JP2017141579A - Compaction work management system and compaction work management method - Google Patents

Compaction work management system and compaction work management method Download PDF

Info

Publication number
JP2017141579A
JP2017141579A JP2016022841A JP2016022841A JP2017141579A JP 2017141579 A JP2017141579 A JP 2017141579A JP 2016022841 A JP2016022841 A JP 2016022841A JP 2016022841 A JP2016022841 A JP 2016022841A JP 2017141579 A JP2017141579 A JP 2017141579A
Authority
JP
Japan
Prior art keywords
compaction
plate
range
compaction plate
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022841A
Other languages
Japanese (ja)
Other versions
JP6696786B2 (en
Inventor
学 阿子島
Manabu Akoshima
学 阿子島
勝利 藤崎
Katsutoshi Fujisaki
勝利 藤崎
誠 岡山
Makoto Okayama
誠 岡山
浩一 増村
Koichi Masumura
浩一 増村
謙二 内場
Kenji Uchiba
謙二 内場
貴志 小澤
Takashi Ozawa
貴志 小澤
孝治 藤巻
Koji Fujimaki
孝治 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016022841A priority Critical patent/JP6696786B2/en
Publication of JP2017141579A publication Critical patent/JP2017141579A/en
Application granted granted Critical
Publication of JP6696786B2 publication Critical patent/JP6696786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shovels (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compaction work management system and a compaction work management method in which a compaction situation can properly be managed while performing compaction of a slope face and a horizontal plane with the same compaction plate.SOLUTION: A compaction plate 23 of a working machine 1 is installed in a predetermined position, and a vibration generator 21 is started and the compaction work of an embankment 29 is performed by the compaction plate 23. At this point, the coordinate of 4-corners 41a of a compaction plate range 23a in a plan view is calculated from the reference position information of the compaction plate 23 acquired by using a GPS 25 and an inclinometer 27. Then, a mesh 39 where a center 43 is contained in the compaction plate range 23a is extracted from a virtual mesh 37 of the embankment 29, and a target mesh 45 being a compaction work performance range is determined from the extracted mesh 39 according to an angle of the compaction plate 23 acquired by using the inclinometer 27. A decision is made that the compaction is completed, if a cumulative value of the time when the vibration generator 21 is started becomes a predetermined threshold or more about each target mesh 45.SELECTED DRAWING: Figure 3

Description

本発明は、法面を有する盛土等の締固め作業管理システムおよび締固め作業管理方法に関するものである。   The present invention relates to a compacting work management system for banking and the like having a slope and a compacting work management method.

従来、ダムや造成現場では、振動ローラやバイバック(登録商標)による締固め施工が行われている。その際、重機に設けたGPSによって締固め位置を精度良く検出することにより、締固め状況を管理する方法が用いられている(例えば、特許文献1参照)。   Conventionally, in dams and construction sites, compaction work using vibration rollers or Buyback (registered trademark) has been performed. At that time, a method of managing the compaction state by accurately detecting the compaction position by GPS provided in the heavy machinery is used (see, for example, Patent Document 1).

また、コンクリートダムにおけるRCD工法(Roller Compacted Dam Concrete)では、振動ローラやバイバック(登録商標)による締固め施工に加えて、法肩部分を覆う形状の押さえプレートを有する端部法面締固め重機による端部法面の整形や締固めが行われている。この端部法面締固め重機で施工する場合にも、重機に設けたGPSや傾斜計によって締固め位置を検知し、締め固める場所ごとに締固め時間を積算することにより締固め状況を管理する方法が用いられている(例えば、特許文献2参照)。   In addition, in the RCD method (Roller Compacted Dam Concrete) in a concrete dam, in addition to the compacting work by a vibration roller or a buy back (registered trademark), an end slope compaction heavy machine having a pressing plate shaped to cover the shoulder part. The edge slope is shaped and compacted by. Even when working with this edge slope compaction heavy machine, the compaction position is managed by detecting the compaction position with the GPS and inclinometer provided on the heavy equipment and integrating the compaction time for each place to be compacted. The method is used (for example, refer patent document 2).

特開2015−48684号公報JP2015-48684A 特許第5512438号公報Japanese Patent No. 5512438

しかしながら、従来から用いられている土砂やセメント等の固化材を含有したコンクリート等の盛立材の盛立作業の端部法面締固め重機は、法肩部分を覆う所定角度を有する形状の押さえプレートを用いて法肩を締固めつつ締固め状況を把握するものであった。そのため、法肩以外の部分の施工を行うことができなかった。   However, the conventional end-slope compaction heavy machine for erection work of erection material such as concrete containing solidification material such as earth and sand or cement has a press plate with a shape having a predetermined angle covering the shoulder part. It was used to grasp the compaction situation while compacting the shoulder. For this reason, it was not possible to perform construction other than the shoulder.

本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、同一の締固め板で法面および水平面の締固めを行いつつ、締固め状況を適切に管理できる締固め作業管理システムおよび締固め作業管理方法を提供することである。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to perform compaction capable of appropriately managing the compaction situation while performing compaction of the slope and the horizontal surface with the same compaction plate. To provide a work management system and a compaction work management method.

前述した目的を達成するために第1の発明は、盛立材を締め固める締固め板と、前記締固め板を所定の位置に設置する締固め板位置設置・角度設定手段と、前記締固め板の位置情報を取得する締固め板範囲測定手段と、前記締固め板による締固め作業を起動停止可能な締固め作業起動手段と、を具備することを特徴とする締固め作業管理システムである。   In order to achieve the above-mentioned object, the first invention includes a compaction plate for compacting the standing material, a compaction plate position setting / angle setting means for installing the compaction plate at a predetermined position, and a configuration of the compaction plate. A compaction work management system comprising compaction plate range measuring means for acquiring position information, and compaction work starting means capable of starting and stopping the compaction work by the compaction board.

第1の発明では、締固め板位置設置・角度設定手段を用いて締固め板を所定の位置に設置することにより、同一の締固め板を用いて法面および水平面の締固めを行うことができる。   In the first aspect of the present invention, the slope plate and the horizontal surface can be compacted using the same compaction plate by installing the compaction plate at a predetermined position using the compaction plate position setting / angle setting means. it can.

前記締固め板範囲測定手段は、例えば、締固め板基準位置測定手段と、締固め板角度測定手段とからなる。
前記締固め板範囲測定手段は、前記締固め板の少なくとも2ヶ所の位置を計測する締固め板位置測定手段からなるものとしてもよい。
The compaction plate range measurement means includes, for example, a compaction plate reference position measurement means and a compaction plate angle measurement means.
The compaction plate range measurement means may comprise compaction plate position measurement means for measuring at least two positions of the compaction plate.

締固め板基準位置測定手段と締固め板角度測定手段とからなる締固め板範囲測定手段や、締固め板の少なくとも2ヶ所の位置を計測する締固め板位置測定手段からなる締固め板範囲測定手段を用いて締固め板の位置情報を取得すれば、締固め板が設置されている範囲を正確に算出することができる。   Compaction plate range measurement means comprising compaction plate range measurement means comprising compaction plate reference position measurement means and compaction plate angle measurement means, and compaction plate position measurement means for measuring positions of at least two locations of the compaction plate. If the position information of the compaction plate is acquired using the means, the range where the compaction plate is installed can be accurately calculated.

第1の発明では、前記締固め板の位置情報から締固め作業実施範囲を判定し、前記締固め作業実施範囲における盛立材の締固め状況を、前記締固め板による締固め作業の起動状況から管理する。この場合、前記締固め板の範囲測定手段を用いて前記締固め板の角度を取得し、前記締固め板の角度に応じて前記締固め作業実施範囲を判定する。   In the first invention, the compaction work execution range is determined from the position information of the compaction plate, and the compaction status of the rising material in the compaction work execution range is managed from the start status of the compaction work by the compaction plate. To do. In this case, the compaction plate range measuring means is used to obtain the compaction plate angle, and the compaction work execution range is determined according to the compaction plate angle.

締固め板の位置情報から締固め板が設置されている範囲を算出すれば、盛土等における締固め作業の実施範囲を判定できる。締固め作業実施範囲での盛立材の締固め状況は、締固め作業起動手段による締固め作業の起動状況から締固め時間の累積値を求めること等により適切に管理できる。締固め板の範囲測定手段を用いて締固め板の角度を取得すれば、水平面と法面との境界付近において、締固め板の角度に応じて締固め作業実施範囲が水平面と法面とのいずれであるかを判定することができる。   If the range in which the compaction plate is installed is calculated from the positional information of the compaction plate, it is possible to determine the scope of the compaction work in the embankment or the like. The compaction status of the upright material in the compaction work execution range can be appropriately managed by obtaining the cumulative value of compaction time from the compaction work activation status by the compaction work activation means. If the angle of the compaction plate is obtained by using the compaction plate range measuring means, the compaction work range is set between the horizontal plane and the slope according to the angle of the compaction plate near the boundary between the horizontal plane and the slope. It can be determined.

第2の発明は、盛立材を締め固める締固め板と、前記締固め板を所定の位置に設置する締固め板位置設置・角度設定手段と、前記締固め板の位置情報を取得する締固め板範囲測定手段と、前記締固め板による締固め作業を起動停止可能な締固め作業起動手段と、を具備する締固め作業管理システムを用い、前記締固め板の位置情報から締固め作業実施範囲を判定し、前記締固め作業実施範囲における盛立材の締固め状況を、前記締固め板による締固め作業の起動状況から管理することを特徴とする締固め作業管理方法である。   According to a second aspect of the present invention, there is provided a compaction plate for compacting the standing material, a compaction plate position setting / angle setting means for installing the compaction plate at a predetermined position, and a compaction plate for acquiring positional information of the compaction plate A compaction work management system comprising a range measuring means and a compaction work starting means capable of starting and stopping the compaction work by the compaction plate is used to determine a compaction work execution range from the positional information of the compaction plate. A compacting work management method comprising: determining and managing a compaction state of the standing material in the compaction work execution range from a start state of the compaction work by the compaction plate.

第2の発明では、締固め板位置設置・角度設定手段を用いて締固め板を所定の位置に設置することにより、同一の締固め板を用いて法面および水平面の締固めを行うことができる。また、締固め板範囲測定手段を用いて締固め板の位置情報を取得して締固め板が設置されている範囲を正確に算出し、盛土等における締固め作業の実施範囲を判定すれば、締固め作業実施範囲での盛立材の締固め状況を、締固め作業起動手段による締固め作業の起動状況から締固め時間の累積値を求めること等により適切に管理できる。   In the second aspect of the present invention, the slope plate and the horizontal surface can be compacted using the same compaction plate by installing the compaction plate at a predetermined position using the compaction plate position setting / angle setting means. it can. In addition, if the compaction plate range measurement means is used to obtain the compaction plate position information, the range where the compaction plate is installed is accurately calculated, and the range of compaction work in the embankment etc. is determined, It is possible to appropriately manage the compaction status of the piled material in the compaction work execution range by obtaining a cumulative value of compaction time from the compaction work start state by the compaction work starting means.

第2の発明では、例えば、水平面と法面とが混在する盛立材の締固め作業において、前記締固め板の範囲測定手段を用いて前記締固め板の角度を取得し、前記締固め板の角度が所定の範囲を超えるときは、法面を前記締固め作業実施範囲と判定し、前記締固め板の角度が所定の範囲内であるときは水平面を前記締固め作業実施範囲と判定する。   In the second invention, for example, in the compacting operation of the standing material in which the horizontal surface and the slope are mixed, the angle of the compaction plate is obtained using the compaction plate range measuring means, and the angle of the compaction plate When the angle exceeds the predetermined range, the slope is determined as the compacting work execution range, and when the angle of the compaction plate is within the predetermined range, the horizontal plane is determined as the compacting work execution range.

水平面と法面とが混在する盛立材の締固め作業時に、締固め板の範囲測定手段を用いて締固め板の角度を取得すれば、水平面と法面との境界付近において、締固め板の角度に応じて締固め作業実施範囲が水平面と法面とのいずれであるかを判定することができる。   If the angle of the compaction plate is obtained using the means for measuring the range of the compaction plate at the time of compacting the upright material in which the horizontal and slope surfaces are mixed, the angle of the compaction plate is near the boundary between the horizontal surface and the slope. Accordingly, it can be determined whether the compaction work execution range is a horizontal plane or a slope.

本発明によれば、同一の締固め板で法面および水平面の締固めを行いつつ、締固め状況を適切に管理できる締固め作業管理システムおよび締固め作業管理方法を提供できる。   According to the present invention, it is possible to provide a compaction work management system and a compaction work management method capable of appropriately managing the compaction state while performing compaction of the slope and the horizontal plane with the same compaction plate.

作業機械1を用いた締固め作業の状態を示す図The figure which shows the state of the compaction operation | work using the working machine 1 内部盛土29aの水平面35を締め固めている状態を示す図The figure which shows the state which is compacting the horizontal surface 35 of the internal embankment 29a 内部盛土29aの角部(法肩)33付近の水平面35を締め固めている状態を示す図The figure which shows the state which is compacting the horizontal surface 35 near the corner | angular part (snow shoulder) 33 of the internal embankment 29a. 内部盛土29aの角部(法肩)33付近の法面31を締め固めている状態を示す図The figure which shows the state which is compacting the slope 31 near the corner | angular part (slope) 33 of the internal embedding 29a 内部盛土29aの法面31を締め固めている状態を示す図The figure which shows the state which compacts the slope 31 of the internal embankment 29a 外部盛土29bの水平面35を締め固めている状態を示す図The figure which shows the state which is compacting the horizontal surface 35 of the external embankment 29b 他の締固め板範囲測定手段を有する作業機械1aを示す図The figure which shows the working machine 1a which has another compaction board range measurement means

以下図面に基づいて、本発明の実施の形態について詳細に説明する。図1は、作業機械1を用いた締固め作業の状態を示す図である。図1(a)は、作業機械1で盛土(盛立材)29の水平面35を締め固めている状態を示す図、図1(b)は、作業機械1で盛土(盛立材)29の法面31を締め固めている状態を示す図である。本実施形態における盛立材は構造物の材料となる材料や地盤となる材料であって、材料についてはコンクリートやモルタルやセメント混合土や土砂や岩礫等を対象とすることができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a state of compaction work using the work machine 1. FIG. 1A is a diagram illustrating a state in which the horizontal plane 35 of the embankment (filling material) 29 is compacted by the work machine 1, and FIG. 1B is a diagram illustrating the slope 31 of the embankment (filling material) 29 by the work machine 1. It is a figure which shows the state which has been compacted. The raised material in the present embodiment is a material that becomes a material of a structure or a material that becomes a ground, and the material can be concrete, mortar, cement-mixed soil, earth and sand, rocks, or the like.

図1に示すように、作業機械1は、車体3、旋回装置5、走行装置7、アーム9、シリンダ11、ロッド13、シリンダ15、アタッチメント17、GPS25、傾斜計27等からなる。作業機械1は、盛土29の法面31および水平面35を締め固める。   As shown in FIG. 1, the work machine 1 includes a vehicle body 3, a turning device 5, a traveling device 7, an arm 9, a cylinder 11, a rod 13, a cylinder 15, an attachment 17, a GPS 25, an inclinometer 27, and the like. The work machine 1 compacts the slope 31 and the horizontal surface 35 of the embankment 29.

走行装置7は、クローラによって構成され、旋回装置5は走行装置7の上方に搭載されている。車体3は、旋回装置22を作動させることにより、走行装置7に対して鉛直軸周りに旋回可能である。   The traveling device 7 is configured by a crawler, and the turning device 5 is mounted above the traveling device 7. The vehicle body 3 can turn around the vertical axis with respect to the traveling device 7 by operating the turning device 22.

アーム9は、車体3の前端部に取り付けられている。アーム9は、車体3にピン接合されたアーム9aと、アーム9aにピン接合されたアーム9bとからなる。シリンダ11は、車体3とアーム9aとの間にピン接合により取り付けられたシリンダ11aと、アーム9aとアーム9bとの間にピン接合により取り付けられたシリンダ11bとからなる。アーム9a、アーム9bは、シリンダ11a、シリンダ11bを伸縮させることにより揺動する。   The arm 9 is attached to the front end portion of the vehicle body 3. The arm 9 includes an arm 9a that is pin-joined to the vehicle body 3 and an arm 9b that is pin-joined to the arm 9a. The cylinder 11 includes a cylinder 11a attached by pin joining between the vehicle body 3 and the arm 9a, and a cylinder 11b attached by pin joining between the arm 9a and the arm 9b. The arm 9a and arm 9b swing by extending and retracting the cylinder 11a and cylinder 11b.

アタッチメント17は、接続部19を介してアーム9bの先端部にピン接合により取り付けられる。ロッド13は、一端がロッド13bおよびシリンダ15に、他端がアーム9bにピン接合により取り付けられたロッド13aと、一端が接続部19に、他端がロッド13aおよびシリンダ15にピン接合により取り付けられたロッド13bとからなる。シリンダ15は、一端がアーム9bに、他端がロッド13aおよびロッド13bにピン接合により取り付けられる。アタッチメント17は、シリンダ15を伸縮させてロッド13aおよびロッド13bを動かすことにより、揺動する。アタッチメント17は、締固めのための振動を発生させる起振機21、締固めのための押さえ板である締固め板23を有する。   The attachment 17 is attached to the tip end portion of the arm 9b via the connection portion 19 by pin bonding. The rod 13 has one end attached to the rod 13b and the cylinder 15, the other end attached to the arm 9b by pin joining, one end attached to the connecting portion 19, and the other end attached to the rod 13a and cylinder 15 by pin joining. Rod 13b. The cylinder 15 has one end attached to the arm 9b and the other end attached to the rod 13a and the rod 13b by pin joining. The attachment 17 swings by moving the rod 13a and the rod 13b by expanding and contracting the cylinder 15. The attachment 17 includes a vibration generator 21 that generates vibration for compaction and a compaction plate 23 that is a pressing plate for compaction.

GPS25は、車体3上に設けられたGPS25aと、アタッチメント17上に設けられたGPS25bとからなる。傾斜計27は、起振機21上に設けられる。GPS25、傾斜計27の設置位置は、図1に示す位置に限らず、後述する締固め板23の基準位置情報や角度を取得しやすいように適宜設定される。   The GPS 25 includes a GPS 25 a provided on the vehicle body 3 and a GPS 25 b provided on the attachment 17. The inclinometer 27 is provided on the vibrator 21. The installation positions of the GPS 25 and the inclinometer 27 are not limited to the positions shown in FIG. 1, but are set as appropriate so that reference position information and angles of the compaction plate 23 described later can be easily obtained.

アーム9およびシリンダ11、ロッド13およびシリンダ15は、アタッチメント17の締固め板23を所定の位置に設置する締固め板位置設置・角度設定手段である。GPS25は、締固め板23の位置情報を取得する締固め板範囲測定手段のうちの締固め板基準位置測定手段である。傾斜計27は、締固め板23の位置情報を取得する締固め板範囲測定手段のうちの締固め板角度測定手段である。起振機21は、締固め板23による締固め作業を起動停止可能な締固め作業起動手段である。   The arm 9, the cylinder 11, the rod 13, and the cylinder 15 are compaction plate position setting / angle setting means for installing the compaction plate 23 of the attachment 17 at a predetermined position. The GPS 25 is a compaction plate reference position measurement means in the compaction plate range measurement means for acquiring positional information of the compaction plate 23. The inclinometer 27 is a compaction plate angle measurement means in the compaction plate range measurement means for acquiring positional information of the compaction plate 23. The vibrator 21 is a compacting work starting means capable of starting and stopping the compacting work by the compaction plate 23.

作業機械1の各構成部材は、車体3の運転席等に設けられたスイッチ、レバー、ハンドル等によって操作される。作業機械1を用いて盛土29の締固め作業を行うには、アーム9およびシリンダ11、ロッド13およびシリンダ15を操作して、アタッチメント17の締固め板23を所定の位置に設置する。そして、起振機21を起動させて、締固め板23による盛土29の締固め作業を行う。   Each component of the work machine 1 is operated by a switch, a lever, a handle, or the like provided in a driver seat of the vehicle body 3 or the like. In order to perform the compacting operation of the embankment 29 using the work machine 1, the arm 9 and the cylinder 11, the rod 13 and the cylinder 15 are operated, and the compaction plate 23 of the attachment 17 is installed at a predetermined position. And the vibrator 21 is started and the filling 29 is compacted by the compaction plate 23.

次に、図2から図6を用いて、作業機械1を用いた盛土29の締固め作業の管理方法について述べる。図2から図6に示す盛土29を施工する際には、まず、先行して内部盛土29aを形成し(図2から図5)、その後、内部盛土29aの法面31の側方に外部盛土29b(図6)を形成して平坦に仕上げる。内部盛土29aの外郭である締固め面は、法面31と水平面35からなる。本実施の形態において、法面31の角度は45°である。   Next, a management method for the compacting operation of the embankment 29 using the work machine 1 will be described with reference to FIGS. When constructing the embankment 29 shown in FIGS. 2 to 6, first, the internal embedding 29a is first formed (FIGS. 2 to 5), and then the outer embankment is formed on the side of the slope 31 of the internal embedding 29a. 29b (FIG. 6) is formed and finished flat. The compaction surface that is the outline of the internal embankment 29 a is composed of a slope 31 and a horizontal surface 35. In the present embodiment, the angle of the slope 31 is 45 °.

図2は、内部盛土29aの水平面35を締め固めている状態を示す図である。図2(a)は、平面視で見た盛土29を仮想メッシュ37で区切って示したものである。図2(b)図は、盛土29の立面図である。図2(a)に示す仮想メッシュ37の1つのメッシュ39は、例えば、一辺が50cmの正方形に対応する。締固め板23は、例えば、一辺が1.5〜2mの矩形とする。仮想メッシュ37の各メッシュ39の辺長は締固め板23の辺長より小さく設定することが好ましい。仮想メッシュ37は、内部盛土29aの法面31に対応する範囲37aと、内部盛土29aの水平面35に対応する範囲37bとを有する。   FIG. 2 is a diagram illustrating a state in which the horizontal surface 35 of the internal embankment 29a is compacted. FIG. 2A shows the embankment 29 viewed in a plan view divided by a virtual mesh 37. FIG. 2B is an elevation view of the embankment 29. One mesh 39 of the virtual mesh 37 shown in FIG. 2A corresponds to, for example, a square having a side of 50 cm. The compaction plate 23 is, for example, a rectangle having a side of 1.5 to 2 m. The side length of each mesh 39 of the virtual mesh 37 is preferably set smaller than the side length of the compaction plate 23. The virtual mesh 37 has a range 37a corresponding to the slope 31 of the internal fill 29a and a range 37b corresponding to the horizontal surface 35 of the internal fill 29a.

締固め作業を行う際には、GPS25と傾斜計27を用いて取得した締固め板23の基準位置情報から締固め板23が設置されている平面視の範囲(水平範囲)を算出する。図2では、図2(b)に示すように、締固め板23の全体が盛土29の水平面35上にあり、平面視での締固め板23の設置範囲は、図2(a)に示す締固め板範囲23aとなる。   When performing the compacting operation, the range (horizontal range) in plan view where the compaction plate 23 is installed is calculated from the reference position information of the compaction plate 23 acquired using the GPS 25 and the inclinometer 27. In FIG. 2, as shown in FIG. 2 (b), the entire compaction plate 23 is on the horizontal surface 35 of the embankment 29, and the installation range of the compaction plate 23 in plan view is shown in FIG. 2 (a). The compaction plate range is 23a.

次に、締固め板23の設置範囲から、締固め作業実施範囲を判定する。すなわち、平面視での締固め板範囲23aの4つの隅部41aの座標を算出し、仮想メッシュ37の各メッシュ39のうち、中心43が締固め板範囲23aに含まれるメッシュ39を抽出する。そして、更に好ましくは、傾斜計27を用いて取得した締固め板23の角度が所定の範囲内であるか否かを判断する。本実施の形態では、所定の範囲を水平に対して±10度以内とする。所定の角度については、法面31の角度より小さい角度を便宜設定すればよい。図2に示す例では、締固め板23の角度が所定の範囲内であるので、中心43が締固め板範囲23aに含まれるメッシュ39のうち、水平面35に対応する範囲37bのメッシュ39bを締固め作業実施範囲である対象メッシュ45と判定する。   Next, the compaction work execution range is determined from the installation range of the compaction plate 23. That is, the coordinates of the four corners 41a of the compaction plate range 23a in plan view are calculated, and the mesh 39 whose center 43 is included in the compaction plate range 23a is extracted from each mesh 39 of the virtual mesh 37. More preferably, it is determined whether or not the angle of the compaction plate 23 acquired using the inclinometer 27 is within a predetermined range. In the present embodiment, the predetermined range is within ± 10 degrees with respect to the horizontal. For the predetermined angle, an angle smaller than the angle of the slope 31 may be set for convenience. In the example shown in FIG. 2, since the angle of the compaction plate 23 is within a predetermined range, among the meshes 39 whose center 43 is included in the compaction plate range 23 a, the mesh 39 b in the range 37 b corresponding to the horizontal plane 35 is tightened. It determines with the object mesh 45 which is a firm work implementation range.

対象メッシュ45が確定した後、締固め作業実施範囲における盛土29の盛立材の締固め状況を、締固め板23による締固め作業の起動状況から管理する。すなわち、各対象メッシュ45について、起振機21が起動している時間を累積し、累積値が所定の閾値以上となった対象メッシュ45は、締固めが完了したと判断する。   After the target mesh 45 is determined, the compacting status of the embankment material of the embankment 29 in the compacting work execution range is managed from the starting status of the compacting work by the compaction plate 23. That is, for each target mesh 45, the time during which the vibrator 21 is activated is accumulated, and it is determined that the target mesh 45 whose accumulated value is equal to or greater than a predetermined threshold has been compacted.

図3は、内部盛土29aの角部(法肩)33付近の水平面35を締め固めている状態を示す図である。図3(a)は、平面視で見た盛土29を仮想メッシュ37で区切って示したものである。図3(b)は、盛土29の立面図である。仮想メッシュ37は、内部盛土29aの法面31に対応する範囲37aと、内部盛土29aの水平面35に対応する範囲37bとを有する。   FIG. 3 is a diagram showing a state in which the horizontal surface 35 in the vicinity of the corner (slope) 33 of the internal embankment 29a is compacted. FIG. 3A shows the embankment 29 viewed in a plan view divided by a virtual mesh 37. FIG. 3B is an elevation view of the embankment 29. The virtual mesh 37 has a range 37a corresponding to the slope 31 of the internal fill 29a and a range 37b corresponding to the horizontal surface 35 of the internal fill 29a.

図3(b)に示すように、締固め板23の一部が盛土29の水平面35上にあり、平面視での締固め板23の設置範囲は、図3(a)に示す締固め板範囲23aとなる。   As shown in FIG. 3 (b), a part of the compaction plate 23 is on the horizontal surface 35 of the embankment 29, and the installation range of the compaction plate 23 in plan view is as shown in FIG. 3 (a). It becomes the range 23a.

図3に示す例において、締固め板23の設置範囲から締固め作業実施範囲を判定するには、締固め板範囲23aの4つの隅部41aの座標を算出し、仮想メッシュ37の各メッシュ39のうち、中心43が締固め板範囲23aに含まれるメッシュ39を抽出する。そして、更に好ましくは、傾斜計27を用いて取得した締固め板23の角度が所定の範囲内(水平に対して±10度以内)であるか否かを判断する。図3に示す例では、締固め板23の角度が所定の範囲内であるので、中心43が締固め板範囲23aに含まれるメッシュ39のうち、水平面35に対応する範囲37bのメッシュ39bのみを締固め作業実施範囲である対象メッシュ45と判定して、法面31に対応する範囲37aのメッシュ39aは対象メッシュ45と判定しない。   In the example shown in FIG. 3, in order to determine the compaction work execution range from the installation range of the compaction plate 23, the coordinates of the four corners 41 a of the compaction plate range 23 a are calculated and each mesh 39 of the virtual mesh 37 is calculated. Among them, the mesh 39 whose center 43 is included in the compaction plate range 23a is extracted. More preferably, it is determined whether or not the angle of the compaction plate 23 acquired using the inclinometer 27 is within a predetermined range (within ± 10 degrees with respect to the horizontal). In the example shown in FIG. 3, since the angle of the compaction plate 23 is within a predetermined range, only the mesh 39b in the range 37b corresponding to the horizontal plane 35 is selected from the meshes 39 whose center 43 is included in the compaction plate range 23a. The mesh 39a in the range 37a corresponding to the slope 31 is not determined as the target mesh 45 by determining the target mesh 45 as the compaction work execution range.

対象メッシュ45が確定した後、各対象メッシュ45について、起振機21が起動している時間を累積する。そして、累積値が所定の閾値以上となった対象メッシュ45は、締固めが完了したと判断する。   After the target mesh 45 is determined, the time during which the exciter 21 is activated is accumulated for each target mesh 45. Then, it is determined that the object mesh 45 whose accumulated value is equal to or greater than a predetermined threshold has been compacted.

図4は、内部盛土29aの角部(法肩)33付近の法面31を締め固めている状態を示す図である。図4(a)は、平面視で見た盛土29を仮想メッシュ37で区切って示したものである。図4(b)は、盛土29の立面図である。   FIG. 4 is a diagram showing a state in which the slope 31 near the corner (slope) 33 of the internal embankment 29a is compacted. FIG. 4A shows the embankment 29 viewed in a plan view divided by a virtual mesh 37. FIG. 4B is an elevation view of the embankment 29.

図4では、図4(b)に示すように、締固め板23の一部が盛土29の法面31上にあり、平面視での締固め板23の設置範囲は、図4(a)に示す締固め板範囲23aとなる。仮想メッシュ37は、内部盛土29aの法面31に対応する範囲37aと、内部盛土29aの水平面35に対応する範囲37bとを有する。   In FIG. 4, as shown in FIG. 4B, a part of the compaction plate 23 is on the slope 31 of the embankment 29, and the installation range of the compaction plate 23 in plan view is as shown in FIG. The compaction plate range 23a shown in FIG. The virtual mesh 37 has a range 37a corresponding to the slope 31 of the internal fill 29a and a range 37b corresponding to the horizontal surface 35 of the internal fill 29a.

図4に示す例において、締固め板23の設置範囲から締固め作業実施範囲を判定するには、締固め板範囲23aの4つの隅部41aの座標を算出し、仮想メッシュ37の各メッシュ39のうち、中心43が締固め板範囲23aに含まれるメッシュ39を抽出する。そして、更に好ましくは、傾斜計27を用いて取得した締固め板23の角度が所定の範囲内であるか否かを判断する。図4に示す例では、締固め板23の角度が設定しておいた所定の範囲(水平に対して±10度以内)を超えているので、中心43が締固め板範囲23aに含まれるメッシュ39のうち、法面31に対応する範囲37aのメッシュ39aのみを締固め作業実施範囲である対象メッシュ45と判定して、水平面35に対応する範囲37bのメッシュ39bは対象メッシュ45と判定しない。   In the example shown in FIG. 4, in order to determine the compacting work execution range from the installation range of the compaction plate 23, the coordinates of the four corners 41 a of the compaction plate range 23 a are calculated, and each mesh 39 of the virtual mesh 37 is calculated. Among them, the mesh 39 whose center 43 is included in the compaction plate range 23a is extracted. More preferably, it is determined whether or not the angle of the compaction plate 23 acquired using the inclinometer 27 is within a predetermined range. In the example shown in FIG. 4, since the angle of the compaction plate 23 exceeds a predetermined range (within ± 10 degrees with respect to the horizontal), the mesh whose center 43 is included in the compaction plate range 23a. 39, only the mesh 39a in the range 37a corresponding to the slope 31 is determined as the target mesh 45 that is the compacting work execution range, and the mesh 39b in the range 37b corresponding to the horizontal plane 35 is not determined as the target mesh 45.

対象メッシュ45が確定した後、各対象メッシュ45について、起振機21が起動している時間を累積する。そして、累積値が所定の閾値以上となった対象メッシュ45は、締固めが完了したと判断する。   After the target mesh 45 is determined, the time during which the exciter 21 is activated is accumulated for each target mesh 45. Then, it is determined that the object mesh 45 whose accumulated value is equal to or greater than a predetermined threshold has been compacted.

内部盛土29aの外縁は、法面31と水平面35とからなる。締固め板23は所定の大きさを有しているので、図3、4に示すとおり法面31と水平面35の境界部である角部(法肩)33を締め固める時に、起振機21が起動して締固め作業を実施していても実際には締固められていない作業範囲が生じる。本実施形態においては、盛土29を平面視した仮想メッシュ37上で、法面31に対応する範囲37aと、水平面35に対応する範囲37bとを設定する。また、締固め板23が法面31の締固め作業と判定する所定の角度(例えば、水平に対して±10度超)を設定する。また、好ましくは、締固め板23が水平面35の締固め作業と判定する角度(例えば、水平面に対して±10度以内)を設定する。その結果、法面31の締固め作業と水平面35の締固め作業とを区別して判断できる。なお、本実施形態においては、法面31に対応する範囲37aと水平面35に対応する範囲37bとをメッシュ39を使用して設定したが、メッシュ39に代えて、単に角部(法肩)33を境界として、法面31の範囲と水平面35の範囲を設定してもよい。
The outer edge of the internal embankment 29 a is composed of a slope 31 and a horizontal surface 35. Since the compaction plate 23 has a predetermined size, as shown in FIGS. 3 and 4, when the corner (slope) 33, which is the boundary between the slope 31 and the horizontal surface 35, is compacted, the vibrator 21 Even if a compaction operation is performed after starting, a work range that is not actually compacted occurs. In the present embodiment, a range 37 a corresponding to the slope 31 and a range 37 b corresponding to the horizontal plane 35 are set on the virtual mesh 37 in plan view of the embankment 29. In addition, a predetermined angle (for example, more than ± 10 degrees with respect to the horizontal) for determining that the compaction plate 23 is a compacting operation of the slope 31 is set. Further, preferably, an angle (for example, within ± 10 degrees with respect to the horizontal plane) for determining that the compaction plate 23 is a compacting operation of the horizontal plane 35 is set. As a result, it is possible to distinguish and judge the compaction work of the slope 31 and the compaction work of the horizontal surface 35. In the present embodiment, the range 37a corresponding to the slope 31 and the range 37b corresponding to the horizontal plane 35 are set using the mesh 39. As a boundary, the range of the slope 31 and the range of the horizontal plane 35 may be set.

図5は、内部盛土29aの法面31を締め固めている状態を示す図である。図5(a)は、平面視で見た盛土29を仮想メッシュ37で区切って示したものである。図5(b)は、盛土29の立面図である。仮想メッシュ37は、法面31に対応する範囲37aと、水平面35に対応する範囲37bとを有する。   FIG. 5 is a diagram showing a state in which the slope 31 of the internal embankment 29a is compacted. FIG. 5A shows the embankment 29 viewed in a plan view divided by a virtual mesh 37. FIG. 5B is an elevation view of the embankment 29. The virtual mesh 37 has a range 37 a corresponding to the slope 31 and a range 37 b corresponding to the horizontal plane 35.

図5では、図5(b)に示すように、締固め板23の全体が盛土29の法面31上にあり、平面視での締固め板23の設置範囲は、図5(a)に示す締固め板範囲23aとなる。   In FIG. 5, as shown in FIG. 5 (b), the entire compaction plate 23 is on the slope 31 of the embankment 29, and the installation range of the compaction plate 23 in plan view is shown in FIG. 5 (a). It becomes the compaction board range 23a shown.

図5に示す例において、締固め板23の設置範囲から締固め作業実施範囲を判定するには、締固め板範囲23aの4つの隅部41aの座標を算出し、仮想メッシュ37の各メッシュ39のうち、中心43が締固め板範囲23aに含まれるメッシュ39を抽出する。そして更に好ましくは、傾斜計27を用いて取得した締固め板23の角度が所定の範囲内であるか否かを判断する。図5に示す例では、締固め板23の角度が設定しておいた所定の範囲(水平に対して±10度以内)を超えているので、中心43が締固め板範囲23aに含まれるメッシュ39のうち、法面31に対応する範囲37aのメッシュ39aのみを締固め作業実施範囲である対象メッシュ45と判定する。   In the example shown in FIG. 5, in order to determine the compaction work execution range from the installation range of the compaction plate 23, the coordinates of the four corners 41 a of the compaction plate range 23 a are calculated and each mesh 39 of the virtual mesh 37 is calculated. Among them, the mesh 39 whose center 43 is included in the compaction plate range 23a is extracted. More preferably, it is determined whether or not the angle of the compaction plate 23 acquired using the inclinometer 27 is within a predetermined range. In the example shown in FIG. 5, since the angle of the compaction plate 23 exceeds a predetermined range (within ± 10 degrees with respect to the horizontal), the mesh whose center 43 is included in the compaction plate range 23a. 39, only the mesh 39a in the range 37a corresponding to the slope 31 is determined to be the target mesh 45 that is the compacting work execution range.

対象メッシュ45が確定した後、各対象メッシュ45について、起振機21が起動している時間を累積する。そして、累積値が所定の閾値以上となった対象メッシュ45は、締固めが完了したと判断する。   After the target mesh 45 is determined, the time during which the exciter 21 is activated is accumulated for each target mesh 45. Then, it is determined that the object mesh 45 whose accumulated value is equal to or greater than a predetermined threshold has been compacted.

図6は、外部盛土29bの水平面35を締め固めている状態を示す図である。図6(a)は、平面視で見た盛土29を仮想メッシュ37で区切って示したものである。図6(b)は、盛土29の立面図である。外部盛土29bの外縁である締固め面は、水平面35からなる。仮想メッシュ37は、全面が平面35に対応する範囲37bとなる。   FIG. 6 is a diagram illustrating a state in which the horizontal surface 35 of the external embankment 29b is compacted. FIG. 6A shows the embankment 29 viewed in a plan view divided by a virtual mesh 37. FIG. 6B is an elevation view of the embankment 29. The compaction surface, which is the outer edge of the external embankment 29b, consists of a horizontal surface 35. The entire surface of the virtual mesh 37 is a range 37 b corresponding to the plane 35.

盛土29を形成する際には、内部盛土29aの締固めが完了した後、図6(b)に示すように、内部盛土29aの法面31の側方に外部盛土29bの盛立材を配置し、盛土29の水平面35を締め固める。締固め作業を行う際には、GPS25と傾斜計27を用いて取得した締固め板23の基準位置情報から締固め板23が設置されている平面視の範囲を算出する。図6では、締固め板23の全体が外部盛土29bの水平面35上にあり、平面視での締固め板23の設置範囲は、図6(a)に示す締固め板範囲23aとなる。   When forming the embankment 29, after the compaction of the inner embankment 29a is completed, as shown in FIG. 6 (b), the embankment material of the outer embankment 29b is arranged on the side of the slope 31 of the inner embankment 29a, The horizontal surface 35 of the embankment 29 is compacted. When performing the compacting operation, the range of the plan view in which the compaction plate 23 is installed is calculated from the reference position information of the compaction plate 23 acquired using the GPS 25 and the inclinometer 27. In FIG. 6, the entire compaction plate 23 is on the horizontal surface 35 of the external embankment 29b, and the installation range of the compaction plate 23 in plan view is the compaction plate range 23a shown in FIG. 6 (a).

図6に示す例において、締固め板23の設置範囲から締固め作業実施範囲を判定するには、締固め板範囲23aの4つの隅部41aの座標を算出し、仮想メッシュ37の各メッシュ39のうち、中心43が締固め板範囲23aに含まれるメッシュ39を抽出する。そして、更に好ましくは、傾斜計27を用いて取得した締固め板23の角度が所定の範囲内(水平に対して±10度以内)であるか否かを判断する。図6に示す例では、締固め板23の角度が所定の範囲内であるので、中心43が締固め板範囲23aに含まれるメッシュ39のうち、水平面35に対応する範囲37bのメッシュ39bを締固め作業実施範囲である対象メッシュ45と判定する。   In the example shown in FIG. 6, in order to determine the compaction work execution range from the installation range of the compaction plate 23, the coordinates of the four corners 41 a of the compaction plate range 23 a are calculated, and each mesh 39 of the virtual mesh 37 is calculated. Among them, the mesh 39 whose center 43 is included in the compaction plate range 23a is extracted. More preferably, it is determined whether or not the angle of the compaction plate 23 acquired using the inclinometer 27 is within a predetermined range (within ± 10 degrees with respect to the horizontal). In the example shown in FIG. 6, since the angle of the compaction plate 23 is within a predetermined range, among the meshes 39 whose center 43 is included in the compaction plate range 23a, the mesh 39b in the range 37b corresponding to the horizontal plane 35 is tightened. It determines with the object mesh 45 which is a firm work implementation range.

図5に示す内部盛土29aの法面31と、図6に示す外部盛土29bの水平面35は、仮想メッシュ37の同じ位置のメッシュ39を用いて表されるが、内部盛土29aの法面31を締固めしている場合と、外部盛土29bの水平面35を締固めしている場合とでは、仮想メッシュ37上に表示される平面視での締固め板範囲23aの大きさが異なる。このため、締固め板範囲23aの大きさの違いにより、締固めている範囲が法面31であるのか、水平面35であるのかを的確に把握できる。したがって、法面31または水平面35に応じて適切な締固め範囲23aを特定することができる。   The slope 31 of the internal bank 29a shown in FIG. 5 and the horizontal surface 35 of the external bank 29b shown in FIG. 6 are represented using the mesh 39 at the same position of the virtual mesh 37. The size of the compaction plate range 23a in plan view displayed on the virtual mesh 37 is different between the case where the compaction is performed and the case where the horizontal surface 35 of the external embankment 29b is compacted. For this reason, it is possible to accurately grasp whether the compacted range is the slope 31 or the horizontal plane 35 due to the difference in the size of the compacted plate range 23a. Therefore, an appropriate compaction range 23a can be specified according to the slope 31 or the horizontal plane 35.

内部盛土29aの法面31と外部盛土29bの水平面35が仮想メッシュ37の同じ位置のメッシュ39を用いて表される場合でも、法面31と水平面35について、締固め面(締固め板23)の所定の角度の範囲を設定しておくことで、法面31の締固め作業と水平面35の締固め作業とを区別して判断できる。   Even when the slope 31 of the internal embankment 29a and the horizontal plane 35 of the external fill 29b are represented using the mesh 39 at the same position of the virtual mesh 37, the compaction surface (consolidation plate 23) for the slope 31 and the horizontal plane 35 is shown. By setting the predetermined angle range, it is possible to distinguish and judge the compaction work of the slope 31 and the compaction work of the horizontal surface 35.

対象メッシュ45が確定した後、各対象メッシュ45について、起振機21が起動している時間を累積する。そして、累積値が所定の閾値以上となった対象メッシュ45は、締固めが完了したと判断する。   After the target mesh 45 is determined, the time during which the exciter 21 is activated is accumulated for each target mesh 45. Then, it is determined that the object mesh 45 whose accumulated value is equal to or greater than a predetermined threshold has been compacted.

このように、本実施の形態によれば、締固め板位置設置・角度設定手段であるアーム9およびシリンダ11、ロッド13およびシリンダ15を用いて締固め板23を所定の位置に設置することにより、同一の締固め板23を用いて、盛土29の法面31および水平面35の締固めを行うことができる。また、締固め板範囲測定手段であるGPS25および傾斜計27を用いて締固め板23の位置情報を取得して、平面視での締固め板範囲23aの隅部41aの座標を算出すれば、盛土29を模した仮想メッシュ37において、締固め作業実施範囲である対象メッシュ45を容易に判定できる。   Thus, according to the present embodiment, the compaction plate 23 is installed at a predetermined position using the arm 9 and the cylinder 11, the rod 13 and the cylinder 15 which are the compaction plate position setting / angle setting means. The slope 31 and the horizontal surface 35 of the embankment 29 can be compacted using the same compaction plate 23. Further, if the position information of the compaction plate 23 is acquired by using the GPS 25 and the inclinometer 27 which are compaction plate range measuring means, and the coordinates of the corner 41a of the compaction plate range 23a in plan view are calculated, In the virtual mesh 37 imitating the embankment 29, it is possible to easily determine the target mesh 45 that is the compaction work execution range.

本実施の形態によれば、締固め作業実施範囲である対象メッシュ45を判定する際に、傾斜計27を用いて取得した締固め板23の角度が所定の範囲を超えるときは法面31に対応するメッシュ39のみを対象メッシュ45と判定し、締固め板23の角度が所定の範囲内であるときは水平面35に対応するメッシュ39のみを対象メッシュ45と判定することにより、締固め板23が角部(法肩)33付近に位置する場合や法面31と水平面35とが同じ位置のメッシュ39で表される場合にも、締固め作業実施範囲を確実に判定できる。対象メッシュ45における盛立材の締固め状況は、締固め作業起動手段である起振機21の起動時間の累積値を求めることにより、適切に管理できる。   According to the present embodiment, when the target mesh 45 that is the compaction work execution range is determined, when the angle of the compaction plate 23 acquired using the inclinometer 27 exceeds the predetermined range, the slope 31 is set. Only the corresponding mesh 39 is determined as the target mesh 45, and when the angle of the compaction plate 23 is within a predetermined range, only the mesh 39 corresponding to the horizontal plane 35 is determined as the target mesh 45, whereby the compaction plate 23 is obtained. Can be determined with certainty even when it is located near the corner (slope) 33 or when the slope 31 and the horizontal surface 35 are represented by the mesh 39 at the same position. The state of compaction of the standing material in the target mesh 45 can be appropriately managed by obtaining the cumulative value of the startup time of the vibrator 21 that is the compacting work starting means.

なお、本実施の形態では、締固め板範囲測定手段としてGPS25と傾斜計27とを設けたが、締固め板範囲測定手段はこれに限らない。図7は、他の締固め板範囲測定手段を有する作業機械1aを示す図である。図7(a)は、作業機械1aを用いて盛土29の水平面35を締め固めている状態を示す図、図7(b)および図7(c)は、締固め板23の平面図である。   In this embodiment, the GPS 25 and the inclinometer 27 are provided as the compaction plate range measurement means, but the compaction plate range measurement means is not limited to this. FIG. 7 is a view showing a work machine 1a having other compaction plate range measuring means. FIG. 7A is a diagram showing a state in which the horizontal surface 35 of the embankment 29 is compacted using the work machine 1a, and FIGS. 7B and 7C are plan views of the compaction plate 23. FIG. .

図7に示す作業機械1aは、図1に示す作業機械1とほぼ同様の構成であるが、締固め板範囲測定手段として、GPS25および傾斜計27の代わりに、4台のGPS47を有する。GPS47は、締固め板23の4ヶ所の位置を計測する締固め板位置測定手段である。図7(b)に示すように、GPS47は、締固め板23の4か所の隅部41付近に設けられる。   The work machine 1a shown in FIG. 7 has substantially the same configuration as the work machine 1 shown in FIG. 1, but has four GPSs 47 instead of the GPS 25 and the inclinometer 27 as a compaction plate range measuring means. The GPS 47 is a compaction plate position measuring unit that measures the positions of four locations on the compaction plate 23. As shown in FIG. 7B, the GPS 47 is provided in the vicinity of the four corners 41 of the compaction plate 23.

図7に示す作業機械1aを用いて盛土29の締固め作業を行う場合、GPS47を用いて締固め板23の位置情報を取得して、平面視での締固め板23の設置範囲である締固め板範囲の4つの隅部の座標を算出する。また、GPS47を用いて取得した位置情報から締固め板23の角度も算出する。そして、作業機械1を用いた締固め作業の際と同様に、平面視での締固め板範囲の4つの隅部の座標および締固め板23の角度に基づいて、締固め作業実施範囲を判定する。   When the work of compacting the embankment 29 is performed using the work machine 1a shown in FIG. 7, the positional information of the compaction plate 23 is obtained using the GPS 47, and the compaction plate 23, which is the installation range of the compaction plate 23 in plan view, is obtained. The coordinates of the four corners of the firm plate range are calculated. Further, the angle of the compaction plate 23 is also calculated from the position information acquired using the GPS 47. Then, as in the compaction operation using the work machine 1, the compaction work execution range is determined based on the coordinates of the four corners of the compaction plate range in plan view and the angle of the compaction plate 23. To do.

図7(b)に示す例では、GPS47を締固め板23の4か所の隅部41付近に設けたが、図7(c)に示すように、GPS47を締固め板23の2ヶ所の隅部41付近に設けてもよい。その場合、締固め板23を法面31に沿わせた際に2台のGPS47に高低差ができるように、2ヶ所の隅部41付近にGPS47を設ける。   In the example shown in FIG. 7 (b), the GPS 47 is provided in the vicinity of the four corners 41 of the compaction plate 23. However, as shown in FIG. 7 (c), the GPS 47 is provided at two locations on the compaction plate 23. It may be provided near the corner 41. In that case, the GPS 47 is provided in the vicinity of the two corners 41 so that when the compaction plate 23 is moved along the slope 31, a difference in height is generated between the two GPS 47.

また、本実施の形態では、傾斜計27を用いて取得した締固め板23の角度が所定の範囲を超えるか否かで、締固め作業実施の範囲が法面31であるか水平面であるかを判断したが、判断方法はこれに限らない。締固め板23が設置されている平面視での範囲である締固め板範囲23aの大きさで、締固め作業実施の範囲が法面31であるか水平面であるかを判断してもよい。この場合、仮想メッシュ37上に表示される平面視での締固め板範囲23aの大きさが締固め板23の大きさと同等の場合は締固め板23が水平面35上にあると判断し、締固め板23の大きさより小さい場合は締固め板23が法面31上にあると判断する。いずれの方法でも、締固めている範囲を的確に把握できる。   Further, in the present embodiment, whether the range of the compacting operation is the slope 31 or the horizontal plane depending on whether or not the angle of the compaction plate 23 obtained using the inclinometer 27 exceeds a predetermined range. However, the determination method is not limited to this. Depending on the size of the compaction plate range 23a, which is a range in plan view where the compaction plate 23 is installed, it may be determined whether the scope of the compaction operation is the slope 31 or the horizontal plane. In this case, if the size of the compaction plate range 23a displayed on the virtual mesh 37 in the plan view is equal to the size of the compaction plate 23, it is determined that the compaction plate 23 is on the horizontal plane 35, If it is smaller than the size of the compaction plate 23, it is determined that the compaction plate 23 is on the slope 31. With either method, it is possible to accurately grasp the compacted range.

以上、添付図を参照しながら、本発明の実施形態を説明したが、本発明の技術的範囲は、前述した実施形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1、1a………作業機械
9、9a、9b………アーム
11、11a、11b、15………シリンダ
13、13a、13b………ロッド
17………アタッチメント
21………起振機
23………締固め板
23a………締固め板範囲
25、25a、25b、47………GPS
27………傾斜計
29………盛土(盛立材)
29a………内部盛土
29b………外部盛土
31………法面
33………角部(法肩)
35………水平面
37………仮想メッシュ
37a………法面31に対応する範囲
37b………水平面35に対応する範囲
39、39a、39b………メッシュ
41、41a………隅部
43………中心
45………対象メッシュ
DESCRIPTION OF SYMBOLS 1, 1a ... Work machine 9, 9a, 9b ......... Arm 11, 11a, 11b, 15 ......... Cylinder 13, 13a, 13b ......... Rod 17 ...... Attachment 21 ...... Exciter 23 ……… Compact plate 23a ……… Compact plate range 25, 25a, 25b, 47 ……… GPS
27 ……… Inclinometer 29 ……… Fill (filling material)
29a ......... Inner embankment 29b ......... Outer embankment 31 ......... Slope 33 ......... Corner (Shoulder)
35 ......... Horizontal plane 37 ......... Virtual mesh 37a ......... Range corresponding to slope 31 37b ......... Range corresponding to horizontal plane 35 39, 39a, 39b ......... Mesh 41, 41a ......... Corner 43 ……… Center 45 ……… Target mesh

Claims (7)

盛立材を締め固める締固め板と、
前記締固め板を所定の位置に設置する締固め板位置設置・角度設定手段と、
前記締固め板の位置情報を取得する締固め板範囲測定手段と、
前記締固め板による締固め作業を起動停止可能な締固め作業起動手段と、
を具備することを特徴とする締固め作業管理システム。
A compaction plate for compacting the raised material;
A compaction plate position setting / angle setting means for installing the compaction plate at a predetermined position;
A compaction plate range measuring means for obtaining positional information of the compaction plate;
A compaction work starting means capable of starting and stopping the compaction work by the compaction plate;
A compaction work management system comprising:
前記締固め板範囲測定手段が、締固め板基準位置測定手段と、締固め板角度測定手段とからなることを特徴とする請求項1記載の締固め作業管理システム。   2. The compaction work management system according to claim 1, wherein the compaction plate range measurement means comprises compaction plate reference position measurement means and compaction plate angle measurement means. 前記締固め板範囲測定手段が、前記締固め板の少なくとも2ヶ所の位置を計測する締固め板位置測定手段からなることを特徴とする請求項1記載の締固め作業管理システム。   2. The compacting work management system according to claim 1, wherein the compacted plate range measuring means comprises compacted plate position measuring means for measuring at least two positions of the compacted plate. 前記締固め板の位置情報から締固め作業実施範囲を判定し、前記締固め作業実施範囲における盛立材の締固め状況を、前記締固め板による締固め作業の起動状況から管理することを特徴とする請求項1から請求項3のいずれかに記載の締固め作業管理システム。   The compaction work execution range is determined from the position information of the compaction plate, and the compaction status of the standing material in the compaction work implementation range is managed from the start status of the compaction work by the compaction plate. The compaction work management system according to any one of claims 1 to 3. 前記締固め板の範囲測定手段を用いて前記締固め板の角度を取得し、前記締固め板の角度に応じて前記締固め作業実施範囲を判定することを特徴とする請求項4記載の締固め作業管理システム。   5. The tightening plate according to claim 4, wherein an angle of the compaction plate is obtained using a range measuring unit of the compaction plate, and the compacting work execution range is determined according to the angle of the compaction plate. Hardening work management system. 盛立材を締め固める締固め板と、
前記締固め板を所定の位置に設置する締固め板位置設置・角度設定手段と、
前記締固め板の位置情報を取得する締固め板範囲測定手段と、
前記締固め板による締固め作業を起動停止可能な締固め作業起動手段と、
を具備する締固め作業管理システムを用い、
前記締固め板の位置情報から締固め作業実施範囲を判定し、前記締固め作業実施範囲における盛立材の締固め状況を、前記締固め板による締固め作業の起動状況から管理することを特徴とする締固め作業管理方法。
A compaction plate for compacting the raised material;
A compaction plate position setting / angle setting means for installing the compaction plate at a predetermined position;
A compaction plate range measuring means for obtaining positional information of the compaction plate;
A compaction work starting means capable of starting and stopping the compaction work by the compaction plate;
Using a compaction work management system comprising
The compaction work execution range is determined from the position information of the compaction plate, and the compaction status of the standing material in the compaction work implementation range is managed from the start status of the compaction work by the compaction plate. Compaction work management method.
水平面と法面とが混在する盛立材の締固め作業において、
前記締固め板の範囲測定手段を用いて前記締固め板の角度を取得し、前記締固め板の角度が所定の範囲を超えるときは、法面を前記締固め作業実施範囲と判定することを特徴とする請求項6記載の締固め作業管理方法。
In compacting upright materials with a mixture of horizontal and slope,
The angle of the compaction plate is acquired using the compaction plate range measuring means, and when the angle of the compaction plate exceeds a predetermined range, the slope is determined as the compaction work execution range. The compacting work management method according to claim 6, wherein:
JP2016022841A 2016-02-09 2016-02-09 Compaction work management system and compaction work management method Active JP6696786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022841A JP6696786B2 (en) 2016-02-09 2016-02-09 Compaction work management system and compaction work management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022841A JP6696786B2 (en) 2016-02-09 2016-02-09 Compaction work management system and compaction work management method

Publications (2)

Publication Number Publication Date
JP2017141579A true JP2017141579A (en) 2017-08-17
JP6696786B2 JP6696786B2 (en) 2020-05-20

Family

ID=59627111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022841A Active JP6696786B2 (en) 2016-02-09 2016-02-09 Compaction work management system and compaction work management method

Country Status (1)

Country Link
JP (1) JP6696786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122371A (en) * 2019-01-31 2020-08-13 日立建機株式会社 Work machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070013A (en) * 2000-08-31 2002-03-08 Ohmoto Gumi Co Ltd Underwater riprap leveler and underwater riprap leveling method
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2013209843A (en) * 2012-03-30 2013-10-10 Asakawagumi:Kk Slope compaction device
JP2015048684A (en) * 2013-09-04 2015-03-16 鹿島建設株式会社 Compaction control method and system utilizing gps
US20160130771A1 (en) * 2013-01-10 2016-05-12 Mts Maschinentechnik Schrode Ag Method for operating an attached compactor, storage medium and attached compactor
JP2016520745A (en) * 2014-02-12 2016-07-14 デドン エンジニアリング カンパニー, リミテッドDaedong Engineering Co., Ltd. High load vibration damper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070013A (en) * 2000-08-31 2002-03-08 Ohmoto Gumi Co Ltd Underwater riprap leveler and underwater riprap leveling method
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2013209843A (en) * 2012-03-30 2013-10-10 Asakawagumi:Kk Slope compaction device
US20160130771A1 (en) * 2013-01-10 2016-05-12 Mts Maschinentechnik Schrode Ag Method for operating an attached compactor, storage medium and attached compactor
JP2015048684A (en) * 2013-09-04 2015-03-16 鹿島建設株式会社 Compaction control method and system utilizing gps
JP2016520745A (en) * 2014-02-12 2016-07-14 デドン エンジニアリング カンパニー, リミテッドDaedong Engineering Co., Ltd. High load vibration damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122371A (en) * 2019-01-31 2020-08-13 日立建機株式会社 Work machine
JP7235521B2 (en) 2019-01-31 2023-03-08 日立建機株式会社 working machine

Also Published As

Publication number Publication date
JP6696786B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
CN108611932B (en) A kind of construction method for passing through pool, fish pond location multiply road railway high-fill roadbed
AU2022209235B2 (en) Display control device and display control method
JP2005227233A (en) Measuring system of ground density
WO2020003633A1 (en) Display control system, display control device, and display control method
CN107287999A (en) Rigid pile composite foundation united drainage consolidation reinforces highway soft soil ground construction
JP2020002717A (en) Display control unit, display control system, and display control method
JP2016084635A (en) Attachment device for slope surface formation and compaction
JP2017141579A (en) Compaction work management system and compaction work management method
JP7371338B2 (en) Ground strength measurement system
JP6894326B2 (en) Caisson aperture ratio calculation system, aperture ratio calculation method and aperture ratio calculation program
CN102031743A (en) Construction method of mudstone-filled embankment
WO2017061512A1 (en) Work-performing method, control system for work machine, and work machine
CN205975653U (en) Independent bearing platform structure of soil child mould construction
CN207904918U (en) A kind of drilled pile casing locating rack
CN103276716A (en) Method for stabilization and construction of transition section CFG and mattress cushion layer composite foundation
Kern Precise determination of volume with terrestrial 3D-laser scanner
CN108716946A (en) Under a kind of complex environment in the soil body at different depth blasting vibration monitoring device
JP6450253B2 (en) Installation method of buried design device and buried structure of buried design device
JP7235521B2 (en) working machine
JP2014201873A (en) Compaction device
JP6957256B2 (en) Embankment area compaction method and compaction attachment device
JP7224947B2 (en) Compaction device and compaction method
CN207846453U (en) A kind of CFG composite cushion layer structure
JP6333438B2 (en) Compaction body and compaction method
CN109024544A (en) The hydraulic high frequency compaction method of collapsible loess tunnel substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6696786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250