JP2017142018A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2017142018A
JP2017142018A JP2016023272A JP2016023272A JP2017142018A JP 2017142018 A JP2017142018 A JP 2017142018A JP 2016023272 A JP2016023272 A JP 2016023272A JP 2016023272 A JP2016023272 A JP 2016023272A JP 2017142018 A JP2017142018 A JP 2017142018A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
unit
degree
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016023272A
Other languages
Japanese (ja)
Other versions
JP6638446B2 (en
Inventor
康弘 岡
Yasuhiro Oka
康弘 岡
下谷 亮
Akira Shitaya
亮 下谷
松永 隆廣
Takahiro Matsunaga
隆廣 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016023272A priority Critical patent/JP6638446B2/en
Publication of JP2017142018A publication Critical patent/JP2017142018A/en
Application granted granted Critical
Publication of JP6638446B2 publication Critical patent/JP6638446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner in which each indoor unit can sufficiently exert space heating ability even when an outdoor unit is installed at a position higher than the plurality of indoor units.SOLUTION: A CPU 210 determines whether a value obtained by subtracting an average refrigerant excessive cooling degree SCv from a refrigerant excessive cooling degree SC is -1 or more and 1 or less. When the value obtained by subtracting the average refrigerant excessive cooling degree SCv from the refrigerant excessive cooling degree SC is -1 or more and 1 or less, the CPU 210 makes reference to a highest refrigerant excessive cooling degree table stored in a storing section 220 and determines whether there is an indoor unit having the refrigerant excessive cooling degree SC larger than the maximum highest refrigerant excessive cooling degree SCh. When there is an indoor unit having the refrigerant excessive cooling degree SC larger than the maximum highest refrigerant excessive cooling degree SCh, the CPU 210 adds 5 pulse to an outdoor expansion valve 24 and increases opening degree of the outdoor expansion valve 24.SELECTED DRAWING: Figure 1

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続された空気調和装置に関する。   The present invention relates to an air conditioner in which a plurality of indoor units are connected to a refrigerant pipe by at least one outdoor unit.

従来、少なくとも1台の室外機に複数台の室内機が液管とガス管で接続された空気調和装置では、各室内機が高低差をもって設置され、かつ、室外機が各室内機より高い位置に設置される場合がある。このように設置された空気調和装置が暖房運転を行うときは、以下に記載する理由により低い位置に設置された室内機で十分な暖房能力が得られない恐れがある。   Conventionally, in an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a liquid pipe and a gas pipe, each indoor unit is installed with a height difference, and the outdoor unit is positioned higher than each indoor unit. It may be installed in. When the air conditioner thus installed performs a heating operation, there is a possibility that sufficient heating capacity may not be obtained with an indoor unit installed at a low position for the reason described below.

暖房運転では、各室内機の室内熱交換器で凝縮して液管に流出した液冷媒を、各室内機より高い位置に設置された室外機に向かい重力に逆らって流す必要がある。このため、低い位置に設置された室内機の室内膨張弁の下流側(室外機側)における液冷媒の圧力は、高い位置に設置された室内機の室内膨張弁の下流側における液冷媒の圧力よりも高くなる。   In the heating operation, it is necessary to flow the liquid refrigerant condensed in the indoor heat exchanger of each indoor unit and flowing out into the liquid pipe toward the outdoor unit installed at a position higher than each indoor unit against the gravity. For this reason, the pressure of the liquid refrigerant on the downstream side (outdoor unit side) of the indoor expansion valve of the indoor unit installed at the low position is the pressure of the liquid refrigerant on the downstream side of the indoor expansion valve of the indoor unit installed at the high position. Higher than.

従って、低い位置に設置された室内機の室内膨張弁の上流側(室内熱交換器側)の冷媒圧力と下流側の冷媒圧力の圧力差が、高い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差が小さいほど室内膨張弁を流れる冷媒量が少なくなるので、高い位置に設置された室内機に多くの冷媒が流れる一方、低い位置に設置された室内機に流れる冷媒量が減少して当該室内機で十分な暖房能力が得られない恐れがある。   Therefore, the indoor expansion valve of the indoor unit installed at a position where the pressure difference between the refrigerant pressure on the upstream side (indoor heat exchanger side) and the refrigerant pressure on the downstream side of the indoor expansion valve of the indoor unit installed at a low position is high. The pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side becomes smaller. The smaller the pressure difference between the refrigerant pressure upstream of the indoor expansion valve and the refrigerant pressure downstream, the smaller the amount of refrigerant flowing through the indoor expansion valve. Therefore, more refrigerant flows to the indoor unit installed at a higher position, but lower. There is a possibility that the amount of refrigerant flowing to the indoor unit installed at the position decreases, and the indoor unit cannot obtain sufficient heating capacity.

特許文献1に記載のマルチ型空気調和機は、複数台の室内機が高低差をもって設置されている場合に、暖房運転開始から一定時間経過後に冷媒過冷却度が目標値に達していない室内機があれば、当該室内機で暖房能力が発揮できていないと判断する。そして、冷媒過冷却度が最も小さい室内機の目標冷媒過冷却度を所定値だけ上昇させる一方、冷媒過冷却度が最も大きい室内機の目標冷媒過冷却度を所定値だけ低下させることにより、暖房能力が発揮できていない室内機で暖房能力が十分発揮できるようにする不暖房解消制御を行っている。   The multi-type air conditioner described in Patent Document 1 is an indoor unit in which the degree of refrigerant supercooling does not reach the target value after a predetermined time has elapsed since the start of heating operation when a plurality of indoor units are installed with a height difference. If there is, it is determined that the heating capacity of the indoor unit cannot be demonstrated. Then, the target refrigerant subcooling degree of the indoor unit having the smallest refrigerant subcooling degree is increased by a predetermined value, while the target refrigerant subcooling degree of the indoor unit having the largest refrigerant subcooling degree is lowered by a predetermined value, thereby heating the indoor unit. Non-heating cancellation control is performed so that the heating capacity can be sufficiently exerted in indoor units that are not capable of exhibiting the capacity.

また、本出願人は、空気調和装置の暖房運転中に暖房能力が発揮できていない室内機が存在する場合に、各室内機における冷媒過冷却度のうちの最大値と最小値を用いて平均冷媒過冷却度を算出し、各室内機の冷媒過冷却度が求めた平均冷媒過冷却度となるように、各室内機の室内膨張弁の開度を調整する不暖房解消制御の一種である冷媒量バランス制御を実行する空気調和装置を先に提案している(特願2016−2698)。   In addition, when there is an indoor unit in which the heating capacity cannot be exhibited during the heating operation of the air conditioner, the present applicant uses the maximum value and the minimum value of the refrigerant supercooling degree in each indoor unit as an average. This is a kind of non-heating cancellation control that calculates the degree of refrigerant supercooling and adjusts the opening of the indoor expansion valve of each indoor unit so that the refrigerant supercooling degree of each indoor unit is the average refrigerant supercooling degree obtained. The air conditioning apparatus which performs refrigerant | coolant amount balance control has been proposed previously (Japanese Patent Application No. 2006-2698).

特開2011−158118号公報JP 2011-158118 A

ところで、各室内機の設計時には、予め定められた暖房能力が発揮できるように、室内熱交換器の大きさや室内ファンの風量等が決定される。そして、各室内機で最大の暖房能力を要求されたとき、この最大暖房能力に対応する室内熱交換器の冷媒出口側における最大の冷媒過冷却度(以降、最高冷媒過冷却度と記載する)が存在する。つまり、各室内機で暖房運転を行っているとき、室内熱交換器の冷媒出口側における冷媒過冷却度が最高冷媒過冷却度以下の値であれば、各室内機で最大暖房能力を要求されてもこの暖房能力が発揮できる。   By the way, at the time of designing each indoor unit, the size of the indoor heat exchanger, the air volume of the indoor fan, and the like are determined so that a predetermined heating capacity can be exhibited. When the maximum heating capacity is requested in each indoor unit, the maximum refrigerant subcooling degree on the refrigerant outlet side of the indoor heat exchanger corresponding to the maximum heating capacity (hereinafter referred to as the maximum refrigerant subcooling degree) Exists. In other words, when heating operation is performed in each indoor unit, if the refrigerant subcooling degree on the refrigerant outlet side of the indoor heat exchanger is equal to or less than the maximum refrigerant subcooling degree, the maximum heating capacity is required in each indoor unit. But this heating ability can be demonstrated.

前述した不暖房解消制御を行うと、室内膨張弁の開度が小さくされる室内機で冷媒流量が減少する一方、室内膨張弁の開度が大きくされる室内機で冷媒流量が増加する。そして、このような制御を定期的(例えば30秒毎)に行っていると、室外機からみた室内機側の冷媒循環量が不暖房解消制御を行う前と比べて増加した状態で安定する。このため、各室内機における冷媒過冷却度が上記制御を開始した時点における冷媒過冷却度より小さい値で安定するようになる。   When the above-described non-heating cancellation control is performed, the refrigerant flow rate decreases in the indoor unit in which the opening degree of the indoor expansion valve is reduced, while the refrigerant flow rate increases in the indoor unit in which the opening degree of the indoor expansion valve is increased. When such control is performed periodically (for example, every 30 seconds), the refrigerant circulation amount on the indoor unit side as seen from the outdoor unit is stabilized in an increased state as compared to before the unheated cancellation control is performed. For this reason, the refrigerant supercooling degree in each indoor unit becomes stable at a value smaller than the refrigerant supercooling degree at the time when the control is started.

例えば、3台の室内機が高低差をもって設置される空気調和装置で暖房運転を行うとき、最も高い位置に設置されている室内機の冷媒過冷却度が6deg、最も低い位置に設置されている室内機の冷媒過冷却度が26deg、これらの間の高さに設置されている室内機の冷媒過冷却度が10degであるとする。この場合、最も低い位置に設置されている室内機では、冷媒過冷却度が他の室内機と比べて大きな値となっているが、これは当該室内機の室内熱交換器の冷媒出口側における液冷媒温度が室温になじんで低い温度となっているためであり、このことは室内熱交換器に液冷媒が滞留して当該室内機で暖房能力が発揮できていないことを示す。   For example, when heating operation is performed with an air conditioner in which three indoor units are installed with a height difference, the indoor unit installed at the highest position has a refrigerant supercooling degree of 6 deg and is installed at the lowest position. It is assumed that the refrigerant subcooling degree of the indoor unit is 26 deg, and the refrigerant subcooling degree of the indoor unit installed at a height between these is 10 deg. In this case, in the indoor unit installed at the lowest position, the degree of refrigerant supercooling is larger than that of other indoor units, but this is on the refrigerant outlet side of the indoor heat exchanger of the indoor unit. This is because the liquid refrigerant temperature has become a low temperature that is compatible with the room temperature, and this indicates that the liquid refrigerant has accumulated in the indoor heat exchanger and the indoor unit cannot exert its heating capacity.

以上のような状態で暖房運転を行っている空気調和装置で本出願人が提案する冷媒量バランス制御を実行すると、最も低い位置に設置されている室内機に滞留している液冷媒が当該室内機から流出する。そして、冷媒量バランス制御を継続して行うことによって、最も低い位置に設置されている室内機を冷媒が流れるようになり、室外機からみた室内機側の冷媒循環量が増加するとともに、最も低い位置に設置されている室内機における冷媒過冷却度が冷媒量バランス制御を行う前の値である26degより低下する。この結果、最も低い位置に設置されている室内機で暖房能力が発揮できるようになり、また、平均冷媒過冷却度が冷媒量バランス制御を行う前の平均冷媒過冷却度である16degより低い値、例えば、10degとなって各室内機における冷媒過冷却度が平均冷媒過冷却度付近(例えば±1deg)の値で安定する。   When the refrigerant amount balance control proposed by the present applicant is executed in the air conditioner that performs the heating operation in the state as described above, the liquid refrigerant staying in the indoor unit installed at the lowest position Escape from the machine. Then, by continuously performing the refrigerant amount balance control, the refrigerant flows through the indoor unit installed at the lowest position, and the refrigerant circulation amount on the indoor unit side as viewed from the outdoor unit increases and is the lowest. The refrigerant subcooling degree in the indoor unit installed at the position is lower than 26 deg which is a value before the refrigerant amount balance control is performed. As a result, the indoor unit installed at the lowest position can exhibit the heating capacity, and the average refrigerant subcooling degree is lower than 16 deg which is the average refrigerant subcooling degree before the refrigerant amount balance control is performed. For example, it becomes 10 deg, and the refrigerant subcooling degree in each indoor unit is stabilized at a value near the average refrigerant subcooling degree (for example, ± 1 deg).

このように冷媒量バランス制御を行って各室内機における平均過冷却度付近の値に落ち着いたときに、当該冷媒過冷却度より前述した最高冷媒過冷却度が小さい室内機、例えば、最高冷媒過冷却度が現在の冷媒過冷却度である10degより小さい8degの室内機が存在する場合は、当該室内機で十分な暖房能力が発揮できていない恐れがあった。   When the refrigerant amount balance control is performed in this way and settles to a value in the vicinity of the average supercooling degree in each indoor unit, the indoor unit in which the maximum refrigerant supercooling degree is smaller than the refrigerant supercooling degree, for example, the maximum refrigerant overcooling degree. When there is an 8 deg indoor unit whose degree of cooling is less than 10 deg which is the current refrigerant supercooling level, there is a possibility that the indoor unit has not been able to exhibit sufficient heating capacity.

本発明は以上述べた問題点を解決するものであって、室外機が複数台の室内機より高い位置に設置されている場合でも、暖房運転時に各室内機で十分に暖房能力を発揮できる空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and even when the outdoor unit is installed at a position higher than a plurality of indoor units, the air that can sufficiently exhibit the heating capacity in each indoor unit during heating operation It aims at providing a harmony device.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、室内熱交換器と室内膨張弁と室内熱交換器が凝縮器として機能しているときに室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数台の室内機を有し、室外機が複数台の室内機より上方に設置されるとともに複数台の室内機の設置場所に高低差があるものであって、空気調和装置が暖房運転を行っているときに暖房能力が発揮できていない室内機が存在する場合に、当該室内機で暖房能力が発揮できるようにするための不暖房解消制御を実行する制御手段を有する。この制御手段は、複数台の室内機に個別の値であって複数台の室内機で予め定められた暖房能力を発揮できる冷媒過冷却度の最大値である最高冷媒過冷却度を記憶しており、不暖房解消制御を実行して各室内機の冷媒過冷却度と各室内機の冷媒過冷却度を用いて算出する平均冷媒過冷却度の差が予め定められた所定の範囲内の値となったときに、冷媒過冷却度が前記最高冷媒過冷却度より大きい室内機があれば、複数台の室内機から室外機に冷媒を回収する余剰冷媒回収制御を行う。   In order to solve the above problems, an air conditioner of the present invention includes an outdoor unit having a compressor and a discharge pressure detecting means for detecting a discharge pressure that is a pressure of a refrigerant discharged from the compressor, and an indoor heat exchanger. And a plurality of indoor units having liquid side temperature detecting means for detecting a heat exchange outlet temperature which is a temperature of a refrigerant flowing out of the indoor heat exchanger when the indoor expansion valve and the indoor heat exchanger function as a condenser The outdoor unit is installed above a plurality of indoor units and there is a difference in height in the installation location of the plurality of indoor units, and heating is performed when the air conditioner is performing a heating operation. When there is an indoor unit that is not capable of exhibiting capability, the indoor unit has a control unit that executes non-heating cancellation control so that the indoor unit can exhibit heating capability. This control means stores the maximum refrigerant subcooling degree, which is an individual value for a plurality of indoor units and is the maximum value of the refrigerant subcooling degree that can exhibit a predetermined heating capacity in the plurality of indoor units. The difference between the average refrigerant subcooling degree calculated by executing the non-heating cancellation control and using the refrigerant subcooling degree of each indoor unit and the refrigerant subcooling degree of each indoor unit is a value within a predetermined range. When there is an indoor unit having a refrigerant supercooling degree larger than the maximum refrigerant supercooling degree, surplus refrigerant recovery control for recovering refrigerant from a plurality of indoor units to the outdoor unit is performed.

上記のように構成した本発明の空気調和装置によれば、余剰冷媒回収制御を行うことで各室内機を流れる冷媒量を減少させて各室内機における冷媒過冷却度が各々の最高冷媒過冷却度を超えないようにするので、各室内機で暖房能力が十分に発揮できるようになる。   According to the air conditioner of the present invention configured as described above, excess refrigerant recovery control is performed to reduce the amount of refrigerant flowing through each indoor unit so that the refrigerant subcooling degree in each indoor unit is the highest refrigerant subcooling. Since the temperature is not exceeded, the heating capacity can be sufficiently exhibited in each indoor unit.

本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室内機および室外機の設置状態と、各室内機の運転状態を表す図面である。It is drawing which shows the installation state of an indoor unit and the outdoor unit in the embodiment of the present invention, and the operation state of each indoor unit. 本発明の実施形態における、最高冷媒過冷却度テーブルである。It is a maximum refrigerant | coolant supercooling degree table in embodiment of this invention. 本発明の実施形態における、室外機制御部での処理を説明するフローチャートである。It is a flowchart explaining the process in the outdoor unit control part in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、建物の屋上に設置される1台の室外機に、建物の各階に設置される3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, three indoor units installed on each floor of a building are connected in parallel to one outdoor unit installed on the roof of a building, and cooling operation or heating operation can be performed simultaneously on all indoor units An air conditioning apparatus will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)および図2に示すように、本実施形態における空気調和装置1は、3階建ての建物の屋上に設置される1台の室外機2と、建物の各階に設置され、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cとを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。   As shown in FIG. 1 (A) and FIG. 2, an air conditioner 1 according to this embodiment is installed on the floor of a three-story building and one outdoor unit 2 installed on each floor of the building. The unit 2 includes three indoor units 5 a to 5 c connected in parallel by a liquid pipe 8 and a gas pipe 9. Specifically, the liquid pipe 8 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c. The gas pipe 9 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end branched to be connected to the gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. The refrigerant circuit 100 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、冷媒回収容器であるアキュムレータ28と、室外ファン27とを備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a closing valve 25 to which one end of the liquid pipe 8 is connected, and one end of the gas pipe 9. And a close-up valve 26, an accumulator 28 as a refrigerant recovery container, and an outdoor fan 27. These devices other than the outdoor fan 27 are connected to each other through refrigerant pipes described in detail below to constitute an outdoor unit refrigerant circuit 20 that forms part of the refrigerant circuit 100.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側に吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later by a discharge pipe 41, and the refrigerant suction side of the compressor 21 is connected to the refrigerant outflow side of the accumulator 28 by a suction pipe 42. Has been.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口に冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側に冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26に室外機ガス管45で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 28 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by an outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and outside air taken into the outdoor unit 2 by rotation of an outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 44.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。室外膨張弁24の開度は、空気調和装置1が冷房運転を行っている場合は全開とされる。また、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度を制御することで、吐出温度が性能上限値を超えないようにしている。   The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 is an electronic expansion valve, and the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 is adjusted by adjusting the opening thereof. The opening degree of the outdoor expansion valve 24 is fully opened when the air conditioner 1 is performing a cooling operation. In addition, when the air conditioner 1 is performing a heating operation, the opening temperature is controlled according to the discharge temperature of the compressor 21 detected by a discharge temperature sensor 33 described later, so that the discharge temperature has a performance upper limit value. I do not exceed it.

室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take outside air from a suction port (not shown) into the outdoor unit 2, and the outdoor air heat exchanged with the refrigerant in the outdoor heat exchanger 23 is sent from the blower outlet (not shown) to the outdoor unit 2. To the outside.

アキュムレータ28は、上述したように、冷媒流入側が四方弁22のポートcに冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側に吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。   As described above, the accumulator 28 has the refrigerant inflow side connected to the port c of the four-way valve 22 via the refrigerant pipe 46 and the refrigerant outflow side connected to the refrigerant intake side of the compressor 21 via the suction pipe 42. The accumulator 28 separates the refrigerant flowing into the accumulator 28 from the refrigerant pipe 46 into a gas refrigerant and a liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段である吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34とが設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pressure sensor 31 that is a discharge pressure detecting unit that detects a discharge pressure that is a pressure of a refrigerant discharged from the compressor 21 and a discharge pressure sensor 31 that discharges from the compressor 21 A discharge temperature sensor 33 for detecting the temperature of the refrigerant to be discharged is provided. Near the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. And are provided.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。   Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected. A heat exchanger temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outside air that flows into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 27, and the like. The communication unit 230 is an interface that performs communication with the indoor units 5a to 5c. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. In addition, the CPU 210 takes in control signals transmitted from the indoor units 5 a to 5 c via the communication unit 230. The CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the detection results and control signals taken in. In addition, the CPU 210 performs switching control of the four-way valve 22 based on the detection results and control signals taken in. Furthermore, the CPU 210 adjusts the opening degree of the outdoor expansion valve 24 based on the acquired detection result and control signal.

次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cとを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。   Next, the three indoor units 5a to 5c will be described. The three indoor units 5a to 5c are branched into indoor heat exchangers 51a to 51c, indoor expansion valves 52a to 52c, and liquid pipe connection portions 53a to 53c to which the other ends of the branched liquid pipes 8 are connected. Gas pipe connection parts 54a to 54c to which the other end of the gas pipe 9 is connected and indoor fans 55a to 55c are provided. And these each apparatus except indoor fan 55a-55c is mutually connected by each refrigerant | coolant piping explained in full detail below, and comprises the indoor unit refrigerant circuit 50a-50c which makes a part of refrigerant circuit 100. FIG.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。   In addition, since the structure of all the indoor units 5a-5c is the same, in the following description, only the structure of the indoor unit 5a is demonstrated and description is abbreviate | omitted about the other indoor units 5b and 5c. Moreover, in FIG. 1, what changed the end of the number provided to the component apparatus of the indoor unit 5a from a to b and c becomes the component apparatus of the indoor units 5b and 5c corresponding to the component apparatus of the outdoor unit 5a. .

室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部53aに室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
尚、液管接続部53aやガス管接続部54aは、各冷媒配管が溶接やフレアナット等により接続されている。
The indoor heat exchanger 51a exchanges heat between indoor air taken into the indoor unit 5a from a suction port (not shown) by rotation of a refrigerant and an indoor fan 55a described later, and one refrigerant inlet / outlet is a liquid pipe connection portion. 53a is connected by an indoor unit liquid pipe 71a, and the other refrigerant inlet / outlet is connected to the gas pipe connecting part 54a by an indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.
Note that the refrigerant pipes of the liquid pipe connecting part 53a and the gas pipe connecting part 54a are connected by welding, flare nuts, or the like.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。ここで、目標冷媒過熱度とは、室内機5aで十分な冷房能力が発揮されるための冷媒過熱度である。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が後述する平均冷媒過冷却度となるように調整される。   The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is an electronic expansion valve, and when the indoor heat exchanger 51a functions as an evaporator, that is, when the indoor unit 5a performs a cooling operation, the opening degree of the indoor expansion valve 52a depends on the refrigerant outlet (gas gas) of the indoor heat exchanger 51a. The refrigerant superheat degree at the pipe connecting portion 54a side) is adjusted to be the target refrigerant superheat degree. Here, the target refrigerant superheat degree is a refrigerant superheat degree for exhibiting sufficient cooling capacity in the indoor unit 5a. Further, when the indoor heat exchanger 51a functions as a condenser, that is, when the indoor unit 5a performs a heating operation, the opening of the indoor expansion valve 52a is the refrigerant outlet (liquid pipe connection portion) of the indoor heat exchanger 51a. 53a side) is adjusted so that the refrigerant subcooling degree on the refrigerant side becomes an average refrigerant subcooling degree described later.

室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。   The indoor fan 55a is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 51a. The indoor fan 55a is rotated by a fan motor (not shown) to take indoor air from the suction port (not shown) into the indoor unit 5a, and the indoor air exchanged with the refrigerant in the indoor heat exchanger 51a from the blower outlet (not shown). Supply indoors.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度検出手段である液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ63aが備えられている。そして、室内機5aの図示しない吹出口付近には、室内熱交換器51aで冷媒と熱交換を行って室内機5aから室内に放出される空気の温度、すなわち吹出温度を検出する吹出温度センサ64aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, liquid side temperature detecting means for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51a. A certain liquid side temperature sensor 61a is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a. A suction temperature sensor 63a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the suction temperature, is provided near the suction port (not shown) of the indoor unit 5a. A blowout temperature sensor 64a for detecting the temperature of the air discharged from the indoor unit 5a into the room, that is, the blowout temperature, is exchanged with the refrigerant in the indoor heat exchanger 51a near the blowout port (not shown) of the indoor unit 5a. Is provided.

また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aとを備えている。   The indoor unit 5a includes an indoor unit control means 500a. The indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 5a. As shown in FIG. 1B, a CPU 510a, a storage unit 520a, a communication unit 530a, And a sensor input unit 540a.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。   The storage unit 520a includes a ROM and a RAM, and stores a control program for the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by the user, and the like. The communication unit 530a is an interface that communicates with the outdoor unit 2 and the other indoor units 5b and 5c. The sensor input unit 540a captures detection results from various sensors of the indoor unit 5a and outputs them to the CPU 510a.

CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ制御信号を、通信部530aを介して室外機2に送信するとともに、室外機2が検出した吐出圧力等の情報を含む制御信号を通信部530aを介して室外機2から受信する。CPU510aは、取り込んだ検出結果やリモコンおよび室外機2から送信された信号に基づいて、室内膨張弁52aの開度調整や、室内ファン55aの駆動制御を行う。
尚、以上説明した室外機制御手段200と室内機制御手段500a〜500cとで、本発明の制御手段が構成される。
The CPU 510a takes in the detection result of each sensor of the indoor unit 5a described above via the sensor input unit 540a. Further, the CPU 510a takes in a signal including operation information set by operating a remote controller (not shown), a timer operation setting, and the like via a remote control light receiving unit (not shown). Further, the CPU 510a transmits a control signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the communication unit 530a, and discharge pressure detected by the outdoor unit 2. A control signal including such information is received from the outdoor unit 2 via the communication unit 530a. The CPU 510a performs the opening degree adjustment of the indoor expansion valve 52a and the drive control of the indoor fan 55a based on the acquired detection result and the signal transmitted from the remote controller and the outdoor unit 2.
The outdoor unit control unit 200 and the indoor unit control units 500a to 500c described above constitute the control unit of the present invention.

以上説明した空気調和装置1が、図2に示す建物600に設置されている。具体的には、室外機2が屋上(RF)に配置されており、室内機5aが3階、室内機5bが2階、室内機5cが1階に、それぞれ設置されている。そして、室外機2と室内機5a〜5cとは、上述した液管8とガス管9とで相互に接続されており、これら液管8とガス管9とは、図示しない建物600の壁面内や天井裏に埋設されている。尚、図2では、最上階(3階)に設置されている室内機5aと最下階(1階)に設置されている室内機5cとの高低差をHで表している。   The air conditioning apparatus 1 described above is installed in a building 600 shown in FIG. Specifically, the outdoor unit 2 is arranged on the roof (RF), the indoor unit 5a is installed on the third floor, the indoor unit 5b is installed on the second floor, and the indoor unit 5c is installed on the first floor. And the outdoor unit 2 and the indoor units 5a-5c are mutually connected by the liquid pipe 8 and the gas pipe 9 which were mentioned above, and these liquid pipe 8 and the gas pipe 9 are in the wall surface of the building 600 which is not shown in figure. Or buried in the ceiling. In FIG. 2, the height difference between the indoor unit 5a installed on the top floor (3rd floor) and the indoor unit 5c installed on the bottom floor (1st floor) is represented by H.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、冷房/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は暖房運転時の冷媒の流れを示している。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 during the air conditioning operation of the air-conditioning apparatus 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor units 5a to 5c perform the heating operation will be described, and the detailed description will be omitted when the cooling / defrosting operation is performed. Moreover, the arrow in FIG. 1 (A) has shown the flow of the refrigerant | coolant at the time of heating operation.

図1(A)に示すように、室内機5a〜5cが暖房運転を行う場合、室外機制御手段200のCPU210は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換える。これにより、冷媒回路100が、室外熱交換器23が蒸発器として機能するとともに室内熱交換器51a〜51cが凝縮器として機能する暖房サイクルとなる。   As shown in FIG. 1A, when the indoor units 5a to 5c perform the heating operation, the CPU 210 of the outdoor unit control means 200 is in a state where the four-way valve 22 is indicated by a solid line, that is, the port a and the port of the four-way valve 22 It switches so that d may communicate and port b and port c communicate. Thereby, the refrigerant circuit 100 becomes a heating cycle in which the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchangers 51a to 51c function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から室外機ガス管45、閉鎖弁26、ガス管9、ガス管接続部54a〜54cの順に流れて室内機5a〜5cに流入する。室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, and from the four-way valve 22 to the outdoor unit gas pipe 45, the closing valve 26, the gas pipe 9, and the gas pipe connection portions 54 a to 54 c. In this order and flow into the indoor units 5a to 5c. The refrigerant that has flowed into the indoor units 5a to 5c flows through the indoor unit gas pipes 72a to 72c, flows into the indoor heat exchangers 51a to 51c, and is taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. Heat exchanges with room air and condenses. As described above, the indoor heat exchangers 51a to 51c function as condensers, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown into the room from a blowout port (not shown), thereby The room where the machines 5a to 5c are installed is heated.

室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、室内機液管71a〜71c、液管接続部53a〜53cを流れて液管8に流入する。   The refrigerant flowing out of the indoor heat exchangers 51a to 51c flows through the indoor unit liquid pipes 71a to 71c, passes through the indoor expansion valves 52a to 52c, and is decompressed. The decompressed refrigerant flows through the indoor unit liquid pipes 71 a to 71 c and the liquid pipe connection portions 53 a to 53 c and flows into the liquid pipe 8.

液管8を流れる冷媒は、閉鎖弁25を介して室外機2に流入する。室外機2に流入した冷媒は、室外機液管44を流れ、吐出温度センサ33で検出した圧縮機21の吐出温度に応じた開度とされた室外膨張弁24を通過するときにさらに減圧される。室外機液管44から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant flowing through the liquid pipe 8 flows into the outdoor unit 2 through the closing valve 25. The refrigerant flowing into the outdoor unit 2 flows through the outdoor unit liquid pipe 44 and is further reduced in pressure when passing through the outdoor expansion valve 24 having an opening degree corresponding to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33. The The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 44 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant flowing out of the outdoor heat exchanger 23 flows in the order of the refrigerant pipe 43, the four-way valve 22, the refrigerant pipe 46, the accumulator 28, and the suction pipe 42, and is sucked into the compressor 21 and compressed again.

尚、室内機5a〜5cが冷房/除霜運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するように切り換える。これにより、冷媒回路100が、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cが蒸発器として機能する冷房サイクルとなる。   When the indoor units 5a to 5c perform the cooling / defrosting operation, the CPU 210 indicates that the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 communicate with each other. And so that port d communicates. Thereby, the refrigerant circuit 100 becomes a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchangers 51a to 51c function as evaporators.

次に、図1乃至図4を用いて、空気調和装置1における、本発明に関わる冷媒回路の動作やその作用、および、効果について説明する。   Next, the operation | movement of the refrigerant circuit in connection with this invention in the air conditioning apparatus 1, the effect | action, and an effect are demonstrated using FIG. 1 thru | or FIG.

図2を用いて前述したように、本実施形態の空気調和装置1では、室外機2が建物600の屋上に設置されるとともに室内機5a〜5cが各階に設置されている。つまり、室外機2が室内機5a〜5cより高い位置に設置されるとともに、室内機5aと室内機5cの設置場所にも高低差Hがある設置となっている。この場合に、空気調和装置1で暖房運転を行ったときは、以下のような問題がある。   As described above with reference to FIG. 2, in the air conditioner 1 of the present embodiment, the outdoor unit 2 is installed on the roof of the building 600, and the indoor units 5a to 5c are installed on each floor. That is, the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, and the installation location of the indoor unit 5a and the indoor unit 5c has a height difference H. In this case, when the air conditioning apparatus 1 performs a heating operation, there are the following problems.

暖房運転では、圧縮機21から吐出されたガス冷媒は、吐出管41から四方弁22を介して室外機ガス管45を流れて室外機2から流出し、室内機5a〜5cの室内熱交換器51a〜51cに流入して凝縮する。このとき、室外機2が室内機5a〜5cより高い位置に設置されているために、室内熱交換器51a〜51cで凝縮し液管8に流出した液冷媒は、重力に逆らって室外機2に向かって液管8を流れることになる。   In the heating operation, the gas refrigerant discharged from the compressor 21 flows through the outdoor unit gas pipe 45 from the discharge pipe 41 through the four-way valve 22, flows out of the outdoor unit 2, and the indoor heat exchangers of the indoor units 5a to 5c. It flows into 51a-51c and condenses. At this time, since the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, the liquid refrigerant condensed in the indoor heat exchangers 51a to 51c and flowing out to the liquid pipe 8 is against the gravity against the outdoor unit 2 Will flow through the liquid pipe 8.

従って、1階に設置されている室内機5cの室内膨張弁52cの下流側(室外機2側)における液冷媒の圧力は、他の階に設置されている室内機5a、5bの室内膨張弁52a、52bの下流側における液冷媒の圧力よりも高くので、室内機5cの室内膨張弁52cの上流側(室内熱交換器51c側)の冷媒圧力と下流側の冷媒圧力の圧力差が、室内機5a、5bの室内膨張弁52a、52bの上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。   Therefore, the pressure of the liquid refrigerant on the downstream side (outdoor unit 2 side) of the indoor expansion valve 52c of the indoor unit 5c installed on the first floor is the indoor expansion valve of the indoor units 5a and 5b installed on the other floors. The pressure difference between the refrigerant pressure on the upstream side (the indoor heat exchanger 51c side) of the indoor expansion valve 52c of the indoor unit 5c and the refrigerant pressure on the downstream side is higher than the pressure of the liquid refrigerant on the downstream side of 52a and 52b. It becomes smaller than the pressure difference between the refrigerant pressure upstream of the indoor expansion valves 52a and 52b and the refrigerant pressure downstream of the machines 5a and 5b.

上記のような冷媒回路100の状態では、室内膨張弁52a〜52cの上流側の冷媒圧力と下流側の冷媒圧力の圧力差が小さいほど、室内膨張弁52a〜52cを流れる冷媒量が少なくなる。従って、1階に設置された室内機5cを流れる冷媒量は、他の室内機5a、5bを流れる冷媒量と比べて少なくなる。このことは、1階(一番低い位置)に設置された室内機5cと3階(一番高い位置)に設置された室内機5aとの高低差Hが大きくなる程顕著になり、高低差が大きくなる(例えば、50m)と室内機5cから液管8に流出した液冷媒が室外機2に向かって流れなくなって液管8の下方に液冷媒が滞留する恐れがある。そして、液管8の下方に液冷媒が滞留すると、室内膨張弁5cを全開としても室内機5cに冷媒が流れずに室内機5cで暖房能力が発揮されない恐れがあった。   In the state of the refrigerant circuit 100 as described above, the smaller the pressure difference between the refrigerant pressure upstream of the indoor expansion valves 52a to 52c and the refrigerant pressure downstream, the smaller the amount of refrigerant flowing through the indoor expansion valves 52a to 52c. Accordingly, the amount of refrigerant flowing through the indoor unit 5c installed on the first floor is smaller than the amount of refrigerant flowing through the other indoor units 5a and 5b. This becomes more significant as the height difference H between the indoor unit 5c installed on the first floor (lowest position) and the indoor unit 5a installed on the third floor (highest position) increases. Is increased (for example, 50 m), the liquid refrigerant flowing out from the indoor unit 5 c to the liquid pipe 8 may not flow toward the outdoor unit 2, and the liquid refrigerant may stay below the liquid pipe 8. If the liquid refrigerant stays below the liquid pipe 8, even if the indoor expansion valve 5c is fully opened, the refrigerant does not flow into the indoor unit 5c, and the indoor unit 5c may not be able to exhibit the heating capability.

上述した、室内機5cで暖房能力が発揮されていない状態について、図2に記載の例を用いて説明する。尚、以下の説明では、室内熱交換器51a〜51cの凝縮温度に相当し吐出圧力センサ31で検出した吐出圧力を用いて求める高圧飽和温度をThs、室内機5a〜5cの室内熱交換器51a〜51cから流出する冷媒温度であり液側温度センサ61a〜61cで検出する熱交出口温度をTo(室内機5a〜5cに対して個別に言及する必要がある場合は、Toa〜Tocと記載)、室内機5a〜5cの室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度をSC(室内機5a〜5cに対して個別に言及する必要がある場合は、SCa〜SCcと記載)とする。   The state where the heating capability is not exhibited in the indoor unit 5c described above will be described using the example shown in FIG. In the following description, the high-pressure saturation temperature calculated using the discharge pressure detected by the discharge pressure sensor 31 corresponding to the condensation temperature of the indoor heat exchangers 51a to 51c is Ths, and the indoor heat exchangers 51a of the indoor units 5a to 5c. ˜51c is the temperature of the refrigerant flowing out and is detected by the liquid side temperature sensors 61a to 61c. The heat exchange outlet temperature is To (if it is necessary to individually refer to the indoor units 5a to 5c, it is described as Toa to Toc) The refrigerant subcooling degree on the refrigerant outlet side of the indoor heat exchangers 51a to 51c of the indoor units 5a to 5c is SC (when it is necessary to individually refer to the indoor units 5a to 5c, it is described as SCa to SCc). And

また、室内機5a〜5cにおける最高冷媒過冷却度をSCh(室内機5a〜5cに対して個別に言及する必要がある場合は、SCha〜SChcと記載)とする。この最高冷媒過冷却度SChは、室内機5a〜5cの設計時に、各室内機5a〜5cで予め定められた最大の暖房能力が発揮できるように形成された室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度の最大値である。つまり、上述した室内機5a〜5cの冷媒過冷却度SCが最高冷媒過冷却度SCh以下の値であれば、各室内機5a〜5cで最大暖房能力を要求されてもこの暖房能力を発揮できる。   In addition, the maximum refrigerant supercooling degree in the indoor units 5a to 5c is SCh (indicated as SCha to SChc when it is necessary to individually refer to the indoor units 5a to 5c). This maximum refrigerant supercooling degree SCh is the refrigerant of the indoor heat exchangers 51a to 51c formed so that the indoor units 5a to 5c can exhibit a predetermined maximum heating capacity when the indoor units 5a to 5c are designed. It is the maximum value of the degree of refrigerant supercooling on the outlet side. In other words, if the refrigerant supercooling degree SC of the indoor units 5a to 5c described above is a value equal to or lower than the maximum refrigerant supercooling degree SCh, the indoor units 5a to 5c can exhibit this heating ability even if the maximum heating capacity is required. .

室内機5a〜5cの最高冷媒過冷却度SChは、図3に示す最高冷媒過冷却度テーブル300として室外機制御手段200の記憶部220に予め記憶されている。この最高冷媒過冷却度テーブル300では、室内機5a〜5c毎に最高冷媒過冷却度SChが定められており、本実施形態では、室内機5aの最高冷媒過冷却度SChaが8deg、室内機5bの最高冷媒過冷却度SChbが10deg、室内機5cの最高冷媒過冷却度SChcが12degとなっている。   The maximum refrigerant subcooling degree SCh of the indoor units 5a to 5c is stored in advance in the storage unit 220 of the outdoor unit control means 200 as the maximum refrigerant subcooling degree table 300 shown in FIG. In the maximum refrigerant supercooling degree table 300, the maximum refrigerant supercooling degree SCh is determined for each of the indoor units 5a to 5c. In this embodiment, the maximum refrigerant subcooling degree SCha of the indoor unit 5a is 8 deg, and the indoor unit 5b. The maximum refrigerant supercooling degree SChb is 10 deg, and the maximum refrigerant subcooling degree SChc of the indoor unit 5c is 12 deg.

また、図2に記載の例では、外気温度センサ36で検出する暖房運転時の外気温度を0℃、室内機5a〜5cでの暖房設定温度を24℃としている。さらには、室内熱交換器に液冷媒が滞留している室内機があるか否かを判断する際に使用する冷媒過冷却度を液冷媒滞留時過冷却度SCpとする。この液冷媒滞留時過冷却度SCpは、予め試験等を行って定められるものであり、例えば、本実施形態では20degである。   In the example shown in FIG. 2, the outside air temperature detected by the outside air temperature sensor 36 during heating operation is 0 ° C., and the heating set temperature in the indoor units 5 a to 5 c is 24 ° C. Furthermore, the refrigerant supercooling degree used when determining whether or not there is an indoor unit in which liquid refrigerant is retained in the indoor heat exchanger is set as the liquid refrigerant retaining supercooling degree SCp. The degree of supercooling SCp when the liquid refrigerant is retained is determined in advance by performing a test or the like, and is, for example, 20 deg in the present embodiment.

以上に記載した条件で空気調和装置1が暖房運転を行っているとき、室内機5a〜5cの状態は図2の「冷媒量バランス制御前」の状態となっている。まず、室内機5aでは、熱交出口温度Toaが42℃であり、冷媒過冷却度SCaが高圧飽和温度Ths−熱交出口温度Toa=48−42=6degとなっている。つまり、冷媒過冷却度SCa=6deg<液冷媒滞留時過冷却度SCp=20degであるため、室内機5aでは液冷媒は滞留しておらず暖房能力が十分に発揮できていると判断される。   When the air-conditioning apparatus 1 is performing the heating operation under the conditions described above, the state of the indoor units 5a to 5c is the state “before refrigerant amount balance control” in FIG. First, in the indoor unit 5a, the heat exchange outlet temperature Toa is 42 ° C., and the refrigerant supercooling degree SCa is high pressure saturation temperature Ths−heat exchange outlet temperature Toa = 48−42 = 6 deg. That is, since the refrigerant subcooling degree SCa = 6 deg <the subcooling degree SCp = 20 deg when the liquid refrigerant is retained, it is determined that the liquid refrigerant does not stay in the indoor unit 5a and the heating capacity is sufficiently exhibited.

次に、室内機5bでは、熱交出口温度Tobが40℃であり、冷媒過冷却度SCbが高圧飽和温度Ths−熱交出口温度Tob=48−40=8degとなっている。つまり、冷媒過冷却度SCb=8deg<液冷媒滞留時過冷却度SCp=20degであるため、室内機5bでも液冷媒は滞留しておらず暖房能力が十分に発揮できていると判断される。   Next, in the indoor unit 5b, the heat exchange outlet temperature Tob is 40 ° C., and the refrigerant supercooling degree SCb is high-pressure saturation temperature Ths−heat exchange outlet temperature Tob = 48−40 = 8 deg. That is, since the refrigerant subcooling degree SCb = 8 deg <the liquid refrigerant stagnation subcooling degree SCp = 20 deg, it is determined that the liquid refrigerant does not stay in the indoor unit 5b and the heating capacity can be sufficiently exhibited.

そして、室内機5cでは、熱交出口温度Tocが22℃であり、冷媒過冷却度SCcが高圧飽和温度Ths−熱交出口温度Toc=48−22=26degとなっている。つまり、冷媒過冷却度SCc=26deg>液冷媒滞留時過冷却度SCp=20degであるため、室内機5cでは液冷媒は滞留しているために暖房能力が発揮できていないと判断される。   In the indoor unit 5c, the heat exchange outlet temperature Toc is 22 ° C., and the refrigerant supercooling degree SCc is high-pressure saturation temperature Ths−heat exchange outlet temperature Toc = 48−22 = 26 deg. That is, since the refrigerant subcooling degree SCc = 26 deg> the liquid refrigerant staying supercooling degree SCp = 20 deg, it is determined that the heating capacity cannot be exhibited in the indoor unit 5c because the liquid refrigerant stays there.

以上説明したように、空気調和装置1の暖房運転時に室内機5cで液冷媒は滞留していることによって暖房能力が発揮されていない場合は、室内機5cに滞留する液冷媒を室内機5cから流出させて室内機5cで暖房能力が十分に発揮できるようにする冷媒量バランス制御(本発明の不暖房解消制御に相当)を実行する。具体的には、室内機5a〜5cの冷媒過冷却度SCのうち最大値(図2では、室内機5cの冷媒過冷却度:26deg)と最小値(図2では、室内機5aの冷媒過冷却度:6deg)の平均値である平均冷媒過冷却度(以降、平均冷媒過冷却度SCvと記載)=(26+6)/2=18degを求める。そして、室内機5a〜5cの冷媒過冷却度SCa〜SCcが求めた平均冷媒過冷却度SCvとなるように、室内機5a〜5cの室内膨張弁52a〜52cの開度を調整する。   As described above, when the air-conditioning apparatus 1 is in the heating operation, if the liquid refrigerant is retained in the indoor unit 5c and the heating capacity is not exerted, the liquid refrigerant remaining in the indoor unit 5c is removed from the indoor unit 5c. The refrigerant amount balance control (corresponding to the non-heating cancellation control of the present invention) is executed so that the heating capacity can be sufficiently exerted in the indoor unit 5c. Specifically, among the refrigerant supercooling degrees SC of the indoor units 5a to 5c, the maximum value (in FIG. 2, the refrigerant supercooling degree of the indoor unit 5c: 26 deg) and the minimum value (in FIG. 2, the refrigerant supercooling degree of the indoor unit 5a). Average refrigerant supercooling degree (hereinafter referred to as average refrigerant supercooling degree SCv) = (26 + 6) / 2 = 18 deg, which is an average value of the degree of cooling: 6 deg). And the opening degree of indoor expansion valve 52a-52c of indoor unit 5a-5c is adjusted so that it may become the average refrigerant | coolant subcooling degree SCv which the refrigerant | coolant subcooling degree SCa-SCc of indoor unit 5a-5c calculated | required.

冷媒量バランス制御を行うと、平均冷媒過冷却度SCvより冷媒過冷却度の小さい室内機5aおよび5bでは、冷媒過冷却度SCa、SCbを平均冷媒過冷却度SCvまで上昇させるために室内膨張弁52a、52bの開度が絞られるので、室内膨張弁52a、52bの下流側の冷媒圧力が低下する。   When the refrigerant amount balance control is performed, in the indoor units 5a and 5b having a refrigerant subcooling degree smaller than the average refrigerant subcooling degree SCv, an indoor expansion valve is used to increase the refrigerant subcooling degrees SCa and SCb to the average refrigerant subcooling degree SCv. Since the opening degree of 52a, 52b is restrict | squeezed, the refrigerant | coolant pressure of the downstream of indoor expansion valve 52a, 52b falls.

このとき、平均冷媒過冷却度SCvより冷媒過冷却度の大きい室内機5cでは、室内膨張弁52a、52bの下流側の冷媒圧力が低下することによって室内膨張弁52cの下流側の冷媒圧力も低下するために、室内膨張弁52cの上流側と下流側の圧力差が大きくなる。これにより、冷媒量バランス制御において室内機5cの冷媒過冷却度を平均冷媒過冷却度SCvまで低下させるために室内膨張弁52cの開度を大きくしているときに、その開度が全開となっても室内機5cの室内熱交換器51cに滞留する液冷媒が液管8に流出する。   At this time, in the indoor unit 5c having a refrigerant subcooling degree larger than the average refrigerant subcooling degree SCv, the refrigerant pressure on the downstream side of the indoor expansion valve 52c is also reduced by the refrigerant pressure on the downstream side of the indoor expansion valves 52a and 52b being lowered. Therefore, the pressure difference between the upstream side and the downstream side of the indoor expansion valve 52c increases. Thereby, when the opening degree of the indoor expansion valve 52c is increased in order to reduce the refrigerant subcooling degree of the indoor unit 5c to the average refrigerant subcooling degree SCv in the refrigerant amount balance control, the opening degree is fully opened. Even in this case, the liquid refrigerant staying in the indoor heat exchanger 51c of the indoor unit 5c flows out to the liquid pipe 8.

以上説明した冷媒量バランス制御を継続して行うと室内機5cに冷媒が流れるようになり、室内機5cの室内熱交換器51cに滞留していた液冷媒が冷媒回路100に流出して、室外機2から見た室内機5a〜5c側の冷媒回路100における冷媒循環量が冷媒量バランス制御を行う前と比べて増加する。また、室内機5cにおける冷媒過冷却度SCcが冷媒量バランス制御を行う前の値である26degより低下する。この結果、平均冷媒過冷却度SCvが冷媒量バランス制御を行う前の値である16degより低い値、例えば、10degとなり、図2の「冷媒量バランス制御後」の状態に示すように、全ての室内機5a〜5cで熱交出口温度Toa〜Tocが38℃、冷媒過冷却度SCa〜SCcが全て平均冷媒過冷却度SCvと同じ10degとなり、この値で安定するようになる。尚、ここで冷媒過冷却度SCa〜SCcが安定するということは、全ての冷媒過冷却度SCa〜SCcが同じ平均冷媒過冷却度SCvとなることに限らず、例えば、冷媒過冷却度SCa〜SCcと平均冷媒過冷却度SCvの差が−1deg以上1deg以下の範囲となる場合を、冷媒過冷却度SCa〜SCcが安定しているとしてもよい。   When the refrigerant amount balance control described above is continuously performed, the refrigerant flows into the indoor unit 5c, and the liquid refrigerant that has accumulated in the indoor heat exchanger 51c of the indoor unit 5c flows out into the refrigerant circuit 100, and the outdoor unit The refrigerant circulation amount in the refrigerant circuit 100 on the indoor units 5a to 5c side as viewed from the unit 2 is increased as compared to before the refrigerant amount balance control is performed. Further, the refrigerant supercooling degree SCc in the indoor unit 5c is lower than 26 deg which is a value before the refrigerant amount balance control is performed. As a result, the average refrigerant supercooling degree SCv is lower than 16 deg, which is the value before the refrigerant amount balance control, for example, 10 deg. As shown in the state of “after refrigerant amount balance control” in FIG. In the indoor units 5a to 5c, the heat exchange outlet temperatures Toa to Toc are 38 ° C., and the refrigerant subcooling degrees SCa to SCc are all 10 degrees that is the same as the average refrigerant subcooling degree SCv, and are stabilized at this value. Here, the fact that the refrigerant subcooling degrees SCa to SCc are stabilized does not mean that all the refrigerant subcooling degrees SCa to SCc have the same average refrigerant subcooling degree SCv. When the difference between the SCc and the average refrigerant supercooling degree SCv is in the range of −1 deg to 1 deg, the refrigerant supercooling degrees SCa to SCc may be stable.

しかし、暖房運転時に冷媒量バランス制御を行って冷媒過冷却度SCa〜SCcが平均冷媒過冷却度SCv付近の値で安定したとき、冷媒過冷却度SCa〜SCcが最高冷媒過冷却度SChより高い値となっていれば、当該室内機で暖房能力が発揮されていない。例えば、図2に示すように、室内機5bでは冷媒過冷却度SCbと最高冷媒過冷却度SChbが同じ値となっており、室内機5cでは冷媒過冷却度SCcが最高冷媒過冷却度SChcより小さい値となっている。これら室内機5b、5cでは暖房能力が十分に発揮できていると考えられる。一方、室内機5aでは、冷媒過冷却度SCaが最高冷媒過冷却度SChcより小さい値となっており、室内機5aで暖房能力が十分に発揮できていない恐れがある。   However, when the refrigerant amount balance control is performed during the heating operation and the refrigerant subcooling degrees SCa to SCc are stabilized at a value near the average refrigerant subcooling degree SCv, the refrigerant subcooling degrees SCa to SCc are higher than the maximum refrigerant subcooling degree SCh. If it is a value, the heating capacity is not exhibited in the indoor unit. For example, as shown in FIG. 2, in the indoor unit 5b, the refrigerant subcooling degree SCb and the maximum refrigerant subcooling degree SChb have the same value, and in the indoor unit 5c, the refrigerant subcooling degree SCc is higher than the maximum refrigerant subcooling degree SChc. It is a small value. In these indoor units 5b and 5c, it is considered that the heating capability is sufficiently exhibited. On the other hand, in the indoor unit 5a, the refrigerant subcooling degree SCa is smaller than the maximum refrigerant subcooling degree SChc, and there is a possibility that the indoor unit 5a cannot fully exhibit the heating capacity.

冷媒過冷却度SCが最高冷媒過冷却度SChより小さい値となる室内機が発生する原因は、冷媒量バランス制御を行って冷媒過冷却度SCa〜SCcが安定したときの値が大きい(図2に記載の本実施形態では、10deg)ことに起因する。これは、冷媒量バランス制御を行うとき、冷媒過冷却度SCa、SCbが平均冷媒過冷却度SCvより小さい室内機5a、5bで、冷媒過冷却度SCa、SCbを平均冷媒過冷却度SCvまで大きくするために室内膨張弁52a、52bの開度が絞られることが原因である。   The reason why the indoor unit having the refrigerant subcooling degree SC smaller than the maximum refrigerant subcooling degree SCh is generated is a large value when the refrigerant subcooling degrees SCa to SCc are stabilized by performing the refrigerant amount balance control (FIG. 2). In the present embodiment described in FIG. This is because when the refrigerant amount balance control is performed, the refrigerant supercooling degrees SCa and SCb are smaller than the average refrigerant subcooling degree SCv in the indoor units 5a and 5b, and the refrigerant subcooling degrees SCa and SCb are increased to the average refrigerant subcooling degree SCv. This is because the opening degree of the indoor expansion valves 52a and 52b is reduced.

室内機5a、5bにおいて室内膨張弁52a、52bの開度が絞られると、室内熱交換器51a、51bに冷媒が滞留するようになる。つまり、冷媒量バランス制御を継続して行うと、室内機5cに滞留している液冷媒が室内機5cから冷媒回路100に流出する一方、室内機5a、5bでは室内熱交換器51a、51bに冷媒が滞留していく。この結果、室外機2から見た室内機5a〜5c側の冷媒回路100における冷媒量が過多となる場合があり、この結果、冷媒過冷却度SCa〜SCcが高い値で安定する。   When the indoor expansion valves 52a and 52b are throttled down in the indoor units 5a and 5b, the refrigerant stays in the indoor heat exchangers 51a and 51b. In other words, if the refrigerant amount balance control is continuously performed, the liquid refrigerant staying in the indoor unit 5c flows out from the indoor unit 5c to the refrigerant circuit 100, while the indoor units 5a and 5b are connected to the indoor heat exchangers 51a and 51b. Refrigerant stagnates. As a result, the refrigerant amount in the refrigerant circuit 100 on the indoor units 5a to 5c side viewed from the outdoor unit 2 may be excessive, and as a result, the refrigerant supercooling degrees SCa to SCc are stabilized at high values.

そこで、本発明では、空気調和装置1が暖房運転中に冷媒量バランス制御を行い、このときに冷媒過冷却度SCが最高冷媒過冷却度SChより大きい値で安定している室内機5a〜5cが存在する場合は、室外機2に冷媒を回収する余剰冷媒回収制御を行う。具体的には、冷媒量バランス制御を行って冷媒過冷却度SCが安定したときに最高冷媒過冷却度SChより大きい値となっている室内機5a〜5cがあれば、室外膨張弁24の開度を所定の割合で大きくして、冷媒回路100の循環する冷媒の一部をアキュムレータ21に格納する。ここで、所定の割合で大きくするとは、例えば冷媒量バランス制御を行う間隔(上述した30秒毎)で、室外膨張弁24に所定のパルス数(例えば、5パルス)を加えこのパルス数に相当する分開度を大きくすることである。   Therefore, in the present invention, the air conditioner 1 performs refrigerant amount balance control during the heating operation, and at this time, the indoor units 5a to 5c in which the refrigerant subcooling degree SC is stable at a value larger than the maximum refrigerant subcooling degree SCh. Is present, excess refrigerant recovery control for recovering refrigerant in the outdoor unit 2 is performed. Specifically, if the indoor unit 5a to 5c has a value larger than the maximum refrigerant subcooling degree SCh when the refrigerant amount balance control is performed and the refrigerant subcooling degree SC is stabilized, the outdoor expansion valve 24 is opened. The degree is increased at a predetermined rate, and a part of the refrigerant circulating in the refrigerant circuit 100 is stored in the accumulator 21. Here, increasing at a predetermined rate corresponds to, for example, adding a predetermined number of pulses (for example, 5 pulses) to the outdoor expansion valve 24 at an interval (every 30 seconds described above) for performing refrigerant amount balance control. The amount of opening is increased.

余剰冷媒回収制御を行うことによって、室外機2から見た室内機5a〜5c側の冷媒回路100における冷媒量が減少して冷媒過冷却度SCが小さくなる。そして、余剰冷媒回収制御を、冷媒過冷却度SCがいずれの室内機5a〜5cの最高冷媒過冷却度SChより小さい値となるまで続ければ、室内機5aも暖房能力が発揮できるようになり、全ての室内機5a〜5cで暖房能力が十分に発揮できるようになる。   By performing the excess refrigerant recovery control, the refrigerant amount in the refrigerant circuit 100 on the indoor units 5a to 5c side viewed from the outdoor unit 2 is reduced, and the refrigerant supercooling degree SC is reduced. Then, if the surplus refrigerant recovery control is continued until the refrigerant subcooling degree SC becomes a value smaller than the maximum refrigerant subcooling degree SCh of any indoor unit 5a to 5c, the indoor unit 5a can also exert the heating capacity, All of the indoor units 5a to 5c can sufficiently exhibit the heating capacity.

次に、図4を用いて、本実施形態の空気調和装置1における暖房運転時の制御について説明する。図4は、空気調和装置1が暖房運転を行う場合の、室外機制御部200のCPU210が行う制御に関する処理の流れを示すものである。図4において、STはステップを表し、これに続く数字はステップ番号を表している。尚、図4では本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御、といった、空気調和装置1に関わる一般的な処理については説明を省略している。また、以下の説明では、全ての室内機5a〜5cが暖房運転を行っている場合を例に挙げて説明する。   Next, control at the time of heating operation in the air-conditioning apparatus 1 of the present embodiment will be described with reference to FIG. FIG. 4 shows a flow of processing related to control performed by the CPU 210 of the outdoor unit control unit 200 when the air-conditioning apparatus 1 performs the heating operation. In FIG. 4, ST represents a step, and the number following this represents a step number. In FIG. 4, the processing related to the present invention is mainly described, and other processing, for example, control of the refrigerant circuit 100 corresponding to the operating conditions such as the set temperature and the air volume instructed by the user is performed. Description of general processing related to the harmony device 1 is omitted. Moreover, in the following description, the case where all the indoor units 5a to 5c are performing the heating operation will be described as an example.

また、以下の説明では、前述した高圧飽和温度Ths、熱交出口温度To、冷媒過冷却度SC、最高冷媒過冷却度SCh、および、平均冷媒過冷却度SCvに加えて、吐出圧力センサ31で検出する冷媒圧力である吐出圧力をPhとする。   In the following description, in addition to the high-pressure saturation temperature Ths, the heat exchange outlet temperature To, the refrigerant subcooling degree SC, the maximum refrigerant subcooling degree SCh, and the average refrigerant subcooling degree SCv, the discharge pressure sensor 31 is used. Let Ph be the discharge pressure that is the refrigerant pressure to be detected.

まず、CPU210は、使用者の運転指示が暖房運転指示であるか否かを判断する(ST1)。
暖房運転指示でなければ(ST1−No)、CPU210は、冷房運転もしくは除湿運転の開始処理である冷房/除湿運転開始処理を実行する(ST15)。ここで、冷房/除湿運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を冷房サイクルとすることであり、最初に冷房運転もしくは除湿運転を行うときに行われる処理である。そして、CPU210は、圧縮機21や室外ファン27を所定の回転数で起動するとともに、通信部230を介して室内機5a〜5cに対し室内ファン55a〜55cの駆動制御や室内膨張弁52a〜52cの開度調整を行うよう指示して冷房運転あるいは除湿運転の制御を開始し(ST16)、ST12に処理を進める。
First, CPU 210 determines whether or not the user's operation instruction is a heating operation instruction (ST1).
If it is not a heating operation instruction (ST1-No), the CPU 210 executes a cooling / dehumidifying operation start process that is a start process of a cooling operation or a dehumidifying operation (ST15). Here, the cooling / dehumidifying operation start process is a process performed when the CPU 210 operates the four-way valve 22 to set the refrigerant circuit 100 to the cooling cycle, and when the cooling operation or the dehumidifying operation is first performed. Then, the CPU 210 activates the compressor 21 and the outdoor fan 27 at a predetermined rotational speed, and controls the driving of the indoor fans 55a to 55c and the indoor expansion valves 52a to 52c with respect to the indoor units 5a to 5c via the communication unit 230. Is instructed to adjust the opening degree of the air and starts control of the cooling operation or the dehumidifying operation (ST16), and the process proceeds to ST12.

ST1において、暖房運転指示であれば(ST1−Yes)、CPU210は、暖房運転開始処理を実行する(ST2)。ここで、暖房運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を図1(A)に示す状態、つまり、冷媒回路100を暖房サイクルとすることであり、最初に暖房運転を行うときに行われる処理である。   If it is a heating operation instruction in ST1 (ST1-Yes), the CPU 210 executes a heating operation start process (ST2). Here, the heating operation start process is a state in which the CPU 210 operates the four-way valve 22 to bring the refrigerant circuit 100 into the state shown in FIG. 1A, that is, the refrigerant circuit 100 is set to the heating cycle. It is a process performed when performing.

次に、CPU210は、暖房運転制御を開始する(ST3)。暖房運転制御の開始では、CPU210は、室内機5a〜5cからの要求能力に応じた回転数で圧縮機21や室外ファン27を起動する。また、CPU210は、吐出温度センサ33で検出した圧縮機21の吐出温度をセンサ入力部240を介して取り込み、取り込んだ吐出温度に応じて室外膨張弁24の開度を調整する。さらには、CPU210は、室内機5a〜5cに対し通信部230を介して暖房運転を開始する旨の運転開始信号を送信する。   Next, the CPU 210 starts the heating operation control (ST3). At the start of heating operation control, the CPU 210 activates the compressor 21 and the outdoor fan 27 at a rotational speed corresponding to the required capacity from the indoor units 5a to 5c. The CPU 210 takes in the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33 via the sensor input unit 240 and adjusts the opening degree of the outdoor expansion valve 24 according to the taken-in discharge temperature. Furthermore, CPU210 transmits the driving | operation start signal to the effect of starting heating operation via the communication part 230 with respect to indoor unit 5a-5c.

運転開始信号を通信部530a〜530cを介して受信した室内機5a〜5cの室内機制御手段500a〜500cのCPU510a〜510cは、使用者の風量指示に応じた回転数で室内ファン55a〜55cを起動するとともに、室内熱交換器51a〜51cの冷媒出口(液管接続部53a〜53c側)での冷媒過冷却度が運転開始時の目標冷媒過冷却度(例えば、6deg)となるように室内膨張弁52a〜52cの開度を調整する。ここで、目標冷媒過冷却度は、予め試験等を行って求めて記憶部530a〜530cに記憶されている値であり、各室内機で暖房能力が十分に発揮されることが確認できている値である。尚、CPU510a〜510cは、暖房運転の開始から冷媒回路100の状態が安定するまでの間(例えば、運転開始から3分間)は、上述した運転開始時の目標冷媒過冷却度となるように室内膨張弁52a〜52cの開度を調整する。   The CPUs 510a to 510c of the indoor unit control means 500a to 500c of the indoor units 5a to 5c that have received the operation start signals via the communication units 530a to 530c turn the indoor fans 55a to 55c at the number of rotations according to the air volume instruction of the user. The interior of the indoor heat exchangers 51a to 51c is started so that the refrigerant supercooling degree at the refrigerant outlets (liquid pipe connection parts 53a to 53c side) becomes the target refrigerant subcooling degree (for example, 6 deg) at the start of operation. The opening degree of the expansion valves 52a to 52c is adjusted. Here, the target refrigerant subcooling degree is a value obtained by performing a test or the like in advance and stored in the storage units 530a to 530c, and it has been confirmed that the heating capacity is sufficiently exhibited in each indoor unit. Value. Note that the CPUs 510a to 510c are configured so that the above-described target refrigerant subcooling degree at the start of the operation becomes the above-described target refrigerant subcooling degree until the state of the refrigerant circuit 100 is stabilized after the start of the heating operation (for example, for 3 minutes from the start of operation). The opening degree of the expansion valves 52a to 52c is adjusted.

次に、CPU210は、吐出圧力センサ31で検出した吐出圧力Phをセンサ入力部240を介して取り込むとともに、各室内機5a〜5cから熱交出口温度To(Toa〜Toc)を通信部230を介して取り込む(ST4)。尚、熱交出口温度Toは、室内機5a〜5cにおいて液側温度センサ61a〜61cや吸込温度センサ63a〜63cでの検出値をCPU510a〜510cがセンサ入力部540a〜540cを介して取り込み、通信部530a〜530cを介して室外機2に送信しているものである。また、上述した各検出値は、所定時間毎(例えば、30秒毎)に各CPUが取り込んで各記憶部に記憶している。   Next, the CPU 210 takes in the discharge pressure Ph detected by the discharge pressure sensor 31 via the sensor input unit 240, and sends the heat exchange outlet temperature To (Toa to Toc) from each of the indoor units 5 a to 5 c via the communication unit 230. (ST4). As for the heat exchange outlet temperature To, the CPU 510a to 510c captures the detected values of the liquid side temperature sensors 61a to 61c and the suction temperature sensors 63a to 63c in the indoor units 5a to 5c via the sensor input units 540a to 540c. It is transmitting to the outdoor unit 2 via the units 530a to 530c. Each detection value described above is captured by each CPU and stored in each storage unit at predetermined time intervals (for example, every 30 seconds).

次に、CPU210は、ST4で取り込んだ吐出圧力Phを用いて高圧飽和温度Thsを求め(ST5)、求めた高圧飽和温度ThsとST4で取り込んだ熱交出口温度Toを用いて、室内機5a〜5cの冷媒過冷却度SC(SCa〜SCc)を求める(ST6)。   Next, the CPU 210 obtains the high-pressure saturation temperature Ths using the discharge pressure Ph taken in in ST4 (ST5), and uses the obtained high-pressure saturation temperature Ths and the heat exchange outlet temperature To taken in in ST4, the indoor units 5a to 5a. A refrigerant supercooling degree SC (SCa to SCc) of 5c is obtained (ST6).

次に、CPU210は、ST6で求めた室内機5a〜5cの冷媒過冷却度SCを用いて平均冷媒過冷却度SCvを算出する(ST7)。具体的には、CPU210は、室内機5a〜5cの冷媒過冷却度SCa〜SCcの中で最大値と最小値を抽出し、これらの平均値を求めてこれを平均冷媒過冷却度SCvとする。     Next, CPU210 calculates average refrigerant | coolant subcooling degree SCv using refrigerant | coolant supercooling degree SC of indoor unit 5a-5c calculated | required by ST6 (ST7). Specifically, the CPU 210 extracts the maximum value and the minimum value from the refrigerant supercooling degrees SCa to SCc of the indoor units 5a to 5c, obtains the average value thereof, and sets this as the average refrigerant subcooling degree SCv. .

次に、CPU210は、ST7で求めた平均冷媒過冷却度SCvとST5で求めた高圧飽和温度Thsを、通信部230を介して室内機5a〜5cに送信する(ST8)。通信部530a〜530cを介して平均冷媒過冷却度SCvと高圧飽和温度Thsを受信した室内機5a〜5cのCPU510a〜510cは、室外機2から受信した高圧飽和温度Thsから液側温度センサ61a〜61cで検出した熱交出口温度Toa〜Tocを減じて冷媒過冷却度SCa〜SCcを求め、求めた冷媒過冷却度SCa〜SCcが、室外機2から受信した平均冷媒過冷却度SCvとなるように、室内膨張弁52a〜52cの開度を調整する。
以上説明したST4〜ST8までの処理が、本発明の不暖房解消制御である冷媒量バランス制御に関わる処理である。
Next, the CPU 210 transmits the average refrigerant supercooling degree SCv obtained in ST7 and the high-pressure saturation temperature Ths obtained in ST5 to the indoor units 5a to 5c via the communication unit 230 (ST8). The CPUs 510a to 510c of the indoor units 5a to 5c that have received the average refrigerant supercooling degree SCv and the high pressure saturation temperature Ths via the communication units 530a to 530c, respectively, use the liquid side temperature sensors 61a to 61 from the high pressure saturation temperature Ths received from the outdoor unit 2. The heat exchanger outlet temperatures Toa to Toc detected in 61c are subtracted to obtain the refrigerant subcooling degrees SCa to SCc, and the obtained refrigerant subcooling degrees SCa to SCc become the average refrigerant subcooling degree SCv received from the outdoor unit 2. Next, the opening degree of the indoor expansion valves 52a to 52c is adjusted.
The processes from ST4 to ST8 described above are processes related to the refrigerant amount balance control which is the non-heating cancellation control of the present invention.

次に、CPU210は、ST6で求めた冷媒過冷却度SC(SCa〜SCc)からST7で求めた平均冷媒過冷却度SCvを減じた値が−1以上1以下であるか否かを判断する(ST9)。冷媒過冷却度SCから平均冷媒過冷却度SCvを減じた値が−1以上1以下でなければ(ST9−No)、CPU210は、ST12に処理を進める。   Next, CPU 210 determines whether or not the value obtained by subtracting the average refrigerant subcooling degree SCv obtained in ST7 from the refrigerant subcooling degree SC (SCa to SCc) obtained in ST6 is −1 or more and 1 or less ( ST9). If the value obtained by subtracting the average refrigerant supercooling degree SCv from the refrigerant supercooling degree SC is not -1 or more and 1 or less (ST9-No), the CPU 210 advances the process to ST12.

冷媒過冷却度SCから平均冷媒過冷却度SCvを減じた値が−1以上1以下であれば(ST9−Yes)、CPU210は、冷媒過冷却度SCが安定したと判断し、記憶部220に記憶している最高冷媒過冷却度テーブル300を参照してST6で求めた冷媒過冷却度SCのうち最高最高冷媒過冷却度SChより大きい値となっている室内機があるか否かを判断する(ST10)。   If the value obtained by subtracting the average refrigerant supercooling degree SCv from the refrigerant supercooling degree SC is not less than −1 and not more than 1 (ST9—Yes), the CPU 210 determines that the refrigerant supercooling degree SC is stable, and stores it in the storage unit 220. With reference to the stored maximum refrigerant subcooling degree table 300, it is determined whether or not there is an indoor unit having a value larger than the maximum maximum refrigerant subcooling degree SCh among the refrigerant subcooling degrees SC obtained in ST6. (ST10).

冷媒過冷却度SCのうち最高最高冷媒過冷却度SChより大きい値となっている室内機がなければ(ST10−No)、CPU210は、ST12に処理を進める。冷媒過冷却度SCのうち最高最高冷媒過冷却度SChより大きい値となっている室内機があれば(ST10−Yes)、CPU210は、室外膨張弁24に5パルス加えて(ST11)室外膨張弁24の開度を大きくし、ST12に処理を進める。
以上説明したST9〜ST11までの処理が、本発明の余剰冷媒回収制御に関わる処理である。
If there is no indoor unit having a value larger than the maximum maximum refrigerant supercooling degree SCh among the refrigerant supercooling degrees SC (ST10-No), the CPU 210 proceeds to ST12. If there is an indoor unit having a value larger than the maximum maximum refrigerant supercooling degree SCh among the refrigerant supercooling degrees SC (ST10-Yes), the CPU 210 adds five pulses to the outdoor expansion valve 24 (ST11). The opening degree of 24 is increased and the process proceeds to ST12.
The processes from ST9 to ST11 described above are processes related to surplus refrigerant recovery control of the present invention.

ST11の処理を終えたCPU210は、使用者による運転モード切替指示があるか否かを判断する(ST12)。ここで、運転モード切替指示とは、現在の運転(ここでは暖房運転)から別の運転(冷房運転あるいは除湿運転)への切替を指示するものである。運転モード切替指示がある場合は(ST12−Yes)、CPU210は、ST1に処理を戻す。運転モード切替指示がない場合は(ST12−No)、CPU210は、使用者による運転停止指示があるか否かを判断する(ST13)。運転停止指示とは、全ての室内機5a〜5cが運転を停止することを指示すものである。   CPU210 which completed the process of ST11 judges whether there exists the operation mode switching instruction | indication by a user (ST12). Here, the operation mode switching instruction is an instruction to switch from the current operation (here, heating operation) to another operation (cooling operation or dehumidifying operation). When there is an operation mode switching instruction (ST12-Yes), the CPU 210 returns the process to ST1. When there is no operation mode switching instruction (ST12-No), the CPU 210 determines whether or not there is an operation stop instruction by the user (ST13). The operation stop instruction indicates that all the indoor units 5a to 5c stop the operation.

運転停止指示があれば(ST13−Yes)、CPU210は、運転停止処理を実行し(ST14)、処理を終了する。運転停止処理では、CPU210は、圧縮機21や室外ファン27を停止するとともに室外膨張弁24を全閉とする。また、CPU210は、室内機5a〜5cに対し通信部230を介して運転を停止する旨の運転停止信号を送信する。運転停止信号を通信部530a〜530cを介して受信した室内機5a〜5cのCPU510a〜510cは、室内ファン55a〜55cを停止するとともに室内膨張弁52a〜52cを全閉とする。   If there is an operation stop instruction (ST13-Yes), the CPU 210 executes an operation stop process (ST14) and ends the process. In the operation stop process, the CPU 210 stops the compressor 21 and the outdoor fan 27 and fully closes the outdoor expansion valve 24. Moreover, CPU210 transmits the driving | operation stop signal to the effect of stopping a driving | operation via the communication part 230 with respect to indoor unit 5a-5c. The CPUs 510a to 510c of the indoor units 5a to 5c that have received the operation stop signals via the communication units 530a to 530c stop the indoor fans 55a to 55c and fully close the indoor expansion valves 52a to 52c.

ST13において運転停止指示がなければ(ST13−No)、CPU210は、現在の運転が暖房運転であるか否かを判断する(ST17)。現在の運転が暖房運転であれば(ST17−Yes)、CPU210は、ST3に処理を戻す。現在の運転が暖房運転でなければ(ST17−No)、つまり、現在の運転が冷房運転もしくは除湿運転であれば、CPU210は、ST16に処理を戻す。   If there is no operation stop instruction in ST13 (ST13-No), CPU 210 determines whether or not the current operation is a heating operation (ST17). If the current operation is the heating operation (ST17-Yes), CPU 210 returns the process to ST3. If the current operation is not the heating operation (ST17-No), that is, if the current operation is the cooling operation or the dehumidifying operation, the CPU 210 returns the process to ST16.

以上説明した実施形態では、暖房運転を開始すれば冷媒量バランス制御を実行する場合を例に挙げて説明したが、暖房運転を開始した後に冷媒過冷却度SCが液冷媒滞留時過冷却度SCpより大きい室内機が存在するとき、すなわち、暖房能力が発揮できていない室内機が存在することが判明したときに、冷媒量バランス制御を開始するようにしてもよい。   In the embodiment described above, the case where the refrigerant amount balance control is executed when the heating operation is started has been described as an example. However, after the heating operation is started, the refrigerant supercooling degree SC is the liquid refrigerant retention supercooling degree SCp. The refrigerant amount balance control may be started when there is a larger indoor unit, that is, when it is found that there is an indoor unit that cannot exhibit the heating capacity.

また、冷媒回収容器としてアキュムレータ28を使用する場合について説明したが、これに限るものではなく、アキュムレータ28とは別に設けられる冷媒受液器を冷媒回収容器として使用してもよく、例えば、室外機液管44にレシーバが設けられる場合は、このレシーバを冷媒回収容器として使用してもよい。   Further, the case where the accumulator 28 is used as the refrigerant recovery container has been described. However, the present invention is not limited to this, and a refrigerant receiver provided separately from the accumulator 28 may be used as the refrigerant recovery container. When a receiver is provided in the liquid pipe 44, this receiver may be used as a refrigerant recovery container.

1 空気調和装置
2 室外機
5a〜5c 室内機
31 吐出圧力センサ
51a〜51c 室内熱交換器
52a〜52c 室内膨張弁
61a〜61c 液側温度センサ
100 冷媒回路
200 室外機制御部
210 CPU
300 最高冷媒過冷却度テーブル
500a〜500c 室内機制御部
510a〜510c CPU
Ph 吐出圧力
SC 冷媒過冷却度
SCh 最高冷媒過冷却度
SCv 平均冷媒過冷却度
Ths 高圧飽和温度
To 熱交出口温度
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 31 Discharge pressure sensor 51a-51c Indoor heat exchanger 52a-52c Indoor expansion valve 61a-61c Liquid side temperature sensor 100 Refrigerant circuit 200 Outdoor unit control part 210 CPU
300 Maximum refrigerant supercooling degree table 500a to 500c Indoor unit controller 510a to 510c CPU
Ph Discharge pressure SC Refrigerant supercooling degree SCh Maximum refrigerant supercooling degree SCv Average refrigerant supercooling degree Ths High pressure saturation temperature To Heat exchange outlet temperature

Claims (3)

圧縮機と、同圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、
室内熱交換器と、室内膨張弁と、前記室内熱交換器が凝縮器として機能しているときに同室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数台の室内機を有し、
前記室外機が前記複数台の室内機より上方に設置されるとともに、前記複数台の室内機の設置場所に高低差がある空気調和装置であって、
前記空気調和装置が暖房運転を行っているときに、暖房能力が発揮できていない室内機が存在する場合に、当該室内機で暖房能力が発揮できるようにするための不暖房解消制御を実行する制御手段を有し、
前記制御手段は、前記複数台の室内機に個別の値であって同複数台の室内機で予め定められた暖房能力を発揮できる冷媒過冷却度の最大値である最高冷媒過冷却度を記憶しており、前記不暖房解消制御を実行して前記各室内機の冷媒過冷却度と同各室内機の冷媒過冷却度を用いて算出する平均冷媒過冷却度の差が予め定められた所定の範囲内の値となったときに、前記冷媒過冷却度が前記最高冷媒過冷却度より大きい室内機があれば、前記複数台の室内機から前記室外機に冷媒を回収する余剰冷媒回収制御を行う、
ことを特徴とする空気調和装置。
An outdoor unit having a compressor and a discharge pressure detecting means for detecting a discharge pressure that is a pressure of a refrigerant discharged from the compressor;
Liquid side temperature detection for detecting the heat exchange outlet temperature, which is the temperature of the refrigerant flowing out of the indoor heat exchanger when the indoor heat exchanger functions as a condenser. Having a plurality of indoor units having means,
The outdoor unit is installed above the plurality of indoor units, and is an air conditioner having a height difference in the installation location of the plurality of indoor units,
When the air conditioner is performing a heating operation, if there is an indoor unit that does not exhibit the heating capability, non-heating cancellation control is performed so that the indoor unit can exhibit the heating capability. Having control means,
The control means stores a maximum refrigerant subcooling degree which is a maximum value of the refrigerant subcooling degree which is an individual value for the plurality of indoor units and can exhibit a predetermined heating capacity in the plurality of indoor units. The difference between the average refrigerant subcooling degree calculated by executing the unheated elimination control and using the refrigerant subcooling degree of each indoor unit and the refrigerant subcooling degree of each indoor unit is predetermined. Excess refrigerant recovery control for recovering refrigerant from the plurality of indoor units to the outdoor unit if there is an indoor unit whose refrigerant subcooling degree is greater than the maximum refrigerant subcooling degree I do,
An air conditioner characterized by that.
前記不暖房解消制御は、前記複数台の室内機の冷媒過冷却度のうち最大値と最小値を用いて前記平均冷媒過冷却度を求め、前記複数台の室内機の冷媒過冷却度が前記平均冷媒過冷却度となるように前記室内膨張弁の開度を調整する、
ことを特徴とする請求項1に記載の空気調和装置。
The non-heating cancellation control obtains the average refrigerant subcooling degree using the maximum value and the minimum value among the refrigerant subcooling degrees of the plurality of indoor units, and the refrigerant subcooling degree of the plurality of indoor units Adjusting the opening of the indoor expansion valve so as to obtain an average refrigerant supercooling degree,
The air conditioner according to claim 1.
前記室外機は室外膨張弁と冷媒回収容器を有し、
前記余剰冷媒回収制御は、前記室外膨張弁の開度を所定の割合で大きくして前記冷媒回収容器に冷媒を回収する、
ことを特徴とする請求項1に記載の空気調和装置。
The outdoor unit has an outdoor expansion valve and a refrigerant recovery container,
The surplus refrigerant recovery control increases the degree of opening of the outdoor expansion valve by a predetermined ratio and recovers the refrigerant in the refrigerant recovery container.
The air conditioner according to claim 1.
JP2016023272A 2016-02-10 2016-02-10 Air conditioner Expired - Fee Related JP6638446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023272A JP6638446B2 (en) 2016-02-10 2016-02-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023272A JP6638446B2 (en) 2016-02-10 2016-02-10 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017142018A true JP2017142018A (en) 2017-08-17
JP6638446B2 JP6638446B2 (en) 2020-01-29

Family

ID=59629072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023272A Expired - Fee Related JP6638446B2 (en) 2016-02-10 2016-02-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP6638446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211965A1 (en) 2017-07-21 2019-01-24 Ngk Spark Plug Co., Ltd. Printed Circuit Board, Planar Transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159843A (en) * 1992-11-30 1994-06-07 Daikin Ind Ltd Multiple room type air conditioner
WO2011092742A1 (en) * 2010-01-29 2011-08-04 ダイキン工業株式会社 Heat pump system
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159843A (en) * 1992-11-30 1994-06-07 Daikin Ind Ltd Multiple room type air conditioner
WO2011092742A1 (en) * 2010-01-29 2011-08-04 ダイキン工業株式会社 Heat pump system
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211965A1 (en) 2017-07-21 2019-01-24 Ngk Spark Plug Co., Ltd. Printed Circuit Board, Planar Transformer

Also Published As

Publication number Publication date
JP6638446B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
JP6569536B2 (en) Air conditioner
JP6693312B2 (en) Air conditioner
JP6468300B2 (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP6834561B2 (en) Air conditioner
JP2015117854A (en) Air conditioning system
JP6716960B2 (en) Air conditioner
JP6834616B2 (en) Air conditioner
JP6834562B2 (en) Air conditioner
JP2019039599A (en) Air conditioning device
JP6733424B2 (en) Air conditioner
JP6350338B2 (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP2017142017A (en) Air conditioner
JP6930127B2 (en) Air conditioner
JP6672860B2 (en) Air conditioner
JP2018115805A (en) Air conditioner
JP6728749B2 (en) Air conditioner
JP6638446B2 (en) Air conditioner
JP2018017479A (en) Air conditioner
JP6737053B2 (en) Air conditioner
JP6897069B2 (en) Air conditioner
JP6740830B2 (en) Air conditioner
JP2017227387A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees