JP2017145756A - Internal combustion engine and fuel injection control method for internal combustion engine - Google Patents

Internal combustion engine and fuel injection control method for internal combustion engine Download PDF

Info

Publication number
JP2017145756A
JP2017145756A JP2016028001A JP2016028001A JP2017145756A JP 2017145756 A JP2017145756 A JP 2017145756A JP 2016028001 A JP2016028001 A JP 2016028001A JP 2016028001 A JP2016028001 A JP 2016028001A JP 2017145756 A JP2017145756 A JP 2017145756A
Authority
JP
Japan
Prior art keywords
fuel
control
time
fuel injection
communication state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016028001A
Other languages
Japanese (ja)
Other versions
JP6686508B2 (en
Inventor
淳志 松本
Atsushi Matsumoto
淳志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016028001A priority Critical patent/JP6686508B2/en
Publication of JP2017145756A publication Critical patent/JP2017145756A/en
Application granted granted Critical
Publication of JP6686508B2 publication Critical patent/JP6686508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine that: has a fuel injection device including a three-way valve located between a high-pressure side fuel flow passage, a low-pressure side fuel flow passage and a control chamber for controlling a needle vertically; can correct variation of fuel injection amount from the fuel injection device due to a temperature of a wall surface in the vicinity of an orifice through which the fuel passes when it is caused to flow out from the control chamber of the fuel injection device to the low-pressure side fuel flow passage; and as a result, can highly accurately perform fuel injection control, and also to provide a fuel injection control method for the internal combustion engine.SOLUTION: In an operation of an internal combustion engine, inspection control is performed for switching to a state where a control chamber 10 and a low-pressure side fuel flow passage 16 are communicated with each other when fuel is not being injected from a fuel injection device 1 and returning to a state where the control chamber 10 and a high-pressure side fuel flow passage 15 are communicated with each other before the fuel injection is started. Based on correction physical quantities Vmax, ΔV, ta obtained from a state of the fuel F flowing out to the low-pressure side fuel flow passage 16 during the inspection control, valve opening time of a fuel injection valve 1 during the fuel injection is corrected.SELECTED DRAWING: Figure 3

Description

本発明は、高圧側燃料流路と低圧側燃料流路とニードルの上下を制御する制御室の間に三方弁を有する燃焼噴射装置を備えた内燃機関、及び内燃機関の燃料噴射制御方法に関する。   The present invention relates to an internal combustion engine including a combustion injection device having a three-way valve between a high pressure side fuel flow path, a low pressure side fuel flow path, and a control chamber for controlling up and down of a needle, and a fuel injection control method for the internal combustion engine.

自動車等の動力源として搭載される内燃機関の燃焼室には、燃料噴射装置が備えられている。この燃料噴射装置として、従来は、コモンレール等に接続される高圧側燃料流路より燃料を流入し、燃料戻し通路等に接続される低圧側燃料流路に燃料を流出する制御室と、低圧側燃料流路に備えた二方弁と、制御室の下部に備えたコマンドピストン付きのニードルとで構成される二方弁式の燃料噴射装置が用いられていた。   A fuel injection device is provided in a combustion chamber of an internal combustion engine mounted as a power source of an automobile or the like. As this fuel injection device, conventionally, a control chamber that flows in fuel from a high-pressure side fuel flow path connected to a common rail or the like, and flows out into a low-pressure side fuel flow path connected to a fuel return path or the like, and a low-pressure side 2. Description of the Related Art A two-way valve type fuel injection device composed of a two-way valve provided in a fuel flow path and a needle with a command piston provided in a lower part of a control chamber has been used.

この二方弁式の燃料噴射装置では、燃料を噴射しないときには、二方弁を閉状態として、制御室の燃料が流出しないようにして、ニードルの上部に加わる制御室の燃料の圧力を高圧に維持して、この圧力とスプリングのバネ力との下向き力を、ニードルの下部に加わる燃料の圧力による上向き力より大きくすることで、ニードルを押し下げて噴射孔を閉塞している。   In this two-way valve type fuel injection device, when the fuel is not injected, the two-way valve is closed so that the fuel in the control chamber does not flow out, and the pressure of the fuel in the control chamber added to the upper part of the needle is increased. By maintaining the downward force of the pressure and the spring force of the spring larger than the upward force due to the pressure of the fuel applied to the lower portion of the needle, the needle is pushed down to close the injection hole.

一方、燃料を噴射するときには、二方弁を開状態として、制御室の燃料を流出させて、制御室の燃料の圧力を低下させて下向き力をニードルの下部に加わる高圧の燃料の圧力による上向き力より小さくすることで、ニードルを上方向に移動させて噴射孔を開状態にしている。   On the other hand, when injecting the fuel, the two-way valve is opened, the fuel in the control chamber is caused to flow out, the fuel pressure in the control chamber is reduced, and a downward force is applied to the lower part of the needle. By making it smaller than the force, the needle is moved upward to open the injection hole.

しかしながら、この二方弁式の燃料噴射装置は、燃料噴射のときに、二方弁を開状態にすることにより、高圧側燃料流路と低圧側燃料流路が制御室を介して連通してしまうので、制御室から低圧側燃料流路に流出(漏出)する燃料の流量が多くなり、この流出時の燃料の圧力の低下に起因して発生する熱量が大きくなり、燃料噴射装置及び燃料が高温化するという問題があった。また、燃料ポンプの負荷も大きくなるという問題もあった。   However, in this two-way valve type fuel injection device, the high-pressure side fuel flow path and the low-pressure side fuel flow path communicate with each other via the control chamber by opening the two-way valve during fuel injection. Therefore, the flow rate of the fuel flowing out (leaking) from the control chamber to the low pressure side fuel flow path increases, and the amount of heat generated due to the decrease in the pressure of the fuel at the time of the outflow increases, so that the fuel injection device and the fuel There was a problem of high temperatures. There is also a problem that the load on the fuel pump increases.

そこで、近年では、図1に示すように、コモンレール等に接続される高圧側の燃料流路15と低圧側燃料流路16と制御室10に至る通路16aとの交点に三方弁(図1ではソレノイド式の制御弁11)を設けて、この制御室10と高圧側燃料流路15の連通状態と、制御室10と低圧側燃料流路16の連通状態を切り替える三方弁式の燃料噴射装置が用いられるようになってきている。   Therefore, in recent years, as shown in FIG. 1, a three-way valve (in FIG. 1) is formed at the intersection of a high-pressure side fuel passage 15 connected to a common rail or the like, a low-pressure side fuel passage 16, and a passage 16 a leading to the control chamber 10. There is provided a three-way valve type fuel injection device provided with a solenoid type control valve 11) for switching the communication state between the control chamber 10 and the high pressure side fuel flow path 15 and the communication state between the control chamber 10 and the low pressure side fuel flow path 16. It has come to be used.

この三方弁式の燃料噴射装置では、燃料を噴射しないときには、ソレノイド式の制御弁11に通電しないことで制御室10と高圧側燃料流路15とを連通状態とし、ニードル13の上部に加わる制御室10の燃料Fの圧力と弾性部材12の弾性力とによる下向き力を、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力による上向き力より大きくすることで、ニードル13で噴射孔17を閉塞して閉弁状態にする。   In this three-way valve type fuel injection device, when the fuel is not injected, the control chamber 10 and the high-pressure side fuel flow path 15 are brought into communication with each other by not energizing the solenoid control valve 11 and applied to the upper portion of the needle 13. By making the downward force due to the pressure of the fuel F in the chamber 10 and the elastic force of the elastic member 12 larger than the upward force due to the pressure of the fuel F in the fuel storage chamber 14 applied to the lower part of the needle 13, the injection hole 17 is formed by the needle 13. To close the valve.

一方、燃料を噴射するときには、ソレノイド式の制御弁11に通電することで制御室10と低圧側燃料流路16とを連通状態とし、制御室10より燃料Fを流出させて、ニードル13の上部に加わる制御室10の燃料Fの圧力と弾性部材12の弾性力とによる下向き力を、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力による上向き力より小さくすることで、ニードル13を噴射孔17より離間して開弁状態にする。   On the other hand, when injecting the fuel, the solenoid control valve 11 is energized to bring the control chamber 10 and the low-pressure side fuel flow path 16 into communication, and the fuel F flows out of the control chamber 10, By making the downward force due to the pressure of the fuel F in the control chamber 10 applied to the elastic member 12 and the elastic force of the elastic member 12 smaller than the upward force due to the pressure of the fuel F in the fuel storage chamber 14 applied to the lower part of the needle 13, The valve is opened away from the injection hole 17.

すなわち、三方弁式の燃料噴射装置では、二方弁式の燃料噴射装置とは異なり、高圧側燃料流路15と制御室10との間、または、低圧側燃料流路16と制御室10との間のいずれか一方を連通状態として、高圧側燃料流路15と低圧側燃料流路16が連通しない構成となっているので、制御室10から低圧側燃料流路16に流出する燃料Fの流量が少なくなる。   That is, in the three-way valve type fuel injection device, unlike the two-way valve type fuel injection device, between the high-pressure side fuel flow path 15 and the control chamber 10, or the low-pressure side fuel flow path 16 and the control chamber 10 Since the high pressure side fuel flow path 15 and the low pressure side fuel flow path 16 do not communicate with each other in a communicating state, the fuel F flowing out from the control chamber 10 to the low pressure side fuel flow path 16 The flow rate is reduced.

しかしながら、この三方弁式の燃料噴射装置では、逆に、制御室10から低圧側燃料流路16に流出する燃料Fの流量が少ないため、燃料の圧力の低下に起因して発生する熱量が小さく、燃料噴射装置の温度が適正温度範囲まで上昇しづらいという問題がある。   However, in this three-way valve type fuel injection device, conversely, since the flow rate of the fuel F flowing out from the control chamber 10 to the low pressure side fuel flow path 16 is small, the amount of heat generated due to the decrease in the fuel pressure is small. There is a problem that the temperature of the fuel injection device is difficult to rise to an appropriate temperature range.

ここで、低圧側燃料流路16と連通される制御室10の出口に、制御室10と低圧側燃料流路16とが連通したときに、制御室10の内部の圧力が低圧側燃料流路16の圧力に急激に低下するのを防止して燃料圧を徐々に低下させるために、絞りとなるオリフィス16aを設けている。このオリフィス16aを通過する燃料Fの流量は、オリフィス16aのある通路部分の壁面の摩擦によって変化するが、この摩擦の大きさは、その壁面の温度に応じて変化する。すなわち、オリフィス16aを通過する燃料Fの流量は、オリフィス16aの近傍の壁面の温度に応じて変化する。   Here, when the control chamber 10 and the low pressure side fuel flow channel 16 communicate with the outlet of the control chamber 10 communicated with the low pressure side fuel flow channel 16, the pressure inside the control chamber 10 is reduced. In order to prevent the fuel pressure from gradually decreasing by preventing the pressure from rapidly decreasing to 16, the orifice 16a serving as a throttle is provided. The flow rate of the fuel F passing through the orifice 16a changes due to the friction of the wall surface of the passage portion where the orifice 16a exists, and the magnitude of the friction changes according to the temperature of the wall surface. That is, the flow rate of the fuel F passing through the orifice 16a changes according to the temperature of the wall surface in the vicinity of the orifice 16a.

この壁面の温度が低温であると壁面摩擦は大きくなり、オリフィス16aを通過する燃料Fの流量が少なくなり、制御室10における燃料Fの圧力低下が遅くなる。その結果、ニードル13が噴射孔17からの離間速度が小さくなるので、噴射開始のタイミングも遅くなる。これに対して、燃料噴射の停止では、このオリフィス16aを燃料Fが通過するのを停止するため、壁面摩擦及び壁面温度の影響を受けない。   When the temperature of the wall surface is low, the wall friction increases, the flow rate of the fuel F passing through the orifice 16a decreases, and the pressure drop of the fuel F in the control chamber 10 is delayed. As a result, the speed at which the needle 13 is separated from the injection hole 17 is reduced, and the timing for starting injection is also delayed. On the other hand, when the fuel injection is stopped, the fuel F stops passing through the orifice 16a, so that it is not affected by wall friction and wall temperature.

そのため、壁面の温度が低いと、燃料噴射装置の噴射孔17からの燃料噴射量が、ソレノイド式の制御弁11への通電時間(デューティ制御における指示パルス幅)に対応する標準の燃料噴射量より少なくなってしまう。そして、壁面の温度が高いと、逆の現象となり、同じ通電時間であっても標準の燃料噴射量より燃料噴射量が多くなる。   Therefore, when the wall surface temperature is low, the fuel injection amount from the injection hole 17 of the fuel injection device is larger than the standard fuel injection amount corresponding to the energization time (indicated pulse width in duty control) to the solenoid type control valve 11. It will decrease. When the wall surface temperature is high, the reverse phenomenon occurs, and the fuel injection amount becomes larger than the standard fuel injection amount even during the same energization time.

言い換えれば、制御室10より低圧側燃料流路16のオリフィス16aの近傍の壁面の温度の高低に起因して、燃料噴射装置1からの燃料噴射量(燃料噴射率)にばらつきが生じてしまう。その結果、内燃機関の運転効率が悪化してしまう問題があった。   In other words, the fuel injection amount (fuel injection rate) from the fuel injection device 1 varies due to the temperature of the wall surface in the vicinity of the orifice 16 a of the low pressure side fuel flow path 16 from the control chamber 10. As a result, there has been a problem that the operating efficiency of the internal combustion engine deteriorates.

一方、コモンレール等の蓄圧手段を有する燃料噴射装置において、どの気筒の燃料噴射装置において燃料漏れがあるかを特定するために、蓄圧手段とインジェクタとの間に接続され、蓄圧手段からインジェクタへの燃料の流動量が所定の値を超えたときに遮断されるフローリミッタを備えて、エンジンの運転時であってしかもインジェクタが燃料の噴射を行わないとき、または、噴射と次の噴射との間の無噴射の期間に、インジェクタによる噴射が行われる時間よりも短い時間、電磁切換え弁を切換えてニードルをリフトさせて、フローリミッタの作動流量よりも少ない流量だけ燃料をリークさせて、この燃料リーク量と燃料漏れ量との和がフローリミッタの作動流量より多い場合にフローリミッタの遮断動作により、漏れが発生しているインジェクタへの燃料の供給を停止する燃料漏れ検出装置が提案されている(例えば、特許文献1参照)。   On the other hand, in a fuel injection device having pressure accumulating means such as a common rail, in order to specify which cylinder fuel injection device has a fuel leak, the fuel is connected between the pressure accumulating means and the injector, and the fuel from the pressure accumulating means to the injector Provided with a flow limiter that is shut off when the flow amount of the fuel exceeds a predetermined value, when the engine is operating and the injector does not inject fuel, or between the injection and the next injection. During the non-injection period, the needle is lifted by switching the electromagnetic switching valve for a time shorter than the time when injection is performed by the injector, and the fuel is leaked by a flow rate less than the flow rate of the flow limiter. If the sum of the fuel leak amount and the flow rate of the fuel is greater than the flow rate of the flow limiter, the leakage is Fuel leakage detecting device to stop the supply of fuel to the injector has been proposed (e.g., see Patent Document 1).

特開平09−042105号公報Japanese Patent Laid-Open No. 09-042105

本発明は、上記のことを鑑みてなされたものであり、その目的は、高圧側燃料流路と低圧側燃料流路とニードルの上下を制御する制御室の間に三方弁を有する燃焼噴射装置を備えた内燃機関において、燃料噴射装置の制御室から低圧側燃料流路に流出する際に通過するオリフィス近傍の壁面の温度に起因する燃料噴射装置からの燃料噴射量のばらつきを補正することができ、その結果、燃料噴射制御を高精度で行うことができる内燃機関、及び、内燃機関の燃料噴射制御方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a combustion injection apparatus having a three-way valve between a high pressure side fuel flow path, a low pressure side fuel flow path, and a control chamber for controlling the up and down of the needle. In the internal combustion engine having the above, the variation in the fuel injection amount from the fuel injection device due to the temperature of the wall surface near the orifice that passes when the fuel flows out from the control chamber of the fuel injection device to the low pressure side fuel flow path can be corrected. As a result, an object of the present invention is to provide an internal combustion engine capable of performing fuel injection control with high accuracy, and a fuel injection control method for the internal combustion engine.

上記の目的を達成するための本発明の内燃機関は、高圧側燃料流路より燃料を流入し、低圧側燃料流路より燃料を流出する制御室と、該制御室と前記高圧側燃料流路が連通する第1連通状態と、該制御室と前記低圧側燃料流路が連通する第2連通状態とを切り替える三方弁を有する燃料噴射装置を備え、制御装置が、前記燃料噴射装置の前記三方弁を、燃料を噴射しないときには第1連通状態に切り替えてニードルで噴射孔を閉塞し、燃料を噴射するときには第2連通状態に切り替えて前記ニードルを前記噴射孔から離間させて前記噴射孔を開通する内燃機関において、前記制御装置が、内燃機関の運転状態に対して、前記三方弁を第1連通状態から第2連通状態に切り替えたときに、この切り替え時点から前記ニードルが前記噴射孔から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定し、前記燃料噴射装置から燃料噴射をしていないときに、前記三方弁を第1連通状態から第2連通状態に切り替えて、前記検査時間を経過した後に、前記三方弁を第2連通状態から第1連通状態に戻す検査制御を行うと共に、この検査制御の間に前記低圧側燃料流路に流出した燃料の状態から得た補正用の物理量に基づいて、燃料噴射時における前記三方弁の制御量を補正する制御を行うように構成される。   In order to achieve the above object, an internal combustion engine of the present invention includes a control chamber that flows in fuel from a high-pressure side fuel flow path and flows out of fuel from a low-pressure side fuel flow path, the control chamber, and the high-pressure side fuel flow path. A fuel injection device having a three-way valve that switches between a first communication state in which the control chamber communicates with a second communication state in which the control chamber and the low-pressure side fuel flow path communicate with each other, and a control device includes the three-way valve of the fuel injection device When the fuel is not injected, the valve is switched to the first communication state and the injection hole is closed with the needle. When the fuel is injected, the valve is switched to the second communication state and the needle is separated from the injection hole to open the injection hole. In the internal combustion engine, when the control device switches the three-way valve from the first communication state to the second communication state with respect to the operating state of the internal combustion engine, the needle is separated from the injection hole from this switching time point. Then, when a test time shorter than the injection standby time until fuel injection is started is set and fuel is not injected from the fuel injection device, the three-way valve is changed from the first communication state to the second communication state. After the inspection time has elapsed after switching, inspection control is performed to return the three-way valve from the second communication state to the first communication state, and the state of the fuel that has flowed into the low-pressure side fuel flow path during the inspection control On the basis of the physical quantity for correction obtained from the above, the control for correcting the control amount of the three-way valve at the time of fuel injection is performed.

すなわち、燃料噴射装置からの燃料噴射を行う前に、ニードルが噴射孔より離間しないように、即ち、燃料噴射が行われないように、三方弁を微小時間の検査時間の間だけ第2連通状態にして、制御室から低圧側燃料流路に燃料を流出(漏出)させる検査制御を行う。また、この検査制御で、低圧側燃料流路に流出した燃料の状態から得た物理量を補正用の物理量として検出する。   That is, before the fuel injection from the fuel injection device is performed, the three-way valve is in the second communication state only for a minute inspection time so that the needle is not separated from the injection hole, that is, the fuel injection is not performed. Thus, inspection control is performed to allow fuel to flow out (leak) from the control chamber to the low-pressure side fuel flow path. In this inspection control, a physical quantity obtained from the state of the fuel flowing out to the low-pressure side fuel flow path is detected as a correcting physical quantity.

この補正用の物理量となるパラメータは、制御室から低圧側燃料流路に流出する燃料が通過する部分、特に、燃料流量に影響を与えるオリフィス近傍の壁面の温度に応じて変化するパラメータであり、低圧側燃料流路における燃料流量の変化を敏感に反映できるパラメータであることが好ましい。より具体的には、燃料流量センサで測定した流出した燃料流量の時系列から得た、単位時間当たりの最大流量、燃料の流量の変化率、燃料の流出が開始するタイミング等の物理量である。   The parameter that is the physical quantity for correction is a parameter that changes according to the temperature of the portion of the fuel flowing out from the control chamber to the low pressure side fuel flow path, particularly the wall surface near the orifice that affects the fuel flow rate, It is preferable that the parameter can sensitively reflect the change in the fuel flow rate in the low-pressure side fuel flow path. More specifically, it is a physical quantity such as the maximum flow rate per unit time, the rate of change of the flow rate of fuel, the timing at which the outflow of fuel starts, etc., obtained from the time series of the flow rate of fuel flow measured by the fuel flow rate sensor.

そして、この推定算出したパラメータに基づいて、燃料噴射装置からの燃料噴射時における三方弁の制御量、例えば、三方弁がソレノイドへの通電で開弁する場合は、その通電時間を補正する。   Based on the estimated and calculated parameters, the control amount of the three-way valve at the time of fuel injection from the fuel injection device, for example, when the three-way valve is opened by energizing the solenoid, the energization time is corrected.

したがって、この構成によれば、燃料が通過する低圧側燃料流路のオリフィスの近傍の壁面の温度に起因する燃料噴射装置からの燃料噴射量のばらつきを補正することができ、その結果、燃料噴射制御を高精度で行うことができるようになる。   Therefore, according to this configuration, it is possible to correct the variation in the fuel injection amount from the fuel injection device due to the temperature of the wall surface in the vicinity of the orifice of the low-pressure side fuel flow path through which the fuel passes. Control can be performed with high accuracy.

また、上記の内燃機関において、前記制御装置が、前記検査制御時の燃料の状態から得た物理量を、燃料の単位時間当たりの最大流量、燃料の流量の変化率、または、燃料の流出が開始するタイミングのいずれか一つ又はいくつかの組み合わせとし、前記燃料噴射装置からの燃料噴射時では、これらの物理量に基づいて、前記三方弁の制御量のうちの開弁用時間に関する補正時間を算出して、この算出した補正時間を基本開弁用時間に加算して算出される補正後開弁時間で、前記三方弁の制御を行うように構成されると、比較的簡単なアルゴリズムで、燃料が通過する低圧側燃料流路のオリフィスの近傍の壁面の温度に起因する燃料噴射装置からの燃料噴射量のばらつきを補正することができる。   Further, in the internal combustion engine, the control device uses the physical quantity obtained from the state of the fuel at the time of the inspection control as the maximum flow rate of fuel per unit time, the rate of change of the fuel flow rate, or the start of fuel outflow. Any one or a combination of timings, and at the time of fuel injection from the fuel injection device, based on these physical quantities, a correction time related to the valve opening time of the control amount of the three-way valve is calculated. Then, when the three-way valve is controlled with the corrected valve opening time calculated by adding the calculated correction time to the basic valve opening time, the fuel can be obtained with a relatively simple algorithm. The variation in the fuel injection amount from the fuel injection device due to the temperature of the wall surface in the vicinity of the orifice of the low pressure side fuel flow path through which the gas passes can be corrected.

また、上記の目的を達成するための本発明の内燃機関の燃料噴射制御方法は、高圧側燃料流路より燃料を流入し、低圧側燃料流路より燃料を流出する制御室と、該制御室と前記高圧側燃料流路が連通する第1連通状態と、該制御室と前記低圧側燃料流路が連通する第2連通状態とを切り替える三方弁を有する燃料噴射装置を備え、制御装置が、前記燃料噴射装置の前記三方弁を、燃料を噴射しないときには第1連通状態に切り替えてニードルで噴射孔を閉塞し、燃料を噴射するときには第2連通状態に切り替えて前記ニードルを前記噴射孔から離間させて前記噴射孔を開通する内燃機関の燃料噴射制御方法において、内燃機関の運転状態に対して、前記三方弁を第1連通状態から第2連通状態に切り替えたときに、この切り替え時点から前記ニードルが前記噴射孔から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定し、前記燃料噴射装置から燃料噴射をしていないときに、前記三方弁を第1連通状態から第2連通状態に切り替えて、前記検査時間を経過した後に、前記三方弁を第2連通状態から第1連通状態に戻す検査制御を行うと共に、この検査制御の間に前記低圧側燃料流路に流出した燃料の状態から得た補正用の物理量に基づいて、燃料噴射時における前記三方弁の制御量を補正することを特徴とする方法である。   In addition, a fuel injection control method for an internal combustion engine according to the present invention for achieving the above object includes a control chamber in which fuel flows in from a high-pressure side fuel flow path and fuel flows out from a low-pressure side fuel flow path, and the control chamber A fuel injection device having a three-way valve that switches between a first communication state in which the high-pressure side fuel flow path communicates and a second communication state in which the control chamber communicates with the low-pressure side fuel flow path, When the fuel is not injected, the three-way valve of the fuel injection device is switched to the first communication state to close the injection hole with the needle, and when fuel is injected, the needle is separated from the injection hole by switching to the second communication state. In the fuel injection control method for an internal combustion engine that opens the injection hole, when the three-way valve is switched from the first communication state to the second communication state with respect to the operating state of the internal combustion engine, An inspection time shorter than an injection waiting time until the fuel is started after the dollar is separated from the injection hole is set, and when the fuel is not injected from the fuel injection device, the three-way valve is connected to the first communication port. After the inspection time is switched from the state to the second communication state, the inspection control for returning the three-way valve from the second communication state to the first communication state is performed, and the low-pressure side fuel flow is performed during the inspection control. In this method, the control amount of the three-way valve at the time of fuel injection is corrected based on a physical quantity for correction obtained from the state of fuel that has flowed out to the road.

また、上記の内燃機関の燃料噴射制御方法において、前記検査制御時の燃料の状態から得た物理量を、燃料の単位時間当たりの最大流量、燃料の流量の変化率、または、燃料の流出が開始するタイミングのいずれか一つ又はいくつかの組み合わせとし、前記燃料噴射装置からの燃料噴射時では、これらの物理量に基づいて、前記三方弁の制御量のうちの開弁用時間に関する補正時間を算出して、この算出した補正時間を基本開弁用時間に加算して算出される補正後開弁時間で、前記三方弁の制御を行う。   Further, in the fuel injection control method for an internal combustion engine, the physical quantity obtained from the state of the fuel at the time of the inspection control is determined based on the maximum flow rate per unit time of the fuel, the rate of change of the fuel flow rate, or the outflow of the fuel. Any one or a combination of timings, and at the time of fuel injection from the fuel injection device, based on these physical quantities, a correction time related to the valve opening time of the control amount of the three-way valve is calculated. Then, the three-way valve is controlled with the post-correction valve opening time calculated by adding the calculated correction time to the basic valve opening time.

これらの方法によれば、上記の内燃機関と同様の作用効果を奏することができる。   According to these methods, the same effects as the above-described internal combustion engine can be achieved.

本発明の内燃機関、及び内燃機関の燃料噴射制御方法によれば、高圧側燃料流路と低圧側燃料流路とニードルの上下を制御する制御室の間に三方弁を有する燃焼噴射装置を備えた内燃機関において、燃料噴射装置の制御室から低圧側燃料流路に流出する際に通過するオリフィスの近傍の壁面の温度に起因する燃料噴射装置からの燃料噴射量のばらつきを補正することができ、その結果、燃料噴射制御を高精度で行うことができるようになる。   According to the internal combustion engine and the fuel injection control method of the internal combustion engine of the present invention, the combustion injection device having the three-way valve is provided between the high pressure side fuel flow path, the low pressure side fuel flow path, and the control chamber for controlling the up and down of the needle. In the internal combustion engine, it is possible to correct the variation in the fuel injection amount from the fuel injection device due to the temperature of the wall surface in the vicinity of the orifice that passes when flowing out from the control chamber of the fuel injection device to the low pressure side fuel flow path. As a result, fuel injection control can be performed with high accuracy.

本発明に係る実施の形態の内燃機関で使用する燃料噴射装置の構成を模式的に示しており、制御室と高圧側燃料流路が連通している状態を示す図である。It is a figure which shows typically the structure of the fuel-injection apparatus used with the internal combustion engine of embodiment which concerns on this invention, and shows the state which the control chamber and the high voltage | pressure side fuel flow path are connecting. 本発明に係る実施の形態の内燃機関で使用する燃料噴射装置の構成を模式的に示しており、制御室と低圧側燃料流路が連通している状態を示す図である。It is a figure showing the composition of the fuel injection device used with the internal-combustion engine of the embodiment concerning the present invention typically, and the state where the control room and the low-pressure side fuel channel are connected. 本発明に係る実施の形態の内燃機関の燃料噴射制御方法の制御フローを示す図である。It is a figure which shows the control flow of the fuel-injection control method of the internal combustion engine of embodiment which concerns on this invention. 検査制御時の低圧側燃料流路を流れる燃料の流量の時間的変化を示す図である。It is a figure which shows the time change of the flow volume of the fuel which flows through the low voltage | pressure side fuel flow path at the time of inspection control.

以下、本発明に係る実施の形態の内燃機関、及び内燃機関の燃料噴射制御方法について、図面を参照しながら説明する。図1に示すように、本発明に係る実施の形態の内燃機関で使用する燃料噴射装置1は、制御室10と、三方弁を構成するソレノイド式の制御弁11(11aはソレノイド)と、付勢バネ(弾性部材)12と、ニードル13と、燃料貯留室14とを備えている。   Hereinafter, an internal combustion engine according to an embodiment of the present invention and a fuel injection control method for the internal combustion engine will be described with reference to the drawings. As shown in FIG. 1, a fuel injection device 1 used in an internal combustion engine according to an embodiment of the present invention includes a control chamber 10, a solenoid-type control valve 11 (11a is a solenoid) constituting a three-way valve, and an attachment. A force spring (elastic member) 12, a needle 13, and a fuel storage chamber 14 are provided.

この制御室10は、高圧側燃料流路15より燃料Fを流入し、低圧側燃料流路16より燃料Fを流出する室である。ソレノイド式の制御弁11は、制御室10と高圧側燃料流路(図1では左斜線部)15が連通する第1連通状態と、制御室10と低圧側燃料流路(図1では右斜線部)16が連通する第2連通状態とを切り替える三方弁である。付勢バネ12は、ニードル13の上方からニードル13を押すバネである。ニードル13は、ソレノイド式制御弁11の動作状態に応じて、噴射孔17を閉塞または噴射孔17から離間する装置である。燃料貯留室14は、ニードル13の下部と噴射孔17に隣接して、高圧側燃料流路15と連通する室である。   The control chamber 10 is a chamber through which the fuel F flows from the high pressure side fuel flow path 15 and flows out from the low pressure side fuel flow path 16. The solenoid control valve 11 includes a first communication state in which the control chamber 10 and the high-pressure side fuel flow path (left hatched portion in FIG. 1) communicate with each other, and the control chamber 10 and the low-pressure side fuel flow path (right hatched in FIG. 1). Part) is a three-way valve that switches between a second communication state in which 16 communicates. The biasing spring 12 is a spring that pushes the needle 13 from above the needle 13. The needle 13 is a device that closes or separates the injection hole 17 from the injection hole 17 in accordance with the operating state of the solenoid control valve 11. The fuel storage chamber 14 is a chamber that is adjacent to the lower portion of the needle 13 and the injection hole 17 and communicates with the high-pressure side fuel flow path 15.

また、低圧側燃料流路16と連通される制御室10の出口に、制御室10と低圧側燃料流路16とが連通したときに、制御室10の内部の圧力が低圧側燃料流路16の圧力に急激に低下するのを防止して燃料圧を徐々に低下させるために、絞りとなるオリフィス16aを設けている。   Further, when the control chamber 10 and the low pressure side fuel flow path 16 communicate with the outlet of the control chamber 10 communicated with the low pressure side fuel flow path 16, the pressure inside the control chamber 10 is reduced to the low pressure side fuel flow path 16. In order to prevent the fuel pressure from gradually decreasing while preventing the pressure from rapidly decreasing, an orifice 16a serving as a throttle is provided.

また、本発明の内燃機関の燃料噴射装置1を制御する制御装置40が備えられる。この制御装置40は、アクセル開度センサ(図示しない)やエンジン回転数検出センサ(図示しない)等の内燃機関の運転状態に関連する各種センサより送信された信号に基づいて、燃料噴射装置1(ソレノイド式の制御弁11)を制御する装置である。   Moreover, the control apparatus 40 which controls the fuel-injection apparatus 1 of the internal combustion engine of this invention is provided. The control device 40 is based on signals transmitted from various sensors related to the operating state of the internal combustion engine, such as an accelerator opening sensor (not shown) and an engine speed detection sensor (not shown). This is a device for controlling a solenoid type control valve 11).

ここで、燃料を噴射しない場合とする場合、言い換えれば、ソレノイド式の制御弁11に通電しない場合と通電する場合における、燃料噴射装置1の動作状態を説明する。燃料を噴射しない場合は、ソレノイド式の制御弁11に通電しないで、図1に示すように、制御室10と高圧側燃料流路15が連通状態する第1連通状態に切り替えると、ニードル13の上部に加わる制御室10の燃料Fの圧力及び付勢バネ12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より大きくなるので、ニードル13を押し下げて、このニードル13で噴射孔17を閉塞して、燃料貯留室14に貯留した燃料Fを噴射孔17より外部(燃焼室(図示しない)や排気通路(図示しない)等)に噴射することはない。   Here, the operation state of the fuel injection device 1 when the fuel is not injected, in other words, when the solenoid control valve 11 is not energized and when it is energized will be described. When the fuel is not injected, the solenoid-type control valve 11 is not energized, and when the control chamber 10 and the high-pressure side fuel flow path 15 are switched to the first communication state as shown in FIG. Since the pressure of the fuel F in the control chamber 10 applied to the upper part and the elastic force of the urging spring 12 are larger than the pressure of the fuel F in the fuel storage chamber 14 applied to the lower part of the needle 13, the needle 13 is pushed down. Thus, the injection hole 17 is closed, and the fuel F stored in the fuel storage chamber 14 is not injected outside (combustion chamber (not shown), exhaust passage (not shown), etc.) from the injection hole 17.

また、燃料を噴射する場合は、ソレノイド式の制御弁11に通電すると、図2に示すように、制御室10と低圧側燃料流路16が連通状態する第2連通状態に切り替わり、制御室10より低圧側燃料流路16に燃料Fが流出して、ニードル13の上部に加わる制御室10の燃料Fの圧力及び付勢バネ12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より小さくなるので、ニードル13を噴射孔17より離間させて噴射孔17を開通して、燃料貯留室14に貯留した燃料Fを噴射孔17より外部に噴射する。   When injecting fuel, when the solenoid control valve 11 is energized, the control chamber 10 is switched to the second communication state in which the control chamber 10 and the low-pressure side fuel flow path 16 are in communication as shown in FIG. The fuel F flows into the lower pressure side fuel flow path 16, and the pressure of the fuel F in the control chamber 10 applied to the upper part of the needle 13 and the elastic force of the biasing spring 12 are applied to the lower part of the needle 13. Since the pressure is lower than the pressure of the fuel F, the needle 13 is separated from the injection hole 17 to open the injection hole 17, and the fuel F stored in the fuel storage chamber 14 is injected outside through the injection hole 17.

そして、本発明に係る実施の形態の内燃機関では、制御装置40が、内燃機関の運転状態に対して、ソレノイド式の制御弁11に通電して、第1連通状態から第2連通状態に切り替えたときに、この切り替え時点からニードル13が噴射孔17から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定する。   In the internal combustion engine according to the embodiment of the present invention, the control device 40 energizes the solenoid control valve 11 with respect to the operation state of the internal combustion engine to switch from the first communication state to the second communication state. In this case, an inspection time shorter than the injection standby time from the time of switching until the needle 13 is separated from the injection hole 17 and fuel injection is started is set.

言い換えれば、ソレノイド式の制御弁11に通電を開始した時点から、ニードル13の上部に加わる制御室10の燃料Fの圧力及び付勢バネ12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より小さくなってニードル13が噴射孔17から離間する時点を噴射待機時間とする。検査時間は、この噴射待機時間より短い時間、即ち、ニードル13の上部に加わる制御室10の燃料Fの圧力及び付勢バネ12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より大きくなっている時間とする。   In other words, the fuel reservoir chamber in which the pressure of the fuel F in the control chamber 10 applied to the upper portion of the needle 13 and the elastic force of the biasing spring 12 are applied to the lower portion of the needle 13 from the time when energization of the solenoid control valve 11 is started. The time when the pressure of the fuel F becomes smaller than the pressure of the fuel 14 and the needle 13 is separated from the injection hole 17 is defined as an injection standby time. The inspection time is shorter than the injection waiting time, that is, the fuel in the fuel storage chamber 14 where the pressure of the fuel F in the control chamber 10 applied to the upper portion of the needle 13 and the elastic force of the biasing spring 12 are applied to the lower portion of the needle 13. It is assumed that the time is larger than the pressure of F.

この噴射待機時間は、内燃機関の運転状態に応じて変化するが、実験等により予め求めておくことができる。この噴射待機時間よりも短い時間になるように検査時間を設定する。好ましくは、制御を簡単にするため、できるだけ広い内燃機関の運転状態においても噴射待機時間より短くなるように検査時間を設定しておくことが好ましい。ただし、検査時間が短すぎると、後述する補正用の物理量の精度が落ちる場合もあるので、その場合は、内燃機関の運転状態に応じて検査時間を変化させてもよい。   The injection standby time varies depending on the operating state of the internal combustion engine, but can be obtained in advance by experiments or the like. The inspection time is set to be shorter than the injection standby time. Preferably, in order to simplify the control, it is preferable to set the inspection time so as to be shorter than the injection standby time even in the widest possible operating state of the internal combustion engine. However, if the inspection time is too short, the accuracy of the physical quantity for correction described later may be reduced. In this case, the inspection time may be changed according to the operating state of the internal combustion engine.

そして、燃料噴射装置1から燃料噴射をしていないときに、ソレノイド式の制御弁11に通電して、第1連通状態から第2連通状態に切り替えて、検査時間を経過した後に、ソレノイド式の制御弁11への通電を停止して、第2連通状態から第1連通状態に戻す検査制御を行う。この検査制御では、制御室10より低圧側燃料流路16に燃料Fを流出(漏出)させるが、検査時間が経過すると、ニードル13が噴射孔17から離間する前にソレノイド式の制御弁11への通電を停止するので、燃料噴射装置1から燃焼室への燃料噴射は行われない。   When the fuel injection device 1 is not injecting fuel, the solenoid-type control valve 11 is energized to switch from the first communication state to the second communication state. Inspection control for stopping energization of the control valve 11 and returning from the second communication state to the first communication state is performed. In this inspection control, the fuel F flows out (leaks out) from the control chamber 10 to the low pressure side fuel flow path 16, but when the inspection time elapses, before the needle 13 moves away from the injection hole 17, the solenoid control valve 11 is moved to. Therefore, the fuel injection from the fuel injection device 1 to the combustion chamber is not performed.

この検査制御の間に、低圧側燃料流路16に流出した燃料Fの状態から得た補正用の物理量に基づいて、燃料噴射時におけるソレノイド式の制御弁(三方弁)11の通電時間(制御量)を補正する制御を行う。   During this inspection control, the energization time (control) of the solenoid type control valve (three-way valve) 11 at the time of fuel injection based on the physical quantity for correction obtained from the state of the fuel F flowing out to the low pressure side fuel flow path 16 (Amount) is corrected.

具体的には、制御室10より低圧側燃料流路16に流出した燃料Fの流量Vを、低圧側燃料流路16に備えた流量計20により検出して、この検出した燃料Fの流量Vのデータを、図4に示すような検査制御時の経過時間tに対する燃料Fの流量Vの変化を示す時系列データを制御装置40に記憶させる。   Specifically, the flow rate V of the fuel F flowing out from the control chamber 10 into the low pressure side fuel flow path 16 is detected by the flow meter 20 provided in the low pressure side fuel flow path 16, and the detected flow rate V of the fuel F is detected. 4 is stored in the control device 40 as time-series data indicating the change in the flow rate V of the fuel F with respect to the elapsed time t at the time of inspection control as shown in FIG.

そして、制御装置40が、この流量計20の検出値を基に作成した燃料Fの流量Vの時系列データを用いて、検査制御時の燃料の状態から得た補正用の物理量として、制御室10より低圧側燃料流路16に流出した燃料Fの単位時間当たりの最大流量である最大流量Vmax(図4のA点)、または、燃料Fの流量Vの変化を示す流量変化率ΔV(図4のB点)、または、燃料Fの流出が開始する流出開始タイミングta(図4のC点)を算出する。   Then, the control device 40 uses the time series data of the flow rate V of the fuel F created based on the detection value of the flow meter 20 as a physical quantity for correction obtained from the state of the fuel at the time of inspection control. The maximum flow rate Vmax (point A in FIG. 4), which is the maximum flow rate per unit time, of the fuel F that has flowed into the low-pressure side fuel flow path 16 from 10, or a flow rate change rate ΔV (change in FIG. 4 or the outflow start timing ta (C point in FIG. 4) at which the outflow of the fuel F starts.

これらのパラメータの最大流量Vmax、流量変化率ΔV、流出開始タイミングtaは、制御室10から低圧側燃料流路16に流出する際に通過するオリフィス16aの近傍の壁面の温度に応じて変化するパラメータである。また、この壁面の温度が高いと、壁面における燃料Fの粘度が低下して、燃料Fが流れ易くなるので、最大流量Vmaxと流量変化率ΔVは大きくなり、また、パラメータの流出開始タイミングtaは早まる。一方、この壁面の温度が低いと、壁面における燃料Fの粘度が高くなり、燃料Fが流れ難くなるので、最大流量Vmaxと流量変化率ΔVは小さくなり、また、パラメータの流出開始タイミングtaは遅くなる。   The maximum flow rate Vmax, the flow rate change rate ΔV, and the outflow start timing ta of these parameters change according to the temperature of the wall surface in the vicinity of the orifice 16 a that passes when the control chamber 10 flows out to the low-pressure side fuel flow path 16. It is. If the temperature of the wall surface is high, the viscosity of the fuel F on the wall surface decreases and the fuel F easily flows. Therefore, the maximum flow rate Vmax and the flow rate change rate ΔV increase, and the outflow start timing ta of the parameter is Get early. On the other hand, when the temperature of the wall surface is low, the viscosity of the fuel F on the wall surface increases and the fuel F becomes difficult to flow. Therefore, the maximum flow rate Vmax and the flow rate change rate ΔV become small, and the outflow start timing ta of the parameter is delayed. Become.

そして、制御装置40が、この補正用の物理量である、最大流量Vmax、流量変化率ΔV、または、流出開始タイミングtaのいずれか一つ又はいくつかの組み合わせに基づいて、燃料噴射装置1からの燃料噴射時におけるソレノイド式の制御弁11の通電時間(デューティ制御における指示パルス幅)である基本通電時間Tbを補正する制御を行う。   Then, the control device 40 outputs from the fuel injection device 1 based on any one or some combination of the maximum flow rate Vmax, the flow rate change rate ΔV, and the outflow start timing ta, which are physical quantities for correction. Control is performed to correct the basic energization time Tb, which is the energization time of the solenoid control valve 11 at the time of fuel injection (indicated pulse width in duty control).

つまり、燃料噴射装置1から燃料噴射をする時に、これらの補正用の物理量に基づいて、ソレノイド式の制御弁(三方弁)11の電流や電圧の大きさや通電時間などの制御量のうちの通電時間(開弁用時間)に関する補正時間Tcを算出して、この算出した補正時間Tcを基本通電時間(基本開弁用時間)Tbに加算して算出される補正後通電時間(補正後開弁時間)Td(=Tb+Tc)で、ソレノイド式の制御弁11の通電時間の制御を行う。これにより、比較的簡単なアルゴリズムで、燃料が通過する低圧側燃料流路16のオリフィス16aの近傍の壁面の温度に起因する燃料噴射装置1からの燃料噴射量のばらつきを補正することができる。   That is, when fuel is injected from the fuel injection device 1, energization among control amounts such as the current, voltage magnitude, and energization time of the solenoid type control valve (three-way valve) 11 is based on these correction physical quantities. A corrected time Tc relating to time (valve opening time) is calculated, and the calculated correction time Tc is calculated by adding the calculated correction time Tc to the basic energizing time (basic valve opening time) Tb. The energization time of the solenoid control valve 11 is controlled at time Td (= Tb + Tc). Thereby, it is possible to correct the variation in the fuel injection amount from the fuel injection device 1 due to the temperature of the wall surface in the vicinity of the orifice 16a of the low-pressure side fuel flow path 16 through which the fuel passes by a relatively simple algorithm.

なお、最大流量Vmax、流量変化率ΔV、または、流出開始タイミングtaのいずれか一つ又はいくつかの組み合わせと、補正時間Tcとの関係は予め実験等によりマップデータ形式又は関数等で制御装置40に記憶しておくことで、容易に、検査制御で検出した最大流量Vmax、流量変化率ΔV、流出開始タイミングta等から、予め設定されたマップデータや関数等から補正時間Tcを算出することができる。   Note that the relationship between the correction time Tc and any one or some combination of the maximum flow rate Vmax, the flow rate change rate ΔV, or the outflow start timing ta and the control device 40 in a map data format or a function or the like in advance through experiments or the like. Thus, the correction time Tc can be easily calculated from preset map data, function, etc. from the maximum flow rate Vmax, flow rate change rate ΔV, outflow start timing ta, etc. detected by the inspection control. it can.

上記の構成をより詳細に言い換えると、高圧側燃料流路15より燃料を流入し、低圧側燃料流路16より燃料を流出する制御室10と、この制御室10と高圧側燃料流路15または低圧側燃料流路16の連通状態を切り替えるソレノイド式の制御弁11と、制御室10の内部に備えた弾性部材12と、制御室10の下部に隣接するニードル13と、このニードル13の下部と噴射孔17に隣接して、高圧側燃料流路15と連通する燃料貯留室14とを備えている。   In other words, the control chamber 10 in which fuel flows in from the high-pressure side fuel flow path 15 and out of fuel from the low-pressure side fuel flow path 16, and the control chamber 10 and the high-pressure side fuel flow path 15 or A solenoid-type control valve 11 for switching the communication state of the low-pressure side fuel flow path 16, an elastic member 12 provided inside the control chamber 10, a needle 13 adjacent to the lower portion of the control chamber 10, and a lower portion of the needle 13 A fuel storage chamber 14 that communicates with the high-pressure side fuel flow path 15 is provided adjacent to the injection hole 17.

また、ソレノイド式の制御弁11に通電せずに、制御室10と高圧側燃料流路15が連通状態となるときには、ニードル13の上部に加わる制御室10の燃料Fの圧力及び弾性部材12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より大きくなることで、ニードル13で噴射孔17を閉塞して、燃料貯留室14に貯留した燃料を噴射孔17より外部に噴射しない。   Further, when the control chamber 10 and the high-pressure side fuel flow path 15 are in communication with each other without energizing the solenoid control valve 11, the pressure of the fuel F in the control chamber 10 applied to the upper portion of the needle 13 and the elastic member 12. Since the elastic force becomes larger than the pressure of the fuel F in the fuel storage chamber 14 applied to the lower part of the needle 13, the injection hole 17 is closed by the needle 13, and the fuel stored in the fuel storage chamber 14 is externally supplied from the injection hole 17. Do not spray.

一方、ソレノイド式の制御弁11に通電して、制御室10と低圧側燃料流路16が連通状態となるときには、制御室10より低圧側燃料流路16に燃料が流出して、ニードル13の上部に加わる制御室10の燃料Fの圧力及び弾性部材12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より小さくなることで、ニードル13を噴射孔17より離間して、燃料貯留室14に貯留した燃料Fを噴射孔17より外部に噴射する。   On the other hand, when the solenoid-type control valve 11 is energized and the control chamber 10 and the low-pressure side fuel flow path 16 are in communication with each other, fuel flows out of the control chamber 10 into the low-pressure side fuel flow path 16 and the needle 13 The pressure of the fuel F in the control chamber 10 applied to the upper portion and the elastic force of the elastic member 12 become smaller than the pressure of the fuel F in the fuel storage chamber 14 applied to the lower portion of the needle 13, thereby separating the needle 13 from the injection hole 17. Thus, the fuel F stored in the fuel storage chamber 14 is injected outside through the injection hole 17.

さらに、ソレノイド式の制御弁11を制御する制御装置40が、内燃機関の運転状態に応じて予め設定される燃料噴射装置1からの燃料噴射時より前に、ソレノイド式の制御弁11に、ニードル13が噴射孔17より離間しないように予め設定した検査時間だけ通電して、制御室10と低圧側燃料流路16を連通状態とする微小時間の検査制御を行うとともに、このときに制御室10より低圧側燃料流路16に流出した燃料Fの単位時間当たりの最大流量である最大流量Vmax、または、燃料Fの流量Vの変化を示す流量変化率ΔV、または、燃料Fの流出が開始する流出開始タイミングtaを算出して、この算出した最大流量Vmax、流量変化率ΔV、または、流出開始タイミングta等に基づいて、燃料噴射装置1からの燃料噴射時におけるソレノイド式の制御弁11の通電時間である基本通電時間を補正する制御を行う。   Further, the control device 40 for controlling the solenoid control valve 11 is connected to the solenoid control valve 11 before the fuel injection from the fuel injection device 1 set in advance according to the operating state of the internal combustion engine. 13 is energized only for a preset inspection time so as not to be separated from the injection hole 17, and inspection control is performed for a very short time in which the control chamber 10 and the low-pressure side fuel flow path 16 are in communication with each other. The maximum flow rate Vmax, which is the maximum flow rate per unit time, of the fuel F that has flowed out into the lower pressure side fuel flow path 16, or the flow rate change rate ΔV indicating the change in the flow rate V of the fuel F, or the outflow of the fuel F starts. The outflow start timing ta is calculated, and at the time of fuel injection from the fuel injection device 1 based on the calculated maximum flow rate Vmax, flow rate change rate ΔV, outflow start timing ta, or the like. Control is performed to correct the basic energization time, which is the energization time of the solenoid type control valve 11.

次に、上記の内燃機関の燃料噴射装置の構成を基にした、本発明の内燃機関の燃料噴射装置の制御方法について、図3の制御フローを参照しながら説明する。この制御フローは、内燃機関が運転状態にあるときで、予め設定した制御時間が経過する毎に上級の制御フローから呼ばれる制御フローとして示している。   Next, a control method for a fuel injection device for an internal combustion engine according to the present invention based on the configuration of the fuel injection device for the internal combustion engine will be described with reference to the control flow of FIG. This control flow is shown as a control flow called from an advanced control flow every time a preset control time elapses when the internal combustion engine is in an operating state.

図3の制御フローについて説明する。この制御フローがスタートすると、ステップS10にて、燃料噴射装置1からの燃料噴射を近時に行うか否かを判定する。すなわち、内燃機関の運転状態に応じて、燃料噴射装置1からの燃料噴射がされるタイミングが設定され、この噴射タイミングが分かるので、この燃料噴射のタイミングの直前であるか否かを判定する。燃料噴射装置1からの燃料噴射を近時に行わないと判定したとき(NO)には、リターンに進んで、本制御フローを終了する。また、燃料噴射装置1からの燃料噴射を近時に行うと判定したとき(YES)には、ステップS20に進み、ステップS20にて、ソレノイド式の制御弁11に、ニードル13が噴射孔17より離間しないように予め設定した検査時間の間だけ通電して、制御室10と低圧側燃料流路16を連通状態として、制御室10より低圧側燃料流路16に燃料Fを流出(漏出)させる検査制御を行う。また、このときに、制御室10より低圧側燃料流路16に流出する燃料Fの流量を流量計20で検出して、この検出値のデータを図4に示すような時系列データで制御装置40に記憶させる。ステップS20の制御を実施後、ステップS30に進む。   The control flow of FIG. 3 will be described. When this control flow starts, it is determined in step S10 whether or not fuel injection from the fuel injection device 1 will be performed recently. That is, the timing at which fuel is injected from the fuel injection device 1 is set according to the operating state of the internal combustion engine, and this injection timing can be known, so it is determined whether or not it is immediately before this fuel injection timing. When it is determined that fuel injection from the fuel injection device 1 will not be performed recently (NO), the process proceeds to return, and this control flow ends. When it is determined that fuel injection from the fuel injection device 1 will be performed recently (YES), the process proceeds to step S20, and the needle 13 is separated from the injection hole 17 to the solenoid control valve 11 in step S20. In such a case, the control chamber 10 and the low-pressure side fuel passage 16 are in communication with each other only during a preset inspection time so that the fuel F flows out (leaks out) from the control chamber 10 into the low-pressure side fuel passage 16. Take control. At this time, the flow rate of the fuel F flowing out from the control chamber 10 to the low pressure side fuel flow path 16 is detected by the flow meter 20, and the data of the detected value is time-series data as shown in FIG. 40. After performing the control of step S20, the process proceeds to step S30.

ステップS30にて、ステップS20で得た時系列データを基に、制御室10より低圧側燃料流路16に流出した燃料Fの単位時間当たりの最大流量である最大流量Vmax(図4のA点)、または、燃料Fの流量の変化を示す流量変化率ΔV(図4のB点)、または、燃料Fの流出が開始する流出開始タイミングta(図4のC点)を算出する。ステップS30の制御を実施後、ステップS40に進む。   In step S30, based on the time-series data obtained in step S20, the maximum flow rate Vmax (point A in FIG. 4), which is the maximum flow rate per unit time of the fuel F that has flowed out of the control chamber 10 into the low-pressure side fuel flow path 16. ) Or the flow rate change rate ΔV (point B in FIG. 4) indicating the change in the flow rate of the fuel F, or the outflow start timing ta (point C in FIG. 4) at which the outflow of the fuel F starts. After performing the control of step S30, the process proceeds to step S40.

ステップS40にて、ステップS30で算出した最大流量Vmax、流量変化率ΔV、または、流出開始タイミングtaに基づいて、燃料噴射装置1からの燃料噴射時におけるソレノイド式の制御弁11の基本通電時間Tbを補正して、補正後の補正通電時間Tdを算出する。この基本通電時間Tbを補正して補正通電時間Tdを算出する方法については、上記した方法と同様であるので、ここでは説明を省略する。ステップS40の制御を実施後、ステップS50に進む。   In step S40, based on the maximum flow rate Vmax, the flow rate change rate ΔV calculated in step S30, or the outflow start timing ta, the basic energization time Tb of the solenoid control valve 11 at the time of fuel injection from the fuel injection device 1 is determined. And the corrected energization time Td after correction is calculated. The method of correcting the basic energization time Tb and calculating the corrected energization time Td is the same as the above-described method, and thus the description thereof is omitted here. After performing the control of step S40, the process proceeds to step S50.

ステップS50にて、燃料噴射装置1からの燃料噴射を行うか否かを判定する。燃料噴射装置1から燃料噴射を行わないと判定したとき(NO)には、予め設定した制御時間を経過後に、再度ステップS50の判定を行う。また、燃料噴射装置1から燃料噴射を行うと判定したとき(YES)には、ステップS60に進み、ステップS60にて、ステップS40で算出した補正通電時間Tdだけソレノイド式の制御弁11に通電して、燃料噴射装置1から外部に燃料Fを噴射する。ステップS60の制御を実施後、リターンに進んで、本制御フローを終了する。   In step S50, it is determined whether or not to perform fuel injection from the fuel injection device 1. When it is determined that fuel injection is not performed from the fuel injection device 1 (NO), the determination in step S50 is performed again after a preset control time has elapsed. When it is determined that fuel injection is to be performed from the fuel injection device 1 (YES), the process proceeds to step S60, and in step S60, the solenoid control valve 11 is energized for the corrected energization time Td calculated in step S40. Thus, the fuel F is injected from the fuel injection device 1 to the outside. After executing the control in step S60, the process proceeds to return, and this control flow ends.

上記のように、本発明の実施の形態の内燃機関の燃料噴射制御方法は、高圧側燃料流路15より燃料を流入し、低圧側燃料流路16より燃料を流出する制御室10と、この制御室10と高圧側燃料流路15が連通する第1連通状態と、この制御室10と低圧側燃料流路16が連通する第2連通状態とを切り替えるソレノイド式の制御弁(三方弁)11を有する燃料噴射装置1を備え、制御装置40が、燃料噴射装置1のソレノイド式の制御弁(三方弁)11を、燃料を噴射しないときには第1連通状態に切り替えてニードル13で噴射孔17を閉塞し、燃料を噴射するときには第2連通状態に切り替えてニードル13を噴射孔17から離間させて噴射孔17を開通する内燃機関の燃料噴射制御方法である。   As described above, the fuel injection control method for an internal combustion engine according to the embodiment of the present invention includes a control chamber 10 that flows in fuel from the high-pressure side fuel passage 15 and flows out from the low-pressure side fuel passage 16. A solenoid-type control valve (three-way valve) 11 that switches between a first communication state in which the control chamber 10 and the high-pressure side fuel passage 15 communicate with each other and a second communication state in which the control chamber 10 and the low-pressure side fuel passage 16 communicate with each other. The control device 40 switches the solenoid control valve (three-way valve) 11 of the fuel injection device 1 to the first communication state when the fuel is not injected, and the injection hole 17 is formed by the needle 13. This is a fuel injection control method for an internal combustion engine in which the nozzle 13 is separated from the injection hole 17 and the injection hole 17 is opened by switching to the second communication state when closing and injecting fuel.

そして、この内燃機関の燃料噴射制御方法において、内燃機関の運転状態に対して、ソレノイド式の制御弁11を第1連通状態から第2連通状態に切り替えたときに、この切り替え時点からニードル13が噴射孔17から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定し、燃料噴射装置1から燃料噴射をしていないときに、ソレノイド式の制御弁11を第1連通状態から第2連通状態に切り替えて、検査時間を経過した後に、ソレノイド式の制御弁11を第2連通状態から第1連通状態に戻す検査制御を行うと共に、この検査制御の間に低圧側燃料流路16に流出した燃料Fの状態から得た補正用の物理量Vmax、ΔV、taに基づいて、燃料噴射時におけるソレノイド式の制御弁11の制御量Tbを補正する方法となる。   In this fuel injection control method for an internal combustion engine, when the solenoid control valve 11 is switched from the first communication state to the second communication state with respect to the operation state of the internal combustion engine, the needle 13 is moved from this switching time. An inspection time shorter than an injection standby time until the fuel injection is started after being separated from the injection hole 17 is set, and when the fuel injection device 1 is not injecting fuel, the solenoid control valve 11 is set to the first. After switching from the communication state to the second communication state and the inspection time has elapsed, the inspection control for returning the solenoid control valve 11 from the second communication state to the first communication state is performed. The control amount Tb of the solenoid control valve 11 at the time of fuel injection is corrected based on the correction physical amounts Vmax, ΔV, and ta obtained from the state of the fuel F flowing into the fuel flow path 16. The way.

また、検査制御時の燃料Fの状態から得た物理量を、燃料の単位時間当たりの最大流量Vmax、燃料Fの流量Vの変化を示す変化率ΔV、燃料Fの流出が開始する流出開始タイミングtaのいずれか一つ又はいくつかの組み合わせとし、燃料噴射装置1からの燃料噴射時では、これらの物理量Vmax、ΔV、taのいずれか一つ又はいくつかの組み合わせに基づいて、ソレノイド式の制御弁11の制御量のうちの通電時間(開弁用時間)に関する補正時間Tcを算出して、この算出した補正時間Tcを基本通電時間(基本開弁用時間)Tbに加算して算出される補正後通電時間(補正後開弁時間)Td(=Tb+Tc)で、ソレノイド式の制御弁11の制御を行う。   Further, the physical quantity obtained from the state of the fuel F at the time of the inspection control includes the maximum flow rate Vmax per unit time of the fuel, the change rate ΔV indicating the change in the flow rate V of the fuel F, and the outflow start timing ta at which the outflow of the fuel F starts. Any one or some combination of these, and at the time of fuel injection from the fuel injection device 1, a solenoid type control valve is based on any one or some combination of these physical quantities Vmax, ΔV, ta A correction time Tc related to the energization time (valve opening time) among the 11 control amounts is calculated, and the calculated correction time Tc is added to the basic energization time (basic valve opening time) Tb. The solenoid-type control valve 11 is controlled with a post-energization time (post-correction valve opening time) Td (= Tb + Tc).

言い換えると、この内燃機関で使用する燃料噴射装置1は、高圧側燃料流路15より燃料Fを流入し、低圧側燃料流路16より燃料Fを流出する制御室10と、この制御室10と高圧側燃料流路15または低圧側燃料流路16の連通状態を切り替えるソレノイド式の制御弁11と、制御室10の内部に備えた弾性部材12と、制御室10の下部に隣接するニードル13と、このニードル13の下部と噴射孔17に隣接して、高圧側燃料流路16と連通する燃料貯留室14とを備えた燃料噴射装置である。   In other words, the fuel injection device 1 used in the internal combustion engine includes a control chamber 10 that flows in the fuel F from the high-pressure side fuel flow path 15 and flows out of the fuel F from the low-pressure side fuel flow path 16, and the control chamber 10 A solenoid-type control valve 11 for switching the communication state of the high-pressure side fuel flow path 15 or the low-pressure side fuel flow path 16, an elastic member 12 provided in the control chamber 10, and a needle 13 adjacent to the lower part of the control chamber 10 The fuel injection device includes a fuel storage chamber 14 that is adjacent to the lower portion of the needle 13 and the injection hole 17 and communicates with the high-pressure fuel passage 16.

この燃料噴射装置1では、ソレノイド式の制御弁11に通電せずに、制御室10と高圧側燃料流路15が連通状態となるときには、ニードル13の上部に加わる制御室10の燃料Fの圧力及び弾性部材12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より大きくなることで、ニードル13で噴射孔17を閉塞して、燃料貯留室14に貯留した燃料Fを噴射孔17より外部に噴射しない状態となる。   In this fuel injection device 1, the pressure of the fuel F in the control chamber 10 applied to the upper portion of the needle 13 when the control chamber 10 and the high-pressure side fuel flow path 15 are in communication with each other without energizing the solenoid control valve 11. The elastic force of the elastic member 12 and the pressure of the fuel F in the fuel storage chamber 14 applied to the lower portion of the needle 13 causes the injection hole 17 to be closed by the needle 13 and the fuel F stored in the fuel storage chamber 14. Is not ejected to the outside through the ejection holes 17.

一方、ソレノイド式の制御弁11に通電して、制御室10と低圧側燃料流路16が連通状態となるときには、制御室10より低圧側燃料流路16に燃料Fが流出して、ニードル13の上部に加わる制御室10の燃料Fの圧力及び弾性部材12の弾性力が、ニードル13の下部に加わる燃料貯留室14の燃料Fの圧力より小さくなることで、ニードル13を噴射孔17より離間して、燃料貯留室14に貯留した燃料Fを噴射孔17より外部に噴射する状態となる。   On the other hand, when the solenoid-type control valve 11 is energized and the control chamber 10 and the low-pressure side fuel passage 16 are in communication with each other, the fuel F flows out of the control chamber 10 into the low-pressure side fuel passage 16 and the needle 13 The pressure of the fuel F in the control chamber 10 and the elastic force of the elastic member 12 applied to the upper portion of the nozzle 13 become smaller than the pressure of the fuel F in the fuel storage chamber 14 applied to the lower portion of the needle 13, thereby separating the needle 13 from the injection hole 17. As a result, the fuel F stored in the fuel storage chamber 14 is injected outside through the injection hole 17.

この燃料噴射装置1を使用する内燃機関の燃料噴射制御方法において、内燃機関の運転状態に応じて予め設定される燃料噴射装置1からの燃料噴射時より前に、ソレノイド式の制御弁11に、ニードル13が噴射孔17より離間しないように予め設定した検査時間だけ通電して、制御室10と低圧側燃料流路16を連通状態とする検査制御を行う。   In the fuel injection control method for an internal combustion engine using this fuel injection device 1, before the time of fuel injection from the fuel injection device 1 preset according to the operating state of the internal combustion engine, the solenoid control valve 11 is Energization is performed for a preset inspection time so that the needle 13 is not separated from the injection hole 17, and inspection control for bringing the control chamber 10 and the low-pressure side fuel flow path 16 into communication is performed.

それとともに、この検査制御のときに、制御室10より低圧側燃料流路16に流出した燃料Fの単位時間当たりの最大流量である最大流量Vmax、または、燃料Fの流量Vの変化を示す流量変化率ΔV、または、燃料Fの流出が開始する流出開始タイミングtaを算出して、この算出した最大流量Vmax、流量変化率ΔV、または、流出開始タイミングtaに基づいて、燃料噴射装置1からの燃料噴射時におけるソレノイド式の制御弁11の通電時間である基本通電時間Tbを補正する。   At the same time, the maximum flow rate Vmax, which is the maximum flow rate per unit time, of the fuel F that has flowed out of the control chamber 10 into the low-pressure side fuel flow path 16 during this inspection control, or the flow rate indicating the change in the flow rate V of the fuel F. The change rate ΔV or the outflow start timing ta at which the fuel F starts to flow out is calculated, and based on the calculated maximum flow rate Vmax, the flow rate change rate ΔV or the outflow start timing ta, the fuel injection device 1 The basic energization time Tb, which is the energization time of the solenoid control valve 11 at the time of fuel injection, is corrected.

上記の内燃機関、及び内燃機関の燃料噴射制御方法によれば、高圧側燃料流路15と低圧側燃料流路16とニードル13の上下を制御する制御室10の間にソレノイド式の制御弁(三方弁)11を有する燃焼噴射装置1を備えた内燃機関において、燃料噴射装置1の制御室10から低圧側燃料流路16に流出する際に通過するオリフィス16aの近傍の壁面の温度に起因する燃料噴射装置1からの燃料噴射量のばらつきを補正することができ、その結果、燃料噴射制御を高精度で行うことができるようになる。   According to the internal combustion engine and the fuel injection control method for the internal combustion engine, a solenoid type control valve (the control valve 10 between the high pressure side fuel flow path 15, the low pressure side fuel flow path 16, and the needle 13 is controlled. In the internal combustion engine provided with the combustion injection device 1 having the three-way valve 11, this is caused by the temperature of the wall surface in the vicinity of the orifice 16 a that passes when flowing out from the control chamber 10 of the fuel injection device 1 to the low pressure side fuel flow path 16. Variations in the fuel injection amount from the fuel injection device 1 can be corrected, and as a result, fuel injection control can be performed with high accuracy.

1 内燃機関の燃料噴射装置
10 制御室
11 ソレノイド式の制御弁
11a ソレノイド
12 付勢バネ(弾性部材)
13 ニードル
14 燃料貯留室
15 高圧側燃料流路
16 低圧側燃料流路
16a オリフィス
17 噴射孔
20 流量計
40 制御装置
F 燃料
ta 流出開始タイミング
Tb 基本通電時間(基本開弁用時間)
Tc 補正時間
Td 補正通電時間(補正後開弁時間)
Vmax 最大流量
ΔV 流量変化率
DESCRIPTION OF SYMBOLS 1 Fuel injection device 10 of internal combustion engine Control chamber 11 Solenoid control valve 11a Solenoid 12 Energizing spring (elastic member)
13 Needle 14 Fuel storage chamber 15 High pressure side fuel flow path 16 Low pressure side fuel flow path 16a Orifice 17 Injection hole 20 Flow meter 40 Control device F Fuel ta Outflow start timing Tb Basic energization time (basic valve opening time)
Tc correction time Td correction energization time (post-correction valve opening time)
Vmax Maximum flow rate ΔV Flow rate change rate

Claims (4)

高圧側燃料流路より燃料を流入し、低圧側燃料流路より燃料を流出する制御室と、該制御室と前記高圧側燃料流路が連通する第1連通状態と、該制御室と前記低圧側燃料流路が連通する第2連通状態とを切り替える三方弁を有する燃料噴射装置を備え、制御装置が、前記燃料噴射装置の前記三方弁を、燃料を噴射しないときには第1連通状態に切り替えてニードルで噴射孔を閉塞し、燃料を噴射するときには第2連通状態に切り替えて前記ニードルを前記噴射孔から離間させて前記噴射孔を開通する内燃機関において、
前記制御装置が、
内燃機関の運転状態に対して、前記三方弁を第1連通状態から第2連通状態に切り替えたときに、この切り替え時点から前記ニードルが前記噴射孔から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定し、
前記燃料噴射装置から燃料噴射をしていないときに、前記三方弁を第1連通状態から第2連通状態に切り替えて、前記検査時間を経過した後に、前記三方弁を第2連通状態から第1連通状態に戻す検査制御を行うと共に、この検査制御の間に前記低圧側燃料流路に流出した燃料の状態から得た補正用の物理量に基づいて、燃料噴射時における前記三方弁の制御量を補正する制御を行うように構成されていることを特徴とする内燃機関。
A control chamber in which fuel flows in from the high pressure side fuel flow path and fuel flows out from the low pressure side fuel flow path, a first communication state in which the control chamber and the high pressure side fuel flow path communicate with each other, the control chamber and the low pressure A fuel injection device having a three-way valve that switches between the second communication state in which the side fuel flow path communicates, and the control device switches the three-way valve of the fuel injection device to the first communication state when fuel is not injected. In an internal combustion engine that closes an injection hole with a needle and switches to a second communication state when injecting fuel, separates the needle from the injection hole and opens the injection hole.
The control device is
When the three-way valve is switched from the first communication state to the second communication state with respect to the operating state of the internal combustion engine, from this switching time until the needle is separated from the injection hole until fuel injection is started. Set an inspection time shorter than the injection standby time,
When the fuel injection device is not injecting fuel, the three-way valve is switched from the first communication state to the second communication state, and after the inspection time has elapsed, the three-way valve is moved from the second communication state to the first communication state. In addition to performing the inspection control to return to the communication state, the control amount of the three-way valve at the time of fuel injection is determined based on the physical quantity for correction obtained from the state of the fuel that has flowed into the low-pressure side fuel flow path during the inspection control. An internal combustion engine configured to perform correction control.
前記制御装置が、
前記検査制御時の燃料の状態から得た物理量を、燃料の単位時間当たりの最大流量、燃料の流量の変化率、または、燃料の流出が開始するタイミングのいずれか一つ又はいくつかの組み合わせとし、
前記燃料噴射装置からの燃料噴射時では、これらの物理量に基づいて、前記三方弁の制御量のうちの開弁用時間に関する補正時間を算出して、この算出した補正時間を基本開弁用時間に加算して算出される補正後開弁時間で、前記三方弁の制御を行うように構成されている請求項1に記載の内燃機関。
The control device is
The physical quantity obtained from the state of the fuel at the time of the inspection control is any one or some combination of the maximum flow rate per unit time of the fuel, the rate of change of the flow rate of the fuel, or the timing at which the outflow of fuel starts. ,
At the time of fuel injection from the fuel injection device, based on these physical quantities, a correction time related to the valve opening time of the control amount of the three-way valve is calculated, and the calculated correction time is used as the basic valve opening time. 2. The internal combustion engine according to claim 1, wherein the three-way valve is controlled with a corrected valve opening time calculated by adding to the valve.
高圧側燃料流路より燃料を流入し、低圧側燃料流路より燃料を流出する制御室と、該制御室と前記高圧側燃料流路が連通する第1連通状態と、該制御室と前記低圧側燃料流路が連通する第2連通状態とを切り替える三方弁を有する燃料噴射装置を備え、制御装置が、前記燃料噴射装置の前記三方弁を、燃料を噴射しないときには第1連通状態に切り替えてニードルで噴射孔を閉塞し、燃料を噴射するときには第2連通状態に切り替えて前記ニードルを前記噴射孔から離間させて前記噴射孔を開通する内燃機関の燃料噴射制御方法において、
内燃機関の運転状態に対して、前記三方弁を第1連通状態から第2連通状態に切り替えたときに、この切り替え時点から前記ニードルが前記噴射孔から離間して燃料噴射が開始されるまでの噴射待機時間よりも短い検査時間を設定し、
前記燃料噴射装置から燃料噴射をしていないときに、前記三方弁を第1連通状態から第2連通状態に切り替えて、前記検査時間を経過した後に、前記三方弁を第2連通状態から第1連通状態に戻す検査制御を行うと共に、この検査制御の間に前記低圧側燃料流路に流出した燃料の状態から得た補正用の物理量に基づいて、燃料噴射時における前記三方弁の制御量を補正することを特徴とする内燃機関の燃料噴射制御方法。
A control chamber in which fuel flows in from the high pressure side fuel flow path and fuel flows out from the low pressure side fuel flow path, a first communication state in which the control chamber and the high pressure side fuel flow path communicate with each other, the control chamber and the low pressure A fuel injection device having a three-way valve that switches between the second communication state in which the side fuel flow path communicates, and the control device switches the three-way valve of the fuel injection device to the first communication state when fuel is not injected. In a fuel injection control method for an internal combustion engine that closes an injection hole with a needle and switches to a second communication state when fuel is injected and separates the needle from the injection hole to open the injection hole.
When the three-way valve is switched from the first communication state to the second communication state with respect to the operating state of the internal combustion engine, from this switching time until the needle is separated from the injection hole until fuel injection is started. Set an inspection time shorter than the injection standby time,
When the fuel injection device is not injecting fuel, the three-way valve is switched from the first communication state to the second communication state, and after the inspection time has elapsed, the three-way valve is moved from the second communication state to the first communication state. In addition to performing the inspection control to return to the communication state, the control amount of the three-way valve at the time of fuel injection is determined based on the physical quantity for correction obtained from the state of the fuel that has flowed into the low-pressure side fuel flow path during the inspection control. A fuel injection control method for an internal combustion engine, wherein the correction is performed.
前記検査制御時の燃料の状態から得た物理量を、燃料の単位時間当たりの最大流量、燃料の流量の変化率、または、燃料の流出が開始するタイミングのいずれか一つ又はいくつかの組み合わせとし、
前記燃料噴射装置からの燃料噴射時では、これらの物理量に基づいて、前記三方弁の制御量のうちの開弁用時間に関する補正時間を算出して、この算出した補正時間を基本開弁用時間に加算して算出される補正後開弁時間で、前記三方弁の制御を行う請求項3に記載の内燃機関の燃料噴射制御方法。
The physical quantity obtained from the state of the fuel at the time of the inspection control is any one or some combination of the maximum flow rate per unit time of the fuel, the rate of change of the flow rate of the fuel, or the timing at which the outflow of fuel starts. ,
At the time of fuel injection from the fuel injection device, based on these physical quantities, a correction time related to the valve opening time of the control amount of the three-way valve is calculated, and the calculated correction time is used as the basic valve opening time. The fuel injection control method for an internal combustion engine according to claim 3, wherein the three-way valve is controlled with a post-correction valve opening time calculated by adding to the value.
JP2016028001A 2016-02-17 2016-02-17 Internal combustion engine and fuel injection control method for internal combustion engine Active JP6686508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028001A JP6686508B2 (en) 2016-02-17 2016-02-17 Internal combustion engine and fuel injection control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028001A JP6686508B2 (en) 2016-02-17 2016-02-17 Internal combustion engine and fuel injection control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017145756A true JP2017145756A (en) 2017-08-24
JP6686508B2 JP6686508B2 (en) 2020-04-22

Family

ID=59682018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028001A Active JP6686508B2 (en) 2016-02-17 2016-02-17 Internal combustion engine and fuel injection control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6686508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765550B2 (en) 2017-07-27 2023-09-19 Fujifilm Business Innovation Corp. Information processing system, information processing apparatus, and non-transitory computer readable medium for security alert notification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765550B2 (en) 2017-07-27 2023-09-19 Fujifilm Business Innovation Corp. Information processing system, information processing apparatus, and non-transitory computer readable medium for security alert notification

Also Published As

Publication number Publication date
JP6686508B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
US7305971B2 (en) Fuel injection system ensuring operation in event of unusual condition
EP2077383B1 (en) Fuel injection control apparatus for internal combustion engine
US20120185147A1 (en) Method and device for determining a fuel pressure present at a direct injection valve
JP2002070683A (en) Method for regulating control voltage for piezoelectric actuator of injection valve
KR20130119934A (en) Method for determining the opening point in time of a fuel injector
JP2009074373A (en) Fuel injection controller of internal combustion engine
JP2005325838A (en) Method for determining position of movable shutting-off element of injection valve
US20110079199A1 (en) Method for detecting deviations of injection quantities and for correcting the injection quantity, and injection system
JP4207010B2 (en) Fuel injection device
JP3505453B2 (en) Fuel injection control device
JP2019210933A (en) Method for determining closing point of electromagnetic fuel injector
RU2015106128A (en) METHOD, ENGINE SYSTEM AND METHOD FOR ENGINE (OPTIONS)
JP4363280B2 (en) Fuel injection device
JP2018112120A (en) Fuel injection quantity control device
CN102803689B (en) The determination promoting delay of magnet valve
JP5856384B2 (en) Fuel supply system and fuel injection control device
JP6686508B2 (en) Internal combustion engine and fuel injection control method for internal combustion engine
KR101664626B1 (en) Method and apparatus for controlling injector drive
JP2010216383A (en) Anomaly determination device for fuel injection controller
JP2014118952A (en) Fuel injection device
JP6204878B2 (en) Internal combustion engine
JP2014139426A (en) Fuel injection device
JP4130840B2 (en) Method and apparatus for determining the charging edge of a piezoelectric actuator
KR101593427B1 (en) Apparatus and method for injector opening time decision and compensation
JP6328067B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150