JP2017141947A - Manufacturing method of tank - Google Patents

Manufacturing method of tank Download PDF

Info

Publication number
JP2017141947A
JP2017141947A JP2016025323A JP2016025323A JP2017141947A JP 2017141947 A JP2017141947 A JP 2017141947A JP 2016025323 A JP2016025323 A JP 2016025323A JP 2016025323 A JP2016025323 A JP 2016025323A JP 2017141947 A JP2017141947 A JP 2017141947A
Authority
JP
Japan
Prior art keywords
liner
tank
resin
sides
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016025323A
Other languages
Japanese (ja)
Other versions
JP6654458B2 (en
Inventor
稲生 隆嗣
Takashi Inao
隆嗣 稲生
龍仁 神藤
Tatsunori Shindo
龍仁 神藤
吉宏 岩野
Yoshihiro Iwano
吉宏 岩野
石橋 一伸
Kazunobu Ishibashi
一伸 石橋
潔 鵜澤
Kiyoshi Uzawa
潔 鵜澤
影山 裕史
Yasushi Kageyama
裕史 影山
真実 坂口
Mami SAKAGUCHI
真実 坂口
真人 金崎
Masato Kanezaki
真人 金崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Toyota Motor Corp
Original Assignee
Kanazawa Institute of Technology (KIT)
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), Toyota Motor Corp filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2016025323A priority Critical patent/JP6654458B2/en
Publication of JP2017141947A publication Critical patent/JP2017141947A/en
Application granted granted Critical
Publication of JP6654458B2 publication Critical patent/JP6654458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a tank 1 which can suppress the lowering of the rigidity of the tank 1 resulting from the formation of a cylindrical part 4 into a heavy thickness even if the cylindrical part 4 which is composed of a fiber-reinforced resin is molded at a liner 10.SOLUTION: A liner 10 having steps 26 at both sides of a flank part 2 is prepared so that diameters of end edges 22, 22 of the flank body 2 at both the ends become larger than a diameter of an external peripheral face 23 between the both-side end edges 22, 22, a cylindrical part 4 is formed by winding a single piece of a fiber-reinforced resin sheet 4A to an external peripheral face 23 of the flank part 2 a plurality of times from a direction orthogonal to an axial core CL of the flank part 2 so as to fill the both-side steps 26, 26 of the flank part 2, and a reinforcement layer 6 is formed by being helically wound with a continuous fiber 61 which is impregnated with resin over side end parts 3, 3 of both sides of the liner 10 at which the cylindrical part 4 is formed.SELECTED DRAWING: Figure 1

Description

本発明は、ガス等を貯蔵するに好適なタンクの製造方法に関する。   The present invention relates to a method for manufacturing a tank suitable for storing gas or the like.

たとえば、天然ガス自動車または燃料電池自動車などには、燃料ガスを貯蔵するタンクが利用されている。この種のタンクは、軽量化および高強度化を図るべく、タンクの形状に応じたライナーに、繊維強化樹脂が被覆されている。   For example, a tank for storing fuel gas is used for a natural gas vehicle or a fuel cell vehicle. In this type of tank, a fiber reinforced resin is coated on a liner corresponding to the shape of the tank in order to reduce the weight and increase the strength.

このようなタンクの製造方法として、たとえば、特許文献1には、以下に示すタンクの製造方法が提案されている。この製造方法では、まず、筒状の胴体部と、前記胴体部の両側に形成されたドーム状の側端部と、を有したライナーを準備する。次に、ライナーに、樹脂が含浸された連続繊維をヘリカル巻きした第1ヘリカル層を成形する。次に、ヘリカル層の表面に、シート状の繊維強化樹脂を巻回してフープ層(筒状部)を成形する。さらに、第1ヘリカル層が筒状部から露出した部分と、筒状部とに、樹脂が含浸された連続繊維をヘリカル巻きした第2ヘリカル層(補強層)を成形する。   As such a tank manufacturing method, for example, Patent Document 1 proposes a tank manufacturing method described below. In this manufacturing method, first, a liner having a cylindrical body portion and dome-shaped side end portions formed on both sides of the body portion is prepared. Next, a first helical layer is formed by helically winding continuous fibers impregnated with resin on the liner. Next, a sheet-like fiber reinforced resin is wound around the surface of the helical layer to form a hoop layer (tubular portion). Furthermore, a second helical layer (reinforcing layer) is formed by helically winding continuous fibers impregnated with resin on the portion where the first helical layer is exposed from the cylindrical portion and the cylindrical portion.

特開2010−265931号公報JP 2010-265931 A

しかしながら、特許文献1に示す製造方法では、筒状部を成形した際に、筒状部の肉厚により、筒状部の表面と、筒状部から露出した第1ヘリカル層の表面との間に段差が形成されてしまう。このような段差が形成された部分に補強層を成形した場合、補強層と段差が形成された部分に空洞が形成されてしまい、この空洞によりタンクの強度が低下することが想定される。またこのような段差を無くすため、筒状部の両周縁を削り取ると、筒状部内の強化繊維が切断され、この部分のタンク強度が低下してしまう。   However, in the manufacturing method shown in Patent Document 1, when the cylindrical portion is molded, due to the thickness of the cylindrical portion, between the surface of the cylindrical portion and the surface of the first helical layer exposed from the cylindrical portion. A step is formed on the surface. When the reinforcing layer is formed in a portion where such a step is formed, a cavity is formed in the portion where the reinforcing layer and the step are formed, and it is assumed that the strength of the tank is reduced due to this cavity. Further, if both the peripheral edges of the cylindrical portion are scraped to eliminate such a step, the reinforcing fibers in the cylindrical portion are cut, and the tank strength of this portion is reduced.

本発明は、このような点を鑑みてなされたものであり、ライナーに繊維強化樹脂からなる筒状部を成形しても、筒状部の肉厚による段差に起因した、タンク強度の低下を抑えることができるタンクの製造方法を提供することにある。   The present invention has been made in view of such points, and even when a cylindrical portion made of fiber reinforced resin is formed on a liner, the tank strength is reduced due to a step due to the thickness of the cylindrical portion. An object of the present invention is to provide a method for manufacturing a tank that can be suppressed.

前記課題を鑑みて、本発明に係るタンクの製造方法は、円筒状の胴体部と、前記胴体部の両側に形成されたドーム状の側端部と、を有するライナーを少なくとも備えたタンクの製造方法であって、前記胴体部の両端縁の直径が、該両端縁の間の外周面の直径よりも大きくなるように、前記胴体部の両側に段差を有したライナーを準備する工程と、前記胴体部の両側の前記段差を埋めるように、1枚の繊維強化樹脂シートを、前記胴体部の軸心に対して直交する方向から、前記胴体部の前記外周面に複数回巻き付けることにより、筒状部を成形する工程と、前記筒状部が成形されたライナーの両側の側端部に亘って、樹脂が含浸された連続繊維でヘリカル巻きすることにより、補強層を成形する工程と、を含むことを特徴とする。   In view of the above problems, a method for manufacturing a tank according to the present invention is to manufacture a tank including at least a liner having a cylindrical body portion and dome-shaped side end portions formed on both sides of the body portion. A method of preparing a liner having steps on both sides of the body portion so that the diameter of both end edges of the body portion is larger than the diameter of the outer peripheral surface between the both end edges; A single fiber-reinforced resin sheet is wound around the outer peripheral surface of the body part a plurality of times from a direction orthogonal to the axis of the body part so as to fill the steps on both sides of the body part. Forming a reinforcing layer by helically winding a continuous fiber impregnated with a resin over the side end portions on both sides of the liner on which the cylindrical portion is formed. It is characterized by including.

本発明によれば、胴体部の両側の段差を埋めるように、1枚の繊維強化樹脂シートを、胴体部の軸心に対して直交する方向から複数回巻き付ける。このため、ライナーの胴体部の両側に段差がほとんどなく、繊維強化樹脂シート(筒状部)で胴体部の強度を高めることができる。   According to the present invention, a single fiber-reinforced resin sheet is wound a plurality of times from a direction orthogonal to the axis of the body part so as to fill the steps on both sides of the body part. For this reason, there is almost no level | step difference in the both sides of the fuselage | body part of a liner, and the intensity | strength of a fuselage | body part can be raised with a fiber reinforced resin sheet (cylindrical part).

これにより、筒状部が成形されたライナーの両側の側端部に亘って、樹脂が含浸された連続繊維でヘリカル巻きした補強層を成形したとしても、ライナーと補強層との間に空洞が形成され難いため、これが起因となるタンクの強度低下を抑えることができる。   As a result, even if a reinforcing layer helically wound with continuous fibers impregnated with resin is formed over the side end portions on both sides of the liner in which the cylindrical portion is formed, a cavity is formed between the liner and the reinforcing layer. Since it is hard to form, the strength reduction of the tank resulting from this can be suppressed.

(a)〜(d)は、本発明の実施形態に係るタンクの製造方法を説明するための図である。(A)-(d) is a figure for demonstrating the manufacturing method of the tank which concerns on embodiment of this invention. 図1(c)に示す工程を説明するための図である。It is a figure for demonstrating the process shown in FIG.1 (c). (a)は、図1で示されたタンクの製造方法により製造されたタンクの模式的斜視図であり、(b)は、(a)のA−A線矢視断面図である。(A) is a typical perspective view of the tank manufactured by the manufacturing method of the tank shown by FIG. 1, (b) is an AA arrow directional cross-sectional view of (a).

以下に、本発明の実施形態に係るタンクの製造方法を、図面を参照しながら説明する。
図1(a)〜図1(d)は、本発明の実施形態に係るタンクの製造方法を説明するための図である。図2は、図1(b)に示す工程を説明するための図である。図3(a)は、図1で示されたタンクの製造方法により製造されたタンクの模式的斜視図であり、図3(b)は、図3(a)のA−A線矢視断面図である。なお、図3(b)は、タンクの胴体部の軸心と直交する断面である。
Below, the manufacturing method of the tank concerning the embodiment of the present invention is explained, referring to drawings.
Fig.1 (a)-FIG.1 (d) are the figures for demonstrating the manufacturing method of the tank which concerns on embodiment of this invention. FIG. 2 is a diagram for explaining the process shown in FIG. 3A is a schematic perspective view of a tank manufactured by the tank manufacturing method shown in FIG. 1, and FIG. 3B is a cross-sectional view taken along line AA in FIG. FIG. FIG. 3B is a cross section orthogonal to the axis of the tank body.

1.ライナー10を準備する工程
本実施形態に係るタンク1は、例えば70MPa程度の高圧水素ガスを収容(充填)するタンクである。まず、本実施形態では、タンク1を構成するライナー10を製造する。図1(a)および図1(b)に示すようにして、収容空間Sが形成されたライナー10を準備(製造)する。
1. Process for Preparing Liner 10 The tank 1 according to the present embodiment is a tank that contains (fills) high-pressure hydrogen gas of, for example, about 70 MPa. First, in the present embodiment, the liner 10 constituting the tank 1 is manufactured. As shown in FIGS. 1A and 1B, a liner 10 in which the accommodation space S is formed is prepared (manufactured).

具体的には、図1(a)に示すよう、胴体部2に相当する胴体部材2Aと、ドーム状の一対の側端部材3A,3Aとを準備する。本実施形態では、胴体部材2Aは、円筒状の本体21Aと、本体21Aの両端に形成された円板状の鍔部22A,22Aとを備えている。鍔部22Aは、本体21Aの両端縁に沿って、後述する筒状部4の肉厚分、本体21Aの外周面23Aから張り出すように形成されている。   Specifically, as shown in FIG. 1A, a body member 2A corresponding to the body portion 2 and a pair of dome-shaped side end members 3A and 3A are prepared. In the present embodiment, the body member 2A includes a cylindrical main body 21A and disk-shaped flange portions 22A and 22A formed at both ends of the main body 21A. The flange portion 22A is formed so as to protrude from the outer peripheral surface 23A of the main body 21A along the both end edges of the main body 21A by the thickness of a cylindrical portion 4 described later.

側端部材3Aは、ドーム状の本体31Aと、本体31Aの頂部に形成された管状部32Aとを備えており、管状部32Aには、貫通孔33Aが形成されている。本体31Aと管状部32Aとは、後述する樹脂により一体的に成形されていてもよいが、例えば、管状部32Aに相当する部分を口金とし、本体31Aを樹脂で成形してもよい。   The side end member 3A includes a dome-shaped main body 31A and a tubular portion 32A formed at the top of the main body 31A, and a through-hole 33A is formed in the tubular portion 32A. The main body 31A and the tubular portion 32A may be integrally formed with a resin, which will be described later. For example, a portion corresponding to the tubular portion 32A may be a base, and the main body 31A may be formed with a resin.

本実施形態では、胴体部材2Aの各鍔部22Aに、側端部材3Aの本体31Aを溶接等により接合する。これにより、図1(b)に示すように、円筒状の胴体部2と、胴体部2の両側に形成された一対のドーム状の側端部3,3とを備えたライナー10が製造される。   In the present embodiment, the main body 31A of the side end member 3A is joined to each flange 22A of the body member 2A by welding or the like. Thereby, as shown in FIG.1 (b), the liner 10 provided with the cylindrical trunk | drum 2 and a pair of dome-shaped side edge parts 3 and 3 formed in the both sides of the trunk | drum 2 is manufactured. The

ライナー10は、胴体部2が凹んだ段付き形状となっている。より具体的には、ライナー10は、胴体部2の両側の端縁(両端縁)22,22の直径が、両側の端縁(両端縁)22,22の間に形成された胴体部2の本体21の外周面23の直径よりも大きくなるように、胴体部2の両側に段差26,26を有する。両側の段差26,26の大きさは、いずれも後述する筒状部4の厚み分に相当する。また、ライナー10の内部には、高圧水素ガスを収容する収容空間Sが形成され、収容空間Sは、側端部3の管状部32に形成された貫通孔33に連通する。   The liner 10 has a stepped shape in which the body portion 2 is recessed. More specifically, in the liner 10, the diameters of the edges (both edges) 22 and 22 on both sides of the body portion 2 are the same as those of the body portion 2 formed between the edges (both edges) 22 and 22 on both sides. Steps 26 and 26 are provided on both sides of the body part 2 so as to be larger than the diameter of the outer peripheral surface 23 of the main body 21. The sizes of the steps 26 and 26 on both sides correspond to the thickness of the cylindrical portion 4 described later. A storage space S that stores high-pressure hydrogen gas is formed inside the liner 10, and the storage space S communicates with a through hole 33 formed in the tubular portion 32 of the side end 3.

ライナー10の材料に相当する胴体部材2Aと側端部材3Aとの材料には、熱可塑性樹脂を挙げることができる。たとえば、熱可塑性樹脂として、ポリエステル系樹脂、ポリプロピレン系樹脂、ナイロン系樹脂(例えば6−ナイロン樹脂または6,6−ナイロン樹脂)、ポリアミド系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、またはABS系樹脂などを挙げることができる。またこの他のも、アルミニウム合金、ステンレス鋼などの金属であってもよい。このような材料を用いることにより、収容空間Sに収容された水素ガスが透過することを防止することができる。   The material of the body member 2A and the side end member 3A corresponding to the material of the liner 10 can include a thermoplastic resin. For example, as a thermoplastic resin, polyester resin, polypropylene resin, nylon resin (for example, 6-nylon resin or 6,6-nylon resin), polyamide resin, polycarbonate resin, acrylic resin, ABS resin, etc. Can be mentioned. Other than these, metals such as aluminum alloy and stainless steel may be used. By using such a material, it is possible to prevent the hydrogen gas accommodated in the accommodation space S from passing therethrough.

2.筒状部4を成形する工程
次に、図1(b)および図1(c)に示すように、胴体部2の本体21の外周面23にシートワインディング法により筒状部4を成形する。具体的には、図2に示すように、ライナー10を回転させながら、胴体部2の両側の段差26を埋めるように、1枚の繊維強化樹脂シート4Aを、胴体部2の軸心CLに対して直交する方向から、胴体部2の外周面23に複数回巻き付ける。
2. Step of forming cylindrical portion 4 Next, as shown in FIGS. 1B and 1C, the cylindrical portion 4 is formed on the outer peripheral surface 23 of the main body 21 of the body portion 2 by a sheet winding method. Specifically, as shown in FIG. 2, one fiber reinforced resin sheet 4 </ b> A is placed on the axial center CL of the trunk portion 2 so as to fill the steps 26 on both sides of the trunk portion 2 while rotating the liner 10. On the other hand, it is wound around the outer peripheral surface 23 of the body part 2 a plurality of times from a direction orthogonal thereto.

より具体的には、筒状部4の外周面41の直径が、胴体部2の各端縁22の直径と一致するように、1枚の繊維強化樹脂シート4Aを巻き付ける。成形された筒状部4の外周面41と、ライナー10(具体的には、端縁22)の表面とは略面一となり、これらの間には段差がほとんど形成されない。   More specifically, one fiber reinforced resin sheet 4 </ b> A is wound so that the diameter of the outer peripheral surface 41 of the tubular part 4 matches the diameter of each end edge 22 of the body part 2. The outer peripheral surface 41 of the molded cylindrical portion 4 and the surface of the liner 10 (specifically, the edge 22) are substantially flush, and there is almost no step between them.

なお、繊維強化樹脂シート4Aは、強化繊維に熱可塑性樹脂または熱硬化性樹脂が含浸されたシートであり、繊維強化樹脂シート4Aの幅は、ライナー10の胴体部2の外周面23の長さと略同じである。   The fiber reinforced resin sheet 4A is a sheet in which a reinforced fiber is impregnated with a thermoplastic resin or a thermosetting resin. The width of the fiber reinforced resin sheet 4A is equal to the length of the outer peripheral surface 23 of the body portion 2 of the liner 10. It is almost the same.

繊維強化樹脂シート4Aの強化繊維は、連続強化繊維であり、一方向に引き揃えられた開繊繊維である。これにより、胴体部2の軸心CLと直交する方向に、連続して強化繊維42を配向させることができる。強化繊維42として、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、スチール繊維、PBO繊維、天然繊維、又は高強度ポリエチレン繊維などの繊維を挙げることができる。   The reinforcing fiber of the fiber reinforced resin sheet 4A is a continuous reinforcing fiber, and is a spread fiber that is aligned in one direction. Thereby, the reinforcing fibers 42 can be continuously oriented in a direction orthogonal to the axis CL of the body part 2. Examples of the reinforcing fibers 42 include fibers such as glass fibers, carbon fibers, aramid fibers, alumina fibers, boron fibers, steel fibers, PBO fibers, natural fibers, or high-strength polyethylene fibers.

繊維強化樹脂シート4Aに含まれる樹脂が、熱可塑性樹脂である場合には、上述したライナー10の材料で例示した熱可塑性樹脂を挙げることができる。繊維強化樹脂シート4Aに含まれる樹脂が、熱硬化性樹脂である場合には、例えば、エポキシ系樹脂、ビニルエステル樹脂に代表される変性エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、熱硬化性ポリイミド樹脂を挙げることができる。   When the resin contained in the fiber reinforced resin sheet 4A is a thermoplastic resin, the thermoplastic resin exemplified for the material of the liner 10 described above can be used. When the resin contained in the fiber reinforced resin sheet 4A is a thermosetting resin, for example, epoxy resin, modified epoxy resin typified by vinyl ester resin, phenol resin, melamine resin, urea resin, unsaturated polyester Examples thereof include resins, alkyd resins, polyurethane resins, and thermosetting polyimide resins.

繊維強化樹脂シート4Aの樹脂が熱可塑性樹脂である場合には、図2に示すヒータ7,7で繊維強化樹脂シート4Aを熱可塑性樹脂の軟化点以上に加熱し、熱可塑性樹脂を溶融する。繊維強化樹脂シート4Aの熱可塑性樹脂が溶融した状態で、繊維強化樹脂シート4Aをライナー10の円筒状の胴体部2に複数回巻き付ける。巻き付いた状態の繊維強化樹脂シート4Aは、放冷または強制冷却により冷却され、熱可塑性樹脂は、軟化点未満となって固まる。   When the resin of the fiber reinforced resin sheet 4A is a thermoplastic resin, the fiber reinforced resin sheet 4A is heated to a temperature higher than the softening point of the thermoplastic resin by the heaters 7 and 7 shown in FIG. 2 to melt the thermoplastic resin. In a state where the thermoplastic resin of the fiber reinforced resin sheet 4A is melted, the fiber reinforced resin sheet 4A is wound around the cylindrical body part 2 of the liner 10 a plurality of times. The fiber-reinforced resin sheet 4A in a wound state is cooled by being allowed to cool or forcedly cooled, and the thermoplastic resin becomes harder than the softening point.

繊維強化樹脂シート4Aの樹脂が、熱硬化性樹脂である場合には、繊維強化樹脂シート4Aをライナー10に巻き付けた後、これを加熱することにより、熱硬化性樹脂を硬化させる。   When the resin of the fiber reinforced resin sheet 4A is a thermosetting resin, the fiber reinforced resin sheet 4A is wound around the liner 10 and then heated to cure the thermosetting resin.

成形された筒状部4は、図3(b)に示すように、胴体部2の外周面23の両側に亘って、胴体部2の軸心CLに直交する方向から1つのシート状の繊維強化樹脂層4aが、複数回周回した部分となる。このように、シート状の繊維強化樹脂層4aを複数回周回させた筒状部4を設けることにより、タンク1の胴体部11は、その軸心CLに直交する断面において、より均一な耐圧性を有することができる。   As shown in FIG. 3 (b), the molded tubular portion 4 is a single sheet-like fiber extending from both sides of the outer peripheral surface 23 of the body portion 2 from the direction perpendicular to the axis CL of the body portion 2. The reinforced resin layer 4a becomes a portion that has been turned around a plurality of times. Thus, by providing the cylindrical portion 4 in which the sheet-like fiber reinforced resin layer 4a is rotated a plurality of times, the trunk portion 11 of the tank 1 has a more uniform pressure resistance in a cross section perpendicular to the axis CL. Can have.

3.補強層6を成形する工程
次に、図1(d)に示すように、筒状部4が成形されたライナー10の両側の側端部3,3に亘って、樹脂が含浸された連続繊維61のフィラメントで、フィラメントワインディング法によりヘリカル巻きする。これにより、筒状部4が成形されたライナー10に、図3(a),(b)に示す如き補強層6を成形する。
3. Step of Forming Reinforcing Layer 6 Next, as shown in FIG. 1 (d), continuous fibers impregnated with resin over the side end portions 3, 3 on both sides of the liner 10 on which the tubular portion 4 is formed. 61 filaments are helically wound by the filament winding method. As a result, the reinforcing layer 6 as shown in FIGS. 3A and 3B is formed on the liner 10 formed with the cylindrical portion 4.

具体的には、本実施形態では、ライナー10の両側の側端部3,3間において、連続繊維61が、胴体部2の軸心CLの周りを一周する前に、各側端部3において、連続繊維61の巻き付け方向が折り返されるように巻き付ける。   Specifically, in the present embodiment, between the side end portions 3 and 3 on both sides of the liner 10, before the continuous fiber 61 makes a round around the axis CL of the body portion 2, at each side end portion 3. Winding is performed so that the winding direction of the continuous fiber 61 is folded.

また、この他の巻き付け方法として、ライナー10の両側の側端部3,3間において、連続繊維61が、胴体部2の軸心CLの周りを少なくとも複数回した後に、各側端部3において、連続繊維61の巻き付け方向が折り返されるように巻き付けてもよい。   Further, as another winding method, between the side end portions 3 and 3 on both sides of the liner 10, after the continuous fiber 61 rotates at least a plurality of times around the axis CL of the body portion 2, The winding may be performed so that the winding direction of the continuous fiber 61 is folded.

連続繊維61に含浸された樹脂が熱可塑性樹脂である場合には、加熱しながら、熱可塑性樹脂を軟化させた状態で、連続繊維61を巻き付ける。一方、連続繊維61に含浸された樹脂が熱硬化性樹脂である場合には、連続繊維61を巻き付けた後、(未硬化の)熱硬化性樹脂を加熱して、これを硬化させる。   When the resin impregnated in the continuous fiber 61 is a thermoplastic resin, the continuous fiber 61 is wound in a state where the thermoplastic resin is softened while being heated. On the other hand, when the resin impregnated in the continuous fiber 61 is a thermosetting resin, after winding the continuous fiber 61, the (uncured) thermosetting resin is heated to be cured.

このようにして、図3(a),(b)に示すタンク1を製造することができる。本実施形態では、上述したようにライナー10を、筒状部4の厚み分、予め凹ませたので筒状部4を成形しても、ライナー10の表面に筒状部4の肉厚に応じた段差が形成されない。このため、樹脂が含浸された連続繊維61でヘリカル巻きした補強層6を成形したとしても、ライナー10と補強層6との間に空洞が形成され難い。このような結果、このような空洞が起因となるタンク1の強度低下を抑えることができる。   In this way, the tank 1 shown in FIGS. 3A and 3B can be manufactured. In the present embodiment, as described above, the liner 10 is recessed in advance by the thickness of the cylindrical portion 4, so even if the cylindrical portion 4 is molded, the liner 10 has a surface corresponding to the thickness of the cylindrical portion 4. No step is formed. For this reason, even if the reinforcing layer 6 helically wound with the continuous fiber 61 impregnated with the resin is molded, it is difficult to form a cavity between the liner 10 and the reinforcing layer 6. As a result, a decrease in strength of the tank 1 caused by such a cavity can be suppressed.

以上、本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   Although the embodiment of the present invention has been described in detail above, the specific configuration is not limited to this embodiment, and even if there is a design change within a scope not departing from the gist of the present invention, they are not limited to this embodiment. It is included in the invention.

本実施形態では、筒状体を成形する前に、胴体部材と側端部とを接合し、ライナーを形成したが、例えば、胴体部材に筒状体を成形後、筒状体が成形された胴体部材に、側端部を接合してもよい。   In the present embodiment, before the cylindrical body is molded, the body member and the side end portion are joined to form the liner. For example, after the cylindrical body is molded on the body member, the cylindrical body is molded. You may join a side edge part to a trunk | drum member.

1:タンク、10:ライナー、2:胴体部、22:端縁、22A:鍔部、3:側端部、4:筒状部、4A:繊維強化樹脂シート、6:補強層、61:連続繊維、7:ヒータ、CL:軸心、S:収容空間。   1: tank, 10: liner, 2: body part, 22: end edge, 22A: collar part, 3: side end part, 4: cylindrical part, 4A: fiber reinforced resin sheet, 6: reinforcing layer, 61: continuous Fiber, 7: heater, CL: axial center, S: accommodation space.

Claims (1)

円筒状の胴体部と、前記胴体部の両側に形成されたドーム状の側端部と、を有するライナーを少なくとも備えたタンクの製造方法であって、
前記胴体部の両端縁の直径が、該両端縁の間の外周面の直径よりも大きくなるように、前記胴体部の両側に段差を有したライナーを準備する工程と、
前記胴体部の両側の前記段差を埋めるように、1枚の繊維強化樹脂シートを、前記胴体部の軸心に対して直交する方向から、前記胴体部の前記外周面に複数回巻き付けることにより、筒状部を成形する工程と、
前記筒状部が成形されたライナーの両側の側端部に亘って、樹脂が含浸された連続繊維でヘリカル巻きすることにより、補強層を成形する工程と、を含むことを特徴とするタンクの製造方法。
A method of manufacturing a tank comprising at least a liner having a cylindrical body portion and dome-shaped side end portions formed on both sides of the body portion,
Preparing a liner having steps on both sides of the body part so that the diameter of both end edges of the body part is larger than the diameter of the outer peripheral surface between the both end edges;
By winding a single fiber-reinforced resin sheet around the outer peripheral surface of the body part a plurality of times from a direction perpendicular to the axis of the body part so as to fill the steps on both sides of the body part, Forming the cylindrical portion; and
A step of forming a reinforcing layer by helical winding with continuous fibers impregnated with resin over the side end portions on both sides of the liner in which the cylindrical portion is formed. Production method.
JP2016025323A 2016-02-12 2016-02-12 Tank manufacturing method Expired - Fee Related JP6654458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025323A JP6654458B2 (en) 2016-02-12 2016-02-12 Tank manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025323A JP6654458B2 (en) 2016-02-12 2016-02-12 Tank manufacturing method

Publications (2)

Publication Number Publication Date
JP2017141947A true JP2017141947A (en) 2017-08-17
JP6654458B2 JP6654458B2 (en) 2020-02-26

Family

ID=59627236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025323A Expired - Fee Related JP6654458B2 (en) 2016-02-12 2016-02-12 Tank manufacturing method

Country Status (1)

Country Link
JP (1) JP6654458B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140809A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Method for manufacturing tank
DE102017220372A1 (en) * 2017-11-15 2019-05-16 Volkswagen Ag Pressure tank for a compressed fuel gas, fuel cell system and motor vehicle
JP2020002965A (en) * 2018-06-25 2020-01-09 豊田合成株式会社 High-pressure tank
CN110925588A (en) * 2018-09-20 2020-03-27 丰田自动车株式会社 Method for manufacturing high-pressure tank, and high-pressure tank
DE102020126412A1 (en) 2020-01-09 2021-07-15 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a high pressure tank
DE102020135050A1 (en) 2020-01-31 2021-08-05 Toyota Jidosha Kabushiki Kaisha Manufacturing process for a high pressure tank
DE102021100511A1 (en) 2020-02-19 2021-08-19 Toyota Jidosha Kabushiki Kaisha High pressure tank
JP2021127775A (en) * 2020-02-10 2021-09-02 トヨタ自動車株式会社 Method for manufacturing high-pressure tank
CN114060709A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113971A (en) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd Liner for pressure resistant container
JP2005214271A (en) * 2004-01-28 2005-08-11 Mitsuboshi Belting Ltd Fiber reinforced pressure vessel
US20100276434A1 (en) * 2009-05-04 2010-11-04 Gm Global Technology Operations, Inc. Storage vessel and method of forming
JP2010265931A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Tank and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113971A (en) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd Liner for pressure resistant container
JP2005214271A (en) * 2004-01-28 2005-08-11 Mitsuboshi Belting Ltd Fiber reinforced pressure vessel
US20100276434A1 (en) * 2009-05-04 2010-11-04 Gm Global Technology Operations, Inc. Storage vessel and method of forming
JP2010265931A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Tank and method of manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140809A (en) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 Method for manufacturing tank
DE102017220372A1 (en) * 2017-11-15 2019-05-16 Volkswagen Ag Pressure tank for a compressed fuel gas, fuel cell system and motor vehicle
JP2020002965A (en) * 2018-06-25 2020-01-09 豊田合成株式会社 High-pressure tank
JP7093240B2 (en) 2018-06-25 2022-06-29 豊田合成株式会社 High pressure tank
CN110925588B (en) * 2018-09-20 2022-03-29 丰田自动车株式会社 Method for manufacturing high-pressure tank, and high-pressure tank
CN110925588A (en) * 2018-09-20 2020-03-27 丰田自动车株式会社 Method for manufacturing high-pressure tank, and high-pressure tank
DE102020126412A1 (en) 2020-01-09 2021-07-15 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a high pressure tank
JP2021110367A (en) * 2020-01-09 2021-08-02 トヨタ自動車株式会社 Manufacturing method of high pressure tank
US11472135B2 (en) 2020-01-09 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing high-pressure tank
JP7226345B2 (en) 2020-01-09 2023-02-21 トヨタ自動車株式会社 High-pressure tank manufacturing method
DE102020135050A1 (en) 2020-01-31 2021-08-05 Toyota Jidosha Kabushiki Kaisha Manufacturing process for a high pressure tank
JP2021127775A (en) * 2020-02-10 2021-09-02 トヨタ自動車株式会社 Method for manufacturing high-pressure tank
JP7334641B2 (en) 2020-02-10 2023-08-29 トヨタ自動車株式会社 High-pressure tank manufacturing method
DE102021100511A1 (en) 2020-02-19 2021-08-19 Toyota Jidosha Kabushiki Kaisha High pressure tank
CN113280254A (en) * 2020-02-19 2021-08-20 丰田自动车株式会社 High-pressure tank
US11603964B2 (en) 2020-02-19 2023-03-14 Toyota Jidosha Kabushiki Kaisha High-pressure tank
CN114060709A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN114060709B (en) * 2020-07-31 2023-08-29 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank

Also Published As

Publication number Publication date
JP6654458B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP2017141947A (en) Manufacturing method of tank
JP6254564B2 (en) Tank manufacturing method and tank
JP2017110669A (en) Tank manufacturing method and tank
JP6588360B2 (en) Tank manufacturing method
US9884458B2 (en) Manufacturing method of tank
US20150192251A1 (en) High pressure carbon composite pressure vessel
US20190170297A1 (en) Pressure vessel with a tape-based reinforcement structure
US9566748B2 (en) FRP composite wrapped grooved-wall lining tubular structure, and method of manufacturing
JP6652087B2 (en) Gas tank and its manufacturing method
JP6705402B2 (en) Reinforcement layer manufacturing method
JP2019520537A (en) Container made of composite material for containing pressurized fluid
US9732889B2 (en) Flange, and a method of manufacturing a flange
JP5609249B2 (en) High pressure tank manufacturing method, high pressure tank manufacturing apparatus, and high pressure tank
JP6696789B2 (en) Tank manufacturing method
JP6549514B2 (en) Tank manufacturing method
KR102464884B1 (en) Method for manufacturing multilayer fiber reinforced resin composite and molded product using the same
JP2009138858A (en) Tank manufacturing method, tank manufacturing facility, and tank
JP2005113963A (en) Pressure resistant container manufacturing method
US3052585A (en) Methods of making reinforced plastic vessels with integrally formed heads
JP2017089849A (en) Manufacturing method of pressure vessel
JP6659320B2 (en) Pressure vessel
JP2008238491A (en) Frp molded body, its manufacturing method, and gas tank
JP2005106227A (en) Pressure proof container manufacturing method
WO2017043654A1 (en) Method for producing wire rod for elastic members, wire rod for elastic members, and elastic member
JP2002128921A (en) Prepreg for preventing different levels, manufacturing method of tubular body using the same and tubular body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R151 Written notification of patent or utility model registration

Ref document number: 6654458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees