JP2017139128A - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP2017139128A
JP2017139128A JP2016019096A JP2016019096A JP2017139128A JP 2017139128 A JP2017139128 A JP 2017139128A JP 2016019096 A JP2016019096 A JP 2016019096A JP 2016019096 A JP2016019096 A JP 2016019096A JP 2017139128 A JP2017139128 A JP 2017139128A
Authority
JP
Japan
Prior art keywords
lithium ion
positive electrode
active material
ion battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016019096A
Other languages
Japanese (ja)
Other versions
JP7037873B2 (en
Inventor
友哉 田村
Tomoya Tamura
友哉 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016019096A priority Critical patent/JP7037873B2/en
Publication of JP2017139128A publication Critical patent/JP2017139128A/en
Application granted granted Critical
Publication of JP7037873B2 publication Critical patent/JP7037873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a surface-modified positive electrode active material for a lithium ion battery, which achieves satisfactory high-rate cycle characteristics.SOLUTION: A positive electrode active material for a lithium ion battery comprises: primary particles of a substance expressed by the composition formula, LiNiCoMnMO(where 1.0≤a≤1.06, 0.5≤b≤0.9, 0.1≤c≤0.3, 0.1≤d≤0.3, 0≤e≤0.005, and M represents at least one element selected from a group consisting of Mg and Al); and ZrWOdeposited on the surface of the primary particles. In the positive electrode active material, Zr/(Ni+Co+Mn+M) is 0.001-0.005 and W/(Ni+Co+Mn+M) is 0.002-0.01 in a molar ratio.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

リチウムイオン電池用正極活物質に用いられる技術の一つに、表面修飾がある。これは、次の3つの技術(a)、(b)及び(c)が主体となっている。まず、(a)活物質の表面で電解液が分解する副反応をなるべく抑制する技術がある。かつてはAl23やZrO2などの単独元素の酸化物が修飾物質の主体となっていたが、これで活物質表面を全部修飾してしまうとLiイオンの挿入脱離ができなくなってしまうため、現在は部分的に表面を修飾したり、Liイオン伝導体や活物質で表面修飾する技術が主体となっている。 One of the techniques used for the positive electrode active material for lithium ion batteries is surface modification. This is mainly based on the following three technologies (a), (b) and (c). First, there is (a) a technique for suppressing as much as possible a side reaction in which an electrolytic solution decomposes on the surface of an active material. In the past, oxides of single elements such as Al 2 O 3 and ZrO 2 were mainly used as modifying substances. However, if the surface of the active material is completely modified, Li ions cannot be inserted or desorbed. For this reason, at present, the technique mainly modifies the surface partially or modifies the surface with a Li ion conductor or an active material.

次に、(b)電解液中のフッ化水素不純物により活物質から遷移金属(特にMn)が溶出することを防止する技術がある。この場合も上記(a)と同様に活物質表面を全部修飾することはできないため、現在はNi系活物質とのブレンドにより電解液中のフッ化水素不純物を反応させてMn溶出を抑制する技術が主体となっている。Mnが特に溶出抑制対象となっている理由として、負極の炭素と反応しやすいことが挙げられ、正極がMn系活物質でかつ負極が黒鉛系活物質の電池で充放電を繰り返した場合、電池の設計によっては10サイクルで初期の10分の1の放電容量となってしまう。   Next, there is (b) a technique for preventing transition metal (especially Mn) from being eluted from the active material by hydrogen fluoride impurities in the electrolytic solution. In this case as well, the entire surface of the active material cannot be modified in the same manner as in the above (a), and at present, a technique for suppressing Mn elution by reacting hydrogen fluoride impurities in the electrolytic solution by blending with a Ni-based active material. Is the subject. The reason why Mn is particularly targeted for elution suppression is that it easily reacts with carbon of the negative electrode, and when the positive electrode is a Mn-based active material and the negative electrode is a graphite-based active material, charging and discharging are repeated. Depending on the design, the discharge capacity becomes 1/10 of the initial one in 10 cycles.

次に、(c)電子伝導性の低い活物質へ、電子伝導性の高い物質を被覆する技術がある。この技術に関しては、リン酸塩系やケイ酸塩系、リチウムチタン系の活物質などに炭素材料を被覆する技術として確立しており、製造も容易であることから工具用などの電池に実用化されている。上記(a)、(b)及び(c)の技術を考えた場合に、表面修飾技術にはリチウムイオン伝導を阻害せず、かつ電解液分解も抑制した上で、さらに電池特性を向上する機能が求められていると言える。   Next, there is (c) a technique of coating a material having high electron conductivity on an active material having low electron conductivity. This technology has been established as a technology for coating carbon materials on phosphate-based, silicate-based, and lithium-titanium-based active materials, and is easy to manufacture. Has been. When considering the technologies (a), (b) and (c) above, the surface modification technology does not inhibit lithium ion conduction, and further suppresses electrolyte decomposition, and further improves battery characteristics. It can be said that is demanded.

特開2013−152866号公報JP2013-152866A WO2012/117852WO2012 / 117852

最近の傾向として、特許文献1に見られるように、車などの高出力用途向けのリチウムイオン電池に搭載される正極活物質は、活物質の上にタングステン酸リチウムなどを被覆し、しかもそれを全面に覆うのではなく、部分的に覆うことによって、よりリチウムイオンの挿入脱離をスムーズにし、以って該電池から大電流を取り出すことができるようになっている。この仕組みは明らかではないが、表面のタングステン酸リチウムなどがLi挿入脱離または電解液との間のSEI形成について、何らかの触媒的な役割を果たしているのではないかと推測される。   As seen in Patent Document 1, as a recent trend, a positive electrode active material mounted on a lithium ion battery for high-power applications such as a car is coated with lithium tungstate and the like on the active material, By covering the entire surface rather than covering the entire surface, lithium ions can be more smoothly inserted and desorbed, so that a large current can be extracted from the battery. Although this mechanism is not clear, it is presumed that the surface lithium tungstate or the like may play some catalytic role for Li insertion / extraction or SEI formation with the electrolyte.

しかしながら、この技術には、1C以上の高レートでのサイクル特性が悪化するという問題点があった。すなわち、電流が多く流れると、電荷移動抵抗に流れた電流によってジュール熱が発生し、電極近傍の温度が高くなる。この時、タングステン酸リチウムなどとリチウムニッケルコバルトマンガン複合酸化物との格子定数は異なるため被覆物が剥がれやすくなり、またタングステン酸リチウムなどは温度上昇によって膨張するので、せっかく離れていた互いの被覆物がぶつかり合い、さらに被覆物を剥がしてしまってタングステン酸リチウムなどの高出力性を落としてしまっていたものと推定される。   However, this technique has a problem that cycle characteristics at a high rate of 1C or more deteriorate. That is, when a large amount of current flows, Joule heat is generated by the current flowing through the charge transfer resistance, and the temperature near the electrode increases. At this time, since the lattice constants of lithium tungstate, etc. and lithium nickel cobalt manganese composite oxide are different, the coating is easily peeled off. Also, lithium tungstate, etc. expands due to temperature rise, so the coatings that were separated from each other have been separated. It is presumed that the high output performance such as lithium tungstate was reduced due to the collision and peeling off the coating.

これを防ぐ方法として、特許文献2にあるように、電解液に添加剤を投入することで高レートでのサイクル特性を保持させる方法があるが、被覆物の剥がれやすさは変わらず、また剥がれたタングステン酸リチウムなどと添加剤とが副反応を起こして添加剤が消費されてしまい、添加剤投入の効果がなくなってしまうことがあった。   As a method for preventing this, as disclosed in Patent Document 2, there is a method of maintaining cycle characteristics at a high rate by adding an additive to the electrolytic solution, but the ease of peeling of the coating does not change, and the peeling does not occur. In some cases, the lithium tungstate and the additive and the additive cause a side reaction and the additive is consumed, and the effect of adding the additive is lost.

そこで、本発明は、高レートでのサイクル特性が良好である表面修飾されたリチウムイオン電池用正極活物質を提供することを課題とする。   Therefore, an object of the present invention is to provide a surface-modified positive electrode active material for a lithium ion battery having good cycle characteristics at a high rate.

本発明者は、このような問題を解決するため種々の検討を行った結果、負の熱膨張係数を持つZrW28を、Ni組成がモル比で0.5以上であるNi・Co・Mnの三元系Li複合酸化物である正極活物質粒子表面に被覆させることで、通常の高価数金属の被覆効果として得られる熱安定性及びサイクル特性が改善されることに加え、被覆物が剥がれ難くなる効果で高レートでもサイクル特性が改善されることを見出した。 As a result of various studies to solve such problems, the present inventor has found that ZrW 2 O 8 having a negative thermal expansion coefficient is Ni · Co · with a Ni composition having a molar ratio of 0.5 or more. By coating the surface of the positive electrode active material particles, which are Mn ternary Li composite oxides, in addition to improving the thermal stability and cycle characteristics obtained as a coating effect of ordinary expensive metal, the coating It has been found that the cycle characteristics are improved even at a high rate due to the effect of being difficult to peel off.

上記知見を基礎にして完成した本発明は一側面において、組成式:LiaNibCocMnde2
(前記式において、1.0≦a≦1.06、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、MはMg、Alからなる群から選ばれる少なくとも1種である。)
で表される1次粒子の表面にZrW28が付着しており、Zr/(Ni+Co+Mn+M)がモル比で0.001〜0.005、W/(Ni+Co+Mn+M)がモル比で0.002〜0.01であるリチウムイオン電池用正極活物質である。
In one aspect, the present invention completed based on the above knowledge has a composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.06, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, M is at least one selected from the group consisting of Mg and Al.)
ZrW 2 O 8 is attached to the surface of the primary particles represented by the formula: Zr / (Ni + Co + Mn + M) is 0.001 to 0.005 in molar ratio, and W / (Ni + Co + Mn + M) is 0.002 in molar ratio. It is a positive electrode active material for lithium ion batteries which is 0.01.

本発明のリチウムイオン電池用正極活物質は一実施形態において、XRDの回折パターンにおいて、層状酸化物LiaNibCocMnde2由来の2θ=18.5±1°に存在する(003)面のピーク強度Iaと、立方晶であるZrW28由来の2θ=22.0±1°に存在する(210)面のピーク強度及び2θ=24.0±1°に存在する(211)面のピーク強度の合計Ibとの比Ib/Iaが、0.0001〜0.001である。 In one embodiment, the positive electrode active material for a lithium ion battery of the present invention is present at 2θ = 18.5 ± 1 ° derived from the layered oxide Li a Ni b Co c Mn d Me O 2 in the XRD diffraction pattern. The peak intensity Ia of the (003) plane and the peak intensity of the (210) plane present at 2θ = 22.0 ± 1 ° derived from cubic ZrW 2 O 8 and exist at 2θ = 24.0 ± 1 °. The ratio Ib / Ia of the peak intensity of the (211) plane to the total Ib is 0.0001 to 0.001.

本発明は別の一側面において、本発明のリチウムイオン電池用正極活物質を有するリチウムイオン電池用正極である。   In another aspect, the present invention is a lithium ion battery positive electrode having the lithium ion battery positive electrode active material of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を有するリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery having the positive electrode for a lithium ion battery of the present invention.

本発明によれば、高レートでのサイクル特性が良好である表面修飾されたリチウムイオン電池用正極活物質を提供することができる。   According to the present invention, it is possible to provide a surface-modified positive electrode active material for a lithium ion battery having good cycle characteristics at a high rate.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質は、組成式:LiaNibCocMnde2
(前記式において、1.0≦a≦1.06、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、MはMg、Alからなる群から選ばれる少なくとも1種である。)
で表される1次粒子の表面にZrW28が付着しており、Zr/(Ni+Co+Mn+M)がモル比で0.001〜0.005、W/(Ni+Co+Mn+M)がモル比で0.002〜0.01に制御されている。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery according to the present invention has a composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.06, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, M is at least one selected from the group consisting of Mg and Al.)
ZrW 2 O 8 is attached to the surface of the primary particles represented by the formula: Zr / (Ni + Co + Mn + M) is 0.001 to 0.005 in molar ratio, and W / (Ni + Co + Mn + M) is 0.002 in molar ratio. It is controlled to 0.01.

本発明のリチウムイオン電池用正極活物質は、リチウムの比率が1.0〜1.06であるが、これは、1.0未満では、安定した結晶構造を保持し難く、1.06超では電池の高容量が確保できなくなるおそれがあるためである。また、ニッケルの組成が0.5〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、出力、安全性の三つがバランスよく向上する。リチウムイオン電池用正極活物質におけるニッケルの組成は好ましくは0.7〜0.9、より好ましくは0.8〜0.9である。   The positive electrode active material for a lithium ion battery according to the present invention has a lithium ratio of 1.0 to 1.06. However, when the ratio is less than 1.0, it is difficult to maintain a stable crystal structure. This is because the high capacity of the battery may not be ensured. Moreover, since the composition of nickel is 0.5 to 0.9, three of the capacity, output, and safety of the lithium ion battery using the positive electrode active material for lithium ion battery are improved in a well-balanced manner. The composition of nickel in the positive electrode active material for lithium ion batteries is preferably 0.7 to 0.9, more preferably 0.8 to 0.9.

本発明のリチウムイオン電池用正極活物質は、負の熱膨張係数を持つZrW28を、Ni組成がモル比で0.5以上であるNi・Co・Mnの三元系Li複合酸化物である正極活物質粒子表面に被覆させている。ZrW28は、負の熱膨張係数を持つため、温度が上がると収縮する。従って、温度が上がる際、活物質(一次粒子)自体は膨張を起すが、活物質粒子表面に付着しているZrW28は収縮するため、逆にZrW28の活物質粒子への接着力が高まる効果が得られる。このため、ZrW28が活物質粒子表面から剥がれ難くなり、1C以上の高レートでのサイクル特性が向上する。 The positive electrode active material for a lithium ion battery according to the present invention includes a ZrW 2 O 8 having a negative coefficient of thermal expansion, a Ni / Co / Mn ternary Li composite oxide having a Ni composition of 0.5 or more in molar ratio. The positive electrode active material particles are coated on the surface. Since ZrW 2 O 8 has a negative coefficient of thermal expansion, it shrinks as the temperature rises. Therefore, when the temperature increases, but the active material (primary particles) itself causes expansion, for ZrW 2 O 8 attached to the active material particle surface is contracted, contrary to the active material particles ZrW 2 O 8 The effect of increasing the adhesive strength is obtained. For this reason, ZrW 2 O 8 is hardly peeled off from the surface of the active material particles, and the cycle characteristics at a high rate of 1C or more are improved.

また、本発明のリチウムイオン電池用正極活物質は、負の熱膨張係数を持つZrW28を、Ni組成がモル比で0.5以上であるNi・Co・Mnの三元系Li複合酸化物である正極活物質粒子表面に被覆させていることで、通常の高価数金属の被覆効果として得られる(表面修飾による)熱安定性及びサイクル特性の改善効果が得られる。 In addition, the positive electrode active material for a lithium ion battery according to the present invention includes ZrW 2 O 8 having a negative thermal expansion coefficient and a Ni / Co / Mn ternary Li composite having a Ni composition having a molar ratio of 0.5 or more. By covering the surfaces of the positive electrode active material particles, which are oxides, the effect of improving the thermal stability (by surface modification) and the cycle characteristics obtained as a coating effect of ordinary expensive metal is obtained.

また、本発明のリチウムイオン電池用正極活物質は、粒子全体として、Zr/(Ni+Co+Mn+M)がモル比で0.001〜0.005、W/(Ni+Co+Mn+M)がモル比で0.002〜0.01に制御されている。Zr/(Ni+Co+Mn+M)がモル比で0.001未満である、或いは、W/(Ni+Co+Mn+M)がモル比で0.002未満であると、表面修飾による熱安定性及びサイクル特性の改善効果が得られない。また、Zr/(Ni+Co+Mn+M)がモル比で0.005を超える、或いは、W/(Ni+Co+Mn+M)がモル比で0.01を超えると、電池の容量低下を招くという問題が生じる。Zr/(Ni+Co+Mn+M)は、モル比で0.001〜0.005、W/(Ni+Co+Mn+M)がモル比で0.002〜0.01に制御されているのが好ましく、Zr/(Ni+Co+Mn+M)は、モル比で0.003〜0.004、W/(Ni+Co+Mn+M)がモル比で0.006〜0.008に制御されているのがより好ましい。   Moreover, the positive electrode active material for a lithium ion battery of the present invention has a Zr / (Ni + Co + Mn + M) molar ratio of 0.001 to 0.005 and a W / (Ni + Co + Mn + M) molar ratio of 0.002 to 0.00. It is controlled to 01. When Zr / (Ni + Co + Mn + M) is less than 0.001 in molar ratio or W / (Ni + Co + Mn + M) is less than 0.002 in molar ratio, the effect of improving the thermal stability and cycle characteristics by surface modification can be obtained. Absent. Further, if Zr / (Ni + Co + Mn + M) exceeds 0.005 in molar ratio or W / (Ni + Co + Mn + M) exceeds 0.01 in molar ratio, there arises a problem that the capacity of the battery is reduced. Zr / (Ni + Co + Mn + M) is preferably controlled in a molar ratio of 0.001 to 0.005 and W / (Ni + Co + Mn + M) in a molar ratio of 0.002 to 0.01. Zr / (Ni + Co + Mn + M) is More preferably, the molar ratio is controlled to 0.003 to 0.004 and W / (Ni + Co + Mn + M) is controlled to 0.006 to 0.008 by molar ratio.

また、本発明のリチウムイオン電池用正極活物質は、XRDの回折パターンにおいて、層状酸化物LiaNibCocMnde2由来の2θ=18.5±1°に存在する(003)面のピーク強度Iaと、立方晶であるZrW28由来の2θ=22.0±1°に存在する(210)面のピーク強度及び2θ=24.0±1°に存在する(211)面のピーク強度の合計Ibとの比Ib/Iaが、0.0001〜0.001であるのが好ましい。当該比Ib/Iaが0.0001未満であると、表面修飾による熱安定性及びサイクル特性の改善効果が得られないおそれがある。また、当該比Ib/Iaが0.001を超えると、電池の容量低下を招くという問題が生じるおそれがある。当該比Ib/Iaは、0.0001〜0.001であるのがより好ましく、0.0004〜0.0008であるのが更により好ましい。 Further, the positive electrode active material for a lithium ion battery of the present invention is present at 2θ = 18.5 ± 1 ° derived from the layered oxide Li a Ni b Co c Mn d Me O 2 in the XRD diffraction pattern (003 ) Plane peak intensity Ia, and (210) plane peak intensity derived from cubic ZrW 2 O 8 derived from ZrW 2 O 8 and 2θ = 24.0 ± 1 ° (211 ) The ratio Ib / Ia to the total peak intensity Ib is preferably 0.0001 to 0.001. If the ratio Ib / Ia is less than 0.0001, the effect of improving the thermal stability and cycle characteristics by surface modification may not be obtained. Further, when the ratio Ib / Ia exceeds 0.001, there is a possibility that a problem that the capacity of the battery is reduced may occur. The ratio Ib / Ia is more preferably 0.0001 to 0.001, and still more preferably 0.0004 to 0.0008.

(リチウムイオン電池用正極及びそれを有するリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery having the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.

本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法としては、まず、Ni組成がモル比で0.5以上であるNi・Co・Mnの三元系複合水酸化物、又は、Ni・Co・Mnと、Mg又はAlとの四元系複合水酸化物の前駆体を準備する。次に、当該複合水酸化物に、ZrW28、及び、Li源(炭酸Li、水酸化Li等)を、各原料の混合割合を調整してヘンシェルミキサー等で乾式混合した後、720℃〜950℃の温度で12〜24時間焼成することで、焼成体(正極活物質)を得る。 As a method for producing a positive electrode active material for a lithium ion battery according to an embodiment of the present invention, first, a Ni / Co / Mn ternary composite hydroxide whose Ni composition is 0.5 or more in molar ratio, or A quaternary composite hydroxide precursor of Ni, Co, Mn and Mg or Al is prepared. Next, ZrW 2 O 8 and Li source (Li carbonate, Li hydroxide, etc.) are dry-mixed to the composite hydroxide with a Henschel mixer after adjusting the mixing ratio of each raw material, and then 720 ° C. A fired body (positive electrode active material) is obtained by firing at a temperature of ˜950 ° C. for 12 to 24 hours.

また、本発明の別の実施形態に係るリチウムイオン電池用正極活物質の製造方法としては、まず、Ni組成がモル比で0.5以上であるNi・Co・Mnの三元系複合水酸化物の前駆体(メジアン径3〜20μm)を準備する。次に、当該Ni・Co・Mnの三元系複合酸化物に、メジアン径が1〜2μmであるZrW28、及び、Li源(炭酸Li、水酸化Li等)、さらに必要であればMg源(炭酸Mg、水酸化Mg等)やAl源(炭酸Al、水酸化Al等)を、各原料の混合割合を調整して湿式で混合後、マイクロミストドライヤー(MMD)で噴霧乾燥を行い、得られた乾燥粉を700℃〜950℃の範囲で12〜24時間焼成することで、焼成体(正極活物質)を得る。
その後、必要であれば、焼成体を例えばパルベライザー等を用いて解砕することにより正極活物質の粉体を得る。
In addition, as a method for producing a positive electrode active material for a lithium ion battery according to another embodiment of the present invention, first, a Ni / Co / Mn ternary composite hydroxide having a molar ratio of Ni of 0.5 or more is used. The precursor of a thing (median diameter 3-20 micrometers) is prepared. Next, to the Ni / Co / Mn ternary composite oxide, ZrW 2 O 8 having a median diameter of 1 to 2 μm, a Li source (such as Li carbonate, Li hydroxide), and further if necessary After mixing Mg source (Mg carbonate, Mg hydroxide, etc.) and Al source (Al carbonate, Al hydroxide, etc.) by adjusting the mixing ratio of each raw material in a wet manner, spray drying with a micro mist dryer (MMD) The fired body (positive electrode active material) is obtained by firing the obtained dry powder in the range of 700 ° C. to 950 ° C. for 12 to 24 hours.
Thereafter, if necessary, the fired body is pulverized using, for example, a pulverizer to obtain a positive electrode active material powder.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

Ni組成がモル比で0.5以上である、所定の組成を有するNi・Co・Mnの三元系複合水酸化物、又は、Ni・Co・Mnと、Mg又はAlとの四元系複合水酸化物の前駆体(メジアン径3〜20μm)を準備した。次に、当該複合水酸化物に、メジアン径が1〜2μmであるZrW28、及び、Li源(炭酸Li、水酸化Li等)、さらにいくつかの実施例については、Mg源(炭酸Mg、水酸化Mg等)やAl源(炭酸Al、水酸化Al等)を、各原料の混合割合を調整してヘンシェルミキサーで乾式混合した後、表1に記載の焼成温度で12〜24時間焼成することで、焼成体である、1次粒子の表面にZrW28が付着している正極活物質を得た。 Ni / Co / Mn ternary composite hydroxide having a predetermined composition with a Ni composition of 0.5 or more in molar ratio, or quaternary composite of Ni / Co / Mn and Mg or Al A hydroxide precursor (median diameter 3 to 20 μm) was prepared. Next, in the composite hydroxide, ZrW 2 O 8 having a median diameter of 1 to 2 μm and a Li source (Li carbonate, Li hydroxide, etc.), and for some examples, an Mg source (carbonate Mg, Mg hydroxide, etc.) and Al sources (Al carbonate, Al hydroxide, etc.) are mixed by dry mixing with a Henschel mixer after adjusting the mixing ratio of each raw material, and then at the firing temperature shown in Table 1 for 12 to 24 hours. By firing, a positive electrode active material in which ZrW 2 O 8 was adhered to the surface of primary particles as a fired body was obtained.

(評価)
こうしてできた各実施例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
−正極活物質組成の評価−
各正極活物質中の金属含有量を、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定し、いずれも組成式において「O2」であることを確認した。また、当該ICP−OESによる測定により、正極活物質中のZr及びWのモル比、すなわち、Zr/(Ni+Co+Mn+M)、及び、W/(Ni+Co+Mn+M)を評価した。
(Evaluation)
Each evaluation was implemented on the following conditions using the sample of each Example and comparative example which were made in this way.
-Evaluation of positive electrode active material composition-
The metal content in each positive electrode active material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. Further, the oxygen content was measured by the LECO method, and it was confirmed that all were “O 2 ” in the composition formula. Moreover, the molar ratio of Zr and W in the positive electrode active material, that is, Zr / (Ni + Co + Mn + M) and W / (Ni + Co + Mn + M) were evaluated by the measurement by ICP-OES.

−ピーク強度の比Ib/Ia−
以下の測定条件によって、XRDによって、層状酸化物LiaNibCocMnde2由来の2θ=18.5±1°に存在する(003)面のピーク強度Iaと、立方晶であるZrW28由来の2θ=22.0±1°に存在する(210)面のピーク強度及び2θ=24.0±1°に存在する(211)面のピーク強度の合計Ibとの比Ib/Iaを評価した。
・XRD回折装置:SmartLab(株式会社リガク製)
・線源:CuK(λ=1.5406Å)
・ガラス製のサンプルホルダ(2cm×1.5cm、深さ0.3mm)に試料(正極活物質)を塗る
・検出器:D/tex
・測定範囲:2θ=10°〜80°
・スキャン軸:2θ/θ、スキャン速度:1degree min-1
・ステップ幅:0.01degree
・スリット幅:IS(DS)1/4°、RS1 10mm、RS2 10mm
-Peak intensity ratio Ib / Ia-
Under the following measurement conditions, the peak intensity Ia of the (003) plane present at 2θ = 18.5 ± 1 ° derived from the layered oxide Li a Ni b Co c Mn d Me O 2 by XRD, and cubic The ratio of the peak intensity of the (210) plane existing at 2θ = 22.0 ± 1 ° and the peak intensity of the (211) plane existing at 2θ = 24.0 ± 1 ° from a certain ZrW 2 O 8 to the total Ib Ib / Ia was evaluated.
XRD diffractometer: SmartLab (manufactured by Rigaku Corporation)
-Radiation source: CuK (λ = 1.5406mm)
-Apply a sample (positive electrode active material) to a glass sample holder (2 cm x 1.5 cm, depth 0.3 mm)-Detector: D / tex
Measurement range: 2θ = 10 ° -80 °
Scan axis: 2θ / θ, scan speed: 1 degree min -1
-Step width: 0.01 degree
・ Slit width: IS (DS) 1/4 °, RS1 10 mm, RS2 10 mm

−電池特性の評価−
正極活物質と、導電材と、バインダーを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、放電レート0.1Cで得られた初期容量(25℃、充電上限電圧:4.3V、放電下限電圧:3.0V)、充放電レート1Cでの20サイクル後の高温サイクル特性、充放電レート3Cでの20サイクル後の45℃高温サイクル特性を測定した。
これらの結果を表1、2に示す。
-Evaluation of battery characteristics-
A positive electrode active material, a conductive material, and a binder are weighed at a ratio of 90: 5: 5, and the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was produced, and obtained by dissolving 1M-LiPF 6 in EC-DMC (1: 1) in an electrolytic solution at a discharge rate of 0.1 C. Initial capacity (25 ° C., charge upper limit voltage: 4.3V, discharge lower limit voltage: 3.0V), high temperature cycle characteristics after 20 cycles at charge / discharge rate of 1C, 45 ° C. after 20 cycles at charge / discharge rate of 3C High temperature cycle characteristics were measured.
These results are shown in Tables 1 and 2.

Figure 2017139128
Figure 2017139128

Figure 2017139128
Figure 2017139128

Claims (4)

組成式:LiaNibCocMnde2
(前記式において、1.0≦a≦1.06、0.5≦b≦0.9、0.1≦c≦0.3、0.1≦d≦0.3、0≦e≦0.005、MはMg、Alからなる群から選ばれる少なくとも1種である。)
で表される1次粒子の表面にZrW28が付着しており、
Zr/(Ni+Co+Mn+M)がモル比で0.001〜0.005、W/(Ni+Co+Mn+M)がモル比で0.002〜0.01であるリチウムイオン電池用正極活物質。
Composition formula: Li a Ni b Co c Mn d Me O 2
(In the above formula, 1.0 ≦ a ≦ 1.06, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.1 ≦ d ≦ 0.3, 0 ≦ e ≦ 0 .005, M is at least one selected from the group consisting of Mg and Al.)
ZrW 2 O 8 is attached to the surface of the primary particles represented by
A positive electrode active material for a lithium ion battery, wherein Zr / (Ni + Co + Mn + M) is 0.001 to 0.005 in molar ratio and W / (Ni + Co + Mn + M) is 0.002 to 0.01 in molar ratio.
XRDの回折パターンにおいて、層状酸化物LiaNibCocMnde2由来の2θ=18.5±1°に存在する(003)面のピーク強度Iaと、立方晶であるZrW28由来の2θ=22.0±1°に存在する(210)面のピーク強度及び2θ=24.0±1°に存在する(211)面のピーク強度の合計Ibとの比Ib/Iaが、0.0001〜0.001である請求項1に記載のリチウムイオン電池用正極活物質。 In the diffraction pattern of the XRD, layered oxide Li a Ni b Co c Mn d M e O 2 present in the 2θ = 18.5 ± 1 ° from the (003) plane peak intensity Ia, ZrW 2 is cubic Ratio Ib / Ia between the peak intensity of the (210) plane existing at 2θ = 22.0 ± 1 ° derived from O 8 and the peak intensity of the (211) plane existing at 2θ = 24.0 ± 1 °, Ib The positive electrode active material for a lithium ion battery according to claim 1, wherein is 0.0001 to 0.001. 請求項1又は2に記載のリチウムイオン電池用正極活物質を有するリチウムイオン電池用正極。   The positive electrode for lithium ion batteries which has the positive electrode active material for lithium ion batteries of Claim 1 or 2. 請求項3に記載のリチウムイオン電池用正極を有するリチウムイオン電池。   The lithium ion battery which has a positive electrode for lithium ion batteries of Claim 3.
JP2016019096A 2016-02-03 2016-02-03 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries and lithium-ion batteries Active JP7037873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019096A JP7037873B2 (en) 2016-02-03 2016-02-03 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries and lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019096A JP7037873B2 (en) 2016-02-03 2016-02-03 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries and lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2017139128A true JP2017139128A (en) 2017-08-10
JP7037873B2 JP7037873B2 (en) 2022-03-17

Family

ID=59566171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019096A Active JP7037873B2 (en) 2016-02-03 2016-02-03 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries and lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP7037873B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087503A1 (en) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN110380004A (en) * 2018-04-13 2019-10-25 宁德新能源科技有限公司 Positive electrode and electrochemical appliance
EP3641003A1 (en) * 2018-10-17 2020-04-22 Hilti Aktiengesellschaft Pouch cell
CN111755671A (en) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 Positive electrode material and lithium ion secondary battery
WO2021235470A1 (en) * 2020-05-22 2021-11-25 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN113903918A (en) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 Cathode material, preparation method thereof and lithium ion battery
CN116093333A (en) * 2023-04-07 2023-05-09 河南锂动电源有限公司 Battery anode material, preparation method thereof and semisolid lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2012028313A (en) * 2010-06-22 2012-02-09 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery, and method for producing positive electrode slurry using the positive electrode composition
WO2015045340A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2015133318A (en) * 2013-12-13 2015-07-23 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2012028313A (en) * 2010-06-22 2012-02-09 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery, and method for producing positive electrode slurry using the positive electrode composition
WO2015045340A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2015133318A (en) * 2013-12-13 2015-07-23 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087503A1 (en) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN110380004A (en) * 2018-04-13 2019-10-25 宁德新能源科技有限公司 Positive electrode and electrochemical appliance
EP3641003A1 (en) * 2018-10-17 2020-04-22 Hilti Aktiengesellschaft Pouch cell
WO2020078819A1 (en) * 2018-10-17 2020-04-23 Hilti Aktiengesellschaft Pouch cell
CN112673514A (en) * 2018-10-17 2021-04-16 喜利得股份公司 Soft-packaged battery cell
CN112673514B (en) * 2018-10-17 2023-06-23 喜利得股份公司 Soft package battery core
CN111755671B (en) * 2019-03-29 2022-10-11 宁德新能源科技有限公司 Positive electrode material and lithium ion secondary battery
CN111755671A (en) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 Positive electrode material and lithium ion secondary battery
WO2021235470A1 (en) * 2020-05-22 2021-11-25 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7060649B2 (en) 2020-05-22 2022-04-26 Basf戸田バッテリーマテリアルズ合同会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2021184367A (en) * 2020-05-22 2021-12-02 Basf戸田バッテリーマテリアルズ合同会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery
CN113903918A (en) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 Cathode material, preparation method thereof and lithium ion battery
CN116093333A (en) * 2023-04-07 2023-05-09 河南锂动电源有限公司 Battery anode material, preparation method thereof and semisolid lithium ion battery

Also Published As

Publication number Publication date
JP7037873B2 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
Schipper et al. Recent advances and remaining challenges for lithium ion battery cathodes
JP2017139128A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
TWI527298B (en) A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP6688673B2 (en) Silicon oxide powder negative electrode material
WO2015050031A1 (en) Covered cathode active material and lithium battery
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20210013253A (en) Nonaqueous electrolyte secondary battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
JP2004235144A (en) Nonaqueous electrolyte secondary battery and negative electrode active substance therefor
WO2015199168A1 (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JP2015076316A (en) Sulfide solid electrolytic material
JP2007234350A (en) Nonaqueous secondary battery
US20220013774A1 (en) Cathode active material for lithium secondary battery
US10164255B2 (en) Silicon material and negative electrode of secondary battery
JP2015220220A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
WO2018068702A1 (en) Positive electrode tab and lithium-ion battery having electrode tab
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101600476B1 (en) Solid electrolyte coated cathode materials for lithium ion battery
CN115191040A (en) Na-excess P3 type layered oxide Na x M y O z Wherein x is more than or equal to 0.66, y is more than or equal to 0.8 and less than or equal to 1.0, and z is less than or equal to 2 and is used as a cathode material of the sodium-ion battery
JP6448432B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
WO2018096889A1 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
CN107155381B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200225

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210406

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210907

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220104

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220208

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7037873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151