JP2017142263A - Radioactive contaminant storage method - Google Patents

Radioactive contaminant storage method Download PDF

Info

Publication number
JP2017142263A
JP2017142263A JP2017081429A JP2017081429A JP2017142263A JP 2017142263 A JP2017142263 A JP 2017142263A JP 2017081429 A JP2017081429 A JP 2017081429A JP 2017081429 A JP2017081429 A JP 2017081429A JP 2017142263 A JP2017142263 A JP 2017142263A
Authority
JP
Japan
Prior art keywords
radioactive
container
bottomed cylindrical
cylindrical member
radioactive contaminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017081429A
Other languages
Japanese (ja)
Other versions
JP2017142263A5 (en
Inventor
金尾 茂樹
Shigeki Kanao
茂樹 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanaflex Corp Co Ltd
Original Assignee
Kanaflex Corp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanaflex Corp Co Ltd filed Critical Kanaflex Corp Co Ltd
Publication of JP2017142263A publication Critical patent/JP2017142263A/en
Publication of JP2017142263A5 publication Critical patent/JP2017142263A5/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive contaminant storage method that can reduce the leak of radiation, can prevent the leak of a radioactive material, and enables mass production at a low cost.SOLUTION: In a bottomed cylindrical member 2 made of concrete porous molded body that includes reinforcement fiber and air bubbles in a dispersion state and has a specific gravity in a range of 0.8-1.5, a radioactive contaminant is stored directly or in an accommodated state in a flexible container bag without using a metal drum. In the state in which an opening in the upper end of the bottomed cylindrical member is closed by a lid member 3 made of a concrete porous molded body, the radioactive contaminant is statically stored in a temporary yard or an intermediate storage facility.SELECTED DRAWING: Figure 1

Description

本発明は、原子力発電所事故に伴って大気中に放散された放射性物質で汚染された放射性汚染物を保管する放射性汚染物保管方法に関するものである。   The present invention relates to a radioactive contaminant storage method for storing radioactive contaminants contaminated with radioactive materials diffused into the atmosphere due to a nuclear power plant accident.

福島で発生した原子力発電所での事故後、放射性物質を含む汚染土壌や汚染汚泥は、ポリエチレンやポリプロピレン等の糸で織られたシートにより構成されるフレキシブルコンテナバッグ(以下、フレコンと略記する)に詰められて、福島県等の仮置場に運搬され保管されている。   After an accident at a nuclear power plant in Fukushima, contaminated soil and contaminated sludge containing radioactive materials are stored in a flexible container bag (hereinafter abbreviated as FIBC) made up of sheets woven from yarn such as polyethylene and polypropylene. Packed and transported to a temporary storage site in Fukushima Prefecture.

しかしながら、上記フレコンからの空間線量を測定すると汚染汚泥からは0.15〜2.5μSV/h、汚染土壌からは0.20〜2.5μSV/hと高い値の放射線が検出され問題となっている。   However, when the air dose from the flexible container is measured, high values of radiation of 0.15 to 2.5 μSV / h are detected from the contaminated sludge and 0.20 to 2.5 μSV / h from the contaminated soil. Yes.

放射線の漏出を低減させることができる容器として、例えば鉄製のドラム缶にコンクリート製容器を内張りした放射性廃棄物充填容器が知られている。この種のコンクリート製容器は、セメント、細骨材、粗骨材、核種吸着補強材から構成されており、核種吸着材としては放射性核種を吸着し得る繊維状活性炭が用いられている(例えば、特許文献1参照)。   As a container capable of reducing radiation leakage, for example, a radioactive waste filling container in which a concrete container is lined on an iron drum can is known. This type of concrete container is composed of cement, fine aggregate, coarse aggregate, and nuclide adsorption reinforcement, and fibrous activated carbon capable of adsorbing radionuclides is used as the nuclide adsorbent (for example, Patent Document 1).

特開平10−153690号公報JP-A-10-153690

しかしながら、上記ドラム缶にコンクリート製容器を内張りした従来の放射性廃棄物充填容器では、重量が重く運搬が容易でない。また、ドラム缶は大量生産に適しているとはいえず、福島等で大量に発生した汚染汚泥や汚染土壌、又は放射性物質を含む焼却灰を格納するだけの格納容器数を早期に調達しきれないという問題がある。   However, the conventional radioactive waste filling container in which a concrete container is lined on the drum can is heavy and not easily transported. Also, drums are not suitable for mass production, and it is not possible to procure early enough containers to store contaminated sludge and soil generated in large quantities in Fukushima, etc., or incinerated ash containing radioactive materials. There is a problem.

環境省は、汚染土壌や汚染汚泥等が詰められたフレコンを仮置場に置いた後、その上に盛土をして該盛土をカバーで覆い、このカバーの上に土嚢を積載することを構想している。また、環境省は上記フレコンを仮置場で3年程度保管した後、中間貯蔵施設に移動させて約30年間保管することを考えている。   The Ministry of the Environment envisioned placing a flexible container filled with contaminated soil, contaminated sludge, etc. in a temporary storage area, embanking it, covering the embankment with a cover, and loading a sandbag on the cover. ing. The Ministry of the Environment is considering storing the flexible container in a temporary storage area for about three years and then moving it to an intermediate storage facility for about 30 years.

しかし、被災地では汚染土壌等が詰められたフレコンが仮置場の敷地にそのままの状態で置かれているのが現実である。フレコンは耐久性がなく、しかも紫外線に弱いことから、僅か数ヶ月で劣化して破断する場合がある。その為、破断したフレコンから汚染土壌等が漏出し周囲の土壌を二次汚染するので、汚染土壌が却って増加してしまう問題がある。また、たとえフレコンが破断に至らずとも、雨水等の浸入及び浸出によって二次的な土壌汚染を防ぐことができない。   However, in reality, flexible containers filled with contaminated soil and the like are placed in the temporary storage site as they are. Since FIBC is not durable and is sensitive to ultraviolet rays, it may deteriorate and break in just a few months. Therefore, the contaminated soil leaks from the broken flexible container, and the surrounding soil is secondarily contaminated. Therefore, there is a problem that the contaminated soil increases on the contrary. Moreover, even if the flexible container does not break, secondary soil contamination cannot be prevented by infiltration and leaching of rainwater or the like.

また、仮置場は初期の状態に復元して地元の自治体に返却する必要があるが、上記のように汚染土壌量が増えるため、仮置場を初期状態に戻すのが難しくなる。さらに、ウクライナのチェルノブイリ自治体や米国のネバダ核実験場等の調査によると、土壌表面に沈着した放射性セシウムは、長期間を経た後でもそのほとんどが地表面から10〜30cm以内に留まっていることが報告されており、掘り起こすべき汚染土壌が大量に増加しているのが現状であるといえる。このような状況下、汚染土壌や汚染汚泥等の放射性汚染物を保管する放射性汚染物保管方法の開発が急務となっている。   In addition, the temporary storage site needs to be restored to the initial state and returned to the local government. However, since the amount of contaminated soil increases as described above, it is difficult to return the temporary storage site to the initial state. Furthermore, according to surveys by the Chernobyl municipality in Ukraine and the Nevada Nuclear Test Site in the United States, most of the radioactive cesium deposited on the soil surface remains within 10-30 cm from the ground surface even after a long period of time. It is reported that the amount of contaminated soil that must be excavated has increased in large quantities. Under such circumstances, there is an urgent need to develop a radioactive contaminant storage method for storing radioactive contaminants such as contaminated soil and contaminated sludge.

本発明は、以上のような従来の放射性汚染物保管方法における課題を考慮してなされたものであり、放射線の漏出を低減できると共に、放射性物質の漏出を防止でき、しかも低コストで大量生産が可能な、そして軽量で取り扱い性に優れた放射性汚染物保管方法を提供するものである。   The present invention has been made in consideration of the problems in the conventional method for storing radioactive contaminants as described above, and can reduce the leakage of radiation, prevent the leakage of radioactive material, and can be mass-produced at low cost. It is possible to provide a method for storing radioactive contaminants that is light, lightweight, and easy to handle.

本発明に係る放射性汚染物保管方法は、原子力発電所事故に伴って大気中に放散された放射性物質で汚染された放射性汚染物を保管する放射性汚染物保管方法であって、前記放射性汚染物を、補強繊維及び気泡を分散状態で含み、比重が0.8〜1.5の範囲内であるコンクリート製多孔質成形体からなる有底筒部材に、ドラム缶を介することなく、直接、又はフレキシブルコンテナバッグに収容した状態で格納し、前記有底筒部材の上端部の開口を前記コンクリート製多孔質成形体からなる蓋部材によって閉じた状態で、前記有底筒部材を仮置場や中間貯蔵施設に静置することによって前記放射性汚染物を保管することを要旨とする。   A radioactive contaminant storage method according to the present invention is a radioactive contaminant storage method for storing radioactive contaminants contaminated with radioactive materials released into the atmosphere in the event of a nuclear power plant accident. In addition, the bottomed cylindrical member made of a concrete porous molded body containing a reinforcing fiber and air bubbles in a dispersed state and having a specific gravity in the range of 0.8 to 1.5, directly or without a drum can, or a flexible container The bottomed cylindrical member is stored in a bag, and the bottomed cylindrical member is closed in a temporary storage site or an intermediate storage facility in a state where the opening at the upper end of the bottomed cylindrical member is closed by a lid member made of the concrete porous molded body. The gist is to store the radioactive contaminants by standing still.

本発明において、有底筒部材の厚みが30〜70mmであることが好ましい。   In this invention, it is preferable that the thickness of a bottomed cylinder member is 30-70 mm.

本発明に係る放射性汚染物保管方法によれば、汚染汚泥や汚染土壌、又は放射性物質を含む焼却灰を格納容器内に格納することができ、これらを格納しても格納容器であるセメント硬化物製の有底筒部材及び蓋部材による放射性物質の吸着・遮蔽作用によって、容器から放射性物質が漏出することを低減することができる。   According to the method for storing radioactive contaminants according to the present invention, contaminated sludge, contaminated soil, or incinerated ash containing radioactive substances can be stored in a storage container. Leakage of radioactive material from the container can be reduced by the adsorption / shielding action of the radioactive material by the bottomed cylindrical member and the lid member.

また、放射性汚染物格納容器の容器本体としてセメント硬化物を採用することによって、容器本体がドラム缶とコンクリート製容器である従来の格納容器よりも軽量化かつ低コスト化でき、運搬が容易となる。   Moreover, by adopting cement hardened material as the container main body of the radioactive contaminant storage container, the container main body can be reduced in weight and cost as compared with the conventional storage container in which the container main body is a drum can and a concrete container, and transportation is facilitated.

また、ドラム缶にコンクリート製容器を内張りした従来の格納容器とは違い、本発明に係る放射性汚染物保管方法の容器は製造し易く大量生産に適している。   In addition, unlike a conventional containment container in which a concrete container is lined on a drum can, the container of the radioactive contaminant storage method according to the present invention is easy to manufacture and suitable for mass production.

さらに環境省の構想に従えば、仮に汚染土壌等を格納した容器を仮置場で3年程度、更に中間貯蔵施設で約30年間保管することにより、約33年後の放射線量の数値が十分に減衰していれば、この土壌を自然界に戻すことが可能になる。その際に、従来の有鉄筋の格納容器では、これを重機などで破壊することが困難であり、また破壊できたとしても大量の金属廃棄物が生じてしまう。一方、本発明に係る放射性汚染物保管方法の格納容器はセメント硬化物製であるので、土壌を格納したまま重機などで粉砕することが容易であり、金属廃棄物を生じさせることがない。従って、粉砕することができずに格納容器自体が大型の放射性廃棄物となることを防ぐことができる。   Furthermore, according to the concept of the Ministry of the Environment, if a container storing contaminated soil is stored in a temporary storage area for about 3 years and further in an intermediate storage facility for about 30 years, the radiation dose value after about 33 years is sufficient. If it has decayed, this soil can be returned to nature. At that time, it is difficult to destroy the conventional barbed containment container with a heavy machine or the like, and even if it can be destroyed, a large amount of metal waste is generated. On the other hand, since the storage container of the radioactive contaminant storage method according to the present invention is made of hardened cement, it can be easily pulverized with a heavy machine or the like while storing the soil, and metal waste is not generated. Accordingly, it is possible to prevent the containment vessel itself from becoming a large radioactive waste without being pulverized.

本発明の実施形態に係る放射性汚染物格納容器の構成を示す斜視図である。It is a perspective view which shows the structure of the radioactive contaminant storage container which concerns on embodiment of this invention. 放射性汚染物格納容器の縦断面図である。It is a longitudinal cross-sectional view of a radioactive contaminant storage container. 放射性汚染物格納容器を多段に積載した状態を示す説明図である。It is explanatory drawing which shows the state which loaded the radioactive contaminant storage container in multiple stages. 放射性汚染物格納容器の他の構成を示す斜視図である。It is a perspective view which shows the other structure of a radioactive contaminant storage container. 他の実施形態に係る放射性汚染物格納容器を示す斜視図である。It is a perspective view which shows the radioactive contaminant storage container which concerns on other embodiment. 蓋部材を部分的に示す斜視図である。It is a perspective view which shows a cover member partially. 搬送補助部材の詳細な構成を示す図である。It is a figure which shows the detailed structure of a conveyance auxiliary member. (a),(b)は図7の搬送補助部材の回動方向を示す図である。(A), (b) is a figure which shows the rotation direction of the conveyance auxiliary member of FIG. 容器からの距離と線量との関係を示したグラフである。It is the graph which showed the relationship between the distance from a container, and a dose. 容器からの距離と遮蔽率との関係を示したグラフである。It is the graph which showed the relationship between the distance from a container, and a shielding rate.

以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。
1.放射性汚染物格納容器の構成
図1と図2において、本発明に係る放射性汚染物保管方法の放射性汚染物格納容器(以下、単に容器と略記することがある)1は、セメント硬化物製の有底筒部材2と、この有底筒部材2の上端部開口を閉じることができるセメント硬化物製の蓋部材3とを備えている。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
1. Configuration of Radioactive Containment Container In FIGS. 1 and 2, the radioactive contaminant storage container 1 (hereinafter simply abbreviated as a container) 1 of the radioactive contaminant storage method according to the present invention is made of cement hardened material. A bottom cylinder member 2 and a lid member 3 made of a hardened cement material capable of closing the upper end opening of the bottomed cylinder member 2 are provided.

有底筒部材2の中に放射性廃棄物や放射性物質を含む土壌、汚泥等の放射性汚染物、又は放射性物質を含む焼却灰を格納した後、蓋部材3で有底筒部材2の上端部開口を閉じる構成となっている。   After the bottomed cylindrical member 2 stores radioactive waste or radioactive material-containing soil, sludge or other radioactive contaminants, or incinerated ash containing radioactive material, the lid member 3 opens the upper end of the bottomed cylindrical member 2. Is configured to close.

蓋部材3には、金属製の複数の運搬補助具(フック)4を取り付けることができる。または、有底筒部材2の一側面及びこの反対側側面に、複数の運搬補助具4を取り付けることができる。勿論これらの両方に運搬補助具4を取り付けることもできる。これらの運搬補助具4にワイヤー等を取り付け、該ワイヤーをクレーン等の重機で吊り上げることで容器1を容易に運搬することができる。なお、運搬補助具としては、図1に示すようなフックの他にも、有底筒部材2の下面に断面L字型の複数の長尺部材を間隔を空けて設けることもできる。この場合、フォークリフトのフォークを上記長尺部材の間に挿入して運搬することができるので運搬性が向上する。   A plurality of metal transportation aids (hooks) 4 can be attached to the lid member 3. Alternatively, a plurality of transportation aids 4 can be attached to one side surface of the bottomed tubular member 2 and the opposite side surface thereof. Of course, the transport aid 4 can be attached to both of them. The container 1 can be easily transported by attaching a wire or the like to these transport aids 4 and lifting the wire with a heavy machine such as a crane. In addition to the hook as shown in FIG. 1, a plurality of long members having an L-shaped cross section can be provided on the lower surface of the bottomed tubular member 2 at intervals as the transport aid. In this case, since the fork of the forklift can be inserted and transported between the long members, the transportability is improved.

放射性汚染物格納容器1は、設計値の一例として、内寸1.2m×1.2m×0.91m、重量約800kg(有底筒部材:650kg、蓋部材:150kg)、内容積1.2mとすることができる。また、放射性汚染物格納容器1の厚みは例えば30mm〜70mmとすることができる。なお、蓋部材3の厚みは例えば80mmとすることができる。 As an example of design values, the radioactive contaminant storage container 1 has an internal size of 1.2 m × 1.2 m × 0.91 m, a weight of about 800 kg (bottomed tubular member: 650 kg, lid member: 150 kg), and an internal volume of 1.2 m. 3 can be used. Moreover, the thickness of the radioactive contaminant storage container 1 can be 30 mm-70 mm, for example. In addition, the thickness of the cover member 3 can be 80 mm, for example.

有底筒部材2の4側面には、複数の凹部2aを設けることができる。これにより、有底筒部材2の軽量化を図ることができる。また、容器1内の汚泥等から発生するメタンガスを放出するためのガス抜き孔を設けることができる。   A plurality of recesses 2 a can be provided on the four side surfaces of the bottomed cylindrical member 2. Thereby, weight reduction of the bottomed cylindrical member 2 can be achieved. Moreover, the vent hole for discharging | emitting methane gas generated from the sludge etc. in the container 1 can be provided.

2.放射性汚染物格納容器の製法
本発明において放射性汚染物格納容器1の有底筒部材2の製造方法は次の通りである。
2. Production Method of Radioactive Containment Container In the present invention, the manufacturing method of the bottomed cylindrical member 2 of the radioactive contaminant storage container 1 is as follows.

放射性汚染物格納容器1はその内部に補強繊維と多数の気泡が分散されて多孔質をなしており、まずセメント、水、減水剤(必要に応じて)、及び補強繊維を混合することでセメント混合物を得る。   The radioactive contaminant storage container 1 has a porous structure in which reinforcing fibers and a large number of air bubbles are dispersed therein. First, cement, water, a water reducing agent (if necessary), and reinforcing fibers are mixed to form a cement. A mixture is obtained.

次に、起泡剤にコンプレッサーからのエアーを導入し、所定の倍率、例えば10〜30倍程度に発泡した気泡を作る。この気泡を、上記セメント混合物に加えて撹拌し発泡セメントを得る。なお、撹拌の途中でセメント混合物の比重を適宜測定し、目標値に近づけるよう、気泡を更に追加することもできる。なお、起泡剤は特に限定されず、セメント用、コンクリート用の起泡剤、例えばタンパク質系、界面活性剤系、樹脂系等の公知の各種の起泡剤を使用することができる。更に、上記起泡剤とともに、アルミニウム粉等の金属系発泡剤を使用して気泡を効率よく生成することもできる。起泡剤の添加量や添加方法は特に限定されないが、通常はセメント100重量部に対して0.1〜12重量部の範囲であり、放射性汚染物格納容器1の比重が0.8〜1.5となるように調整する。これにより、極端な重量アップを回避しつつ容器1の強度を担保でき、重量アップの回避と強度担保とのバランスを保つことができる。   Next, air from the compressor is introduced into the foaming agent to create bubbles foamed at a predetermined magnification, for example, about 10 to 30 times. The bubbles are added to the cement mixture and stirred to obtain a foamed cement. In addition, air bubbles can be further added so that the specific gravity of the cement mixture is appropriately measured in the middle of stirring and approaches the target value. The foaming agent is not particularly limited, and various foaming agents known in the art, such as cement and concrete foaming agents, such as protein-based, surfactant-based, and resin-based foaming agents can be used. Furthermore, a bubble can also be efficiently produced | generated using metallic foaming agents, such as aluminum powder, with the said foaming agent. Although the addition amount and addition method of a foaming agent are not specifically limited, Usually, it is the range of 0.1-12 weight part with respect to 100 weight part of cement, and the specific gravity of the radioactive contaminant storage container 1 is 0.8-1. Adjust to .5. Thereby, the strength of the container 1 can be ensured while avoiding an extreme weight increase, and the balance between the avoidance of weight increase and the strength guarantee can be maintained.

次に、上記発泡セメントを型枠に充填し、養生固化させる。なお、養生は通常の養生でもよいし、蒸気養生でもよいし、両者を組み合わせて用いることもできる。   Next, the foamed cement is filled in a mold and cured and solidified. The curing may be normal curing, steam curing, or a combination of both.

上記セメントの種類としては特に限定されず、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント等、各種セメントを使用できる。   The type of cement is not particularly limited, and various cements such as ordinary Portland cement, early-strength Portland cement, and ultra-early-strength Portland cement can be used.

セメントと水との配合割合は、セメント100重量部に対して水が20〜100重量部配合することが好ましいが、より好ましい水の配合割合は20〜50重量部の範囲である。水の配合割合が多すぎると放射性汚染物格納容器1の強度が低下する傾向があり、水が少なすぎると成形時に発泡セメントの流動性が低下する傾向があるためである。   The blending ratio of cement and water is preferably 20 to 100 parts by weight of water with respect to 100 parts by weight of cement, but the more preferable blending ratio of water is in the range of 20 to 50 parts by weight. This is because if the water content is too high, the strength of the radioactive contaminant storage container 1 tends to decrease, and if the water content is too low, the fluidity of the foamed cement tends to decrease during molding.

補強繊維としては、ポリビニルアルコール繊維(ビニロン繊維)、ポリプロピレン繊維やポリエチレン繊維等のポリオレフィン系繊維、アラミド繊維、炭素繊維、鋼繊維、ガラス繊維等が挙げられる。   Examples of reinforcing fibers include polyvinyl alcohol fibers (vinylon fibers), polyolefin fibers such as polypropylene fibers and polyethylene fibers, aramid fibers, carbon fibers, steel fibers, and glass fibers.

補強繊維の繊維長は特に限定されないが、4〜35mmの範囲が好ましい。補強繊維の繊維長が4mm未満では補強効果が不足する傾向がみられる。補強繊維の繊維長が長い方が補強効果の点では有利であるが、その一方で、繊維長が長くなるほど分散性が低下し、放射性汚染物格納容器1内部で補強繊維が偏在し、却って該容器1の強度を低下させることがある。補強繊維の太さについては特に限定されないが、10μm〜100μmの範囲のものを使用することができる。なお、セメント混練時に補強繊維を均一に撹拌するだけで、補強繊維が互いに絡み合った補強構造が得られバラツキのない強度が得られる。   The fiber length of the reinforcing fiber is not particularly limited, but is preferably in the range of 4 to 35 mm. If the fiber length of the reinforcing fiber is less than 4 mm, the reinforcing effect tends to be insufficient. The longer the fiber length of the reinforcing fiber is advantageous in terms of the reinforcing effect. On the other hand, the longer the fiber length is, the lower the dispersibility becomes, and the reinforcing fiber is unevenly distributed inside the radioactive contaminant storage container 1. The strength of the container 1 may be reduced. The thickness of the reinforcing fiber is not particularly limited, but a fiber in the range of 10 μm to 100 μm can be used. It should be noted that a reinforcing structure in which reinforcing fibers are entangled with each other can be obtained simply by stirring the reinforcing fibers uniformly during cement kneading, and strength without variation can be obtained.

補強繊維の配合量は、セメント100重量部に対して0.5〜5重量部とすることが好ましい。補強繊維の配合量が少ないと、補強効果も低く、放射性汚染物格納容器1の強度も低くなる。補強繊維の配合量が多いほど補強効果の点では有利になるが、過剰になると分散性が悪くなり、補強繊維が偏在して、該容器1の強度が局部的に低下し、却って該容器1の強度を低下させる虞がある。このような観点から、補強繊維の配合量のより好ましい範囲は、セメント100重量部に対して0.5〜3重量部である。   The compounding amount of the reinforcing fiber is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of cement. When the amount of the reinforcing fiber is small, the reinforcing effect is low and the strength of the radioactive contaminant storage container 1 is also low. The larger the amount of the reinforcing fiber, the more advantageous in terms of reinforcing effect. However, when the amount is excessive, the dispersibility deteriorates, the reinforcing fibers are unevenly distributed, and the strength of the container 1 is locally reduced. There is a risk of lowering the strength. From such a viewpoint, the more preferable range of the compounding amount of the reinforcing fiber is 0.5 to 3 parts by weight with respect to 100 parts by weight of cement.

本発明の放射性汚染物保管方法によれば、補強繊維を含んだセメント硬化物製の有底筒部材2及び蓋部材3による放射性物質の遮蔽作用によって、格納した汚染汚泥や汚染土壌、又は焼却灰からの放射性核種が外へ漏出することを低減することができる。   According to the radioactive contaminant storage method of the present invention, the stored contaminated sludge, contaminated soil, or incinerated ash by the shielding action of the radioactive material by the bottomed cylindrical member 2 and the lid member 3 made of hardened cement containing reinforcing fibers. Leakage of radionuclides from can be reduced.

また、放射性汚染物格納容器の容器本体としてセメント硬化物を採用することによって、容器本体がドラム缶とコンクリート製容器である従来の格納容器よりも軽量化でき、運搬が容易となる。   Further, by adopting a cement hardened material as the container main body of the radioactive contaminant storage container, the container main body can be lighter than the conventional storage container which is a drum can and a concrete container, and can be easily transported.

また、ドラム缶にコンクリート製容器を内張りした従来の格納容器とは違い、本発明に係る放射性汚染物保管方法の容器1は低コストでかつ製造し易く大量生産に適している。   Further, unlike a conventional containment container in which a concrete container is lined on a drum can, the container 1 of the radioactive contaminant storage method according to the present invention is inexpensive and easy to manufacture and suitable for mass production.

さらに環境省の構想に従えば、仮に汚染土壌等を格納した容器を仮置場で3年程度、更に中間貯蔵施設で約30年間保管することにより、約33年後の放射線量の数値が十分に減衰していれば、この土壌を自然界に戻すことが可能になる。その際に、従来の有鉄筋の格納容器では、これを重機などで破壊することが困難であり、また破壊できたとしても大量の金属廃棄物が生じてしまう。一方、本発明に係る放射性汚染物保管方法の容器1はセメント硬化物製であるので、土壌を格納したまま重機などで粉砕することが容易であり、金属廃棄物を生じさせることがない。従って、粉砕することができずに格納容器自体が大型の放射性廃棄物となることを防ぐことができる。   Furthermore, according to the concept of the Ministry of the Environment, if a container storing contaminated soil is stored in a temporary storage area for about 3 years and further in an intermediate storage facility for about 30 years, the radiation dose value after about 33 years is sufficient. If it has decayed, this soil can be returned to nature. At that time, it is difficult to destroy the conventional barbed containment container with a heavy machine or the like, and even if it can be destroyed, a large amount of metal waste is generated. On the other hand, since the container 1 of the radioactive contaminant storage method according to the present invention is made of cement hardened material, it can be easily pulverized with a heavy machine or the like while storing the soil, and metal waste is not generated. Accordingly, it is possible to prevent the containment vessel itself from becoming a large radioactive waste without being pulverized.

なお、図1では放射性汚染物格納容器1の横断面を矩形としたが、これに限定されるものではなく、正方形、楕円形、円形、六角形又は八角形等の他の形状としてもよい。該容器1の横断面の形状を矩形や正方形で統一すれば、容器1を保管スペースに規則的に並べて整理し易くなるメリットがある。例えば環境省は、図3に示すような仮置場を構想しているが、該仮置場で本発明に係る放射性汚染物保管方法の容器1を多段にかつ規則的に積載することができ、これらの容器1を盛土20で被覆してその上にカバー22を介し土嚢21を積載することができる。容器1を多段に積載しても、後述するように強度上の問題がないことが証明されている。   In addition, in FIG. 1, although the cross section of the radioactive contaminant storage container 1 was made into the rectangle, it is not limited to this, It is good also as other shapes, such as a square, an ellipse, a circle, a hexagon, or an octagon. If the shape of the cross section of the container 1 is unified with a rectangle or a square, there is an advantage that the container 1 can be easily arranged and arranged regularly in a storage space. For example, the Ministry of the Environment contemplates a temporary storage place as shown in FIG. 3, and the containers 1 of the radioactive contaminant storage method according to the present invention can be loaded in multiple stages and regularly in the temporary storage place. The container 1 can be covered with the embankment 20, and the sandbag 21 can be loaded thereon via the cover 22. It has been proved that there is no problem in strength even when the containers 1 are stacked in multiple stages, as will be described later.

上記では本発明の放射性汚染物保管方法を、放射性物質を含む汚染土壌や汚染汚泥を格納するために用いたが、これに限定されるものではなく、放射性物質を含む衣服(作業着)等を格納するために用いることもできる。   In the above, the radioactive pollutant storage method of the present invention is used for storing contaminated soil and contaminated sludge containing radioactive substances. However, the present invention is not limited to this, and clothes (work clothes) containing radioactive substances are used. It can also be used to store.

3.その他の実施形態
図4において、放射性汚染物格納容器1aには凹部2a(図1)が設けられていない。凹部2aを設けないことにより有底筒部材2の厚みの均一化を図ることができ、より強い強度が得られるとともに、遮蔽性もより確保できる。
3. Other Embodiments In FIG. 4, the radioactive contaminant storage container 1a is not provided with the recess 2a (FIG. 1). By not providing the recessed part 2a, the thickness of the bottomed cylindrical member 2 can be made uniform, stronger strength can be obtained, and shielding properties can be further ensured.

次に図5は他の実施形態に係る放射性汚染物格納容器1bを示す斜視図である。その放射性汚染物格納容器1bの構成は基本的には図4の放射性汚染物格納容器1aと同じであるが、有底筒部材2の側部の運搬補助具4が設けられていない点、及び蓋部材3aの四隅に搬送補助部材10が設けられている点が異なる。以下、詳しく説明する。   Next, FIG. 5 is a perspective view showing a radioactive contaminant storage container 1b according to another embodiment. The configuration of the radioactive contaminant storage container 1b is basically the same as that of the radioactive contaminant storage container 1a of FIG. 4, except that the transport aid 4 on the side of the bottomed cylindrical member 2 is not provided, and The difference is that conveyance auxiliary members 10 are provided at the four corners of the lid member 3a. This will be described in detail below.

図5において、蓋部材3aの四隅に搬送補助部材10を着脱可能に設けることができる。また、搬送補助部材10が螺合締結される図示しない被締結部(雌ネジ部)を有底筒部材2に設けることができる。蓋部材3aの運搬時にはクレーン等の重機に備えられたフックを運搬補助具4に引っ掛けることができ、有底筒部材2に蓋部材3aが組み合わされた状態である放射性汚染物格納容器1bの運搬時には上記フックを搬送補助部材10に引っ掛けることができる。なお、有底筒部材2の内面にウレタン系、ポリマーセメント系、FRP樹脂系塗膜防水剤の他、シラン系や溶剤系の浸透性吸水防止剤を塗布することができる。このように浸透性吸水防止剤を塗布することで、防水性の向上の他、更なる耐候性の向上や劣化防止の効果が奏される。   In FIG. 5, the conveyance auxiliary member 10 can be detachably provided at the four corners of the lid member 3a. Moreover, a to-be-fastened part (female screw part) (not shown) to which the conveyance auxiliary member 10 is screwed and fastened can be provided in the bottomed cylindrical member 2. When the lid member 3a is transported, a hook provided on a heavy machine such as a crane can be hooked on the transport aid 4, and the radioactive contaminant storage container 1b in a state where the lid member 3a is combined with the bottomed cylindrical member 2 is transported. Sometimes the hook can be hooked on the conveyance assisting member 10. In addition to the urethane-based, polymer cement-based, and FRP resin-based coating film waterproofing agents, a silane-based or solvent-based permeable water absorption inhibitor can be applied to the inner surface of the bottomed cylindrical member 2. In this way, by applying the permeable water absorption inhibitor, in addition to the improvement of waterproofness, the effect of further improving weather resistance and preventing deterioration is exhibited.

続いて、図6は蓋部材3aを部分的に示す斜視図である。図6に示すように、蓋部材3aには、該蓋部材3aの周縁部に凸部30を設けることができる。この凸部30によって蓋部材3aにおいて凹部31が形成される。凸部30には複数の溝部33を形成することができる。また、有底筒部材2(図5参照)の底部には、上記の凹部31に嵌合する図示しない凸部を設けることができる。これにより、仮置場において、凹部31に上記凸部を嵌合させることで放射性汚染物格納容器1bを多段に安定して積載でき、また凹部31に溜まった水を該凹部31から溝部33を介して外に排出できる。なお、放射性汚染物格納容器を多段に積載する際には、運搬補助具4及び搬送補助部材10を取り外すようにする。   6 is a perspective view partially showing the lid member 3a. As shown in FIG. 6, the lid member 3a can be provided with a convex portion 30 at the peripheral edge of the lid member 3a. The convex portion 30 forms a concave portion 31 in the lid member 3a. A plurality of groove portions 33 can be formed in the convex portion 30. Moreover, the bottom part of the bottomed cylindrical member 2 (refer FIG. 5) can be provided with the convex part which is not shown in figure fitting to said recessed part 31. FIG. Thereby, in the temporary storage site, the radioactive contaminant storage container 1b can be stably stacked in multiple stages by fitting the convex part into the concave part 31, and the water accumulated in the concave part 31 can be passed from the concave part 31 through the groove part 33. Can be discharged outside. In addition, when loading a radioactive contaminant storage container in multiple stages, the conveyance auxiliary tool 4 and the conveyance auxiliary member 10 are removed.

また、蓋部材3aの四隅(凸部30の部分)には上記の搬送補助部材10を挿通するための孔部(バカ穴)32が設けられる。   Moreover, the hole part (burr hole) 32 for inserting said conveyance auxiliary member 10 is provided in the four corners (part of the convex part 30) of the cover member 3a.

次いで、図7は搬送補助部材10の詳細な構成を示す図である。図7において、搬送補助部材10は、本体部11と該本体部11に回動可能に取り付けられたリング状のリンク部12と本体部11の底部に設けられたボルト部13とを有する。搬送補助部材10として、例えばマーテック株式会社製の全方向型アイボルトと称されるフレノリンクボルトを採用することができる。なお、フレノリンクボルトの使用荷重(耐荷重)は約2トンである。   Next, FIG. 7 is a diagram illustrating a detailed configuration of the conveyance assisting member 10. In FIG. 7, the conveyance auxiliary member 10 includes a main body portion 11, a ring-shaped link portion 12 that is rotatably attached to the main body portion 11, and a bolt portion 13 that is provided at the bottom of the main body portion 11. As the conveyance auxiliary member 10, for example, a frenolink bolt called an omnidirectional eyebolt manufactured by Martec Corporation can be employed. The use load (withstand load) of the frenolink bolt is about 2 tons.

図8(a),(b)は図7の搬送補助部材10の回動方向を示す図である。図8(a)において、搬送補助部材10はボルト部13の軸心と垂直をなす平面Fに対して(平面Fを基準に)180°回動可能となっている。また図8(b)において、本体部11がボルト部13の軸心回りに360°回動可能な構成となっていることで、リンク部12も本体部11の回動に伴ってボルト部13の軸心回りに360°回動するようになっている。   FIGS. 8A and 8B are views showing the rotation direction of the conveyance assisting member 10 of FIG. In FIG. 8A, the conveyance assisting member 10 can be rotated 180 ° with respect to a plane F perpendicular to the axis of the bolt portion 13 (based on the plane F). Further, in FIG. 8B, the main body part 11 is configured to be able to rotate 360 ° around the axis of the bolt part 13, so that the link part 12 is also connected to the bolt part 13 as the main body part 11 rotates. It is designed to rotate 360 ° around the axis.

次に、搬送補助部材10の取り付け方法について説明する。まず有底筒部材2の上部開口を蓋部材3aで閉じた状態(図5参照)にする。そして、搬送補助部材10のボルト部13を、蓋部材3aの孔部32に挿通し、有底筒部材2の雌ネジ部に螺合させる。これにより、搬送補助部材10が放射性汚染物格納容器1bに取り付けられると共に蓋部材3aが有底筒部材2に固定される。   Next, the attachment method of the conveyance auxiliary member 10 will be described. First, the upper opening of the bottomed cylindrical member 2 is closed by the lid member 3a (see FIG. 5). Then, the bolt portion 13 of the conveyance assisting member 10 is inserted into the hole portion 32 of the lid member 3a and screwed into the female screw portion of the bottomed cylindrical member 2. Thereby, the conveyance auxiliary member 10 is attached to the radioactive contaminant storage container 1 b and the lid member 3 a is fixed to the bottomed cylindrical member 2.

放射性汚染物格納容器1bの搬送の際には、クレーン等の重機のフックを搬送補助部材10のリンク部12に引っ掛けて該容器1bを吊り上げることができる。   When the radioactive contaminant storage container 1b is transported, the container 1b can be lifted by hooking a hook of a heavy machine such as a crane on the link portion 12 of the transport assisting member 10.

上記のような搬送補助部材10によれば、該搬送補助部材10が有底筒部材2に螺合されるので、吊り上げの安全性は極めて高く、脱落の虞もない。また、搬送補助部材10においてリンク部12がボルト部13の軸心回りに360°回動し、該ボルト部13の軸心と垂直をなす平面Fに対して180°回動可能であるので、吊り上げの自由度が非常に高い。すなわち、放射性汚染物格納容器の吊り上げ時に搬送補助部材10に無理な力が掛からない。したがって、放射性汚染物格納容器の搬送の信頼性が非常に高くなる。   According to the conveyance auxiliary member 10 as described above, since the conveyance auxiliary member 10 is screwed to the bottomed cylindrical member 2, the safety of lifting is extremely high and there is no possibility of dropping off. Further, in the conveyance assisting member 10, the link portion 12 rotates 360 ° around the axis of the bolt portion 13 and can rotate 180 ° with respect to a plane F perpendicular to the axis of the bolt portion 13. The degree of freedom of lifting is very high. That is, an excessive force is not applied to the conveyance auxiliary member 10 when the radioactive contaminant storage container is lifted. Therefore, the reliability of transporting the radioactive contaminant storage container becomes very high.

以上が本発明を実施するための形態であるが、本発明はもとより上記実施形態によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   The above is a mode for carrying out the present invention. However, the present invention is not limited by the above embodiment as a matter of course, and it is needless to say that the present invention can be carried out with appropriate modifications within a range that can meet the gist of the present invention. All of these are possible within the scope of the present invention.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

1.遮蔽試験
遮蔽試験を以下の手順で行った。放射性汚染物格納容器1内に汚染土壌を投入し、蓋をしないで該汚染土壌の空間線量を計測した。次いで、蓋部材3により放射性汚染物格納容器1に蓋をし、該容器1の側面、該容器1の側面から10cm、30cm、50cm、及び100cm離れた位置での空間線量を計測した。結果を図9及び図10に示す。
1. Shielding test The shielding test was performed according to the following procedure. The contaminated soil was put into the radioactive contaminant storage container 1, and the air dose of the contaminated soil was measured without a lid. Next, the radioactive contaminant storage container 1 was covered with the lid member 3, and the air dose at positions 10 cm, 30 cm, 50 cm, and 100 cm away from the side surface of the container 1 and the side surface of the container 1 was measured. The results are shown in FIGS.

図9において、L1は、厚さ70mmの容器1の中に汚染土壌を格納したときの線量と距離との関係を示した曲線である。なお、距離とは、有底筒部材2の側面からの距離を意味し、該距離が0であるときの線量とは、有底筒部材2の側面上の線量を意味している。また、L2は、容器1内に格納する前の汚染土壌の線量と距離との関係を示した曲線であり、距離が0であるときの線量とは、汚染土壌上の線量を意味している。   In FIG. 9, L1 is a curve showing the relationship between the dose and distance when the contaminated soil is stored in the container 1 having a thickness of 70 mm. The distance means a distance from the side surface of the bottomed cylindrical member 2, and the dose when the distance is 0 means the dose on the side surface of the bottomed cylindrical member 2. L2 is a curve showing the relationship between the dose and the distance of the contaminated soil before storing in the container 1, and the dose when the distance is 0 means the dose on the contaminated soil. .

図9のグラフから透過率を求め、100−透過率により遮蔽率を算出し、算出した該遮蔽率と距離との関係をまとめたものが図10となる。この結果より、本発明に係る放射性汚染物保管方法の格納容器1の遮蔽率は約60%であることが確認できた。   FIG. 10 shows the transmittance obtained from the graph of FIG. 9, the shielding rate is calculated from 100−transmittance, and the relationship between the calculated shielding rate and the distance is summarized. From this result, it was confirmed that the shielding rate of the storage container 1 of the radioactive contaminant storage method according to the present invention was about 60%.

2.圧縮試験
放射性汚染物格納容器1の上に加圧板を載せ、圧縮試験機で100tonの圧力を負荷した。試験数はn=3とした。
2. Compression test A pressure plate was placed on the radioactive contaminant storage container 1, and a pressure of 100 ton was applied by a compression tester. The number of tests was n = 3.

その結果、破壊が生じなかったことを目視にて確認することができた。それにより、例えば重量2tonの汚染土壌を格納した容器1(重量800kg)の重量は合計で2.8tonとなるが、このような容器1を3段に積み重ねて保管する場合、最下段の容器1に負荷される重量は5.6tonほどであるので、容器1の多段保管も問題がないことが確認できた。なお、容器1にクラック等の発生がないことも目視にて確認した。   As a result, it was confirmed visually that no destruction occurred. Thereby, for example, the weight of the container 1 (weight 800 kg) storing the contaminated soil having a weight of 2 tons is 2.8 tons in total, but when such containers 1 are stacked and stored in three stages, the lowest container 1 Since the weight loaded on the container 1 is about 5.6 tons, it was confirmed that there is no problem in multistage storage of the container 1. In addition, it was also confirmed visually that there was no occurrence of cracks or the like in the container 1.

3.水密試験
放射性汚染物格納容器1内に水を入れ、48時間経過後の漏水の有無を調査した。試験数はn=3とした。
3. Watertight test Water was put into the radioactive pollutant containment vessel 1, and the presence or absence of water leakage after 48 hours was investigated. The number of tests was n = 3.

水密試験の結果、いずれの試験体も、注水後48時間経過しても漏水が全くないことが確認された。   As a result of the watertight test, it was confirmed that none of the test specimens had any water leakage even after 48 hours had passed since the injection.

4.通気性試験
放射性汚染物格納容器1内に汚染土壌を格納すると、該土壌からメタンガスが発生する可能性があるので、該容器1の通気性を確認した。なお、容器1にガス抜きを設けた状態で試験を行った。
4). Breathability test When contaminated soil is stored in the radioactive contaminant storage container 1, methane gas may be generated from the soil. Therefore, the breathability of the container 1 was confirmed. In addition, the test was performed in a state in which the container 1 was degassed.

本試験では、有底筒部材2に蓋部材3で蓋をした後、容器1内に空気を注入(0.25MPa)してから2分後、空気の注入を停止したとき容器1内の圧力が0MPaになったので、容器1が通気性を有することが確認できた。   In this test, after the bottomed cylindrical member 2 was covered with the lid member 3, the pressure in the container 1 was reached when the air injection was stopped 2 minutes after the air was injected into the container 1 (0.25 MPa). Since it became 0 MPa, it has confirmed that the container 1 had air permeability.

5.施工性試験
汚染土壌を格納した状態の放射性汚染物格納容器1をユニックで吊架できるか否かを確認する施工性試験を行った。なお、試験をより厳しく行うために、土壌を投入した後、押し固めて土壌の格納量が多くなるようにした。
5. Workability test A workability test was carried out to confirm whether or not the radioactive pollutant storage container 1 in a state in which the contaminated soil was stored can be suspended with a UNIC. In addition, in order to perform the test more strictly, after the soil was added, it was pressed and hardened so that the amount of stored soil was increased.

この試験を行ったところ、容器1を問題なく吊り上げることができ、破損が生じることはなかった。また、容器1を吊り上げた状態で揺動させても破損等の異常は発生しなかった。これにより、施工性についても優れたものであることが確認された。また、汚染土壌を格納した無鉄筋容器でも問題なく吊り下げ可能であることを確認することができた。   When this test was performed, the container 1 could be lifted without problems and no breakage occurred. Moreover, no abnormality such as breakage occurred even when the container 1 was swung while being lifted. Thereby, it was confirmed that it was excellent also about workability. In addition, it was confirmed that it can be hung without problems even in a rebar-free container containing contaminated soil.

1,1a,1b 放射性汚染物格納容器
2 有底筒部材
3,3a 蓋部材
4 運搬補助具
10 搬送補助部材
11 本体部
12 リンク部
13 ボルト部
DESCRIPTION OF SYMBOLS 1,1a, 1b Radioactive contaminant storage container 2 Bottomed cylindrical member 3,3a Lid member 4 Conveyance aid 10 Conveyance auxiliary member 11 Main part 12 Link part 13 Bolt part

Claims (2)

原子力発電所事故に伴って大気中に放散された放射性物質で汚染された放射性汚染物を保管する放射性汚染物保管方法であって、
前記放射性汚染物を、補強繊維及び気泡を分散状態で含み、比重が0.8〜1.5の範囲内であるコンクリート製多孔質成形体からなる有底筒部材に、ドラム缶を介することなく、直接、又はフレキシブルコンテナバッグに収容した状態で格納し、
前記有底筒部材の上端部の開口を前記コンクリート製多孔質成形体からなる蓋部材によって閉じた状態で、前記有底筒部材を仮置場や中間貯蔵施設に静置することによって前記放射性汚染物を保管することを特徴とする放射性汚染物保管方法。
A radioactive contaminant storage method for storing radioactive contaminants contaminated with radioactive materials released into the atmosphere following a nuclear power plant accident,
Without including a drum can on the bottomed cylindrical member made of a concrete porous molded body containing the radioactive contaminants, including reinforcing fibers and bubbles in a dispersed state and having a specific gravity in the range of 0.8 to 1.5, Store directly or in a flexible container bag,
The radioactive pollutant is obtained by allowing the bottomed cylindrical member to stand in a temporary storage site or an intermediate storage facility in a state in which an opening at an upper end of the bottomed cylindrical member is closed by a lid member made of the concrete porous molded body. A method for storing radioactive contaminants, characterized by storing
前記有底筒部材の厚みが30〜70mmである請求項1に記載の放射性汚染物保管方法。
The radioactive contaminant storage method according to claim 1, wherein the bottomed cylindrical member has a thickness of 30 to 70 mm.
JP2017081429A 2012-07-30 2017-04-17 Radioactive contaminant storage method Pending JP2017142263A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168227 2012-07-30
JP2012168227 2012-07-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013157966A Division JP2014044201A (en) 2012-07-30 2013-07-30 Radioactive contaminant containment vessel

Publications (2)

Publication Number Publication Date
JP2017142263A true JP2017142263A (en) 2017-08-17
JP2017142263A5 JP2017142263A5 (en) 2017-12-07

Family

ID=50395549

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013157966A Pending JP2014044201A (en) 2012-07-30 2013-07-30 Radioactive contaminant containment vessel
JP2017081429A Pending JP2017142263A (en) 2012-07-30 2017-04-17 Radioactive contaminant storage method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013157966A Pending JP2014044201A (en) 2012-07-30 2013-07-30 Radioactive contaminant containment vessel

Country Status (1)

Country Link
JP (2) JP2014044201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599503A (en) * 2020-05-29 2020-08-28 中国人民解放军63653部队 Flexible packaging container for extremely-low radioactive contaminated soil
WO2023158105A1 (en) * 2022-02-16 2023-08-24 한국수력원자력 주식회사 Replaceable catalyst tower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835718B2 (en) * 2014-05-12 2015-12-24 三栄レギュレーター株式会社 Storage method and container for radioactive material contaminated waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142300A (en) * 1985-12-02 1987-06-25 秩父セメント株式会社 Vessel for processing radioactive waste
JP2004099425A (en) * 2002-07-18 2004-04-02 Kobe Steel Ltd Composition, hardened body, concrete cask and method for producing hardened body
JP2006282407A (en) * 2005-03-31 2006-10-19 Taiheiyo Cement Corp Large size container and waste material containing block
JP2011117248A (en) * 2009-12-07 2011-06-16 Kanaflex Corporation Underground buried box and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840160B2 (en) * 1982-03-01 1983-09-03 定検技術サ−ビス株式会社 How to process high-dose materials
JPS62142299A (en) * 1985-12-02 1987-06-25 東電環境エンジニアリング株式会社 Radioactive waste processing body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142300A (en) * 1985-12-02 1987-06-25 秩父セメント株式会社 Vessel for processing radioactive waste
JP2004099425A (en) * 2002-07-18 2004-04-02 Kobe Steel Ltd Composition, hardened body, concrete cask and method for producing hardened body
JP2006282407A (en) * 2005-03-31 2006-10-19 Taiheiyo Cement Corp Large size container and waste material containing block
JP2011117248A (en) * 2009-12-07 2011-06-16 Kanaflex Corporation Underground buried box and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
下条純: "耐熱性コンクリートを使用した新型コンクリートキャスク", 神戸製鋼技報, vol. 53, no. 3, JPN6018011145, December 2003 (2003-12-01), pages 7 - 11 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599503A (en) * 2020-05-29 2020-08-28 中国人民解放军63653部队 Flexible packaging container for extremely-low radioactive contaminated soil
CN111599503B (en) * 2020-05-29 2022-05-31 中国人民解放军63653部队 Flexible packaging container for extremely-low radioactive contaminated soil
WO2023158105A1 (en) * 2022-02-16 2023-08-24 한국수력원자력 주식회사 Replaceable catalyst tower

Also Published As

Publication number Publication date
JP2014044201A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
KR900001362B1 (en) Multiples design container having a three-layered wall structure and a process for producing the same
US5545796A (en) Article made out of radioactive or hazardous waste and a method of making the same
JP2017142263A (en) Radioactive contaminant storage method
CA2599049C (en) Apparatus for nuclear waste disposal, method for manufacturing and installing the same
JPS5915841B2 (en) I'm sick and tired of it.
US20100098371A1 (en) Load-bearing products and method for making same
JP2013160754A (en) Treatment method for waste containing radioactive substance and corrosion resistant tank used in treatment method
JPH0149920B2 (en)
JP2010207669A (en) Method of molding and disposing of many solidified units by inorganic waste separation or integration in final disposal site and many solidified units-molding and disposal structure
KR100877397B1 (en) High integrity container for radioactive waste disposal
JP2017142263A5 (en) Radioactive contaminant storage container and radioactive contaminant storage method
JP2020129009A (en) Public exposure protection, occupational exposure protection and medical exposure protection using rock wall material and radiation shielding reduction body which is compact of rock wall material, and radioactive water treatment
JP6057514B2 (en) Radioactive waste storage container
CZ433899A3 (en) Process for producing a container and the container per se
US5171483A (en) Method for retrievable/permanent storage of hazardous waste materials
JP5936256B2 (en) Radioactive waste storage container
JP5835718B2 (en) Storage method and container for radioactive material contaminated waste
JP5868185B2 (en) Radioactive waste storage container
JP2017125828A (en) Public exposure protection using radiation shielding reducer which is rock wool material and molded body thereof, vocational exposure protection, medical exposure protection and radioactive waste disposal
JP2013117446A (en) Radioactive contaminant containment vessel
JP2017146214A (en) Container for radioactive material containing wastes
WO2015049521A1 (en) Encapsulation of waste materials
KR101057403B1 (en) Radioactive waste storage drum
JP2019032323A (en) Transport method of contaminated soil accommodated in flexible container and device
JP3193697U (en) Storage and transfer system for radioactive material containment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016