temperature state determination (S39) of FIG. 14 is a determination diagram D2 shown in FIG. 14, and the window opening temperature is lower than in the case other than midsummer (determination diagrams A and B), and a predetermined period has elapsed after the rain. The determination diagram in the temperature state determination (S42) when it is determined as “present” when it is not present is the determination diagram E shown in FIG. 16, and the determination diagram in the temperature state determination (S43) when it is determined as “absent” Is a determination diagram E2 shown in FIG. 17, and the window opening temperature is further lowered by T2 as compared to the determination diagrams D and D2 at the time other than midsummer.
In midsummer, the humidity is generally higher than in non-midsummer, so by increasing the window opening temperature threshold in this way, high humidity outside air flows into the room during midsummer and the indoor comfort is impaired. To improve the comfort of midsummer.

次に、本室温制御システム(エアコン有り)について行ったシミュレーションの結果を示す。シミュレーションは、図18に示すような平屋の住宅の6窓に自動制御窓を配置し、大阪のアメダスの気象データ標準年(6/1〜10/30)を用いて行った。シミュレーションは、本発明の実施例として温度制御(窓開の外気温の下限20℃、上限26°)+外気エンタルピ定値制御(外気エンタルピが60kJ/kg’を下回った時窓開け)、温度制御(窓開の外気温の下限20℃、上限26°)+エンタルピ比例制御、温度制御(窓開の外気温の下限20℃、上限26°)+室内エンタルピ定値制御(室内エンタルピが60kJ/kg’を下回った時窓開け)、温度制御(窓開の外気温の下限20℃、上限26°)+外気湿度定値制御(絶対湿度が14g/kg’を下回った時窓開け)、温度制御(窓開の外気温の下限20℃、上限26°)+湿度比例制御の5通り、比較例としてエアコン運転のみ(窓開けなし)、温度制御のみ(湿度またはエンタルピに基づく制御なし)の2通り行った。   Next, the result of the simulation performed for the room temperature control system (with air conditioner) is shown. The simulation was performed by using automatic control windows in six windows of a one-story house as shown in FIG. 18 and using the AMeDAS weather data standard year (6/1 to 10/30) in Osaka. As an example of the present invention, the simulation is performed with temperature control (lower limit of open air outside temperature 20 ° C., upper limit 26 °) + outside air enthalpy constant value control (opening when outside air enthalpy falls below 60 kJ / kg ′), temperature control ( Window open outside temperature lower limit 20 ° C, upper limit 26 °) + enthalpy proportional control, temperature control (window open outside temperature lower limit 20 ° C, upper limit 26 °) + indoor enthalpy constant value control (indoor enthalpy is 60 kJ / kg ' Open window when lower), temperature control (lower limit of open air temperature 20 ° C, upper limit of 26 °) + constant humidity control of open air (open window when absolute humidity falls below 14g / kg '), temperature control (open window) As a comparative example, only air conditioner operation (no window opening) and only temperature control (no control based on humidity or enthalpy) were performed as comparative examples.

図20は、上記のシミュレーションにより冷房負荷をそれぞれ求めてグラフ化したものである。同図に示すように、本発明の実施例はいずれもエアコン運転のみの場合と比較して冷房負荷を概ね20%以上削減できることが分かる。このように冷房負荷を削減できるのは、外気温が下がったときにエアコン7をOFFして窓1,1,…を開けるためである。なお、本発明の実施例が温度制御のみの場合と比較して冷房負荷が大きいのは、外気温が下がっても湿度またはエンタルピが高いときは窓1,1,…を開けない制御を行うため、温度制御のみの場合より窓1,1,…が開いている時間が短くなるためである。   FIG. 20 is a graph showing the cooling loads obtained by the above simulation. As shown in the figure, it can be seen that all the embodiments of the present invention can reduce the cooling load by approximately 20% or more as compared with the case of only the air-conditioner operation. The cooling load can be reduced in this way because the air conditioner 7 is turned off and the windows 1, 1,... Are opened when the outside air temperature decreases. Note that the cooling load of the embodiment of the present invention is larger than that in the case of only temperature control because the control is performed so that the windows 1, 1,... Are not opened when the humidity or enthalpy is high even when the outside air temperature decreases. This is because the time during which the windows 1, 1,... Are opened is shorter than in the case of only temperature control.

図21−1,21−2は、1時間毎のアメダス気象データによるシミュレーションの結果、窓開となるときの室内の温度・湿度の状態を空気線図上にプロットしたものである。図21−2(f)に示す温度制御のみの場合には、相対湿度70%以上の点が多数あるが、図21−1の(a),(b),(c)と図21−2の(d),(e)に示す本発明の実施例では、相対湿度70%以上の点がほとんどなく、快適範囲内にほぼ納まっていることが分かる。なお、快適範囲はPMV−0.5〜+0.5及び相対湿度70%以下とした。PMV(Predicted Mean Vote:予測温冷感申告)は、ISO規格(ISO7730)により規定されており、気温、湿度、気流、熱放射、代謝量、着衣量を考慮して算出される。PMV値が−0.5から+0.5の間であれば、90%の人にとって快適であるとされている。
図23は、窓が開いている時間のうち、室内温湿度が快適範囲内にある時間の割合を示している。同図に示すように、温度制御のみの場合は快適範囲内にある時間の割合が38.5%であるのに対して、本発明の実施例では快適範囲内にある時間の割合がいずれも60%以上となり、快適時間の割合が大幅に増加することが分かる。
FIGS. 21-1 and 21-2 are plots of indoor temperature / humidity conditions when the windows are opened on the air diagram as a result of simulation based on hourly AMeDAS weather data. In the case of only the temperature control shown in FIG. 21-2 (f), there are many points with a relative humidity of 70% or more, but FIGS. 21-1 (a), (b), (c) and FIG. In the embodiments of the present invention shown in (d) and (e) of the present invention, it can be seen that there are almost no points with a relative humidity of 70% or more, and they are almost within the comfortable range. The comfortable range was PMV-0.5 to +0.5 and the relative humidity was 70% or less. PMV (Predicted Mean Vote) is defined by the ISO standard (ISO7730), and is calculated in consideration of air temperature, humidity, airflow, thermal radiation, metabolic rate, and amount of clothes. If the PMV value is between -0.5 and +0.5, 90% of people are comfortable.
FIG. 23 shows the ratio of the time during which the indoor temperature and humidity are within the comfortable range of the time when the window is open. As shown in the figure, in the case of only temperature control, the proportion of time within the comfortable range is 38.5%, whereas in the embodiment of the present invention, the proportion of time within the comfortable range is all. It turns out that it becomes 60% or more, and the ratio of comfortable time increases significantly.

図22は、実際の建物に本発明の室温制御システムを設置して行った実験の結果を示している。実験は、恵那市にある平屋の住宅の6窓に自動制御窓を設置し、6月3日から7月22日にかけて行った。実験条件は、窓開の外気温の下限を18℃、上限を26℃とし、降雨後は翌朝まで窓開け温度を2℃低くする制御を行った。図22(a)は、実験の結果、窓が開いたときの室外の温度と湿度の状態を空気線図上にプロットしたものであり、図22(b)は比較例であって温度制御のみの場合を示している。
同図より明らかなように、降雨後に窓開け温度を一定の期間下げる制御を行った場合には、温度制御のみの場合と比較して、エンタルピの高い外気を室内に入れないことが分かる。
FIG. 22 shows the results of an experiment conducted by installing the room temperature control system of the present invention in an actual building. The experiment was conducted from June 3 to July 22 with automatic control windows installed in 6 windows of a one-story house in Ena City. The experimental conditions were such that the lower limit of the outside temperature of the window opening was 18 ° C., the upper limit was 26 ° C., and after raining, the window opening temperature was lowered by 2 ° C. until the next morning. FIG. 22A is a plot of the outdoor temperature and humidity when the window is opened as a result of the experiment on the air diagram, and FIG. 22B is a comparative example and only temperature control is performed. Shows the case.
As can be seen from the figure, when control is performed to lower the window opening temperature for a certain period after the rain, it is understood that outside air with high enthalpy cannot enter the room as compared with the case of only temperature control.

以上に述べたように本室温制御システムは、2つ以上の窓1,1,…と外気温度センサ2と室内温度センサ3と外気湿度センサ4と室内湿度センサ5と制御手段(集中制御機)6とを備え、制御手段6は、エアコンなしの場合の図3、エアコン有りの場合の図9,10に示すように、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときに窓1,1,…を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段6は、エアコンなしの場合の図1と図2(b)、エアコン有りの場合の図8と図2(b)に示すように、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも高いときは、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときであっても窓1,1,…を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。   As described above, this room temperature control system includes two or more windows 1, 1,..., An outside air temperature sensor 2, an indoor temperature sensor 3, an outside air humidity sensor 4, an indoor humidity sensor 5, and control means (centralized controller). The control means 6 has a room temperature above the comfortable lower limit temperature TL and an outside air temperature above the window closing temperature TC, as shown in FIG. 3 in the case without an air conditioner and in FIGS. 9 and 10 in the case with an air conditioner. By opening the windows 1, 1,... When the temperature is lower than the room temperature, the room temperature can be comfortably controlled using the natural wind to the maximum. Further, the control means 6 is shown in FIGS. 8) and FIG. 2 (b) when the air conditioner is present, when the outside air humidity or the outside air enthalpy is higher than the room humidity or the room enthalpy, the room temperature is not less than the comfortable lower limit temperature TL and the outside air temperature is a window. When the closing temperature is above TC and below room temperature Window 1,1 also, to close the ..., since humid outside air can be prevented comfort of the room flows into the chamber is compromised, thereby comfort and energy saving.

また本室温制御システムは、2つ以上の窓1,1,…と外気温度センサ2と室内温度センサ3と外気湿度センサ4と制御手段6とを備え、制御手段6は、エアコンなしの場合の図3、エアコン有りの場合の図9,10に示すように、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときに窓1,1,…を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、エアコンなしの場合の図1と図2(a)、エアコン有りの場合の図8と図2(a)に示すように、外気湿度または外気エンタルピが所定の値よりも高いときは、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときであっても窓1,1,…を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。室内湿度センサ5が不要になるので、システムを簡略化できる。   In addition, the room temperature control system includes two or more windows 1, 1,..., An outside air temperature sensor 2, an indoor temperature sensor 3, an outside air humidity sensor 4, and a control means 6. As shown in FIG. 3 and FIGS. 9 and 10 with an air conditioner, by opening the windows 1, 1,... When the room temperature is higher than the comfortable lower limit temperature TL and the outside air temperature is higher than the window closing temperature TC and lower than the room temperature. The room temperature can be controlled comfortably by making the best use of natural wind, and the control means are shown in FIGS. 1 and 2 (a) in the case without an air conditioner and in FIGS. 8 and 2 (a) in the case with an air conditioner. As shown, when the outside air humidity or the outside air enthalpy is higher than a predetermined value, the windows 1, 1, even when the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside temperature is equal to or higher than the window closing temperature TC and lower than the room temperature. … To close the outside, high humidity outside air flows into the room It is possible to prevent the aptitude is impaired, thereby comfortable and energy-saving. Since the indoor humidity sensor 5 becomes unnecessary, the system can be simplified.

また本室温制御システムは、2つ以上の窓1,1,…と外気温度センサ2と室内温度センサ3と室内湿度センサ5と制御手段6とを備え、制御手段6は、エアコンなしの場合の図3、エアコン有りの場合の図9,10に示すように、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときに窓1,1,…を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段6は、エアコンなしの場合の図1と図2(c)、エアコン有りの場合の図8と図2(c)に示すように、室内湿度または室内エンタルピが所定の値よりも高いときは、室温が快適下限温度TL以上で且つ外気温が窓閉温度TC以上で室温より低いときであっても窓1,1,…を閉めるため、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。外気湿度センサ4が不要になるので、システムを簡略化できる。   Further, the room temperature control system includes two or more windows 1, 1,..., An outside air temperature sensor 2, an indoor temperature sensor 3, an indoor humidity sensor 5, and a control means 6. As shown in FIG. 3 and FIGS. 9 and 10 with an air conditioner, by opening the windows 1, 1,... When the room temperature is higher than the comfortable lower limit temperature TL and the outside air temperature is higher than the window closing temperature TC and lower than the room temperature. Further, the room temperature can be controlled comfortably by making the best use of the natural wind, and the control means 6 is shown in FIGS. 1 and 2 (c) in the case without an air conditioner, and in FIGS. As shown in FIG. 2, when the room humidity or the room enthalpy is higher than a predetermined value, the windows 1 and 1 even when the room temperature is equal to or higher than the comfortable lower limit temperature TL and the outside air temperature is equal to or higher than the window closing temperature TC and lower than the room temperature. , ... to close the outside, high humidity outside air flows into the room It is possible to prevent the comfort is impaired, thereby comfort and energy saving. Since the outside humidity sensor 4 is not required, the system can be simplified.

また本室温制御システムは、2つ以上の窓1,1,…と外気温度センサ2と室内温度センサ3と雨センサ9と制御手段6とを備え、制御手段6は、エアコンなしの場合の図3、エアコン有りの場合の図9,10に示すように、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けることで、自然の風を最大限利用して室温を快適に制御でき、さらに制御手段は、エアコンなしの場合の図4と図5、エアコン有りの場合の図12と図13に示すように、雨センサが雨を検知したときは、窓を閉めるとともに、雨が止んでから所定の期間、窓開け温度を下げることで、湿度の高い外気が室内に流入して室内の快適性が損なわれるのを防止できるので、快適で省エネが図れる。室内湿度センサ5と外気湿度センサ4が両方とも不要になるので、システムをより簡略化できる。真夏のときは、真夏以外のときと比べて、降雨後所定の期間経過したときの窓開け温度を下げ、降雨後所定の期間経過していないときの窓開け温度をさらに下げることで、真夏の快適性を一層向上できる。   In addition, the room temperature control system includes two or more windows 1, 1,..., An outside air temperature sensor 2, an indoor temperature sensor 3, a rain sensor 9, and a control means 6. The control means 6 is a diagram in the case of no air conditioner. 9, As shown in Figs. 9 and 10 with air conditioner, open the window when the room temperature is higher than the comfortable lower limit temperature and the outside air temperature is higher than the window closing temperature and lower than room temperature. Thus, the room temperature can be controlled comfortably, and the control means can detect the rain when the rain sensor detects rain, as shown in FIGS. 4 and 5 when there is no air conditioner and FIGS. 12 and 13 when there is an air conditioner. By closing the window and lowering the window opening temperature for a predetermined period after the rain stops, it is possible to prevent the outside air with high humidity from flowing into the room and impairing the comfort in the room. . Since both the indoor humidity sensor 5 and the outside air humidity sensor 4 are unnecessary, the system can be further simplified. Compared to the time other than midsummer, when the summer is mid-summer, the window opening temperature when the predetermined period has elapsed after the rain is lowered, and the window opening temperature when the predetermined period has not elapsed since the rain is further lowered. Comfort can be further improved.

本室温制御システムは、エアコン7をさらに備え、制御手段6は、窓1,1,…を開けたときにエアコン7をOFFにし、室温が快適上限温度TH以上で窓1,1,…が閉のときにエアコンをONにするので、エアコン7の運転により室内の快適性がより一層向上すると共に、自然の風を取り入れることでエアコン7の運転時間を極力減らし、省エネが図れる。   The room temperature control system further includes an air conditioner 7. The control means 6 turns off the air conditioner 7 when the windows 1, 1,... Are opened, and the windows 1, 1,. Since the air conditioner is turned on at the time, the comfort of the room is further improved by the operation of the air conditioner 7, and the operation time of the air conditioner 7 is reduced as much as possible by incorporating the natural wind, thereby saving energy.

本発明は以上に述べた実施形態に限定されない。実施形態はエアコンを備えるものであったが、エアコンを備えず、窓の開閉のみを行うものであってもよい。雨センサと、雨センサの信号に基づく制御は、省略することができる(請求項4に係る発明を除く)。また実施形態のものは、室温の快適上限温度THと快適下限温度TLを設定しているが、一つの設定温度のみを設定するものであってもよい。また実施形態は、平屋の建物内の温度・湿度を一括して制御しているが、一つの建物内の複数の部屋の温度・湿度を部屋ごとに制御するもの、複数階の建物内を各フロアごとに制御するものであってもよい。フローチャートは適宜変更することができ、例えば温度状態判定を行った後に湿度またはエンタルピの判定を行うこともできる。実施形態のものは、降雨後所定の期間経過していないときの窓開け温度を、真夏以外のときと真夏のときとで違わせているが、季節によらず同じ値とすることもできる。制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より所定の窓開き遅らせ温度dtだけ下がったときに窓を開けるようにしてもよく、そのように窓開き遅らせ温度dtを設定することで、窓が短い時間に開け閉めされるハンチングを防止することができる。湿度またはエンタルピについても同様に、状態1となる条件と状態2となる条件との間に所定の閾値を設けることで、ハンチングを防止することができる。本発明のシステムは、住宅に限らず、あらゆる建物に適用することができる。   The present invention is not limited to the embodiments described above. Although the embodiment is provided with an air conditioner, the air conditioner may not be provided and only the opening and closing of the window may be performed. The rain sensor and the control based on the rain sensor signal can be omitted (except for the invention according to claim 4). Moreover, although the thing of embodiment sets the comfortable upper limit temperature TH and the comfortable lower limit temperature TL of room temperature, you may set only one preset temperature. In the embodiment, the temperature and humidity in the one-story building are collectively controlled, but the temperature and humidity of a plurality of rooms in one building are controlled for each room, and each of the buildings in a plurality of floors is controlled. You may control for every floor. The flowchart can be changed as appropriate. For example, it is possible to determine humidity or enthalpy after performing temperature state determination. In the embodiment, the window opening temperature when the predetermined period has not elapsed since the rain is different between the time other than midsummer and the time of midsummer. However, the temperature can be the same regardless of the season. The control means may open the window when the room temperature is equal to or higher than the comfortable lower limit temperature and the outside air temperature is equal to or higher than the window closing temperature and falls below the room temperature by a predetermined window opening delay temperature dt. By setting dt, it is possible to prevent hunting in which the window is opened and closed in a short time. Similarly, with respect to humidity or enthalpy, hunting can be prevented by providing a predetermined threshold value between the condition for the state 1 and the condition for the state 2. The system of the present invention can be applied not only to a house but also to any building.

1 窓
2 外気温度センサ
3 室内温度センサ
4 外気湿度センサ
5 室内湿度センサ
6 集中制御機(制御手段)
7 エアコン
8 操作パネル
9 雨センサ
DESCRIPTION OF SYMBOLS 1 Window 2 Outside temperature sensor 3 Indoor temperature sensor 4 Outside air humidity sensor 5 Indoor humidity sensor 6 Centralized controller (control means)
7 Air conditioner 8 Operation panel 9 Rain sensor

Claims (5)

2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、外気湿度または外気エンタルピが室内湿度または室内エンタルピよりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする室温制御システム。   Two or more windows, an outside air temperature sensor, an indoor temperature sensor, an outside air humidity sensor, an indoor humidity sensor, and a control means are provided, and the control means has a room temperature above the comfortable lower limit temperature and an outside air temperature above the window closing temperature. When opening the window when the temperature is low and the outside air humidity or outside air enthalpy is higher than the room humidity or indoor enthalpy, the room temperature is higher than the comfortable lower limit temperature and the outside air temperature is higher than the window closing temperature and lower than the room temperature. A room temperature control system characterized by closing the window. 2つ以上の窓と外気温度センサと室内温度センサと外気湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、外気湿度または外気エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする室温制御システム。   Two or more windows, an outside air temperature sensor, an indoor temperature sensor, an outside air humidity sensor, and a control means are provided, and the control means has a window when the room temperature is equal to or higher than the comfortable lower limit temperature and the outside air temperature is equal to or higher than the window closing temperature and lower than the room temperature. When the outside air humidity or outside air enthalpy is higher than the specified value, the window should be closed even when the room temperature is above the comfortable minimum temperature and the outside air temperature is above the window closing temperature and below room temperature. A featured room temperature control system. 2つ以上の窓と外気温度センサと室内温度センサと室内湿度センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、室内湿度または室内エンタルピが所定の値よりも高いときは、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときであっても窓を閉めることを特徴とする室温制御システム。   Two or more windows, an outside air temperature sensor, an indoor temperature sensor, an indoor humidity sensor, and a control means are provided, and the control means is configured to open the window when the room temperature is equal to or higher than the comfortable lower limit temperature and the outside air temperature is equal to or higher than the window closing temperature and lower than the room temperature. When the room humidity or the room enthalpy is higher than the specified value, the window should be closed even when the room temperature is above the lower comfortable temperature and the outside air temperature is above the window closing temperature and below the room temperature. A featured room temperature control system. 2つ以上の窓と外気温度センサと室内温度センサと雨センサと制御手段とを備え、制御手段は、室温が快適下限温度以上で且つ外気温が窓閉温度以上で室温より低いときに窓を開けるものであり、雨センサが雨を検知したときは、窓を閉めるとともに、雨が止んでから所定の期間、窓開け温度を下げることを特徴とする室温制御システム。   And two or more windows, an outside air temperature sensor, an indoor temperature sensor, a rain sensor, and a control means. The control means opens the window when the room temperature is above the comfortable lower limit temperature and the outside air temperature is above the window closing temperature and below the room temperature. A room temperature control system that opens and closes the window when the rain sensor detects rain, and lowers the window opening temperature for a predetermined period after the rain stops. エアコンをさらに備え、制御手段は、窓を開けたときにエアコンをOFFにし、室温が所定温度以上で窓が閉のときにエアコンをONにすることを特徴とする請求項1,2,3又は4記載の室温制御システム。   An air conditioner is further provided, and the control means turns off the air conditioner when the window is opened, and turns on the air conditioner when the room temperature is equal to or higher than a predetermined temperature and the window is closed. 4. The room temperature control system according to 4.
JP2016032350A 2016-02-23 2016-02-23 Room temperature control system Active JP6673718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032350A JP6673718B2 (en) 2016-02-23 2016-02-23 Room temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032350A JP6673718B2 (en) 2016-02-23 2016-02-23 Room temperature control system

Publications (2)

Publication Number Publication Date
JP2017150711A true JP2017150711A (en) 2017-08-31
JP6673718B2 JP6673718B2 (en) 2020-03-25

Family

ID=59741615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032350A Active JP6673718B2 (en) 2016-02-23 2016-02-23 Room temperature control system

Country Status (1)

Country Link
JP (1) JP6673718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257105A1 (en) * 2018-08-30 2021-08-19 University Of Virginia Patent Foundation Methods, systems, and computer readable media for defining risk of adverse health outcomes based on non-intrusive energy usage monitoring
CN115031314A (en) * 2022-06-01 2022-09-09 深圳市瑞尔时代科技有限公司 Energy-saving control system for unattended machine room

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287499A (en) * 1998-03-31 1999-10-19 Aiwa Co Ltd Air conditioner
JP2000121130A (en) * 1998-10-15 2000-04-28 Fujita Corp Outer air cooling system
JP2006162151A (en) * 2004-12-07 2006-06-22 Osaka Gas Co Ltd Air-conditioning facility
JP2006183936A (en) * 2004-12-27 2006-07-13 Sekisui Chem Co Ltd Indoor environment control system
JP2012002478A (en) * 2010-06-21 2012-01-05 Shimizu Corp Habitat control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287499A (en) * 1998-03-31 1999-10-19 Aiwa Co Ltd Air conditioner
JP2000121130A (en) * 1998-10-15 2000-04-28 Fujita Corp Outer air cooling system
JP2006162151A (en) * 2004-12-07 2006-06-22 Osaka Gas Co Ltd Air-conditioning facility
JP2006183936A (en) * 2004-12-27 2006-07-13 Sekisui Chem Co Ltd Indoor environment control system
JP2012002478A (en) * 2010-06-21 2012-01-05 Shimizu Corp Habitat control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257105A1 (en) * 2018-08-30 2021-08-19 University Of Virginia Patent Foundation Methods, systems, and computer readable media for defining risk of adverse health outcomes based on non-intrusive energy usage monitoring
CN115031314A (en) * 2022-06-01 2022-09-09 深圳市瑞尔时代科技有限公司 Energy-saving control system for unattended machine room
CN115031314B (en) * 2022-06-01 2023-08-04 深圳市瑞尔时代科技有限公司 Energy-saving control system for unattended machine room

Also Published As

Publication number Publication date
JP6673718B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
US9696735B2 (en) Context adaptive cool-to-dry feature for HVAC controller
US10072864B2 (en) Control apparatus and program
JP5967918B2 (en) Living environment management system
US20170205105A1 (en) Integrated thermal comfort control system with shading control
JP2007120861A (en) Ventilation/temperature conditioning control device and method
JP2006183936A (en) Indoor environment control system
JP6298323B2 (en) Temperature environment control system and apparatus
JPWO2018190334A1 (en) Air conditioning apparatus, control apparatus, air conditioning method and program
JP6845754B2 (en) Building air conditioning system
JP6673718B2 (en) Room temperature control system
US20130025840A1 (en) Auxiliary controller for an hvac system and method of operation
JP6410435B2 (en) Window opening and closing system
JP2013221725A (en) Temperature regulating system for building
JP6386336B2 (en) Air conditioning system and building
WO2018179350A1 (en) Control apparatus, air conditioning system, air conditioning control method, and program
WO2017170491A1 (en) Control device, air conditioning system, air conditioning method, and program
KR101560634B1 (en) Integrated control method for CO2 concentration and duty operation of a building HVAC system
US20150197975A1 (en) Heat energy management in buildings
WO2017029722A1 (en) Controller, appliance control method, and program
JP6415876B2 (en) Room temperature control system
JP6309294B2 (en) Room temperature control system
JP6134289B2 (en) Air conditioning control system, air conditioning system and building
JP2002277020A (en) Ventilating system and method for ventilating
JP5504372B1 (en) Air conditioning system control device, air conditioning system and building
Foldbjerg et al. Thermal comfort in two European active houses: analysis of the effects of solar shading and ventilative cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250