JP2017148904A - Wafer manufacturing method - Google Patents

Wafer manufacturing method Download PDF

Info

Publication number
JP2017148904A
JP2017148904A JP2016034064A JP2016034064A JP2017148904A JP 2017148904 A JP2017148904 A JP 2017148904A JP 2016034064 A JP2016034064 A JP 2016034064A JP 2016034064 A JP2016034064 A JP 2016034064A JP 2017148904 A JP2017148904 A JP 2017148904A
Authority
JP
Japan
Prior art keywords
wire
wafer
wire row
manufacturing
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016034064A
Other languages
Japanese (ja)
Other versions
JP6512132B2 (en
Inventor
良二 進藤
Ryoji Shindo
良二 進藤
公康 二村
Kimiyasu Futamura
公康 二村
正樹 福田
Masaki Fukuda
正樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016034064A priority Critical patent/JP6512132B2/en
Priority to CN201710053952.3A priority patent/CN107116710B/en
Publication of JP2017148904A publication Critical patent/JP2017148904A/en
Application granted granted Critical
Publication of JP6512132B2 publication Critical patent/JP6512132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer manufacturing method which can manufacture a high-quality wafer.SOLUTION: The wafer manufacturing method comprises: a cutting step for cutting a single crystal ingot by lowering holding means for holding the single crystal ingot relatively to a running wire row while supplying slurry to the wire row; and a pulling-out step for pulling out the single crystal ingot from the wire row by raising the holding means relatively to the wire row after the ingot is cut. In the pulling-out step, the holding means is raised relatively to the row at speed of 100 mm/min or more.SELECTED DRAWING: Figure 3

Description

本発明は、ウェーハの製造方法に関する。   The present invention relates to a method for manufacturing a wafer.

従来、ワイヤソーを用いたウェーハの製造方法が知られている(例えば、特許文献1参照)。
特許文献1の方法では、走行中のワイヤ列にスラリーを供給しつつ、単結晶インゴットを保持する保持手段を下降させることで単結晶インゴットを切断し、その後、ワイヤ列を2m/min以下の速度で走行させつつ、保持手段を5〜100mm/minの速度で上昇させることで、切断後の単結晶インゴット(以下、「切断後インゴット」と言う)をワイヤ列から引き抜いている。
Conventionally, a method for manufacturing a wafer using a wire saw is known (for example, see Patent Document 1).
In the method of Patent Document 1, the single crystal ingot is cut by lowering the holding means for holding the single crystal ingot while supplying slurry to the running wire row, and then the wire row is moved at a speed of 2 m / min or less. The single crystal ingot after cutting (hereinafter, referred to as “ingot after cutting”) is pulled out from the wire row by moving the holding means at a speed of 5 to 100 mm / min while traveling at a speed of 5 mm / min.

特開2009−142912号公報JP 2009-142912 A

しかしながら、特許文献1の方法では、ウェーハ表面が傷付いてしまうおそれがある。   However, in the method of Patent Document 1, the wafer surface may be damaged.

本発明の目的は、高品質なウェーハを製造可能なウェーハの製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the wafer which can manufacture a high quality wafer.

本発明者は、鋭意研究を重ねた結果、上記課題について以下の知見を得た。
保持手段を下降させながら単結晶インゴットを切断する場合、切断後インゴットにおけるワイヤ列が通過した領域(ワイヤ列より下側の領域)に、スラリーが入り込む。このスラリーは、基本的に重力により下方へ移動するが、表面張力によりウェーハ間で滞留し、時間の経過に伴い一部がウェーハに固着する。
切断工程が終了すると、保持手段を上昇させながら切断後インゴットをワイヤ列から引き抜く。この際、ウェーハ間で固着したスラリー(砥粒)がワイヤにより削り落とされ、この削り落とされた砥粒は、図1に示すように、ワイヤ列81が矢印Eの方向に走行する場合、ウェーハW間の左下の領域Rに密集する。引き抜きが進みワイヤ8が領域Rを走行する際、領域Rに密集した砥粒をワイヤ8がウェーハWに押圧し、ウェーハW表面を傷付けてしまうと推測した。
As a result of intensive studies, the present inventor has obtained the following knowledge regarding the above problems.
When the single crystal ingot is cut while lowering the holding means, the slurry enters a region (region below the wire row) through which the wire row passes in the ingot after cutting. This slurry basically moves downward due to gravity, but stays between wafers due to surface tension, and part of the slurry adheres to the wafer as time passes.
When the cutting step is completed, the ingot is pulled out from the wire row after cutting while raising the holding means. At this time, slurry (abrasive grains) fixed between the wafers is scraped off by the wire, and the scraped abrasive grains are transferred to the wafer when the wire array 81 travels in the direction of arrow E as shown in FIG. It is dense in the lower left region R between W. As the drawing progresses and the wire 8 travels in the region R, it is estimated that the wire 8 presses the abrasive grains densely in the region R against the wafer W and damages the surface of the wafer W.

ウェーハWの傷付きを抑制するためには、砥粒に付与されるウェーハW表面への押圧力を低減する必要がある。この押圧力が付与される原因は、引き抜きの際に、走行中のワイヤ8がウェーハW表面に直交する方向に振動すること、つまりワイヤ8がウェーハ間の砥粒に接触して蛇行することであると考えられる。
そこで、検討を重ねた結果、切断後インゴットの引き抜き速度(保持手段の上昇速度)を速め、ワイヤ8が砥粒に付与する引き抜き方向と反対方向、つまりウェーハWの面方向に沿う下方向への力を大きくして砥粒を除去することで、ウェーハW間に密集した砥粒との接触によるワイヤ8の蛇行を抑制し、砥粒に付与されるウェーハW表面への押圧力を低減できることを知見した。
本発明は、このような知見に基づいて、完成されたものである。
In order to suppress the damage of the wafer W, it is necessary to reduce the pressing force applied to the surface of the wafer W to the abrasive grains. The reason why this pressing force is applied is that the wire 8 that is running vibrates in a direction perpendicular to the surface of the wafer W during drawing, that is, the wire 8 meanders in contact with the abrasive grains between the wafers. It is believed that there is.
Therefore, as a result of repeated investigations, the drawing speed of the ingot after cutting (the raising speed of the holding means) is increased, and the wire 8 is directed in the direction opposite to the drawing direction applied to the abrasive grains, that is, in the downward direction along the surface direction of the wafer W. By removing the abrasive grains by increasing the force, the meandering of the wire 8 due to contact with the abrasive grains densely packed between the wafers W can be suppressed, and the pressing force applied to the surface of the wafer W applied to the abrasive grains can be reduced. I found out.
The present invention has been completed based on such findings.

本発明のウェーハの製造方法は、ワイヤソーを用いた単結晶インゴットの切断によりウェーハを製造するウェーハの製造方法であって、走行中のワイヤ列にスラリーを供給しつつ、前記単結晶インゴットを保持する保持手段を前記ワイヤ列に対して相対的に下降させることで、前記単結晶インゴットを切断する切断工程と、前記保持手段を前記ワイヤ列に対して相対的に上昇させることで、切断後の単結晶インゴットを前記ワイヤ列から引き抜く引き抜き工程とを備え、前記引き抜き工程は、100mm/min以上の速度で前記保持手段を相対的に上昇させることを特徴とする。   The wafer manufacturing method of the present invention is a wafer manufacturing method for manufacturing a wafer by cutting a single crystal ingot using a wire saw, and holds the single crystal ingot while supplying slurry to a running wire array. A cutting step for cutting the single crystal ingot by lowering the holding means relative to the wire row, and a single step after cutting by raising the holding means relative to the wire row. A drawing step of drawing the crystal ingot from the wire row, wherein the drawing step relatively raises the holding means at a speed of 100 mm / min or more.

本発明によれば、保持手段を100mm/min以上という速い速度で相対的に上昇させることで、ウェーハ間で固着したスラリーの砥粒にワイヤが付与する下方向への力を大きくし、砥粒を除去できる。したがって、ウェーハ間に密集した砥粒との接触によるワイヤの蛇行を抑制することで、砥粒に付与されるウェーハ表面への押圧力を低減可能となり、表面の傷付きが抑制された高品質なウェーハを製造できる。   According to the present invention, the holding means is relatively raised at a high speed of 100 mm / min or more, thereby increasing the downward force applied by the wire to the abrasive grains of the slurry fixed between the wafers. Can be removed. Therefore, by suppressing the meandering of the wire due to contact with the abrasive grains densely packed between the wafers, it becomes possible to reduce the pressing force applied to the wafer surface to the abrasive grains, and high quality with suppressed surface scratches. Wafer can be manufactured.

本発明のウェーハの製造方法において、前記引き抜き工程は、前記ワイヤ列を一つの方向のみに走行させることが好ましい。   In the wafer manufacturing method of the present invention, it is preferable that the drawing step causes the wire row to travel in only one direction.

引き抜き工程時にワイヤ列を往復走行させる場合、走行方向を一方向から他方向へ切り替える際にワイヤ列が一時的に停止する。また、ワイヤによるウェーハ表面への押圧力は、走行中と停止中とで異なる。このため、ワイヤ列を往復走行させると、走行方向の切り替え時にウェーハ表面への押圧力が変化してしまい、ウェーハ表面の平坦度が低くなるおそれがある。また、ワイヤ列の一時停止中も保持手段が相対的に上昇し続けるため、ウェーハとワイヤとの間隔が小さい場合、ワイヤが上方向に大きく撓んでしまい、断線するおそれがある。
本発明によれば、引き抜き工程時にワイヤ列を一つの方向のみに走行させ、一時停止させないため、ウェーハ表面への押圧力の変化を抑制でき、ウェーハ表面の平坦度が低くなることを抑制できる。また、ワイヤの上方向への撓みに伴う断線も抑制できる。
When the wire row is reciprocated during the drawing process, the wire row temporarily stops when the traveling direction is switched from one direction to the other direction. Further, the pressing force applied to the wafer surface by the wire is different between running and stopping. For this reason, when the wire row is reciprocated, the pressing force to the wafer surface changes when the traveling direction is switched, and the flatness of the wafer surface may be lowered. Further, since the holding means continues to rise relatively during the temporary stop of the wire row, when the distance between the wafer and the wire is small, the wire may be greatly bent upward and may be disconnected.
According to the present invention, the wire row is allowed to travel only in one direction during the drawing process and is not temporarily stopped. Therefore, it is possible to suppress a change in the pressing force on the wafer surface and to suppress a decrease in flatness of the wafer surface. Moreover, the disconnection accompanying the upward bending of a wire can also be suppressed.

本発明のウェーハの製造方法において、前記引き抜き工程は、前記ワイヤ列における前記切断工程で使用した部分のみを前記ウェーハ間で走行させることが好ましい。   In the method for manufacturing a wafer of the present invention, it is preferable that in the drawing step, only a portion used in the cutting step in the wire row is caused to travel between the wafers.

本発明によれば、切断に使用されて未使用時より細くなったワイヤをウェーハ間で走行させることができ、未使用のワイヤをウェーハ間で走行させる場合と比べて、ワイヤとウェーハとの間隔を拡げることができる。したがって、ウェーハ表面への押圧力をより低減でき、引き抜き工程時にウェーハ表面が削られることを抑制できる。   According to the present invention, a wire that has been used for cutting and has become thinner than when not in use can be moved between wafers, and the distance between the wire and the wafer can be compared to when an unused wire is moved between wafers. Can be expanded. Therefore, the pressing force on the wafer surface can be further reduced, and the wafer surface can be prevented from being scraped during the drawing process.

本発明のウェーハの製造方法において、前記引き抜き工程は、10N以上40N以下の張力で前記ワイヤ列を走行させることが好ましい。   In the method for manufacturing a wafer according to the present invention, it is preferable that in the drawing step, the wire row is caused to travel with a tension of 10N or more and 40N or less.

本発明によれば、引き抜き工程時のワイヤ列の張力を10N以上にするため、ワイヤが上方向に大きく撓んでしまい、断線することを抑制できる。また、ワイヤ列の張力を40N以下にするため、破断限界を超えてワイヤが断線することを抑制できる。   According to the present invention, since the tension of the wire row during the drawing process is set to 10 N or more, it is possible to suppress the wire from being greatly bent upward and being disconnected. Moreover, since the tension | tensile_strength of a wire row | line is 40 N or less, it can suppress that a wire breaks exceeding a fracture | rupture limit.

本発明のウェーハの製造方法において、前記引き抜き工程は、前記ワイヤ列にスラリーを供給せずに行うことが好ましい。   In the wafer manufacturing method of the present invention, it is preferable that the drawing step is performed without supplying slurry to the wire row.

本発明によれば、引き抜き工程時にウェーハ間に滞留するスラリーの増加を抑制でき、ウェーハ表面が削られることを抑制できる。   According to the present invention, it is possible to suppress an increase in slurry remaining between wafers during the drawing process, and it is possible to suppress the wafer surface from being scraped.

本発明のウェーハの製造方法において、前記引き抜き工程は、前記ワイヤ列に砥粒を含まないオイルを供給しつつ行うことが好ましい。   In the wafer manufacturing method of the present invention, it is preferable that the drawing step is performed while supplying oil that does not contain abrasive grains to the wire row.

本発明によれば、引き抜き工程時にワイヤとウェーハとの間の潤滑性を高めることができ、ウェーハ表面が削られることを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, the lubricity between a wire and a wafer can be improved at the time of a drawing process, and it can suppress that the wafer surface is scraped.

従来の課題の説明図。Explanatory drawing of the conventional subject. 本発明の一実施形態に係るワイヤソーを示す模式図。The schematic diagram which shows the wire saw which concerns on one Embodiment of this invention. 本発明の実施例におけるウェーハの傷付き性評価結果を示すマップ図。The map figure which shows the damage property evaluation result of the wafer in the Example of this invention.

本発明の一実施形態を、図面を参照して説明する。
[ワイヤソーの構成]
まず、ワイヤソーの構成について説明する。
図2に示すように、ワイヤソー1は、同一水平面上に2個、これら2個の中間の下方に1個配置された合計3個のメインローラ2を備えている。これら3個のメインローラ2の周りにワイヤ8が螺旋状に巻き付けられることで、図2の紙面直交方向に並ぶワイヤ列81が形成されている。
ワイヤ8は、一般的にピアノ線と呼ばれる高張力メッキ鋼線により構成されている。ワイヤ8の両端側は、それぞれ複数ずつ(図2では、1個ずつ図示)のガイドローラ31およびテンションローラ32を介して、ワイヤ8を送り出したり巻き取ったりする2個のボビン41に固定されている。また、テンションローラ32とボビン41との間には、それぞれトラバーサ42が設けられている。トラバーサ42は、ワイヤ8の送り位置、巻取り位置を調整する機能を有している。
さらに、上側の2個のメインローラ2(以下、上側メインローラ21と称す)の上方には、2個の上側メインローラ21の中間位置にスラリーGを供給するノズル5がそれぞれ設けられている。
また、ノズル5の上方には、シリコン、SiC、GaAs、サファイア等の単結晶インゴット(以下、単に「インゴット」と言う)Mを保持する保持手段6と、この保持手段6を昇降させる昇降手段7とが設けられている。
An embodiment of the present invention will be described with reference to the drawings.
[Configuration of wire saw]
First, the configuration of the wire saw will be described.
As shown in FIG. 2, the wire saw 1 includes a total of three main rollers 2 arranged on the same horizontal plane, two on the same horizontal plane and one below the middle of the two. The wire 8 is spirally wound around the three main rollers 2 to form a wire row 81 arranged in the direction perpendicular to the paper surface of FIG.
The wire 8 is made of a high-tensile plated steel wire generally called a piano wire. Both ends of the wire 8 are fixed to two bobbins 41 for feeding and winding the wire 8 through a plurality of guide rollers 31 and tension rollers 32 (one in FIG. 2). Yes. A traverser 42 is provided between the tension roller 32 and the bobbin 41. The traverser 42 has a function of adjusting the feeding position and winding position of the wire 8.
Further, nozzles 5 for supplying the slurry G to an intermediate position between the two upper main rollers 21 are provided above the two upper main rollers 2 (hereinafter referred to as the upper main roller 21).
Above the nozzle 5, a holding unit 6 that holds a single crystal ingot (hereinafter simply referred to as “ingot”) M such as silicon, SiC, GaAs, or sapphire, and an elevating unit 7 that moves the holding unit 6 up and down. And are provided.

[ウェーハの製造方法]
次に、ワイヤソー1を用いたインゴットMの切断によりウェーハを製造する方法について説明する。
ウェーハの製造方法は、ワイヤ列81でインゴットMを切断する切断工程と、切断後のインゴットMをワイヤ列81から引き抜く引き抜き工程とを備えている。
[Wafer manufacturing method]
Next, a method for manufacturing a wafer by cutting the ingot M using the wire saw 1 will be described.
The wafer manufacturing method includes a cutting step of cutting the ingot M by the wire row 81 and a drawing step of drawing the ingot M after cutting from the wire row 81.

切断工程では、ワイヤソー1は、メインローラ2を回転させることで、ワイヤ列81を一方向E1に走行させるとともに、ワイヤ列81の張力が所定値となるように、テンションローラ32の上下方向の位置を調整し、2個の上側メインローラ21間にスラリーGを供給する。
その後、ワイヤソー1は、ワイヤ列81の走行速度、走行方向、張力、スラリーGの供給状態を維持しながら保持手段6を下降させ、走行中のワイヤ列81にインゴットMを押し当てることで切断し、複数のウェーハを製造する。
切断工程が終了した時点では、切断後インゴットMは、図2中二点鎖線で示すように、上側メインローラ21間に架け渡されたワイヤ列81の下方に位置する。また、ワイヤ8は、インゴットMの切断時に摩耗し、切断前よりも細くなる。
In the cutting process, the wire saw 1 rotates the main roller 2 to cause the wire row 81 to travel in one direction E1, and the tension roller 32 has a vertical position so that the tension of the wire row 81 becomes a predetermined value. And the slurry G is supplied between the two upper main rollers 21.
Thereafter, the wire saw 1 is cut by lowering the holding means 6 while maintaining the traveling speed, traveling direction, tension, and supply state of the slurry G of the wire row 81 and pressing the ingot M against the traveling wire row 81. Manufacturing multiple wafers.
At the time when the cutting process is completed, the post-cut ingot M is positioned below the wire row 81 spanned between the upper main rollers 21 as indicated by a two-dot chain line in FIG. Further, the wire 8 is worn when the ingot M is cut and becomes thinner than before the cutting.

引き抜き工程では、ワイヤソー1は、ワイヤ列81を他方向E2に走行させるとともに、保持手段6を100mm/min以上の速度で上昇させることで、切断後インゴットMをワイヤ列81から引き抜く。
この引き抜き工程において、保持手段6の上昇速度は、ワイヤ8に作用する負荷を抑制するために、300mm/min以下とすることが好ましい。
In the drawing process, the wire saw 1 moves the wire row 81 in the other direction E2 and raises the holding means 6 at a speed of 100 mm / min or more, thereby pulling the ingot M from the wire row 81 after cutting.
In this drawing step, the ascending speed of the holding means 6 is preferably set to 300 mm / min or less in order to suppress the load acting on the wire 8.

引き抜き工程において、ワイヤ列81の走行速度は、8m/min以下とすることが好ましく、4m/min以下とすることがより好ましい。ワイヤ列81の走行速度を8m/min以下とすることで、ウェーハ表面の傷付きを確実に抑制でき、ワイヤ列81の走行速度を4m/min以下とすることで、ウェーハ表面の傷付きをより抑制できる。   In the drawing step, the traveling speed of the wire row 81 is preferably 8 m / min or less, and more preferably 4 m / min or less. By setting the traveling speed of the wire row 81 to 8 m / min or less, scratching of the wafer surface can be reliably suppressed, and by setting the traveling speed of the wire row 81 to 4 m / min or less, damage to the wafer surface is further reduced. Can be suppressed.

引き抜き工程において、ワイヤ列81を往復走行させずに、他方向E2のみに走行させることが好ましい。このようにすれば、ワイヤ8の一時停止に伴うウェーハ表面への押圧力の変化を抑制でき、ウェーハ表面の平坦度が低くなることを抑制できる上、ワイヤ8が上方向に大きく撓んでしまい、断線することも抑制できる。さらに、未使用時より細くなったワイヤ8をウェーハ間で走行させることができる。その結果、ウェーハ表面への押圧力をより低減でき、ウェーハ表面が削られることを抑制できる。   In the drawing process, it is preferable to run the wire row 81 only in the other direction E2 without reciprocating. If it does in this way, the change of the pressing force to the wafer surface accompanying the temporary stop of the wire 8 can be suppressed, the flatness of the wafer surface can be suppressed, and the wire 8 is greatly bent upward, Disconnection can also be suppressed. Furthermore, the wire 8 that is thinner than when not in use can be run between the wafers. As a result, the pressing force on the wafer surface can be further reduced, and the wafer surface can be prevented from being scraped.

引き抜き工程において、ワイヤ列81の張力を10N以上40N以下にすることが好ましい。張力が10N未満の場合、保持手段6の上昇とともにワイヤ8が上方向に大きく撓んで断線するおそれがあり、40Nを超える場合、破断限界を超えてワイヤ8が断線するおそれがあるからである。   In the drawing process, it is preferable that the tension of the wire row 81 is 10N or more and 40N or less. This is because if the tension is less than 10N, the wire 8 may be greatly bent upward as the holding means 6 is raised and may be disconnected, and if it exceeds 40N, the wire 8 may be disconnected beyond the breaking limit.

引き抜き工程において、ワイヤ列81にスラリーGを供給しないことが好ましい。このようにすれば、ウェーハ間に滞留するスラリーGの増加を抑制でき、ウェーハ表面が削られることを抑制できる。
なお、ワイヤ列81に砥粒を含まないオイルを供給してもよい。
In the drawing process, it is preferable not to supply the slurry G to the wire row 81. If it does in this way, the increase in the slurry G which retains between wafers can be suppressed, and it can control that the wafer surface is shaved.
Note that oil that does not contain abrasive grains may be supplied to the wire row 81.

以上のような引き抜き工程により、図1に示す領域Rに砥粒が密集していても、保持手段6を100mm/min以上という速い速度で上昇させることで、この砥粒にワイヤ8が付与する下方向への力で砥粒を除去できる。したがって、ウェーハW間の砥粒との接触によるワイヤ8の蛇行を抑制し、砥粒に付与されるウェーハW表面への押圧力を低減できるため、表面の傷付きが抑制された高品質なウェーハWを製造できる。
なお、ウェーハWの製造に際し、インゴットMを固定してワイヤ列81を昇降させてもよいし、インゴットMとワイヤ列81との両方を昇降させてもよい。
Even if the abrasive grains are densely packed in the region R shown in FIG. 1 by the drawing process as described above, the wire 8 is applied to the abrasive grains by raising the holding means 6 at a high speed of 100 mm / min or more. Abrasive grains can be removed with a downward force. Therefore, since the meandering of the wire 8 due to the contact between the wafers W and the abrasive grains can be suppressed and the pressing force applied to the abrasive grains on the surface of the wafer W can be reduced, the high quality wafer with suppressed surface damage. W can be manufactured.
When manufacturing the wafer W, the ingot M may be fixed and the wire row 81 may be raised or lowered, or both the ingot M and the wire row 81 may be raised and lowered.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.

〔比較例1〕
まず、直径300mm、直胴部の長さが200〜400mmのインゴットを準備した。
そして、図1に示すようなワイヤソーに直径が0.14mmのワイヤをセットし、スラリーを供給しながらインゴットの切断工程を行った。
[Comparative Example 1]
First, an ingot having a diameter of 300 mm and a length of the straight body portion of 200 to 400 mm was prepared.
Then, a wire having a diameter of 0.14 mm was set on a wire saw as shown in FIG. 1, and an ingot cutting step was performed while supplying slurry.

切断工程終了後、以下の表1に示す条件で引き抜き工程を行いウェーハを製造した。なお、ワイヤの張力を20Nに設定し、ワイヤ列における切断工程で使用した部分のみをウェーハ間で走行させ(往復させない)、スラリーを供給しなかった。   After the cutting process, a drawing process was performed under the conditions shown in Table 1 below to manufacture a wafer. Note that the tension of the wire was set to 20 N, and only the portion used in the cutting process in the wire row was run between the wafers (not reciprocated), and no slurry was supplied.

Figure 2017148904
Figure 2017148904

〔比較例2,3、参考例1、実施例1,2〕
引き抜き工程におけるワイヤ列の走行速度、保持手段の上昇速度を表1に示す条件にしたこと以外は、比較例1と同じ条件でウェーハを製造した。
[Comparative Examples 2 and 3, Reference Example 1, Examples 1 and 2]
A wafer was manufactured under the same conditions as in Comparative Example 1 except that the wire row traveling speed and the holding means lifting speed in the drawing process were set to the conditions shown in Table 1.

[評価]
〔傷付き評価〕
それぞれ1枚ずつの比較例1〜3、参考例1、実施例1,2のウェーハをX線並びに目視で確認し、傷付きレベルを評価した。その結果を表1に示す。なお、表1中、「A」は傷がないレベル、「B」は傷がいくつかあるものの許容できるレベル、「C」は傷が多数あり許容できないレベルを表す。
また、図3に示すように、表1の傷付き評価結果とワイヤ列の走行速度と保持手段の上昇速度との関係を表すマップ図を作成した。
[Evaluation]
[Scratch evaluation]
Each of the wafers of Comparative Examples 1 to 3, Reference Example 1, and Examples 1 and 2 was confirmed by X-ray and visual observation, and the scratch level was evaluated. The results are shown in Table 1. In Table 1, “A” represents a level at which there is no scratch, “B” represents an acceptable level with some scratches, and “C” represents an unacceptable level with many scratches.
Moreover, as shown in FIG. 3, the map figure showing the relationship between the damage evaluation result of Table 1, the traveling speed of a wire row | line | column, and the raising speed of a holding means was created.

表1および図3に示すように、引き抜き工程時に100mm/min以上の速度で保持手段を上昇させることで、ウェーハ表面の傷付きを抑制できることが確認できた。
また、ワイヤ列の走行速度を8m/min以下とすることで傷付きが許容できるレベル(AまたはB)になり、4m/min以下とすることで傷付きがないレベル(A)になることが確認できた。
また、ウェーハ表面の傷付きは、特に図1の領域Rに対応する位置に発生していることが確認できた。
As shown in Table 1 and FIG. 3, it was confirmed that the scratching of the wafer surface can be suppressed by raising the holding means at a speed of 100 mm / min or more during the drawing process.
Further, when the traveling speed of the wire row is set to 8 m / min or less, it becomes a level (A or B) where the damage can be allowed, and when it is set to 4 m / min or less, it becomes a level (A) where there is no damage. It could be confirmed.
Further, it was confirmed that the wafer surface was damaged particularly at a position corresponding to the region R in FIG.

なお、保持手段の上昇速度をVh(mm/min)、ワイヤ列の走行速度をVw(mm/min)とした場合、以下の式(1)を満たす場合、レベルAになる。
Vh≧0.03×Vw−20 … (1)
ただし、Vh≦10の場合を除く
In addition, when the raising speed of the holding means is Vh (mm / min) and the traveling speed of the wire row is Vw (mm / min), the level A is satisfied when the following expression (1) is satisfied.
Vh ≧ 0.03 × Vw−20 (1)
However, except when Vh ≦ 10

また、以下の式(2)を満たす場合、レベルBになる。
0.03×Vw−20>Vh≧0.015×Vw−20 … (2)
ただし、Vh≦10の場合を除く
Further, the level B is satisfied when the following expression (2) is satisfied.
0.03 × Vw-20> Vh ≧ 0.015 × Vw-20 (2)
However, except when Vh ≦ 10

さらに、以下の式(3)を満たす場合、レベルCになる。
Vh<0.015×Vw−20 … (3)
Further, when the following expression (3) is satisfied, the level C is obtained.
Vh <0.015 × Vw-20 (3)

〔LPD評価〕
それぞれ30〜45枚ずつの比較例1〜3、参考例1、実施例1,2のウェーハに対し、Surfscan SP1(KLA−Tencor社製)のObliqueモードで測定を行い、LPDマップを作成した。そして、エリアカウントアベレージと、エリアカウント0個率とを評価した。
エリアカウントアベレージは、0.2μm以上の大粒径LPDをエリアとして個数をカウントし、エリアカウント総数/投入枚数により算出した。
エリアカウント0個率は、0.2μm以上の大粒径LPDの無いウェーハ枚数をカウントし、そのウェーハ枚数/投入枚数により算出した。
それらの結果を表1に示す。
[LPD evaluation]
Each of 30 to 45 wafers of Comparative Examples 1 to 3, Reference Example 1, and Examples 1 and 2 was measured in an Oblique mode of Surfscan SP1 (manufactured by KLA-Tencor) to create an LPD map. Then, the area count average and the area count zero rate were evaluated.
The area count average was calculated by counting the number of areas having a large particle size LPD of 0.2 μm or more as an area and calculating the total area count / the number of input sheets.
The area count 0 rate was calculated by counting the number of wafers having no large particle size LPD of 0.2 μm or more and calculating the number of wafers / the number of inserted wafers.
The results are shown in Table 1.

表1に示すように、比較例3、参考例1、実施例1,2では、エリアカウントアベレージが0.1と小さく、エリアカウント0個率が91%以上と高く、LPDが極めて少ないことが確認できた。一方、比較例1,2では、エリアカウントアベレージが0.3以上と大きく、エリアカウント0個率がそれぞれ79%以下と低く、LPDが多く発生していることが確認できた。
以上のことから、引き抜き工程時に100mm/min以上の速度で保持手段を上昇させることで、ウェーハ表面の傷付きを抑制できる上、LPDの発生も抑制できることが確認できた。
As shown in Table 1, in Comparative Example 3, Reference Example 1, and Examples 1 and 2, the area count average is as small as 0.1, the area count 0 rate is as high as 91% or more, and the LPD is extremely small. It could be confirmed. On the other hand, in Comparative Examples 1 and 2, the area count average was as large as 0.3 or more, the area count 0 rate was as low as 79% or less, and it was confirmed that many LPDs were generated.
From the above, it was confirmed that by raising the holding means at a speed of 100 mm / min or more during the drawing process, it is possible to suppress the scratching of the wafer surface and to suppress the generation of LPD.

1…ワイヤソー、6…保持手段、81…ワイヤ列、G…スラリー、M…単結晶インゴット、W…ウェーハ。   DESCRIPTION OF SYMBOLS 1 ... Wire saw, 6 ... Holding means, 81 ... Wire row | line | column, G ... Slurry, M ... Single-crystal ingot, W ... Wafer.

Claims (6)

ワイヤソーを用いた単結晶インゴットの切断によりウェーハを製造するウェーハの製造方法であって、
走行中のワイヤ列にスラリーを供給しつつ、前記単結晶インゴットを保持する保持手段を前記ワイヤ列に対して相対的に下降させることで、前記単結晶インゴットを切断する切断工程と、
前記保持手段を前記ワイヤ列に対して相対的に上昇させることで、切断後の単結晶インゴットを前記ワイヤ列から引き抜く引き抜き工程とを備え、
前記引き抜き工程は、100mm/min以上の速度で前記保持手段を相対的に上昇させることを特徴とするウェーハの製造方法。
A wafer manufacturing method for manufacturing a wafer by cutting a single crystal ingot using a wire saw,
A cutting step of cutting the single crystal ingot by lowering a holding unit that holds the single crystal ingot relative to the wire row while supplying slurry to the running wire row,
A pulling step of pulling out the single crystal ingot after cutting from the wire row by raising the holding means relative to the wire row,
In the drawing process, the holding means is relatively raised at a speed of 100 mm / min or more.
請求項1に記載のウェーハの製造方法において、
前記引き抜き工程は、前記ワイヤ列を一つの方向のみに走行させることを特徴とするウェーハの製造方法。
In the manufacturing method of the wafer according to claim 1,
In the drawing process, the wire row is caused to travel in only one direction.
請求項2に記載のウェーハの製造方法において、
前記引き抜き工程は、前記ワイヤ列における前記切断工程で使用した部分のみを前記ウェーハ間で走行させることを特徴とするウェーハの製造方法。
In the manufacturing method of the wafer according to claim 2,
In the drawing process, only the portion used in the cutting process in the wire row is caused to travel between the wafers.
請求項1から請求項3のいずれか一項に記載のウェーハの製造方法において、
前記引き抜き工程は、10N以上40N以下の張力で前記ワイヤ列を走行させることを特徴とするウェーハの製造方法。
In the manufacturing method of the wafer according to any one of claims 1 to 3,
The method of manufacturing a wafer, wherein the drawing step causes the wire row to travel with a tension of 10N to 40N.
請求項1から請求項4のいずれか一項に記載のウェーハの製造方法において、
前記引き抜き工程は、前記ワイヤ列にスラリーを供給せずに行うことを特徴とするウェーハの製造方法。
In the manufacturing method of the wafer according to any one of claims 1 to 4,
The method for producing a wafer, wherein the drawing step is performed without supplying slurry to the wire row.
請求項1から請求項4のいずれか一項に記載のウェーハの製造方法において、
前記引き抜き工程は、前記ワイヤ列に砥粒を含まないオイルを供給しつつ行うことを特徴とするウェーハの製造方法。
In the manufacturing method of the wafer according to any one of claims 1 to 4,
The method of manufacturing a wafer, wherein the drawing step is performed while supplying oil not containing abrasive grains to the wire row.
JP2016034064A 2016-02-25 2016-02-25 Wafer manufacturing method Active JP6512132B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016034064A JP6512132B2 (en) 2016-02-25 2016-02-25 Wafer manufacturing method
CN201710053952.3A CN107116710B (en) 2016-02-25 2017-01-24 The manufacturing method of chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034064A JP6512132B2 (en) 2016-02-25 2016-02-25 Wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2017148904A true JP2017148904A (en) 2017-08-31
JP6512132B2 JP6512132B2 (en) 2019-05-15

Family

ID=59717203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034064A Active JP6512132B2 (en) 2016-02-25 2016-02-25 Wafer manufacturing method

Country Status (2)

Country Link
JP (1) JP6512132B2 (en)
CN (1) CN107116710B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230423A1 (en) * 2019-05-16 2020-11-19 信越半導体株式会社 Workpiece cutting method and wire saw

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841217B2 (en) * 2017-12-19 2021-03-10 株式会社Sumco Ingot block manufacturing method, semiconductor wafer manufacturing method, and ingot block manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271159A (en) * 1988-04-22 1989-10-30 Osaka Titanium Co Ltd Wire saw machine
JP2003275950A (en) * 2002-03-22 2003-09-30 Toyo Advanced Technologies Co Ltd Method of extracting work from wire saw
JP2009142912A (en) * 2007-12-11 2009-07-02 Shin Etsu Handotai Co Ltd Method for cutting workpiece by wire saw, and wire saw

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126488A1 (en) * 2008-11-25 2010-05-27 Abhaya Kumar Bakshi Method and apparatus for cutting wafers by wire sawing
JP5370006B2 (en) * 2009-08-31 2013-12-18 株式会社Sumco Wire saw equipment
JP2013099795A (en) * 2011-11-07 2013-05-23 Jfe Steel Corp Semiconductor ingot cutting method, fixed abrasive grain wire saw, and wafer
DE102012201938B4 (en) * 2012-02-09 2015-03-05 Siltronic Ag A method of simultaneously separating a plurality of slices from a workpiece
JP6318637B2 (en) * 2014-01-17 2018-05-09 日立金属株式会社 Cutting method of high hardness material with multi-wire saw

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271159A (en) * 1988-04-22 1989-10-30 Osaka Titanium Co Ltd Wire saw machine
JP2003275950A (en) * 2002-03-22 2003-09-30 Toyo Advanced Technologies Co Ltd Method of extracting work from wire saw
JP2009142912A (en) * 2007-12-11 2009-07-02 Shin Etsu Handotai Co Ltd Method for cutting workpiece by wire saw, and wire saw

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230423A1 (en) * 2019-05-16 2020-11-19 信越半導体株式会社 Workpiece cutting method and wire saw
JP2020185649A (en) * 2019-05-16 2020-11-19 信越半導体株式会社 Workpiece cutting method and wire saw
CN113710397A (en) * 2019-05-16 2021-11-26 信越半导体株式会社 Method for cutting workpiece and wire saw
JP7020454B2 (en) 2019-05-16 2022-02-16 信越半導体株式会社 Work cutting method and wire saw

Also Published As

Publication number Publication date
CN107116710B (en) 2019-08-13
JP6512132B2 (en) 2019-05-15
CN107116710A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
JP5427822B2 (en) How to cut a workpiece with a wire saw
KR101954431B1 (en) Method for resuming wire saw operation
KR20100098623A (en) Method for cutting work by wire saw and wire saw
JP2006148068A (en) Ingot slicing method and apparatus
WO2019142494A1 (en) Workpiece cutting method and wire saw
JP2017148904A (en) Wafer manufacturing method
JP5639858B2 (en) Ingot cutting method
JP2014003294A (en) Method for simultaneously slicing multiplicity of wafers from cylindrical workpiece
JP5994766B2 (en) Work cutting method
JP6080753B2 (en) How to resume wire saw operation
JP5769681B2 (en) Substrate manufacturing method
TWI615894B (en) Wafer manufacturing method
KR20210113204A (en) Workpiece cutting method and wire saw
JP5768650B2 (en) Wire saw device and work plate used in the device
JP6277924B2 (en) Ingot cutting method
EP3023184A1 (en) Method and device for cutting workpieces
KR102644660B1 (en) Manufacturing method and wire saw device of wire saw device
JPWO2018203448A1 (en) Work cutting method and joining member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250