JP2017147848A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2017147848A
JP2017147848A JP2016027934A JP2016027934A JP2017147848A JP 2017147848 A JP2017147848 A JP 2017147848A JP 2016027934 A JP2016027934 A JP 2016027934A JP 2016027934 A JP2016027934 A JP 2016027934A JP 2017147848 A JP2017147848 A JP 2017147848A
Authority
JP
Japan
Prior art keywords
power
power supply
voltage
power feeding
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027934A
Other languages
Japanese (ja)
Other versions
JP6677523B2 (en
Inventor
加藤 進一
Shinichi Kato
進一 加藤
壮志 野村
Soshi Nomura
壮志 野村
慎二 瀧川
Shinji Takigawa
慎二 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2016027934A priority Critical patent/JP6677523B2/en
Publication of JP2017147848A publication Critical patent/JP2017147848A/en
Application granted granted Critical
Publication of JP6677523B2 publication Critical patent/JP6677523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device in which a mobile body to be a power supply object is made compact and lightweight, while improving a protection function by providing a voltage detection circuit in a simple configuration in the mobile body.SOLUTION: A non-contact power supply device comprises: multiple power supply coils 31 which are disposed on a stationary part (substrate production line 9); an AC power source 2 which supplies AC power to the multiple power supply coils 31; multiple power reception coils 41 which are disposed on a mobile body 99 and receive AC power in a non-contact manner; multiple rectification circuits 51 by which the AC power received by the multiple power reception coils 41 are converted into DC voltages Vdc respectively and output; a conversion circuit (DC power supply circuit 55) into which the DC voltages Vdc output from the multiple rectification circuits 51 are collected into one DC voltage and input and by which the DC voltage Vdc collected into one is converted into a driving voltage Vact and output to an electric load 6; and a voltage detection circuit 7 by which the DC voltage Vdc collected into one is detected and monitored.SELECTED DRAWING: Figure 1

Description

本発明は、固定部から移動体に非接触で給電する非接触給電装置に関する。   The present invention relates to a non-contact power feeding device that feeds power from a fixed part to a moving body in a non-contact manner.

多数の部品が装着された基板を生産する基板生産機として、はんだ印刷機、電子部品装着機、リフロー機、基板検査機などがある。これらの設備を連結して基板生産ラインを構成することが一般的になっている。さらに、モジュール化された同じ大きさの基板生産機を列設して基板生産ラインを構成する場合も多い。モジュール化された基板生産機を用いることにより、ラインの組み替え時やラインを長大化する増設時の段取り替え作業が容易になり、フレキシブルな基板生産ラインが実現される。   As a board production machine for producing a board on which a large number of parts are mounted, there are a solder printer, an electronic parts mounting machine, a reflow machine, a board inspection machine, and the like. It has become common to configure a substrate production line by connecting these facilities. Furthermore, there are many cases where a substrate production line is configured by arranging modular board production machines of the same size. By using a modularized board production machine, it is easy to change the setup when changing the line or adding a longer line, and a flexible board production line is realized.

近年、基板生産ラインの各基板生産機で使用する機材や部材を、基板生産ラインに沿って移動する移動体に搬送させ、省力化および自動化を推進することが検討されている。さらに、移動体への給電手段として、非接触給電装置が考えられている。なお、非接触給電装置の用途は、基板生産ラインに限定されず、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野にわたっている。この種の非接触給電装置に関する技術例が特許文献1、2に開示されている。   In recent years, it has been studied to promote labor saving and automation by transporting equipment and members used in each board production machine of a board production line to a moving body that moves along the board production line. Furthermore, a non-contact power feeding device is considered as a power feeding means to the moving body. The application of the non-contact power feeding device is not limited to the board production line, but covers a wide range of fields such as an assembly line and a processing line for producing other products, and power feeding during running of an electric vehicle. Patent Documents 1 and 2 disclose technical examples related to this type of non-contact power feeding device.

特許文献1のワイヤレス受電装置は、受電コイルと、受電コイルが受電した交流電力を直流電力に整流する整流部と、直流電力を蓄電器に充電する充電部と、整流部の出力電圧値を検出する電圧検出部と、充電部に並列に接続されるスイッチング素子を含む電力抑制部と、スイッチング素子の動作を制御する制御部と、を備えている。そして、制御部は、出力電圧値が第1の基準電圧値を上回ったときにスイッチング素子をオンに制御する。これによれば、受電装置に過電圧などの異常が生じた場合、過電圧による大電流が充電部とスイッチング素子に分散されて流れることから劣化や破損を防止できる、とされている。   The wireless power receiving apparatus disclosed in Patent Document 1 detects a power receiving coil, a rectifying unit that rectifies AC power received by the power receiving coil into DC power, a charging unit that charges the battery with DC power, and an output voltage value of the rectifying unit. A voltage detection unit; a power suppression unit including a switching element connected in parallel to the charging unit; and a control unit that controls the operation of the switching element. Then, the control unit controls the switching element to turn on when the output voltage value exceeds the first reference voltage value. According to this, when an abnormality such as an overvoltage occurs in the power receiving device, a large current due to the overvoltage is distributed and flows between the charging unit and the switching element, so that deterioration and breakage can be prevented.

特許文献2の直動機構用無接触給電装置は、1次側トランスユニット(給電素子)を移動体の全移動範囲にわたり複数個間欠的に配置し、これらの1次側トランスユニットを高周波インバータにそれぞれスイッチを介して並列接続し、2次側トランスユニット(受電素子)を移動体に取り付けている。実施形態には、連結部品を用いて移動体に2個の2次側トランスユニットを搭載する構成例が開示されている。これによれば、移動体がどの位置にあっても、2個の2次側トランスユニットのうち1個は常に電力供給を受けられることになる、とされている。   In the non-contact power feeding device for a linear motion mechanism disclosed in Patent Document 2, a plurality of primary transformer units (feeding elements) are intermittently arranged over the entire moving range of the moving body, and these primary transformer units are used as high frequency inverters. Each is connected in parallel via a switch, and a secondary transformer unit (power receiving element) is attached to the moving body. The embodiment discloses a configuration example in which two secondary transformer units are mounted on a moving body using a connecting component. According to this, one of the two secondary transformer units can always be supplied with power regardless of the position of the moving body.

特開2015−12655号公報Japanese Patent Laying-Open No. 2015-12655 特開平7−322535号公報JP-A-7-322535

ところで、特許文献1の技術例では、蓄電器の充電状態が高められて充電電流値が小さくなると入力インピーダンスが上昇し、受電コイルの両端にかかる電圧が上昇してしまうおそれがある。このような負荷変動による過電圧のおそれを解消するため、特許文献2に例示されるように複数の受電コイル(2次側トランスユニット)を備えて、非接触給電を安定化する方策が考えられる。これによれば、充電部(充電回路)および蓄電器(バッテリ)を省略して、直接的に電気負荷を駆動することができる。充電部および蓄電器の省略は、受電装置を搭載した移動体の小形軽量化に貢献できて好ましい。   By the way, in the technical example of patent document 1, when the charge condition of a capacitor | condenser is raised and charging current value becomes small, input impedance will rise and there exists a possibility that the voltage concerning the both ends of a receiving coil may rise. In order to eliminate the fear of overvoltage due to such load fluctuations, there can be considered a method of stabilizing the non-contact power feeding by providing a plurality of power receiving coils (secondary transformer units) as exemplified in Patent Document 2. According to this, it is possible to directly drive the electric load by omitting the charging unit (charging circuit) and the battery (battery). Omission of the charging unit and the battery is preferable because it can contribute to the reduction in the size and weight of the moving body on which the power receiving device is mounted.

しかしながら、この方策を採用しても過電圧のおそれは完全には解消されず、複数組の受電コイルおよび整流部に対してそれぞれ電圧検出部を設けることになる。このため、受電装置を搭載した移動体は、大形化しかつ重量が増加して、移動に必要な駆動力が増加する。特に、駆動力を発生する電動式の駆動源を移動体に搭載している構成では、給電電力を増加させるために受電コイルの大形化が必要となり、移動体のさらなる重厚長大化を招いてしまう。   However, even if this measure is adopted, the risk of overvoltage is not completely eliminated, and a voltage detection unit is provided for each of a plurality of sets of power reception coils and rectification units. For this reason, the moving body on which the power receiving device is mounted is increased in size and weight, and the driving force necessary for movement increases. In particular, in a configuration in which an electric drive source that generates a driving force is mounted on a moving body, it is necessary to increase the size of the receiving coil in order to increase the feed power, which leads to further increase in the weight and length of the moving body. End up.

本発明は、上記背景技術の問題点に鑑みてなされたものであり、給電対象となる移動体に簡易な構成の電圧検出回路を備えて保護機能を高めつつ、移動体の小形軽量化を実現した非接触給電装置を提供することを解決すべき課題とする。   The present invention has been made in view of the above-described problems of the background art, and a moving body that is a power supply target includes a voltage detection circuit with a simple configuration to enhance a protection function and achieve a reduction in size and weight of the moving body. An object to be solved is to provide a contactless power feeding device.

上記課題を解決する本発明の非接触給電装置は、固定部に設定された移動方向に沿って配置される複数の給電素子と、前記複数の給電素子に交流電力を供給する交流電源と、前記移動方向に沿って移動する移動体上に前記移動方向に沿って配置され、前記複数の給電素子のうち対向するいずれかの給電素子と電気的に結合して非接触で交流電力を受け取る複数の受電素子と、前記複数の受電素子が受け取った交流電力をそれぞれ直流電圧に変換して出力する複数の整流回路と、前記複数の整流回路からそれぞれ出力される直流電圧が一つにまとめられて入力され、前記一つにまとめられた直流電圧を駆動電圧に変換して電気負荷に出力する変換回路と、前記一つにまとめられた直流電圧を検出して監視する電圧検出回路と、を備えた。   A non-contact power feeding device of the present invention that solves the above problems includes a plurality of power feeding elements arranged along a moving direction set in a fixed portion, an AC power source that supplies AC power to the plurality of power feeding elements, and A plurality of units arranged along the moving direction on a moving body that moves along the moving direction, and are electrically coupled to any one of the opposing feeding elements among the plurality of feeding elements to receive AC power in a non-contact manner. A power receiving element, a plurality of rectifier circuits that convert the AC power received by the plurality of power receiving elements into DC voltages, respectively, and a DC voltage that is output from each of the plurality of rectifier circuits is combined and input A conversion circuit that converts the DC voltage integrated into a drive voltage and outputs the drive voltage to an electric load; and a voltage detection circuit that detects and monitors the DC voltage integrated into the one. .

本発明の非接触給電装置は、複数組の受電素子および整流回路に対して共通な電圧検出回路を用いて保護機能を高めるので、複数組に対して個別の電圧検出回路を用いる構成よりも簡素となる。また、移動体に複数の受電素子を備えており、移動体の位置に関係なく常に、少なくとも1個の受電素子が良好な受電状態となる。このため、移動体に従来設けられていた充電回路およびバッテリを不要化して、直接的に電気負荷を駆動できる。これらにより、移動体の小形軽量化が実現される。   The contactless power supply device of the present invention uses a common voltage detection circuit for a plurality of sets of power receiving elements and rectifier circuits to enhance the protection function, and thus is simpler than a configuration using individual voltage detection circuits for a plurality of sets. It becomes. Further, the moving body includes a plurality of power receiving elements, and at least one power receiving element is always in a good power receiving state regardless of the position of the moving body. For this reason, the charging circuit and the battery which are conventionally provided in the moving body can be eliminated, and the electric load can be directly driven. As a result, the moving body can be reduced in size and weight.

第1実施形態の非接触給電装置の構成を模式的に説明する図である。It is a figure which illustrates typically the composition of the non-contact electric supply device of a 1st embodiment. 非接触給電装置の移動体の側の詳細な回路構成を示した回路図である。It is the circuit diagram which showed the detailed circuit structure by the side of the moving body of a non-contact electric power feeder. 従来技術の非接触給電装置の構成を模式的に説明する図である。It is a figure which illustrates typically the composition of the conventional non-contact electric supply device. 第2実施形態の非接触給電装置の構成を模式的に説明する図である。It is a figure which illustrates typically the composition of the non-contact electric supply of a 2nd embodiment.

(1.第1実施形態の非接触給電装置1の構成)
本発明の第1実施形態の非接触給電装置1について、図1および図2を参考にして説明する。図1は、第1実施形態の非接触給電装置1の構成を模式的に説明する図である。第1実施形態の非接触給電装置1は、固定部に相当する基板生産ライン9に組み付けられている。図1に示されるように、基板生産ライン9は、3台の第1〜第3基板生産機91、92、93が列設されて構成されている。図1の左右方向は、第1〜第3基板生産機91、92、93の列設方向であり、後述する移動体99の移動方向でもある。
(1. Configuration of the non-contact power feeding device 1 of the first embodiment)
A contactless power supply device 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram schematically illustrating the configuration of the contactless power supply device 1 of the first embodiment. The non-contact power feeding device 1 of the first embodiment is assembled to a board production line 9 corresponding to a fixed part. As shown in FIG. 1, the substrate production line 9 is configured by arranging three first to third substrate production machines 91, 92, 93. The left-right direction in FIG. 1 is an arrangement direction of the first to third substrate production machines 91, 92, 93, and is also a movement direction of the moving body 99 described later.

各基板生産機91、92、93は、モジュール化されており、列設方向の幅寸法MLが互いに等しい。第1〜第3基板生産機91、92、93、は列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替えが可能とされている。基板生産ライン9を構成する基板生産機の列設台数は4台以上でもよく、後から列設台数を増やすモジュール増設対応も可能になっている。第1〜第3基板生産機91、92、93として、電子部品装着機を例示でき、これに限定されない。   Each board production machine 91, 92, 93 is modularized, and the width dimension ML in the row direction is equal to each other. The first to third substrate production machines 91, 92, 93 can be changed in the order of the arrangement positions and replaced with other modular board production machines. The number of board production machines that constitute the board production line 9 may be four or more, and it is possible to add modules to increase the number of board productions later. As the first to third board production machines 91, 92, 93, an electronic component mounting machine can be exemplified, and the invention is not limited to this.

第1〜第3基板生産機91、92、93の前方には、列設方向に延在する図略のガイドレールが配設されている。移動体99は、ガイドレールに沿って移動方向(第1〜第3基板生産機91、92、93の列設方向)に移動する。移動体99は、各基板生産機91、92、93で使用する機材や部材を図略の保管庫から搬入し、使用後の機材や部材を保管庫に戻す役割を担っている。   An unillustrated guide rail extending in the row direction is disposed in front of the first to third substrate production machines 91, 92, 93. The moving body 99 moves along the guide rail in the moving direction (the direction in which the first to third substrate production machines 91, 92, 93 are arranged). The moving body 99 has a role of loading equipment and members used in the substrate production machines 91, 92, and 93 from an unillustrated storage and returning the used equipment and members to the storage.

第1実施形態の非接触給電装置1は、移動体99を給電対象として、第1〜第3基板生産機91、92、93から電磁結合方式で非接触給電を行う装置である。非接触給電装置1は、第1〜第3基板生産機91、92、93に、それぞれ交流電源2、給電コイル31、および給電側コンデンサ35を備える。また、非接触給電装置1は、移動体99に2個の受電コイル41、2個の受電側コンデンサ45、受電回路5、電気負荷6、および電圧検出回路7を備える。   The non-contact power feeding device 1 according to the first embodiment is a device that performs non-contact power feeding by the electromagnetic coupling method from the first to third board production machines 91, 92, and 93 with the moving body 99 as a power feeding target. The non-contact power feeding device 1 includes an AC power source 2, a power feeding coil 31, and a power feeding side capacitor 35 in first to third board production machines 91, 92, and 93, respectively. In addition, the non-contact power feeding apparatus 1 includes two moving coils 99, two power receiving coils 41, two power receiving capacitors 45, a power receiving circuit 5, an electric load 6, and a voltage detection circuit 7.

3台の基板生産機91、92、93、およびモジュール化された他の基板生産機の非接触給電装置1に関する構成は同一であるので、以降では第1基板生産機91に詳細な符号を付して説明する。交流電源2は、例えば、直流電圧を供給する直流電源部と、直流電圧を交流変換する公知のブリッジ回路とを用いて構成できる。交流電源2の第1出力端子21は、給電コイル31の一端311に直結されており、第2出力端子22は、給電側コンデンサ35の一端351に接続されている。交流電圧の周波数は、後述する給電側共振回路および受電側共振回路の共振周波数に基づいて設定されることが好ましい。交流電源の周波数として、数10kHz〜数100kHzのオーダーを例示でき、これに限定されない。交流電源2は、電圧値や周波数などを調整する機能を具備していてもよい。   Since the configuration related to the non-contact power feeding device 1 of the three substrate production machines 91, 92, 93 and other board production machines that are modularized is the same, hereinafter, the first board production machine 91 is denoted by a detailed reference numeral. To explain. The AC power supply 2 can be configured using, for example, a DC power supply unit that supplies a DC voltage and a known bridge circuit that converts the DC voltage to AC. The first output terminal 21 of the AC power supply 2 is directly connected to one end 311 of the power supply coil 31, and the second output terminal 22 is connected to one end 351 of the power supply side capacitor 35. The frequency of the AC voltage is preferably set based on the resonance frequencies of the power supply side resonance circuit and the power reception side resonance circuit described later. The frequency of the AC power supply can be exemplified by an order of several tens of kHz to several hundreds of kHz, and is not limited to this. The AC power supply 2 may have a function of adjusting a voltage value, a frequency, and the like.

3台の基板生産機91、92、93に設けられた合計3個の交流電源2は、相互に独立して動作可能となっている。各基板生産機91、92、93は、移動体99の接近を検出する図略のセンサを有している。そして、各基板生産機91、92、93の交流電源2は、移動体99が接近したときだけ動作する。これにより、移動体99が遠方に離隔している間、交流電源2は停止され、無駄な電気損失が発生しない。   A total of three AC power supplies 2 provided in the three substrate production machines 91, 92, 93 can operate independently of each other. Each substrate production machine 91, 92, 93 has a sensor (not shown) that detects the approach of the moving body 99. And AC power supply 2 of each board | substrate production machine 91, 92, 93 operate | moves only when the mobile body 99 approaches. As a result, the AC power supply 2 is stopped while the moving body 99 is far away, and no unnecessary electric loss occurs.

給電コイル31は、給電素子の一実施形態である。給電コイル31は、各基板生産機91、92、93の前面に設けられており、搬送方向の前後で対称形状に形成されている。給電側コンデンサ35は、給電コイル31に直列接続されて給電側共振回路を形成する共振用素子である。給電側コンデンサ35の他端352は、給電コイル31の他端312に接続されている。これにより、閉じた給電回路が構成される。   The feeding coil 31 is an embodiment of the feeding element. The power feeding coil 31 is provided on the front surface of each of the substrate production machines 91, 92, 93, and is formed in a symmetrical shape before and after the conveyance direction. The power supply side capacitor 35 is a resonance element that is connected in series to the power supply coil 31 to form a power supply side resonance circuit. The other end 352 of the power supply side capacitor 35 is connected to the other end 312 of the power supply coil 31. Thereby, a closed power feeding circuit is configured.

受電コイル41は、受電素子の一実施形態である。2個の受電コイル41は、移動体99の給電コイル31に対向する側面98に配設されており、移動方向に沿い相互に離間して配置される。給電コイル31および受電コイル41は、対向配置されると電磁結合し、相互インダクタンスが発生して非接触給電が可能になる。給電コイル31と受電コイル41との実際の離間距離は、図示された離間距離よりも小さい。   The power receiving coil 41 is an embodiment of a power receiving element. The two power receiving coils 41 are disposed on a side surface 98 of the moving body 99 that faces the power feeding coil 31 and are spaced apart from each other along the moving direction. When the power feeding coil 31 and the power receiving coil 41 are arranged to face each other, they are electromagnetically coupled to generate mutual inductance, thereby enabling non-contact power feeding. The actual separation distance between the power supply coil 31 and the power reception coil 41 is smaller than the illustrated separation distance.

ここで、給電コイル31および受電コイル41の移動方向の長さ、および移動方向に隣り合う相互離間距離は、非接触給電が安定して行われるように設定されている。つまり、移動体99の位置に関係なく常に、給電コイル31と少なくとも1個の受電コイル41とが正対状態になる。正対状態とは、給電コイル31の移動方向の長さの範囲内に受電コイル41の移動方向の長さの全体が対向する状態を意味する。   Here, the length in the moving direction of the power feeding coil 31 and the power receiving coil 41 and the mutual separation distance adjacent to each other in the moving direction are set so that non-contact power feeding is performed stably. That is, regardless of the position of the moving body 99, the power feeding coil 31 and at least one power receiving coil 41 are always facing each other. The directly facing state means a state in which the entire length of the power receiving coil 41 in the moving direction faces within the range of the length of the feeding coil 31 in the moving direction.

図1に例示される位置関係において、第1基板生産機91の給電コイル31と図中の左側の受電コイル41とが正対し、第2基板生産機92の給電コイル31と図中の右側の受電コイル41とが正対している。このとき、2個の受電コイル41は、ともに良好な受電状態となり、矢印P1、P2に示されるように大きな交流電力を受け取ることができる。正対状態にある受電コイル41は、単独でも電気負荷6を駆動できるだけの受電容量を有する。   In the positional relationship illustrated in FIG. 1, the power supply coil 31 of the first board production machine 91 and the power reception coil 41 on the left side in the figure face each other, and the power supply coil 31 of the second board production machine 92 and the right side in the figure are on the right side. The power receiving coil 41 is directly facing. At this time, the two power receiving coils 41 are both in a good power receiving state, and can receive a large AC power as indicated by arrows P1 and P2. The power receiving coil 41 in the directly facing state has a power receiving capacity that can drive the electric load 6 alone.

受電コイル41の一端411は、受電側コンデンサ45の一端451、および受電回路5を構成する整流回路51の入力側の一端子511に接続されている。受電コイル41の他端412は、受電側コンデンサ45の他端452、および整流回路51の入力側の他端子512に接続されている。受電側コンデンサ45は、受電コイル41に並列接続されて受電側共振回路を形成する共振用素子である。   One end 411 of the power receiving coil 41 is connected to one end 451 of the power receiving side capacitor 45 and one terminal 511 on the input side of the rectifying circuit 51 constituting the power receiving circuit 5. The other end 412 of the power receiving coil 41 is connected to the other end 452 of the power receiving side capacitor 45 and the other terminal 512 on the input side of the rectifier circuit 51. The power receiving side capacitor 45 is a resonance element that is connected in parallel to the power receiving coil 41 to form a power receiving side resonance circuit.

図2は、非接触給電装置1の移動体99の側の詳細な回路構成を示した回路図である。図示されるように、受電回路5は、受電コイル41ごとに設けられた整流回路51、および、2個の整流回路51に対して共通に設けられた直流電源回路55を含んで構成されている。   FIG. 2 is a circuit diagram illustrating a detailed circuit configuration on the moving body 99 side of the non-contact power feeding apparatus 1. As illustrated, the power receiving circuit 5 includes a rectifier circuit 51 provided for each power receiving coil 41 and a DC power supply circuit 55 provided in common to the two rectifier circuits 51. .

整流回路51は、4個の整流ダイオードをブリッジ接続した全波整流回路52、および全波整流回路52の出力側に接続された平滑コンデンサ53によって構成される。2個の整流回路51は、それぞれの入力側に接続された受電コイル41が非接触給電により受け取った交流電力を直流電圧Vdcに変換して出力する。2個の整流回路51の出力側の一端子513および他端子514は、直流電源回路55に対して並列接続されている。したがって、2個の整流回路51からそれぞれ出力される直流電圧Vdcが一つにまとめられて直流電源回路55に入力される。   The rectifier circuit 51 includes a full-wave rectifier circuit 52 in which four rectifier diodes are bridge-connected, and a smoothing capacitor 53 connected to the output side of the full-wave rectifier circuit 52. The two rectifier circuits 51 convert AC power received by the power receiving coils 41 connected to the respective input sides by non-contact power feeding into a DC voltage Vdc and output the DC voltage Vdc. One terminal 513 and the other terminal 514 on the output side of the two rectifier circuits 51 are connected in parallel to the DC power supply circuit 55. Therefore, the DC voltages Vdc output from the two rectifier circuits 51 are combined into one and input to the DC power supply circuit 55.

直流電源回路55は、一つにまとめられた直流電圧Vdcを駆動電圧Vactに変換して電気負荷6に出力する変換回路の一実施形態である。直流電源回路55は、駆動電圧Vactの安定化作用を有する。つまり、直流電源回路55は、整流回路51から出力された電圧値不定の直流電圧Vdcを概ね一定の直流の駆動電圧Vactに調整して、移動体99に搭載された電気負荷6に給電する。直流電源回路55として、スイッチング方式またはドロッパ方式のDCDCコンバータを例示できる。直流電源回路55は、降圧機能を具備しており、さらに昇圧機能を具備していてもよい。電気負荷6は、移動体99上で仕事を行うものであり、その種類や消費電力などは限定されない。電気負荷6は、移動体99の移動用駆動源、例えばステッピングモータやサーボモータなどを含んでいてもよい。   The DC power supply circuit 55 is an embodiment of a conversion circuit that converts the combined DC voltage Vdc into the drive voltage Vact and outputs it to the electric load 6. The DC power supply circuit 55 has a function of stabilizing the drive voltage Vact. That is, the DC power supply circuit 55 adjusts the DC voltage Vdc with an indefinite voltage value output from the rectifier circuit 51 to a substantially constant DC drive voltage Vact, and supplies the electric load 6 mounted on the moving body 99 with power. An example of the DC power supply circuit 55 is a switching or dropper type DCDC converter. The DC power supply circuit 55 has a step-down function, and may further have a step-up function. The electric load 6 performs work on the moving body 99, and the type and power consumption are not limited. The electric load 6 may include a driving source for moving the moving body 99, such as a stepping motor or a servo motor.

電圧検出回路7は、直流電源回路55の入力側に並列接続されている。電圧検出回路7は、一つにまとめられた直流電圧Vdcを検出して監視する。例えば、電圧検出回路7は、直流電圧Vdcの大きさを検出してディジタル電圧値に変換するAD変換器と、ディジタル電圧値に所定の監視処理を施す電子制御装置と、を組み合わせて構成できる。また例えば、電圧検出回路7は、直流電圧Vdcを所定の基準電圧と大小比較する比較回路と、直流電圧Vdcが基準電圧以上となったときに所定の制御処理を実行する制御回路と、を組み合わせて構成できる。   The voltage detection circuit 7 is connected in parallel to the input side of the DC power supply circuit 55. The voltage detection circuit 7 detects and monitors the combined DC voltage Vdc. For example, the voltage detection circuit 7 can be configured by combining an AD converter that detects the magnitude of the DC voltage Vdc and converts it into a digital voltage value, and an electronic control device that performs a predetermined monitoring process on the digital voltage value. Further, for example, the voltage detection circuit 7 combines a comparison circuit that compares the DC voltage Vdc with a predetermined reference voltage and a control circuit that executes a predetermined control process when the DC voltage Vdc becomes equal to or higher than the reference voltage. Can be configured.

電圧検出回路7の監視機能は、特に限定されず、直流電圧Vdcの上下限監視機能や、上限のみの監視機能、下限のみの監視機能などを採用できる。例えば、電圧検出回路7は、直流電圧Vdcが所定の基準電圧以上を超過したときに、直流電源回路55を停止して保護する機能を具備できる。また例えば、電圧検出回路7は、無線通信を介して基板生産機91、92、93の側の交流電源2に停止指令や調整指令を送信するようにしてもよい。これによれば、直流電圧Vdcが正常電圧範囲を逸脱したときに、交流電源2を停止させ、あるいは交流電源2の電圧値や周波数などを調整することができる。   The monitoring function of the voltage detection circuit 7 is not particularly limited, and a DC voltage Vdc upper / lower limit monitoring function, an upper limit only monitoring function, a lower limit only monitoring function, or the like can be employed. For example, the voltage detection circuit 7 can have a function of stopping and protecting the DC power supply circuit 55 when the DC voltage Vdc exceeds a predetermined reference voltage. Further, for example, the voltage detection circuit 7 may transmit a stop command or an adjustment command to the AC power supply 2 on the substrate production machines 91, 92, and 93 via wireless communication. According to this, when the DC voltage Vdc deviates from the normal voltage range, the AC power supply 2 can be stopped, or the voltage value or frequency of the AC power supply 2 can be adjusted.

(2.第1実施形態の非接触給電装置1の作用)
次に、第1実施形態の非接触給電装置1の作用について、従来技術と比較して説明する。図3は、従来技術の非接触給電装置1Xの構成を模式的に説明する図である。従来技術の非接触給電装置1Xにおいて、固定部に相当する基板生産ライン9の側の構成は、第1実施形態と同じであり、移動体99の側の構成が第1実施形態と異なる。
(2. Operation of the non-contact power feeding device 1 of the first embodiment)
Next, the operation of the non-contact power feeding device 1 of the first embodiment will be described in comparison with the prior art. FIG. 3 is a diagram schematically illustrating the configuration of a conventional non-contact power feeding device 1X. In the conventional non-contact power supply apparatus 1X, the configuration on the substrate production line 9 side corresponding to the fixed portion is the same as that in the first embodiment, and the configuration on the movable body 99 side is different from that in the first embodiment.

従来技術の非接触給電装置1Xでは、2組の受電コイル41および整流回路51に対して、それぞれ直流電源回路55Xが設けられる。2個の直流電源回路55Xは、出力側の同じ大きさの駆動電圧Vactを一つにまとめて、電気負荷6に出力する。また、2個の直流電源回路55Xの入力側に、それぞれ電圧検出回路7Xが並列接続される。   In the conventional contactless power supply device 1 </ b> X, a DC power supply circuit 55 </ b> X is provided for each of the two sets of power receiving coils 41 and rectifier circuits 51. The two DC power supply circuits 55X combine the drive voltages Vact of the same magnitude on the output side into one and output them to the electric load 6. Further, the voltage detection circuit 7X is connected in parallel to the input sides of the two DC power supply circuits 55X.

図1と図3を比較すれば明らかなように、第1実施形態では、従来技術で2個用いていた直流電源回路55Xおよび電圧検出回路7Xをそれぞれ1個に削減できる。   As is apparent from a comparison between FIG. 1 and FIG. 3, in the first embodiment, two DC power supply circuits 55X and two voltage detection circuits 7X used in the prior art can be reduced to one each.

(3.第1実施形態の非接触給電装置1の態様および効果)
第1実施形態の非接触給電装置1は、固定部(基板生産ライン9)に設定された移動方向に沿って配置される複数(2個)の給電コイル31と、複数の給電コイル31に交流電力を供給する交流電源2と、移動方向に沿って移動する移動体99上に移動方向に沿って配置され、複数の給電コイル31のうち対向するいずれかの給電コイル31と電気的に結合して非接触で交流電力を受け取る複数(2個)の受電コイル41と、複数の受電コイル41が受け取った交流電力をそれぞれ直流電圧Vdcに変換して出力する複数(2個)の整流回路51と、記複数の整流回路51からそれぞれ出力される直流電圧Vdcが一つにまとめられて入力され、一つにまとめられた直流電圧Vdcを駆動電圧Vactに変換して電気負荷6に出力する変換回路(直流電源回路55X)と、一つにまとめられた直流電圧Vdcを検出して監視する電圧検出回路7と、を備えた。
(3. Aspects and effects of the non-contact power feeding device 1 of the first embodiment)
The non-contact power feeding device 1 according to the first embodiment includes a plurality (two) of power feeding coils 31 arranged along a moving direction set in a fixed portion (substrate production line 9), and a plurality of power feeding coils 31 with AC. The AC power supply 2 that supplies power and the moving body 99 that moves along the moving direction are arranged along the moving direction, and are electrically coupled to any one of the opposing feeding coils 31 among the plurality of feeding coils 31. A plurality (two) of receiving coils 41 that receive AC power in a non-contact manner, and a plurality (two) of rectifier circuits 51 that convert the AC power received by the plurality of receiving coils 41 into a DC voltage Vdc, respectively, and output the DC voltage Vdc. The DC voltage Vdc output from each of the plurality of rectifier circuits 51 is input as a single unit, and the combined DC voltage Vdc is converted into a drive voltage Vact and output to the electric load 6. With a (DC power supply circuit 55X), a voltage detecting circuit 7 which monitors and detects a DC voltage Vdc which is combined into one, the.

第1実施形態の非接触給電装置1は、複数組の受電コイル41および整流回路51に対して共通な電圧検出回路7を用いて保護機能を高めるので、複数組に対して個別の電圧検出回路を用いる構成よりも簡素となる。また、移動体99に複数の受電コイル41を備えており、移動体99の位置に関係なく常に、少なくとも1個の受電コイル41が良好な受電状態となる。このため、移動体99に従来設けられていた充電回路およびバッテリを不要化して、直接的に電気負荷6を駆動できる。これらにより、移動体99の小形軽量化が実現される。   The contactless power supply device 1 according to the first embodiment uses the voltage detection circuit 7 common to the plurality of sets of power receiving coils 41 and the rectifier circuit 51 to enhance the protection function. It becomes simpler than the configuration using. In addition, the moving body 99 includes a plurality of power receiving coils 41, and at least one power receiving coil 41 is always in a good power receiving state regardless of the position of the moving body 99. For this reason, the electric load 6 can be directly driven without using the charging circuit and the battery conventionally provided in the moving body 99. Accordingly, the moving body 99 can be reduced in size and weight.

さらに、第1実施形態の非接触給電装置1において、受電素子は受電コイル31であり、給電素子は給電コイル41とされている。また、第1実施形態の非接触給電装置1は、給電コイル31に接続されて給電側共振回路を形成する給電側コンデンサ35、および、受電コイル31に接続されて受電側共振回路を形成する受電側コンデンサ45をさらに備えている。これらによれば、電磁結合方式の非接触給電装置1において、共振現象を利用した非接触給電を行って顕著に給電効率を高めることができる。   Furthermore, in the non-contact power feeding device 1 of the first embodiment, the power receiving element is the power receiving coil 31, and the power feeding element is the power feeding coil 41. The contactless power supply device 1 of the first embodiment includes a power supply side capacitor 35 that is connected to the power supply coil 31 to form a power supply side resonance circuit, and a power reception device that is connected to the power reception coil 31 to form a power reception side resonance circuit. A side capacitor 45 is further provided. According to these, in the non-contact power feeding device 1 of the electromagnetic coupling method, the power feeding efficiency can be remarkably increased by performing the non-contact power feeding utilizing the resonance phenomenon.

さらに、固定部は、複数(3台)の基板生産機91〜93が列設された基板生産ライン9であり、複数の基板生産機91〜93の列設方向に移動方向が設定されており、複数の給電コイル31は、複数の基板生産機91〜93に同数個ずつ配置されている。   Further, the fixed part is a substrate production line 9 in which a plurality (three) of substrate production machines 91 to 93 are arranged in a row, and the moving direction is set in the arrangement direction of the plurality of substrate production machines 91 to 93. The same number of the plurality of power supply coils 31 are arranged on each of the plurality of board production machines 91 to 93.

これによれば、第1〜第3基板生産機91、92、93の列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替え、ならびに、列設台数が4台以上に増設されるモジュール増設対応の全ての場合に、非接触給電装置1は、良好な受電状態が確保される。したがって、基板生産ライン9のライン構成の変更時やモジュール増設対応時に、非接触給電装置1に関する段取り替え作業は簡素である。   According to this, the order of the arrangement positions of the first to third board production machines 91, 92, 93 is changed, the arrangement with other board production machines modularized, and the number of arrangements to four or more. In all cases corresponding to the addition of modules to be added, the non-contact power feeding device 1 is ensured in a good power receiving state. Accordingly, when the line configuration of the board production line 9 is changed or when modules are added, the setup change work for the non-contact power feeding device 1 is simple.

(4.第2実施形態の非接触給電装置1A)
次に、第2実施形態の非接触給電装置1Aについて、第1実施形態と異なる点を主に説明する。第2実施形態において、固定部に相当する基板生産ライン9の側の構成が第1実施形態と異なり、移動体99の側の構成は第1実施形態と同じである。図4は、第2実施形態の非接触給電装置1Aの構成を模式的に説明する図である。
(4. Non-contact electric power feeder 1A of 2nd Embodiment)
Next, the non-contact power feeding device 1A of the second embodiment will be described mainly with respect to differences from the first embodiment. In the second embodiment, the configuration on the substrate production line 9 side corresponding to the fixed portion is different from that in the first embodiment, and the configuration on the movable body 99 side is the same as that in the first embodiment. FIG. 4 is a diagram schematically illustrating the configuration of the contactless power feeding device 1A of the second embodiment.

図示されるように、交流電源25は、複数の給電コイル31に対して共通に設けられている。交流電源25の電源容量は、第1実施形態の交流電源2の電源容量よりも大きい。交流電源25と、第1〜第3基板生産機91、92、93の各給電コイル31とを並列接続する電路には、それぞれ開閉スイッチ26が介挿されている。非接触給電装置1Aが動作している間、交流電源25は動作し続ける。そして、各基板生産機91、92、93の開閉スイッチ26は、図略のセンサによって移動体99の接近が検出されたときだけ閉路操作される。これにより、移動体99が遠方に離隔している間、給電コイル31は励磁されず、無駄な電気損失が発生しない。   As illustrated, the AC power supply 25 is provided in common to the plurality of power supply coils 31. The power supply capacity of the AC power supply 25 is larger than the power supply capacity of the AC power supply 2 of the first embodiment. Open / close switches 26 are respectively inserted in electric paths connecting the AC power supply 25 and the power supply coils 31 of the first to third substrate production machines 91, 92, 93 in parallel. While the non-contact power feeding apparatus 1A is operating, the AC power supply 25 continues to operate. The open / close switch 26 of each substrate production machine 91, 92, 93 is closed only when the approach of the moving body 99 is detected by a sensor (not shown). As a result, while the moving body 99 is far away, the feeding coil 31 is not excited and no unnecessary electric loss occurs.

第2実施形態の非接触給電装置1Aにおける作用は、第1実施形態と同じである。したがって、第2実施形態においても、共通な電圧検出回路7を用いて保護機能を高めることができ、かつ、充電回路およびバッテリを不要化できる。これにより、移動体99の小形軽量化が実現される。   The operation of the non-contact power feeding device 1A of the second embodiment is the same as that of the first embodiment. Therefore, also in the second embodiment, the protection function can be enhanced by using the common voltage detection circuit 7, and the charging circuit and the battery can be eliminated. As a result, the moving body 99 can be reduced in size and weight.

(5.実施形態の応用および変形)
なお、共振用素子としての給電側コンデンサ35および受電側コンデンサ45を用いつつ、交流電源2、25の周波数を共振周波数からずらしてもよい。この場合、共振特性の変化の影響を受けにくくなるので、直流電圧Vdcの絶対値は多少低下しても、電圧変動は減少する。さらに、非接触給電の方式は、給電コイル31および受電コイル41を用いた電磁結合方式に限定されず、例えば、給電電極および受電電極を用いた静電結合方式であってもよい。本発明は、その他にも様々な応用や変形が可能である。
(5. Application and modification of embodiment)
Note that the frequency of the AC power supplies 2 and 25 may be shifted from the resonance frequency while using the power supply side capacitor 35 and the power reception side capacitor 45 as resonance elements. In this case, since it becomes difficult to be affected by the change in the resonance characteristics, even if the absolute value of the DC voltage Vdc is somewhat reduced, the voltage fluctuation is reduced. Further, the non-contact power feeding method is not limited to the electromagnetic coupling method using the power feeding coil 31 and the power receiving coil 41, and may be, for example, an electrostatic coupling method using a power feeding electrode and a power receiving electrode. Various other applications and modifications are possible for the present invention.

本発明の非接触給電装置は、実施形態で説明した基板生産ライン9以外にも、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野に利用可能である。   In addition to the board production line 9 described in the embodiment, the non-contact power feeding device of the present invention can be used in a wide range of fields such as an assembly line and a processing line for producing other products, and power feeding during running of an electric vehicle.

1、1A:非接触給電装置
2:交流電源 25:交流電源 26:開閉スイッチ
31:給電コイル(給電素子)
35:給電側コンデンサ(共振用素子)
41:受電コイル(受電素子)
45:受電側コンデンサ(共振用素子)
51:整流回路 55:直流電源回路(変換回路)
6:電気負荷
7:電圧検出回路
9:基板生産ライン(固定部)
91〜93:第1〜第3基板生産機 99:移動体
1, 1A: Non-contact power supply device 2: AC power supply 25: AC power supply 26: Open / close switch 31: Power supply coil (power supply element)
35: Power supply side capacitor (resonance element)
41: Power receiving coil (power receiving element)
45: Power receiving side capacitor (resonance element)
51: Rectifier circuit 55: DC power supply circuit (conversion circuit)
6: Electric load 7: Voltage detection circuit 9: Board production line (fixed part)
91-93: 1st-3rd board production machine 99: Mobile

Claims (4)

固定部に設定された移動方向に沿って配置される複数の給電素子と、
前記複数の給電素子に交流電力を供給する交流電源と、
前記移動方向に沿って移動する移動体上に前記移動方向に沿って配置され、前記複数の給電素子のうち対向するいずれかの給電素子と電気的に結合して非接触で交流電力を受け取る複数の受電素子と、
前記複数の受電素子が受け取った交流電力をそれぞれ直流電圧に変換して出力する複数の整流回路と、
前記複数の整流回路からそれぞれ出力される直流電圧が一つにまとめられて入力され、前記一つにまとめられた直流電圧を駆動電圧に変換して電気負荷に出力する変換回路と、
前記一つにまとめられた直流電圧を検出して監視する電圧検出回路と、
を備えた非接触給電装置。
A plurality of feeding elements arranged along the moving direction set in the fixed part;
AC power supply for supplying AC power to the plurality of power feeding elements,
A plurality of units that are arranged along the moving direction on a moving body that moves along the moving direction, and that are electrically coupled to one of the opposing feeding elements among the plurality of feeding elements and receive AC power in a non-contact manner. Power receiving elements,
A plurality of rectifier circuits that convert the AC power received by the plurality of power receiving elements into DC voltages, respectively, and output them,
DC voltage output from each of the plurality of rectifier circuits is integrated and input, a conversion circuit that converts the combined DC voltage into a drive voltage and outputs it to an electrical load;
A voltage detection circuit for detecting and monitoring the DC voltage combined into the one;
The non-contact electric power feeder provided with.
前記給電素子および前記受電素子の少なくとも一方に接続されて共振回路を形成する共振用素子をさらに備えた請求項1に記載の非接触給電装置。   The contactless power feeding device according to claim 1, further comprising a resonance element that is connected to at least one of the power feeding element and the power receiving element to form a resonance circuit. 前記受電素子は受電コイルであり、前記給電素子は給電コイルである請求項1または2に記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 1, wherein the power receiving element is a power receiving coil, and the power feeding element is a power feeding coil. 前記固定部は、複数の基板生産機が列設された基板生産ラインであり、前記複数の基板生産機の列設方向に前記移動方向が設定されており、
前記複数の給電素子は、前記複数の基板生産機に同数個ずつ配置されている請求項1〜3のいずれか一項に記載の非接触給電装置。
The fixing unit is a substrate production line in which a plurality of substrate production machines are arranged, and the moving direction is set in the arrangement direction of the plurality of substrate production machines,
The contactless power feeding device according to any one of claims 1 to 3, wherein the same number of the plurality of power feeding elements are arranged in each of the plurality of board production machines.
JP2016027934A 2016-02-17 2016-02-17 Wireless power supply Active JP6677523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027934A JP6677523B2 (en) 2016-02-17 2016-02-17 Wireless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027934A JP6677523B2 (en) 2016-02-17 2016-02-17 Wireless power supply

Publications (2)

Publication Number Publication Date
JP2017147848A true JP2017147848A (en) 2017-08-24
JP6677523B2 JP6677523B2 (en) 2020-04-08

Family

ID=59682384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027934A Active JP6677523B2 (en) 2016-02-17 2016-02-17 Wireless power supply

Country Status (1)

Country Link
JP (1) JP6677523B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Non-contact power supply device for moving body on constant track
JPH1051982A (en) * 1996-07-29 1998-02-20 Hitachi Kiden Kogyo Ltd Non-contacting feeding device
JPH118903A (en) * 1997-06-16 1999-01-12 Hitachi Kiden Kogyo Ltd Non-contact power supply facility for moving body
JP2001112104A (en) * 1999-10-08 2001-04-20 Mitsubishi Electric Corp Noncontact power feeding apparatus for mobile unit
JP2002354712A (en) * 2001-05-22 2002-12-06 Shinko Electric Co Ltd Noncontact power feeder device
JP2010093902A (en) * 2008-10-06 2010-04-22 Nippon Tekumo:Kk Noncontact power supply device
US20110198176A1 (en) * 2008-07-04 2011-08-18 Bombardier Transportation Gmbh Transferring Electric Energy to a Vehicle
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
WO2014049750A1 (en) * 2012-09-26 2014-04-03 富士機械製造株式会社 Electrostatic-coupling-type non-contact power supply apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Non-contact power supply device for moving body on constant track
JPH1051982A (en) * 1996-07-29 1998-02-20 Hitachi Kiden Kogyo Ltd Non-contacting feeding device
JPH118903A (en) * 1997-06-16 1999-01-12 Hitachi Kiden Kogyo Ltd Non-contact power supply facility for moving body
JP2001112104A (en) * 1999-10-08 2001-04-20 Mitsubishi Electric Corp Noncontact power feeding apparatus for mobile unit
JP2002354712A (en) * 2001-05-22 2002-12-06 Shinko Electric Co Ltd Noncontact power feeder device
US20110198176A1 (en) * 2008-07-04 2011-08-18 Bombardier Transportation Gmbh Transferring Electric Energy to a Vehicle
JP2010093902A (en) * 2008-10-06 2010-04-22 Nippon Tekumo:Kk Noncontact power supply device
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
WO2014049750A1 (en) * 2012-09-26 2014-04-03 富士機械製造株式会社 Electrostatic-coupling-type non-contact power supply apparatus
US20150249366A1 (en) * 2012-09-26 2015-09-03 Fuji Machine Mfg Co., Ltd. Electrostatic-coupling contactless power supply device

Also Published As

Publication number Publication date
JP6677523B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6616422B2 (en) Non-contact power feeding device
JPWO2017051460A1 (en) Non-contact power supply coil and non-contact power supply system
JP6095661B2 (en) Non-contact power feeding device
JP6104254B2 (en) Non-contact power feeding device
JP6709804B2 (en) Contactless power supply
JP6076355B2 (en) Non-contact power feeding device
JP6049744B2 (en) Non-contact power feeding device
JP6701231B2 (en) Contactless power supply
JP6677523B2 (en) Wireless power supply
JP6678730B2 (en) Wireless power supply
JP6086927B2 (en) Electrostatic coupling type non-contact power supply device
JP6058003B2 (en) Electrostatic coupling type non-contact power feeding device
JP7162054B2 (en) Contactless power supply system
JP6441929B2 (en) Non-contact power feeding device
JP6873212B2 (en) Board production line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250