JP2017140632A - Manufacturing method of aluminum forging member - Google Patents
Manufacturing method of aluminum forging member Download PDFInfo
- Publication number
- JP2017140632A JP2017140632A JP2016023541A JP2016023541A JP2017140632A JP 2017140632 A JP2017140632 A JP 2017140632A JP 2016023541 A JP2016023541 A JP 2016023541A JP 2016023541 A JP2016023541 A JP 2016023541A JP 2017140632 A JP2017140632 A JP 2017140632A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- press
- fitting
- bush
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Forging (AREA)
Abstract
Description
本発明は、アルミ鍛造部材の製造方法に係り、特に、耐応力腐食割れ性を向上させたアルミ鍛造部材の製造方法に関する。 The present invention relates to a method for producing an aluminum forged member, and more particularly to a method for producing an aluminum forged member having improved stress corrosion cracking resistance.
近年、自動車分野においては、軽量化と操縦安定性・乗り心地向上などのために、アッパーアーム、ロアーアームなどの足廻り部品に対するアルミ鍛造材料の適用が拡大しつつある。 In recent years, in the automobile field, the application of aluminum forging materials to undercarriage parts such as upper arms and lower arms has been expanding in order to reduce weight and improve handling stability and riding comfort.
この自動車用足廻り部品を構成するアルミ鍛造材料としては、耐食性と強度のバランスが取れた6000系(Al-Si-Mg系合金)などのアルミニウム合金が主に採用されており、連続鋳造あるいは押出し加工により作製されたアルミニウム合金からなる素材を熱間鍛造した後、溶体化処理、焼入れ処理、及び時効処理などを経て所定の強度が付与され、その後、部品形状へと加工される。 As the aluminum forging material that constitutes the undercarriage parts for automobiles, aluminum alloys such as 6000 series (Al-Si-Mg series alloys) with a balance between corrosion resistance and strength are mainly used, and continuous casting or extrusion After hot forging a material made of an aluminum alloy produced by processing, a predetermined strength is imparted through solution treatment, quenching treatment, aging treatment, and the like, and then processed into a part shape.
このような工程をベースとして、素材成分の最適化、鍛造熱処理後結晶組織の微細化(再結晶粗大化の抑制)により強度の向上を図る提案が既になされている。 Based on these processes, proposals have already been made to improve strength by optimizing material components and refining the crystal structure after forging heat treatment (suppressing recrystallization coarsening).
例えば、特許文献1では、一般的な6000系アルミニウム合金(例えば、A6061合金等)と比較して、析出元素であるSiやCuを増量添加することでマトリクス強化を行い、さらにMn、Crを添加して鍛造温度を高温化することで結晶組織を微細化して、強度を向上させることが提案されている。
For example, in
しかし、上記のような高強度化されたアルミ鍛造材料からなるアルミ鍛造部材においても、熱処理条件や鍛造フローの方向などによっては、腐食環境下において、応力腐食割れ(以降、SCC:Stress Corrosion Crackingと称する)の感受性が高くなることが懸念されている。特に、前記アルミ鍛造部材では、鍛造見切り線(パーティングラインとも言い、以降、P/L:Parting Lineと称する)近傍において結晶粒の方向が揃いやすいため、例えば自動車用足廻り部品として使用され、ブッシュ圧入等により発生する引張応力がP/Lに対して直交する方向に働くと、SCCが発生する恐れがある。より詳しくは、鍛造成形する際に形成されるP/L近傍(バリが発生する部分)では、断面で視たときに組織が均一でなく、P/Lに向かって結晶粒が細長く伸びた形状となるため、ブッシュを圧入したときにP/L部分に応力が集中するが、そのブッシュ圧入により発生する引張応力がP/Lに対して直交する方向に働くと、応力集中が発生しやすくなり、SCCが発生する可能性が高まるというものである。 However, even in aluminum forging members made of forged aluminum materials as described above, depending on the heat treatment conditions and direction of forging flow, stress corrosion cracking (hereinafter referred to as SCC: Stress Corrosion Cracking) There is a concern that the sensitivity of In particular, in the aluminum forged member, because the direction of the crystal grains is easily aligned in the vicinity of the forging parting line (also referred to as a parting line, hereinafter referred to as P / L: Parting Line), for example, used as an undercarriage part for automobiles, If the tensile stress generated by bush press-fitting acts in the direction perpendicular to P / L, SCC may occur. More specifically, in the vicinity of the P / L formed during forging (the part where burrs are generated), the structure is not uniform when viewed in cross-section, and the crystal grains are elongated in the direction toward the P / L. Therefore, when the bush is press-fitted, stress concentrates on the P / L part. However, if the tensile stress generated by the bush press-fitting works in a direction perpendicular to P / L, stress concentration tends to occur. This increases the possibility of SCC.
例えば、自動車用のステアリングナックルでは、タイロッドとの締結部において鉄製のカラーが圧入されることがあるが、従来の鍛造プロセスで作製されたステアリングナックルでは、カラー(又は、ブッシュ)の圧入方向と鍛造成形する際に形成されるP/Lの方向とが平行となっており(言い換えれば、カラー圧入方向に沿った方向にP/Lが形成されており)、カラーの圧入により発生する引張応力がP/Lを引き剥がす方向に作用している。すなわち、従来の鍛造プロセスでは、P/Lの方向が上記のようにSCCの感受性が高まる条件となっていることがあり、部品への負荷応力が材料のSCC下限許容応力を超過する場合には、前記SCCが発生する可能性がある(下記特許文献2も併せて参照)。
For example, in a steering knuckle for automobiles, an iron collar may be press-fitted at a fastening portion with a tie rod, but in a steering knuckle manufactured by a conventional forging process, the press-fitting direction of the collar (or bush) and forging The direction of P / L formed at the time of molding is parallel (in other words, P / L is formed in the direction along the color press-fitting direction), and the tensile stress generated by the press-fitting of the collar is Acts in the direction of peeling P / L. That is, in the conventional forging process, the direction of P / L may be a condition that increases the sensitivity of SCC as described above, and when the load stress on the part exceeds the SCC lower limit allowable stress of the material The SCC may occur (see also
このようなSCC感受性を低減するための対策として、過時効処理(T7処理)を付加的に実施する場合があるが、その背反として、ピーク時効条件よりも強度が低下するため、材料が持つべき本来の強度を発現できなくなる。 As a measure to reduce such SCC sensitivity, overaging treatment (T7 treatment) may be additionally performed, but as a contradiction, the strength is lower than the peak aging condition, so the material should have The original strength cannot be expressed.
また、当該自動車分野においては、更なる軽量化へのニーズに対応するために、6000系アルミニウム合金の範疇を超えて、例えば7000系アルミニウム合金(Al-Zn-Mg系合金)の適用なども検討されているが、7000系アルミニウム合金は6000系アルミニウム合金よりもSCCの感受性が増大することが知られており、腐食環境の厳しい自動車用足廻り部品への適用は限定されている。 In the automotive field, in order to meet the need for further weight reduction, the application of 7000 series aluminum alloys (Al-Zn-Mg series alloys), for example, beyond the scope of 6000 series aluminum alloys is also considered. However, 7000 series aluminum alloys are known to be more sensitive to SCC than 6000 series aluminum alloys, and their application to automotive undercarriage parts with severe corrosive environments is limited.
上記のような問題に対し、特許文献3では、鍛造サスペンション部材を機械加工して形成されるサスペンションアームにおいて、ボールジョイント部におけるパーティングライン(P/L)をボールジョイント部およびアーム部の側面で厚み方向における中央付近に配置することが開示されている。
With respect to the above problems, in
しかしながら、特許文献3に所載の従来技術では、製品としてのサスペンションアーム全体の鍛造方向とその製品に設けられたブッシュ圧入部としてのボールジョイント部に対するスタッドボルトの挿通方向とが略同じ方向に設定されており、例えば、前記した自動車用のステアリングナックルのように、製品自体が、その主要部分である(大部分を占める)製品本体部とブッシュ等が圧入される孔が設けられたブッシュ圧入部とで構成され、製品本体部の鍛造方向とブッシュ圧入部(に設けられた孔)に対する圧入方向とが異なる(平行でない)場合に、如何にして、P/Lをブッシュ圧入部の圧入方向と一致させないようにするかについては一切言及されていない。
However, in the prior art described in
本発明は、上記する問題に鑑みてなされたものであり、製品本体部とブッシュ圧入部と有し、製品本体部を鍛造成形する際の鍛造方向とブッシュ圧入部に対する圧入方向とが異なる(平行でない)アルミ鍛造部材を製造するに当たり、P/Lがブッシュ圧入部の圧入方向に対して傾斜するようにし、もって、耐応力腐食割れ性(耐SCC性)を向上させることのできるアルミ鍛造部材の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has a product main body portion and a bush press-fit portion, and a forging direction when forging the product main body portion and a press-fit direction with respect to the bush press-fit portion are different (parallel). In the production of aluminum forged members, P / L is inclined with respect to the press-fitting direction of the bush press-fitting part, so that the forged aluminum members can improve the stress corrosion cracking resistance (SCC resistance). An object is to provide a manufacturing method.
前記目的を達成すべく、本発明によるアルミ鍛造部材の製造方法は、アルミニウム合金からなる素材から、製品本体部とブッシュ圧入部とを備え、前記製品本体部を鍛造成形する際の鍛造方向と前記ブッシュ圧入部に設けられた孔に対する圧入方向とが平行でないアルミ鍛造部材を製造する製造方法であって、前記素材から前記アルミ鍛造部材のうちの前記製品本体部を閉塞鍛造する第1工程と、前記製品本体部が閉塞鍛造された中間材の向きを変えて、前記中間材のうちの前記ブッシュ圧入部に対応するブッシュ圧入部分に、前記ブッシュ圧入部の圧入方向と同じ方向に圧力を付加するバリ出し鍛造を施す第2工程と、バリ出し鍛造が施された前記ブッシュ圧入部分に、前記圧入方向に向けて孔を開設して、前記ブッシュ圧入部を形成する第3工程と、前記ブッシュ圧入部の前記孔にブッシュを圧入する第4工程と、を含む方法である。 In order to achieve the above object, a method for producing an aluminum forged member according to the present invention comprises a product body part and a bush press-fit part from a material made of an aluminum alloy, the forging direction when forging the product body part, and the A manufacturing method for manufacturing an aluminum forged member that is not parallel to a press-fitting direction with respect to a hole provided in a bush press-fitting portion, wherein the product main body portion of the aluminum forged member is closed and forged from the material, By changing the direction of the intermediate material in which the product main body is closed and forged, pressure is applied to the bush press-fit portion corresponding to the bush press-fit portion of the intermediate material in the same direction as the press-fit direction of the bush press-fit portion. A second step of performing deburring and forging, and a hole is formed in the bush press-fitted portion subjected to deburring and forging in the press-fitting direction to form the bush press-fitting portion. And third step, a fourth step of pressing the bush into the hole of the bush press-fitting portion, the method comprising.
本発明によれば、素材から製品本体部を閉塞鍛造した後に、製品本体部が閉塞鍛造された中間材の向きを変えて、ブッシュ圧入部を鍛造(バリ出し鍛造)成形する際の鍛造方向をブッシュ圧入部の圧入方向と揃えたので、ブッシュ圧入部におけるP/Lがブッシュ圧入部の圧入方向に対して傾斜するようになる。そのため、P/L部分で応力集中が発生しにくくなり、その結果、SCCの影響が小さくなり、耐SCC性を向上させることができる。 According to the present invention, after forging the product body portion from the material, the direction of the intermediate material in which the product body portion is closed forged is changed, and the forging direction when forging the bush press-fit portion (burring forging) is performed. Since it is aligned with the press-fitting direction of the bush press-fit portion, the P / L at the bush press-fit portion is inclined with respect to the press-fit direction of the bush press-fit portion. Therefore, stress concentration is less likely to occur in the P / L portion, and as a result, the influence of SCC is reduced and the SCC resistance can be improved.
以下、図面を参照して本発明のアルミ鍛造部材の製造方法の実施形態を説明する。 Hereinafter, an embodiment of a method for producing an aluminum forged member of the present invention will be described with reference to the drawings.
なお、以下では、主に、アルミ鍛造部材として、自動車用の足廻り部品の一種である、ブッシュやカラーが圧入される貫通孔が開設されたナックルアーム部(ブッシュ圧入部)を有するステアリングナックルを製造する方法について説明するが、製造対象のアルミ鍛造部材としては、主要部分である(大部分を占める)製品本体部とブッシュやカラーが圧入される孔(貫通していてもよいし、貫通していなくてもよい)が設けられたブッシュ圧入部とを備えていれば、前述のもの限定されないことは当然である。 In the following, a steering knuckle having a knuckle arm part (bush press-fitting part) with a through-hole into which a bush and a collar are press-fitted, which is a kind of undercarriage part for automobiles, is mainly used as an aluminum forging member. The method of manufacturing will be explained. As the aluminum forged member to be manufactured, the main part (occupying most) of the product main body and the hole into which the bush or collar is press-fitted (may be penetrated or penetrated) Of course, the above-mentioned thing is not limited as long as it is provided with a bush press-fitting portion provided with a (not necessarily required).
図1は、本発明のアルミ鍛造部材の製造方法の実施形態を説明したフロー図であり、図2は、本発明のアルミ鍛造部材の製造方法の実施形態を模式的に説明した説明図である。 FIG. 1 is a flowchart illustrating an embodiment of a method for manufacturing an aluminum forged member of the present invention, and FIG. 2 is an explanatory diagram schematically illustrating an embodiment of a method for manufacturing an aluminum forged member of the present invention. .
本発明のアルミ鍛造部材の製造方法は、例えば、Cu添加量が0.30%以上である6000系(Al-Si-Mg系合金)または7000系(Al-Zn-Mg系合金)の時効析出型アルミニウム合金であるアルミニウム合金から、主要部分である(大部分を占める)製品本体部とブッシュやカラーが圧入される貫通孔が開設されたナックルアーム部(ブッシュ圧入部)とを有するとともに、製品本体部を鍛造成形する際の鍛造方向とナックルアーム部(ブッシュ圧入部)に設けられた貫通孔に対する圧入方向とが平行でない(異なる)自動車用のステアリングナックルを製造する方法である。 The method for producing an aluminum forged member according to the present invention includes, for example, an aging precipitation type aluminum of 6000 series (Al-Si-Mg series alloy) or 7000 series (Al-Zn-Mg series alloy) having a Cu addition amount of 0.30% or more. From the aluminum alloy which is an alloy, it has a main part of the product (which occupies most) and a knuckle arm part (bush press-fitting part) in which a bush or collar is press-fitted, and a product main part This is a method of manufacturing a steering knuckle for an automobile in which the forging direction when forging the steel and the press-fitting direction with respect to the through hole provided in the knuckle arm part (bush press-fitting part) are not parallel (different).
前記アルミ鍛造部材(ステアリングナックル)の製造方法は、図1および図2で示すように、基本的に、素材形成工程S1と、均質化熱処理工程S2と、加熱工程S3と、潰し工程S4と、閉塞鍛造工程S5と、再加熱工程S6と、バリ出し鍛造工程S7と、トリミング工程S8と、溶体化処理工程S9と、焼入れ工程S10と、時効処理工程(最大強さを得る人工時効処理工程)S11と、孔加工工程S12と、圧入工程S13と、を含む。 As shown in FIG. 1 and FIG. 2, the manufacturing method of the aluminum forged member (steering knuckle) basically includes a material forming step S1, a homogenizing heat treatment step S2, a heating step S3, and a crushing step S4. Closed forging step S5, reheating step S6, deburring forging step S7, trimming step S8, solution treatment step S9, quenching step S10, aging treatment step (artificial aging treatment step for obtaining maximum strength) S11, hole drilling process S12, and press-fit process S13 are included.
なお、必要に応じて、前記した各工程に、表面処理工程、脱ガス工程などを含んでもよい。 In addition, as needed, you may include a surface treatment process, a degassing process, etc. in each above described process.
前記した各工程のうち、素材形成工程(溶解・鋳造あるいは押出し加工により、アルミニウム合金(時効析出型アルミニウム合金)からなる素材を形成する工程)S1、均質化熱処理工程(前記素材を均質化熱処理する工程)S2、加熱工程(前記均質化熱処理した素材を加熱(例えば、500度以上かつ溶融開始温度以下に加熱)する工程)S3、潰し工程(前記加熱された素材に対して所定の方向に圧力を付加して所定の形状(後工程の鍛造成形に適した形状)に成形する工程)S4、アルミ鍛造材料の必要な強度、靭性、および耐食性を得るために行われるT6工程である、溶体化処理工程S9、焼入れ工程S10、および時効処理工程S11については、従来知られた工程とほぼ同様であるため、以下では、それ以外の工程(S5〜S8、S12、S13)について詳述する。 Among the above-described steps, a material forming step (a step of forming a material made of an aluminum alloy (aged precipitation type aluminum alloy) by melting / casting or extruding) S1, a homogenization heat treatment step (homogenizing heat treatment of the material) Step) S2, heating step (step of heating the homogenized heat-treated material (for example, heating to 500 ° C. or higher and melting start temperature or lower)) S3, crushing step (pressure in a predetermined direction with respect to the heated material) To form a predetermined shape (shape suitable for forging in the subsequent process) S4, solution treatment, which is a T6 step performed to obtain the necessary strength, toughness, and corrosion resistance of the aluminum forging material Since the processing step S9, the quenching step S10, and the aging treatment step S11 are substantially the same as the conventionally known steps, the other steps (S5 to S8) are described below. S12, S13) will be described in detail.
(閉塞鍛造工程S5)
閉塞鍛造工程S5は、加熱工程S3で加熱され、かつ、潰し工程S4で所定の形状に成形された鍛造素材に熱間鍛造を施す工程である。この閉塞鍛造工程S5では、前記加熱工程S3で加熱された素材(特に、そのうちの製品本体部に対応する部分)を閉塞鍛造して、前記素材からアルミ鍛造部材のうちの製品本体部を鍛造成形する。
(Closed forging process S5)
The closed forging step S5 is a step of hot forging the forging material heated in the heating step S3 and formed into a predetermined shape in the crushing step S4. In the closed forging step S5, the material heated in the heating step S3 (particularly, the portion corresponding to the product main body portion) is closed forged, and the product main body portion of the aluminum forged member is forged from the raw material. To do.
(再加熱工程S6)
再加熱工程S6では、前記閉塞鍛造工程S5により製品本体部が鍛造成形された中間材を再加熱(例えば、500度以上かつ溶融開始温度以下に加熱)する。
(Reheating step S6)
In the reheating step S6, the intermediate material in which the product main body is forged by the closed forging step S5 is reheated (for example, heated to 500 ° C. or more and the melting start temperature or less).
(バリ出し鍛造工程S7)
バリ出し鍛造工程S7は、再加熱工程S6で加熱された中間材に熱間鍛造を施す工程である。このバリ出し鍛造工程S7では、前記再加熱工程S6で加熱された中間材の向きを変えて(ここでは、中間材(ワーク)を90度回転させて)、前記中間材のうちのブッシュ圧入部(ナックルアーム部)に対応するブッシュ圧入部分(ここでは、製品本体部以外の部分)に、前記ブッシュ圧入部の圧入方向と同じ方向に圧力を付加するバリ出し鍛造を施す。
(Burring forging process S7)
The deburring and forging step S7 is a step of hot forging the intermediate material heated in the reheating step S6. In the deburring and forging step S7, the direction of the intermediate material heated in the reheating step S6 is changed (here, the intermediate material (workpiece) is rotated 90 degrees), and the bush press-fitting portion of the intermediate material Deburring forging for applying pressure in the same direction as the press-fitting direction of the bush press-fitting portion is performed on the bush press-fitting portion (here, the portion other than the product main body portion) corresponding to the (knuckle arm portion).
(トリミング工程S8)
トリミング工程S8では、前記バリ出し鍛造を施した中間材におけるブッシュ圧入部分の鍛造バリのバリ取りを行い、その後、T6工程(溶体化処理工程S9、焼入れ工程S10、および時効処理工程S11)を施す。
(Trimming step S8)
In the trimming step S8, forging burrs are removed from the bush press-fitting portion of the intermediate material subjected to the deburring and forging, and then the T6 step (solution treatment step S9, quenching step S10, and aging treatment step S11) is performed. .
(孔加工工程S12)
孔加工工程S12では、前記T6工程(溶体化処理工程S9、焼入れ工程S10、および時効処理工程S11)が施された中間材のブッシュ圧入部分に、圧入方向に向けて孔(ここでは、貫通孔)を開設して、アルミ鍛造部材(ステアリングナックル)のうちのブッシュ圧入部(ナックルアーム部)を形成する。
(Drilling process S12)
In the hole machining step S12, a hole (here, a through hole) is formed in the bush press-fitted portion of the intermediate material that has been subjected to the T6 step (solution treatment step S9, quenching step S10, and aging treatment step S11). ) To form a bush press-fit portion (knuckle arm portion) of the aluminum forged member (steering knuckle).
(圧入工程S13)
圧入工程S13では、ブッシュ圧入部(ナックルアーム部)に形成された孔にブッシュ(やカラー)を圧入する。
(Press-fit process S13)
In the press-fitting step S13, a bush (or collar) is press-fitted into a hole formed in the bush press-fitting part (knuckle arm part).
上記する各工程を経ることにより、具体的には、素材から製品本体部を閉塞鍛造した後に、製品本体部が閉塞鍛造された中間材の向きを変えて、ブッシュ圧入部を鍛造(バリ出し鍛造)成形する際の鍛造方向をブッシュ圧入部の圧入方向と揃えることにより、ブッシュ圧入部におけるP/Lがブッシュ圧入部の圧入方向に対して傾斜するようになる(ここでは、直交するようになる)(図3も併せて参照)。そのため、P/L部分で応力集中が発生しにくくなり、その結果、SCCの影響が小さくなり、耐SCC性を向上させることができる。 By passing through the above-mentioned steps, specifically, after forging the product body from the material, the direction of the intermediate material for which the product body is closed and forged is changed, and the bush press-fitting part is forged (deburring forging ) By aligning the forging direction at the time of molding with the press-fitting direction of the bush press-fitting part, the P / L at the bush press-fitting part is inclined with respect to the press-fitting direction of the bush press-fitting part (here, it becomes orthogonal) (See also FIG. 3). Therefore, stress concentration is less likely to occur in the P / L portion, and as a result, the influence of SCC is reduced and the SCC resistance can be improved.
[試験体による耐応力腐食割れ性(耐SCC性)を測定した実験とその結果]
本発明者等は、組成および製法の異なる4つの試験体(実施例1、2、比較例1、2)を作製し、それぞれの試験体に対して耐SCC性測定を実施した。
[Experiment and results of measuring stress corrosion cracking resistance (SCC resistance) of specimen]
The present inventors made four test bodies (Examples 1 and 2 and Comparative Examples 1 and 2) having different compositions and production methods, and performed SCC resistance measurement on each test body.
<各試験体の化学成分組成>
以下の表1は、各試験体(実施例1、2、比較例1、2)の化学成分組成を示した一覧表である。ここで、実施例1および比較例1(材質A)は、AA6110合金に相当するものであり、実施例2および比較例2(材質B)は、A7075合金に相当するものである。
<Chemical component composition of each specimen>
Table 1 below is a list showing the chemical composition of each test specimen (Examples 1 and 2 and Comparative Examples 1 and 2). Here, Example 1 and Comparative Example 1 (material A) correspond to AA6110 alloy, and Example 2 and Comparative Example 2 (material B) correspond to A7075 alloy.
<各試験体の製造方法>
本発明者等は、表1で示す化学成分組成のアルミニウム合金を溶解・鋳造して鋳塊(鍛造素材)を形成し、その素材から、図1および図2に基づき説明した閉塞鍛造工程やバリ出し鍛造工程などを含む製造方法によってステアリングナックル(実施例1、実施例2)を作製した。また、本発明者等は、表1で示す化学成分組成のアルミニウム合金を溶解・鋳造して鋳塊(鍛造素材)を形成し、その素材から、従来の製造方法(具体的には、上記した本発明の製造方法のうち、再加熱工程、バリ出し鍛造工程、トリミング工程を省略し、閉塞鍛造工程にて製品本体部とともにブッシュ圧入部分を鍛造成形する方法)によってステアリングナックル(比較例1、比較例2)を作製した。
<Manufacturing method of each specimen>
The inventors have melted and cast an aluminum alloy having the chemical composition shown in Table 1 to form an ingot (forging material), and from the material, the closed forging process and the burrs described with reference to FIGS. Steering knuckles (Example 1 and Example 2) were manufactured by a manufacturing method including a forging step and the like. In addition, the present inventors melted and cast an aluminum alloy having the chemical composition shown in Table 1 to form an ingot (forging material), and from that material, a conventional manufacturing method (specifically, as described above) Among the manufacturing methods of the present invention, the steering knuckle (Comparative Example 1, comparison) is performed by omitting the reheating step, the deburring forging step, and the trimming step, and forging the bush press-fit portion together with the product main body in the closed forging step. Example 2) was prepared.
なお、以下の表2は、各試験体(実施例1、2、比較例1、2)のT6処理条件を示した一覧表である。 Table 2 below is a list showing the T6 treatment conditions for each specimen (Examples 1 and 2 and Comparative Examples 1 and 2).
<各試験体による引張試験とその結果>
本発明者等は、JIS Z2241の規定に準じて、各試験体に対して引張試験を実施し、各試験体の引張強度、0.2%耐力、伸びの測定を行った。
<Tensile test with each specimen and its result>
The present inventors conducted a tensile test on each specimen in accordance with the provisions of JIS Z2241, and measured the tensile strength, 0.2% proof stress, and elongation of each specimen.
その引張試験の結果、実施例1と比較例1の試験体はともに、引張強度が390MPa、0.2%耐力が370MPa、伸びが10%であり、実施例2と比較例2の試験体はともに、引張強度が560MPa、0.2%耐力が510MPa、伸びが10%であった。すなわち、実施例1と比較例1の試験体、実施例2と比較例2の試験体において、引張強度、0.2%耐力、伸びは同等であった。 As a result of the tensile test, the specimens of Example 1 and Comparative Example 1 both have a tensile strength of 390 MPa, a 0.2% proof stress of 370 MPa, and an elongation of 10%. The tensile strength was 560 MPa, the 0.2% proof stress was 510 MPa, and the elongation was 10%. That is, the tensile strength, 0.2% proof stress, and elongation were the same in the specimens of Example 1 and Comparative Example 1, and in the specimens of Example 2 and Comparative Example 2.
<各試験体による耐応力腐食割れ性(耐SCC性)の測定試験とその結果>
本発明者等は、各試験体(具体的には、T6工程後かつ孔加工工程前の各試験体)のステアリングナックルのナックルアーム部からC型の試験片(Cリング試験片)を切出し加工し、JIS H8711の規定に準じて、塩水交互浸漬法による応力腐食割れ試験を実施した。
<Measurement test of stress corrosion cracking resistance (SCC resistance) by each specimen and results>
The present inventors cut out a C-shaped test piece (C-ring test piece) from the knuckle arm portion of the steering knuckle of each specimen (specifically, each specimen after the T6 step and before the drilling step). Then, in accordance with JIS H8711, a stress corrosion cracking test using a salt water alternate dipping method was performed.
以下の表3は、各試験体の耐SCC性の測定結果を示した一覧表である。表3においては、各負荷応力に対して60日間評価を実施した際に、割れ(応力腐食割れ:SCC)が発生しなかった場合をOK(○)、割れが発生した場合をNG(×)で示している。 Table 3 below is a list showing the measurement results of the SCC resistance of each specimen. In Table 3, when a 60 day evaluation was performed for each load stress, the case where no crack (stress corrosion cracking: SCC) occurred was OK (○), and the case where a crack occurred was NG (×). Is shown.
その応力腐食割れ試験の結果、比較例1の試験体では、鍛造フローが最悪方向となるため(図3(B)参照)、200MPa以上の応力負荷でSCCが発生した。一方で、実施例1の試験体では、鍛造フローがSCC感受性の低い方向となり(図3(A)参照)、340MPa(耐力の約90%に相当)でもSCCは発生しなかった。 As a result of the stress corrosion cracking test, in the specimen of Comparative Example 1, the forging flow was in the worst direction (see FIG. 3B), so SCC was generated at a stress load of 200 MPa or more. On the other hand, in the test body of Example 1, the forging flow was in the direction of low SCC sensitivity (see FIG. 3A), and SCC did not occur even at 340 MPa (corresponding to about 90% of the proof stress).
また、比較例2の試験体では、負荷応力に関わらず、SCCが発生した。一方、実施例2の試験体では、220MPa以下の負荷応力ではSCCが発生しなかった。なお、実施例2の試験体においても、肉厚や形状を最適化し、部品への入力を下げることで、SCCの発生を更に抑制できるとともに、更にSCC感受性の高い材料についても適用可能であると考えられる。 Moreover, in the test body of Comparative Example 2, SCC occurred regardless of the load stress. On the other hand, in the test body of Example 2, no SCC occurred at a load stress of 220 MPa or less. In the test body of Example 2, the occurrence of SCC can be further suppressed by optimizing the thickness and shape and lowering the input to the parts, and can also be applied to materials with higher SCC sensitivity. Conceivable.
この実験結果より、素材から製品本体部を閉塞鍛造した後に、製品本体部が閉塞鍛造された中間材の向きを変えて、ブッシュ圧入部を鍛造(バリ出し鍛造)成形する際の鍛造方向をブッシュ圧入部の圧入方向と揃えることにより、引張強度などを維持しながら、耐SCC性を向上できることが実証された。 From this experimental result, after forging the product main body part from the material, change the direction of the intermediate material for which the product main body part is closed forged, and change the forging direction when forging the bush press-fitting part (deburring forging). It was demonstrated that the SCC resistance can be improved while maintaining the tensile strength by aligning with the press-fitting direction of the press-fitting part.
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
S1…素材形成工程、S2…均質化熱処理工程、S3…加熱工程、S4…潰し工程、S5…閉塞鍛造工程、S6…再加熱工程、S7…バリ出し鍛造工程、S8…トリミング工程、S9…溶体化処理工程、S10…焼入れ工程、S11…時効処理工程、S12…孔加工工程、S13…圧入工程 S1 ... Raw material forming step, S2 ... Homogenizing heat treatment step, S3 ... Heating step, S4 ... Crushing step, S5 ... Closure forging step, S6 ... Reheating step, S7 ... Deburring forging step, S8 ... Trimming step, S9 ... Solution , Treatment process, S10 ... quenching process, S11 ... aging treatment process, S12 ... hole drilling process, S13 ... press-fitting process
Claims (1)
前記素材から前記アルミ鍛造部材のうちの前記製品本体部を閉塞鍛造する第1工程と、
前記製品本体部が閉塞鍛造された中間材の向きを変えて、前記中間材のうちの前記ブッシュ圧入部に対応するブッシュ圧入部分に、前記ブッシュ圧入部の圧入方向と同じ方向に圧力を付加するバリ出し鍛造を施す第2工程と、
バリ出し鍛造が施された前記ブッシュ圧入部分に、前記圧入方向に向けて孔を開設して、前記ブッシュ圧入部を形成する第3工程と、
前記ブッシュ圧入部の前記孔にブッシュを圧入する第4工程と、を含む、アルミ鍛造部材の製造方法。
An aluminum forging member comprising a material body made of an aluminum alloy and having a product body portion and a bush press-fit portion, wherein the forging direction when forging the product body portion and the press-fit direction with respect to the holes provided in the bush press-fit portion are not parallel A manufacturing method for manufacturing
A first step of closing and forging the product body portion of the aluminum forging member from the material;
By changing the direction of the intermediate material in which the product main body is closed and forged, pressure is applied to the bush press-fit portion corresponding to the bush press-fit portion of the intermediate material in the same direction as the press-fit direction of the bush press-fit portion. A second step of performing deburring and forging;
A third step of forming a bush press-fitting portion by opening a hole in the press-fitting direction in the bush press-fitting portion subjected to deburring forging;
And a fourth step of press-fitting a bush into the hole of the bush press-fitting part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016023541A JP2017140632A (en) | 2016-02-10 | 2016-02-10 | Manufacturing method of aluminum forging member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016023541A JP2017140632A (en) | 2016-02-10 | 2016-02-10 | Manufacturing method of aluminum forging member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017140632A true JP2017140632A (en) | 2017-08-17 |
Family
ID=59628814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016023541A Pending JP2017140632A (en) | 2016-02-10 | 2016-02-10 | Manufacturing method of aluminum forging member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017140632A (en) |
-
2016
- 2016-02-10 JP JP2016023541A patent/JP2017140632A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6090725B2 (en) | Method for manufacturing plastic processed product made of aluminum alloy | |
RU2413025C2 (en) | Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product | |
KR101911037B1 (en) | ALMG-strip capable of high strength and easy molding and its manufacturing method | |
CA2637273C (en) | Aluminum alloy forging member and method for producing the same | |
US9194029B2 (en) | Process for producing cast aluminum alloy member | |
KR101511544B1 (en) | A method for manufacturing forged product using hot forging aluminum alloy | |
JP4801386B2 (en) | Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system | |
US20140099230A1 (en) | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product | |
CN107708917B (en) | Method for laser welding a one-piece semi-finished product made of an aluminum alloy without filler wire, and corresponding structural component and joint blank | |
JP2008517152A (en) | Aluminum alloy brazing sheet and method for manufacturing lightweight brazed heat exchanger assembly | |
CN102844456B (en) | Process for production of forged aluminum alloy member | |
JP5419820B2 (en) | Rolled steel bar or wire rod for hot forging | |
CN107709590A (en) | The metallic plate for motor vehicle body with high mechanical properties | |
JP3726087B2 (en) | Aluminum alloy forged material for transport machine structural material and method for producing the same | |
JP5275321B2 (en) | Manufacturing method of plastic products made of aluminum alloy | |
JP2006274415A (en) | Aluminum alloy forging for high strength structural member | |
JP2010513713A (en) | Ball pins and ball bushes made of rust-proof steel | |
JP5532462B2 (en) | Manufacturing method of plastic products made of aluminum alloy | |
JPH09268342A (en) | High strength aluminum alloy | |
JP2017140632A (en) | Manufacturing method of aluminum forging member | |
US20080305354A1 (en) | Filler Composition for Welding onto a Substrate | |
US20210079501A1 (en) | Low cost high ductility cast aluminum alloy | |
JPH06330264A (en) | Production of aluminum alloy forged material excellent in strength and toughness | |
JPH0673482A (en) | Aluminum alloy member and its production | |
JP2020509180A (en) | Precipitation strengthened metal alloy article with uniform strength |