JP2017139116A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2017139116A
JP2017139116A JP2016018800A JP2016018800A JP2017139116A JP 2017139116 A JP2017139116 A JP 2017139116A JP 2016018800 A JP2016018800 A JP 2016018800A JP 2016018800 A JP2016018800 A JP 2016018800A JP 2017139116 A JP2017139116 A JP 2017139116A
Authority
JP
Japan
Prior art keywords
movable
electrode
fixed
coil
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018800A
Other languages
Japanese (ja)
Other versions
JP6651878B2 (en
JP2017139116A5 (en
Inventor
貴和 原田
Takakazu Harada
貴和 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016018800A priority Critical patent/JP6651878B2/en
Publication of JP2017139116A publication Critical patent/JP2017139116A/en
Publication of JP2017139116A5 publication Critical patent/JP2017139116A5/ja
Application granted granted Critical
Publication of JP6651878B2 publication Critical patent/JP6651878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve which has a small size and an excellent cutoff characteristic.SOLUTION: A vacuum valve of the present invention comprises: a vacuum case; a fixed side electrode rod 4; a movable side electrode rod 5; a fixed side electrode 10 and a movable side electrode 20 which are mounted to each opposite end of the fixed side electrode rod 4 and the movable side electrode rod 5; and an arc shield 8 that is arranged to a circumference of the fixed side electrode 10 and the movable side electrode 20 in the vacuum case. The fixed side electrode 10 is formed by a fixed side contact point 11 and a fixed side coil electrode 12 formed by a fixed side ring part 13, a plurality of fixed side arm parts 14, a concentric circular fixed side coil part 15 divided by a fixed side slit part 17, and a fixed side projection part 16. The movable side electrode 20 is formed by a movable side contact point 21 and a movable side coil electrode 22 formed by a movable side ring part 23, a plurality of movable side arm parts 24, a concentric circular movable side coil 25 divided by a movable side slit side part 27, and a movable side projection part 26. The vacuum valve comprises a magnetic material 9 between an arc shield 8 corresponding to a division position of the coil electrode and the vacuum case.SELECTED DRAWING: Figure 2

Description

本発明は、真空遮断器等に使用され、電路の開閉を行う真空バルブに関し、特に電路の開閉時に生じるアークを効率的に拡散することができる真空バルブに関するものである。   The present invention relates to a vacuum valve that is used in a vacuum circuit breaker or the like and opens and closes an electric circuit, and more particularly to a vacuum valve that can efficiently diffuse an arc generated when the electric circuit is opened and closed.

真空バルブは、ガラス材、セラミック材等の絶縁材からなり内部が高真空に排気された有底円筒状の真空容器と、この真空容器の両端部にそれぞれ設けられた電極棒と、各電極棒の対向する端部に設けられた渦巻環状のコイル電極と、接点を補強する支持材と、円板状の接点とを備え、一方の電極棒を軸方向に移動させることにより、両接点(即ち固定側接点と可動側接点)を接触又は離隔して通電又は遮断を行うものである。   The vacuum valve is a bottomed cylindrical vacuum vessel made of an insulating material such as a glass material or a ceramic material, and the inside is evacuated to a high vacuum, electrode rods provided at both ends of the vacuum vessel, and each electrode rod Are provided with spiral coil electrodes provided at opposite ends, a support member for reinforcing the contact, and a disk-shaped contact. The fixed-side contact and the movable-side contact) are brought into contact with or separated from each other to conduct or cut off.

ここでコイル電極とは、主電極である固定側接点及び可動側接点の周囲に軸方向の磁界を発生させる電極であり、当該両接点の背面側に、接点の外周縁に沿った複数の弧状のコイル部が分割配置されている。コイル部の一端は軸中心へ接続するアーム部を有し、他端は接点と接続する突出部を有している。   Here, the coil electrode is an electrode that generates an axial magnetic field around the stationary contact and the movable contact that are the main electrodes, and a plurality of arcs along the outer peripheral edge of the contact on the back side of the contacts. The coil portion is divided and arranged. One end of the coil portion has an arm portion connected to the axis center, and the other end has a protruding portion connected to the contact.

上述のようなコイル電極を有する真空バルブにおいては、通電によりコイル電極が軸方向の磁界を発生し、遮断時に不可避的に発生する接点間のアークを接点の径内に閉じ込めつつ接点表面に広く拡散させる。これにより接点表面に対し電流密度を下げることができ、接点材料の遮断能力が勝り電流遮断を行うことができる。   In a vacuum valve having a coil electrode as described above, the coil electrode generates an axial magnetic field when energized, and the arc between the contacts inevitably generated when interrupted is confined within the diameter of the contact and diffused widely on the contact surface. Let As a result, the current density can be reduced with respect to the contact surface, and the interruption capability of the contact material is superior, and the current interruption can be performed.

真空バルブの遮断容量をより大きくするためには、このコイル電極と接点材料の開発が必要不可欠であり、これまでに様々な研究がなされてきた、その結果、真空バルブの遮断性能はコイル電極が発生させる軸方向磁界が強く、均一で、面積が広いほど良いことがわかっている。   Development of this coil electrode and contact material is indispensable for increasing the breaking capacity of the vacuum valve, and various studies have been conducted so far. As a result, the breaking performance of the vacuum valve is It has been found that the stronger the axial magnetic field generated, the more uniform and the larger the area, the better.

特開平6−150786号公報JP-A-6-150786 特開平1−117217号公報Japanese Patent Laid-Open No. 1-117217

磁界によって接点間に発生するアークを広く拡散させることで遮断性能を向上させる方式の真空バルブは、特許文献1、2に説明されたように通電される電流が固定側と可動側の2つのコイル電極を流れ、コイル電極間に軸方向の磁界を発生させる。   As described in Patent Documents 1 and 2, the vacuum valve that improves the breaking performance by widely diffusing the arc generated between the contacts by the magnetic field has two coils on the fixed side and the movable side. An axial magnetic field is generated between the coil electrodes through the electrodes.

例えば特許文献1に示すように、固定側電極棒を経て固定側コイル電極に流れる電流は、固定側電極棒から円形に形成された固定側コイル電極へ繋がるアーム部、円弧状に分割されたコイル部、コイル部から接点へと接続する突出部を通り、固定側接点へと流れる。さらに固定側接点から可動側接点へ流れ、可動側コイル電極の突出部、コイル部、アーム部を経由して可動側電極棒へ流れる。   For example, as shown in Patent Document 1, the current flowing through the fixed-side electrode electrode through the fixed-side electrode rod is an arm portion connected to the fixed-side coil electrode formed in a circle from the fixed-side electrode rod, and the coil divided into an arc shape Flows through the protrusions connected from the coil part to the contact point, and flows to the fixed contact point. Furthermore, it flows from the fixed side contact to the movable side contact, and then flows to the movable side electrode rod via the projecting portion, coil portion, and arm portion of the movable side coil electrode.

この際、コイル部で発生する磁界は、固定側及び可動側のコイル部に同じ方向に電流が流れるように接続、配置することで、お互いに発生する磁界を強め合う方向に作用する。しかし、固定側コイル電極のアーム部は外周方向に電流が流れ、可動側コイル電極のアーム部では電極棒方向に流れるので、アーム部ではそれぞれの電流の方向は逆方向となり、そのため発生する磁界は打ち消し合う。また、固定側及び可動側のコイル部のそれぞれの突出部では、コイル部のように円周方向の電流が流れるのではなく、電極棒の軸線方向に電流が流れるので、コイル部のような軸線方向の磁界は生じない。   At this time, the magnetic fields generated in the coil portions are connected and arranged so that currents flow in the same direction in the coil portions on the fixed side and the movable side, thereby acting in the direction in which the magnetic fields generated from each other are strengthened. However, since the current flows in the outer peripheral direction of the arm portion of the fixed coil electrode and flows in the direction of the electrode rod in the arm portion of the movable coil electrode, the direction of each current is reversed in the arm portion. Negate each other. In addition, since the current in the circumferential direction does not flow in the protruding portions of the coil portions on the fixed side and the movable side as in the coil portion, the current flows in the axial direction of the electrode rod. Directional magnetic field does not occur.

このように、コイル部については固定側コイル部及び可動側コイル部の双方に生じる磁界が強め合い、軸線方向の強い磁界が生じるが、突出部、アーム部では磁界が弱くなり、又は打ち消し合い、軸線方向のアークを拡散させる磁界は生じず、両電極の周囲の磁界は不均一となる。   As described above, the magnetic field generated in both the fixed side coil part and the movable side coil part is strengthened for the coil part, and a strong magnetic field is generated in the axial direction, but the magnetic field is weakened or canceled in the projecting part and the arm part. There is no magnetic field that diffuses the arc in the axial direction, and the magnetic field around both electrodes is non-uniform.

固定側コイル電極、可動側コイル電極の周囲の磁界を均一にするために、各電極の裏面に磁性体を配置し、電極間の磁界が弱い部分を補うことで、電極間に発生する軸線方向の磁界を均一にすることが可能であり、遮断性能を向上させることが知られている。しかし、電極の内部に磁性体を配置すると、磁性体の内部を通る磁束による電磁誘導が生じ、その結果、渦電流が発生して負荷電流の通電時に渦電流の発熱により温度が上昇し、信頼性が低下するという問題がある。   In order to make the magnetic field around the fixed coil electrode and the movable coil electrode uniform, a magnetic material is placed on the back of each electrode to compensate for the weak magnetic field between the electrodes. It is known that the magnetic field can be made uniform and the blocking performance is improved. However, if a magnetic material is placed inside the electrode, electromagnetic induction occurs due to the magnetic flux passing through the inside of the magnetic material. As a result, eddy current is generated and the temperature rises due to heat generation of the eddy current when the load current is applied. There is a problem that the performance is lowered.

磁性体を真空バルブの真空容器の外側に配置すると、真空容器の遮蔽効果により渦電流は発生せず、発熱を防止し、信頼性を高めることはできる。同時に、固定側コイル電極と可動側コイル電極との間に生じる軸線方向の磁界を強めることが可能である。しかしこの配置では、磁性体の影響が広い範囲に影響するため、両電極のアーム部、突出部に対応した部分に見られる磁界の弱い部分を補い、電極間に生じる磁界の不均一性を改善することはできない。   When the magnetic body is arranged outside the vacuum vessel of the vacuum valve, no eddy current is generated due to the shielding effect of the vacuum vessel, heat generation can be prevented, and reliability can be improved. At the same time, it is possible to increase the magnetic field in the axial direction generated between the fixed coil electrode and the movable coil electrode. However, with this arrangement, the influence of the magnetic material affects a wide range, so the weak magnetic field seen in the parts corresponding to the arms and protrusions of both electrodes is compensated to improve the non-uniformity of the magnetic field generated between the electrodes. I can't do it.

以上のように、磁性体を配置したことにより磁界を強くすることができ、遮断性能を向上させることはできるが、磁界を均一にすることができない。そのため、アークを十分に拡散することができず、電極の小型化、低コスト化を達成することができないという課題もあった。   As described above, by arranging the magnetic body, the magnetic field can be strengthened and the blocking performance can be improved, but the magnetic field cannot be made uniform. For this reason, there has been a problem that the arc cannot be sufficiently diffused and miniaturization and cost reduction of the electrode cannot be achieved.

また、例えば特許文献2に開示される例ではメタクラ等に配置される遮断器の端子引出カバーがコの字状であることに着目し、シールドの外側の全周の3/4周に亘って磁性体を配置しているが、例えばC−GISに内蔵される真空バルブのようなに端子引出バーが必ずしもコの字ではない場合があり、そのような場合には逆に磁界を不均一にするだけで遮断性能の向上は見込めなかった。   In addition, for example, in the example disclosed in Patent Document 2, paying attention to the fact that the terminal lead-out cover of the circuit breaker arranged in the metakura or the like has a U-shape, it extends over 3/4 of the entire circumference outside the shield. Although a magnetic material is arranged, the terminal lead bar may not always be U-shaped, for example, like a vacuum valve built in C-GIS. In such a case, the magnetic field is made uneven. It was not possible to improve the shut-off performance just by doing.

本発明はこのような課題を解決するためになされたもので、軸線方向の磁界を均一化することができ、かつ磁界を強くすることができる。さらに磁性体に生じる渦電流の発熱による温度上昇の影響を受けることがない。そのため、小型で遮断性能に優れる真空バルブを提供するものである。   The present invention has been made to solve such a problem, and can make the magnetic field in the axial direction uniform and intensify the magnetic field. Furthermore, it is not affected by the temperature rise due to the eddy current generated in the magnetic material. Therefore, the present invention provides a vacuum valve that is small and has excellent shut-off performance.

本発明に係る真空バルブは、円筒状の絶縁円筒の一方の端部を固定側端板、他方の端部を可動側端板で覆う真空容器と、固定側端板に固設された固定側電極棒と、可動側端板に進退可能に設けられた可動側電極棒と、固定側電極棒と可動側電極棒の対向端に各々取り付けられた固定側電極、可動側電極と、真空容器の内側で、固定側電極と可動側電極の周りに配置したアークシールドと、を備え、固定側電極と可動側電極は、相互に対向する固定側接点、可動側接点と、固定側接点と可動側接点の背面に各々配置され、固定電極棒と可動電極棒との間に電流が流れる場合に、電極棒の軸線に直交する円周方向に電流が流れる固定側コイル電極、可動側コイル電極を各々有し、固定側コイル電極と可動側コイル電極は、中央部分に位置し固定側電極棒、可動側電極棒と各々接続する固定側リング部、可動側リング部と、固定側リング部、可動側リング部の軸線に直交する面内に位置し、各々固定側スリット部、可動側スリット部により円周方向に複数に分割された同心円状の固定側コイル部、可動側コイル部と、固定側リング部、可動側リング部から軸線に直交する方向へ延出し、固定側リング部と固定側コイル部の一端、可動側リング部と可動側コイル部の一端を各々接続する複数本の固定側アーム部、可動側アーム部と、固定側コイル部の他端から固定側接点へ、可動側コイル部の他端から可動側接点へ突出し、電気的に各々接続する固定側突出部、可動側突出部とを各々有する真空バルブであって、固定側コイル電極、可動側コイル電極の分割位置に対応し、アークシールドと真空容器との間に磁性体を備えたものである。     A vacuum valve according to the present invention includes a vacuum vessel that covers one end of a cylindrical insulating cylinder with a fixed end plate and the other end with a movable end plate, and a fixed side fixed to the fixed end plate. An electrode rod, a movable electrode rod movably provided on the movable side end plate, a fixed electrode, a movable electrode attached to opposite ends of the fixed electrode rod and the movable electrode rod, a movable electrode, and a vacuum vessel An arc shield disposed around the fixed side electrode and the movable side electrode, the fixed side electrode and the movable side electrode, the fixed side contact, the movable side contact, the fixed side contact and the movable side facing each other When the current flows between the fixed electrode bar and the movable electrode bar, the fixed side coil electrode and the movable side coil electrode are arranged on the back surface of the contact, respectively, and the current flows in the circumferential direction perpendicular to the axis of the electrode bar. The fixed side coil electrode and the movable side coil electrode are located in the center part and fixed side Positioned in the plane perpendicular to the axis of the fixed side ring part, movable side ring part, fixed side ring part, and movable side ring part connected to the pole bar and movable side electrode bar, respectively, the fixed side slit part, the movable side A concentric fixed coil portion and a movable coil portion, which are divided into a plurality of portions in the circumferential direction by a slit portion, and a fixed ring portion extending from the fixed ring portion and the movable ring portion in a direction perpendicular to the axis, Movable from one end of the fixed side coil part, multiple fixed side arm parts that connect the movable side ring part and one end of the movable side coil part, and the other end of the fixed side coil part to the fixed side contact A vacuum valve having a fixed-side protruding portion and a movable-side protruding portion, each of which protrudes from the other end of the side coil portion to the movable-side contact and is electrically connected to each other. In response to the arc shield Between the empty container is obtained with a magnetic material.

この発明の真空バルブによれば、コイル部によって発生する軸線方向の磁界を均一で広い範囲に発生させることができ、遮断性能に優れた真空バルブを得ることができる。同時に磁性体を電極内部に配置しないため、電流通電時の温度上昇も回避することができ、通電性能に優れた真空バルブを得ることができる。   According to the vacuum valve of the present invention, the magnetic field in the axial direction generated by the coil portion can be generated in a uniform and wide range, and a vacuum valve excellent in blocking performance can be obtained. At the same time, since the magnetic body is not disposed inside the electrode, it is possible to avoid an increase in temperature during current application, and to obtain a vacuum valve with excellent current supply performance.

本発明の実施の形態1に係る真空バルブの縦断面図である。It is a longitudinal cross-sectional view of the vacuum valve which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る真空バルブの横断面図である。It is a cross-sectional view of the vacuum valve according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る真空バルブの磁界を表わす模式図である。It is a schematic diagram showing the magnetic field of the vacuum valve which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電極構成を示す分解斜視図である。It is a disassembled perspective view which shows the electrode structure which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る固定側コイル電極の平面図及び断面図である。It is the top view and sectional drawing of the stationary side coil electrode which concern on Embodiment 1 of this invention. 本発明の実施の形態2に係る真空バルブの横断面図である。It is a cross-sectional view of the vacuum valve according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る真空バルブの横断面図である。It is a cross-sectional view of a vacuum valve according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る真空バルブの横断面図である。It is a cross-sectional view of the vacuum valve concerning Embodiment 4 of the present invention. 本発明の実施の形態6に係る真空バルブの横断面図である。It is a cross-sectional view of the vacuum valve concerning Embodiment 6 of this invention. 本発明の実施の形態7に係る真空バルブの横断面図である。It is a transverse cross section of the vacuum valve concerning Embodiment 7 of the present invention.

実施の形態の説明及び各図において、同一の符号を付した部分は、同一又は相当する部分を示すものである。   In the description of the embodiments and the respective drawings, the portions denoted by the same reference numerals indicate the same or corresponding portions.

実施の形態1.
図1に本発明の実施の形態1に係る真空バルブの縦断面図、図2に固定側コイル電極、可動側コイル電極及び絶縁容器とアークシールドとの間の磁性体の配置を示す本発明の実施の形態1に係る真空バルブの横断面図を示す。また、図3には、本発明の実施の形態1に係る真空バルブの通電状態での磁界を表わす模式図を示す。さらに図4は本発明の電極の構造を示す分解斜視図であり、図5は本発明の固定側コイル電極の形状を示す平面図及び断面図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a vacuum valve according to Embodiment 1 of the present invention, and FIG. 2 shows the arrangement of a magnetic material between a stationary coil electrode, a movable coil electrode, and an insulating container and an arc shield. 1 is a cross-sectional view of a vacuum valve according to Embodiment 1. FIG. FIG. 3 is a schematic diagram showing a magnetic field in the energized state of the vacuum valve according to Embodiment 1 of the present invention. FIG. 4 is an exploded perspective view showing the structure of the electrode of the present invention, and FIG. 5 is a plan view and a cross-sectional view showing the shape of the stationary coil electrode of the present invention.

図1に示すように、絶縁円筒1の上部の端部開口部を固定側端板2、下部の端部開口部を可動側端板3が覆っている。絶縁円筒1は絶縁材料で構成され、本実施の形態ではアルミナセラミックスを用いている。固定側端板2、可動側端板3は、それぞれ絶縁円筒1の端面にろう付けにより接合されている。   As shown in FIG. 1, a fixed side end plate 2 covers an upper end opening of the insulating cylinder 1, and a movable side end plate 3 covers a lower end opening. The insulating cylinder 1 is made of an insulating material, and alumina ceramic is used in the present embodiment. The fixed side end plate 2 and the movable side end plate 3 are joined to the end surface of the insulating cylinder 1 by brazing.

固定側端板2には固定側電極棒4がろう付けにより接合され、さらにこの固定側電極棒4に固定側電極10がろう付け接合されている。一方、可動側端板3には可動側電極棒5が移動可能な状態で取り付けられ、可動側電極棒5には可動側電極20がろう付けにより接合されている。   A fixed-side electrode rod 4 is joined to the fixed-side end plate 2 by brazing, and a fixed-side electrode 10 is brazed to the fixed-side electrode rod 4. On the other hand, the movable electrode rod 5 is attached to the movable end plate 3 in a movable state, and the movable electrode 20 is joined to the movable electrode rod 5 by brazing.

可動側端板3と可動側電極棒5との間には、真空バルブ内を真空に維持したまま可動側電極棒5が動作することができるよう蛇腹状のベローズ6が配置されている。このベローズ6は薄い金属板等を用いる。本実施の形態においては、薄いステンレス板を用いた。ベローズ6の上端にはベローズカバー7が可動側電極棒5にろう付けにより固定されている。   A bellows-like bellows 6 is arranged between the movable side end plate 3 and the movable side electrode rod 5 so that the movable side electrode rod 5 can operate while maintaining the vacuum inside the vacuum valve. The bellows 6 uses a thin metal plate or the like. In the present embodiment, a thin stainless steel plate is used. A bellows cover 7 is fixed to the movable electrode bar 5 by brazing at the upper end of the bellows 6.

固定側電極10は固定側コイル電極12と円盤状の固定側接点11とからなり、可動側電極20は可動側コイル電極22と可動側接点21から形成される。電流遮断時には、固定側電極10の固定側接点11と可動側電極20の可動側接点21との間でアークが発生し金属蒸気により絶縁円筒1の内部は汚染される。この金属蒸気による汚染を抑制するために、固定側電極10と可動側電極20の周囲を囲むようにアークシールド8が配置されている。さらにアークシールド8の外面には、本発明のアークを均一に拡散するための磁性体9が配置されている。磁性体9の材質は通常の磁性体であれば用いることができ、特に限定するものではない。本実施の形態において、この磁性体9は鉄系合金を用いて作成した。     The fixed electrode 10 includes a fixed coil electrode 12 and a disk-shaped fixed contact 11, and the movable electrode 20 includes a movable coil electrode 22 and a movable contact 21. When the current is interrupted, an arc is generated between the stationary contact 11 of the stationary electrode 10 and the movable contact 21 of the movable electrode 20, and the inside of the insulating cylinder 1 is contaminated by metal vapor. In order to suppress the contamination by the metal vapor, the arc shield 8 is arranged so as to surround the fixed side electrode 10 and the movable side electrode 20. Further, a magnetic body 9 for uniformly diffusing the arc of the present invention is disposed on the outer surface of the arc shield 8. The material of the magnetic body 9 can be used as long as it is a normal magnetic body, and is not particularly limited. In the present embodiment, the magnetic body 9 is made using an iron-based alloy.

次に図2〜5を用いて固定側電極10、可動側電極20の構造を説明する。図2は上述のように真空バルブの横断面図を示し、両電極10、20部分を上側(固定側端板2の側)から観察した状態を示している。そのため、固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。   Next, the structures of the fixed electrode 10 and the movable electrode 20 will be described with reference to FIGS. FIG. 2 shows a cross-sectional view of the vacuum valve as described above, and shows a state in which both the electrodes 10 and 20 are observed from the upper side (on the fixed side end plate 2 side). Therefore, the lower surface of the fixed side electrode 10, the movable side electrode 20 positioned below the fixed side electrode 10, and the like cannot be directly observed. For the parts that cannot be directly seen in this way, the numbers in the figure are parenthesized.

図3は両電極10、20部分の縦断面図を示しており、固定側コイル電極12と可動側コイル電極22との間に発生する磁界の状況を矢印で模式的に示している。図4は本発明の電極構造を示す分解斜視図で、固定側電極10、可動側電極20の構造を示しており、図5は固定側コイル電極12の形状を詳細に説明するもので、(a)平面図と(b)A−A部分の断面図を示している。   FIG. 3 shows a vertical cross-sectional view of both the electrodes 10 and 20, and the state of the magnetic field generated between the fixed coil electrode 12 and the movable coil electrode 22 is schematically shown by arrows. FIG. 4 is an exploded perspective view showing the electrode structure of the present invention, showing the structure of the fixed side electrode 10 and the movable side electrode 20, and FIG. 5 explains the shape of the fixed side coil electrode 12 in detail. a) a plan view and (b) a cross-sectional view taken along line AA.

図2、3に示すように固定側電極10と可動側電極20は、固定側接点11と可動側接点21とを対向させて配置し、それぞれの接点11、21の背面には固定側コイル電極12と可動側コイル電極22とが配置されている。固定側接点11は固定側支持材18を介して固定側電極棒4と機械的に支持され、可動側接点21は可動側支持材28を介して可動側電極棒5と機械的に支持されている。なお、固定側接点11、可動側接点21は、銀系合金や銅系合金を用いて形成するのが好ましく、固定側コイル電極12、可動側コイル電極22は銅または銅系の材料を用いて形成するのが好ましい。本実施の形態においては、固定側接点11、可動側接点21、および固定側コイル電極12、可動側コイル電極22のいずれも銅合金を用いた。また固定側支持材18、可動側支持材28は十分な強度を有することが求められ、本実施の形態においてはステンレス鋼を用いた。   As shown in FIGS. 2 and 3, the fixed side electrode 10 and the movable side electrode 20 are arranged with the fixed side contact 11 and the movable side contact 21 facing each other, and the fixed side coil electrode is placed on the back of each contact 11, 21. 12 and the movable coil electrode 22 are arranged. The fixed-side contact 11 is mechanically supported by the fixed-side electrode rod 4 via a fixed-side support member 18, and the movable-side contact 21 is mechanically supported by the movable-side electrode rod 5 via a movable-side support member 28. Yes. The fixed contact 11 and the movable contact 21 are preferably formed using a silver alloy or a copper alloy, and the fixed coil electrode 12 and the movable coil electrode 22 are made of copper or a copper material. Preferably formed. In the present embodiment, the fixed side contact 11, the movable side contact 21, the fixed side coil electrode 12, and the movable side coil electrode 22 are all made of copper alloy. The fixed side support member 18 and the movable side support member 28 are required to have sufficient strength, and stainless steel is used in the present embodiment.

図2に示すように、本実施の形態においては、固定側電極10の固定側コイル電極12に形成された固定側コイル部15の間隙である固定側スリット部17と、可動側電極20の可動側コイル電極22に形成された可動側スリット部27とが、真空容器の上側(固定側端板2の側)から観察した場合に重なり合って配置するように設定した。この固定側電極10と可動側電極20の重なり方は、それぞれのスリット部17、27の位置が重なる配置に限定するものではなく、その他の重なり方であっても同様の効果を得ることができる。   As shown in FIG. 2, in the present embodiment, the fixed-side slit portion 17 that is a gap between the fixed-side coil portion 15 formed in the fixed-side coil electrode 12 of the fixed-side electrode 10, and the movable-side electrode 20 is movable. The movable side slit portion 27 formed on the side coil electrode 22 was set so as to overlap when observed from the upper side of the vacuum vessel (on the fixed side end plate 2 side). The overlapping method of the fixed side electrode 10 and the movable side electrode 20 is not limited to the arrangement in which the positions of the slit portions 17 and 27 are overlapped, and the same effect can be obtained even in other overlapping methods. .

このように配置した固定側電極10と可動側電極20の間には、電極どうしが接触して電流が流れた状態で、図3に矢印で示すように、固定側電極棒4、可動側電極棒5の軸線方向に沿う方向に磁界が発生する。この磁界によって電極間に生じるアークを分散させることができる。   Between the fixed side electrode 10 and the movable side electrode 20 arranged in this way, the electrodes are in contact with each other and a current flows, and as shown by arrows in FIG. 3, the fixed side electrode 4 and the movable side electrode A magnetic field is generated in a direction along the axial direction of the bar 5. This magnetic field can disperse the arc generated between the electrodes.

図5に固定側コイル電極12を例にコイル電極の構造を説明する。可動側コイル電極22も基本的には固定側コイル電極12と同じ形状である。固定側コイル電極12は中心部分に、固定側電極棒4と接続する固定側リング部13を有し、この固定側リング部13から外周方向に向けて、ほぼ等間隔に延出された複数本(図では3本)の固定側アーム部14を有している。さらにこの固定側アーム部14の先端部分を円周方向に折り曲げ、円弧状の固定側コイル部15を形成している。固定側コイル部15は固定側アーム部14に対応して形成されており、固定側コイル部15の相互間に固定側スリット部17を有している。   The structure of the coil electrode will be described with reference to the fixed coil electrode 12 as an example in FIG. The movable coil electrode 22 is also basically the same shape as the fixed coil electrode 12. The fixed-side coil electrode 12 has a fixed-side ring portion 13 connected to the fixed-side electrode rod 4 in the central portion, and a plurality of pieces extending from the fixed-side ring portion 13 toward the outer peripheral direction at substantially equal intervals. It has the fixed side arm part 14 (three in the figure). Further, the distal end portion of the fixed side arm portion 14 is bent in the circumferential direction to form an arc-shaped fixed side coil portion 15. The fixed side coil portion 15 is formed corresponding to the fixed side arm portion 14, and has a fixed side slit portion 17 between the fixed side coil portions 15.

固定側アーム部14に接続された固定側コイル部15の先端部分には、固定側コイル電極12と、隣接して配置された固定側接点11とを電気的に接続するための突起部分である固定側突出部16が形成されている。この固定側突出部16は固定側コイル部15の先端部分に、固定側接点11とろう付けにより固定するために軸線方向に適当な長さだけ突出させて形成したものである。   A tip portion of the fixed side coil portion 15 connected to the fixed side arm portion 14 is a protruding portion for electrically connecting the fixed side coil electrode 12 and the adjacent fixed side contact 11. A fixed-side protrusion 16 is formed. The fixed-side protruding portion 16 is formed at the tip end portion of the fixed-side coil portion 15 so as to protrude by an appropriate length in the axial direction in order to be fixed to the fixed-side contact 11 by brazing.

固定側コイル部15は、固定側リング部13の外周側の同心円上に配置されており、円周上に均等に分割(本実施の形態では3分割)し配置される。この固定側コイル部15に電流が流れることにより磁界を発生することができる。   The fixed side coil portion 15 is arranged on a concentric circle on the outer peripheral side of the fixed side ring portion 13, and is equally divided (three divided in this embodiment) on the circumference. A magnetic field can be generated when a current flows through the stationary coil portion 15.

固定側接点11と可動側接点21とが接続し、固定側電極棒4と可動側電極棒5との間に電流が流された場合の電流の方向を図4に矢印で記載した。電流は固定側電極棒4から可動側電極棒5へ流れている。   The direction of the current when the fixed contact 11 and the movable contact 21 are connected and a current is passed between the fixed electrode 4 and the movable electrode 5 is indicated by an arrow in FIG. Current flows from the fixed electrode rod 4 to the movable electrode rod 5.

固定側電極棒4から流れた電流は、固定側コイル電極12の固定側リング部13から固定側アーム部14へ分流し、固定側コイル部15、固定側突出部16を経て、固定側接点11へ流れる。さらに、固定側電極10と可動側電極20との間に発生するアークを介して可動側接点21から可動側コイル電極22へ流れ、可動側コイル電極22の可動側突出部26、可動側コイル部25、可動側アーム部24を経て合流し、可動側電極棒5に流れる。この時、固定側コイル電極12及び可動側コイル電極22に流れた電流によって磁界が発生する。   The current flowing from the fixed side electrode rod 4 is shunted from the fixed side ring portion 13 of the fixed side coil electrode 12 to the fixed side arm portion 14, passes through the fixed side coil portion 15 and the fixed side protruding portion 16, and then the fixed side contact 11. To flow. Furthermore, it flows from the movable contact 21 to the movable coil electrode 22 via an arc generated between the fixed electrode 10 and the movable electrode 20, and the movable projection 26, the movable coil portion of the movable coil electrode 22. 25, merges via the movable arm 24 and flows to the movable electrode rod 5. At this time, a magnetic field is generated by the current flowing through the fixed coil electrode 12 and the movable coil electrode 22.

本実施の形態においては上述のように、固定側コイル電極12の固定側スリット部17と可動側コイル電極22の可動側スリット部27とが重なって配置しており、図2に示すように、固定側コイル電極12の固定側アーム部14と可動側コイル電極22の可動側突出部26、固定側コイル電極12の固定側突出部16と可動側コイル電極22の可動側アーム部24とが重なって配置しており、固定側コイル電極12の固定側コイル部15と可動側コイル電極22の可動側コイル部25とが重なり合って配置している。   In the present embodiment, as described above, the fixed-side slit portion 17 of the fixed-side coil electrode 12 and the movable-side slit portion 27 of the movable-side coil electrode 22 are arranged so as to overlap each other, as shown in FIG. The fixed side arm portion 14 of the fixed side coil electrode 12 and the movable side protruding portion 26 of the movable side coil electrode 22 overlap, and the fixed side protruding portion 16 of the fixed side coil electrode 12 and the movable side arm portion 24 of the movable side coil electrode 22 overlap. The fixed side coil part 15 of the fixed side coil electrode 12 and the movable side coil part 25 of the movable side coil electrode 22 are arranged so as to overlap each other.

図4に示した電流の方向でもわかるように、重なり合う固定側コイル部15と可動側コイル部25では同じ方向に電流が流れるため強い軸線方向の磁界が生じる。固定側アーム部14と可動側突出部26、固定側突出部16と可動側アーム部24とが重なる部分では、軸線方向の磁界を生じる円周方向成分の電流が小さく、このままでは磁界は弱くなる。   As can be seen from the direction of current shown in FIG. 4, the current flows in the same direction in the overlapping fixed coil portion 15 and movable coil portion 25, and thus a strong magnetic field in the axial direction is generated. In the portion where the fixed side arm portion 14 and the movable side protruding portion 26 and the fixed side protruding portion 16 and the movable side arm portion 24 overlap, the current of the circumferential component that generates the magnetic field in the axial direction is small, and the magnetic field is weakened as it is. .

本実施の形態においては、図2等に示すように、アークシールド8と絶縁円筒1との間に磁性体9を備えている。この磁性体9は均等な厚みの板状で、アークシールド8の曲面に沿って湾曲した形状をしている。固定側電極10と可動側電極20の突出部16、26とアーム部14、24とが重なる部分のように、円周方向の電流が小さく、軸線方向に磁界を生じにくい部分に対応した位置に磁性体9は取り付けられる。   In the present embodiment, a magnetic body 9 is provided between the arc shield 8 and the insulating cylinder 1 as shown in FIG. The magnetic body 9 is a plate having a uniform thickness and is curved along the curved surface of the arc shield 8. A position corresponding to a portion where the current in the circumferential direction is small and a magnetic field is hardly generated in the axial direction, such as a portion where the protruding portions 16 and 26 of the fixed side electrode 10 and the movable side electrode 20 overlap with the arm portions 14 and 24. The magnetic body 9 is attached.

本実施の形態においては、固定側コイル電極12の固定側アーム部14と可動側コイル電極22の可動側突出部26、固定側コイル電極12の固定側突出部16と可動側コイル電極22の可動側アーム部24とが重なる部分で軸線方向の磁界が生じにくく、固定側電極10、可動側電極20の軸中心からこの磁界を生じにくい領域を結ぶ線の延長線上の絶縁円筒1とアークシールド8の間に磁性体9は配置される。   In the present embodiment, the fixed side arm portion 14 of the fixed side coil electrode 12 and the movable side protruding portion 26 of the movable side coil electrode 22, and the fixed side protruding portion 16 of the fixed side coil electrode 12 and the movable side coil electrode 22 are movable. The magnetic field in the axial direction is unlikely to be generated at the portion where the side arm 24 overlaps, and the insulating cylinder 1 and the arc shield 8 on the extension line of the line connecting the regions where the magnetic field is difficult to be generated from the axial centers of the fixed side electrode 10 and the movable side electrode 20. In between, the magnetic body 9 is arrange | positioned.

この磁性体9の配置により、この磁界を生じにくい部分の磁界を強めることができ、軸線方向の磁界分布を均一化することが可能となり、電流遮断器にアークを拡散する面積が拡大するため遮断性能が向上する。   The arrangement of the magnetic body 9 can intensify the magnetic field in a portion where the magnetic field is difficult to be generated, and the magnetic field distribution in the axial direction can be made uniform. Performance is improved.

このように固定側コイル電極12と可動側コイル電極22との位置決めを固定側スリット部17と可動側スリット部27の重なりにより決めた場合、磁性体9の幅WFは、磁界解析の結果、図2に示すように磁性体の内側半径RF、コイルの半径RC、コイル突出部の幅WC、スリット部の幅WSを用いて、WC≦WF≦(2×WC+WS)×RF/RCとするとき、つまり磁性体9の幅WFをコイル突出部の幅WC以上とし、かつ磁界が弱くなる領域の幅である、コイル突出部の幅WCの2倍とスリット部の幅WSとの和に半径の比率を乗じた値以下とした場合、磁界分布を特に均一とすることができる。   As described above, when the positioning of the fixed side coil electrode 12 and the movable side coil electrode 22 is determined by the overlap of the fixed side slit portion 17 and the movable side slit portion 27, the width WF of the magnetic body 9 is obtained as a result of magnetic field analysis. When using WC ≦ WF ≦ (2 × WC + WS) × RF / RC using the inner radius RF of the magnetic body, the radius RC of the coil, the width WC of the coil protrusion, and the width WS of the slit as shown in FIG. That is, the ratio of the radius to the sum of the width WC of the coil projecting portion WC and the width WS of the slit portion, which is the width of the region where the magnetic field 9 becomes weaker than the width WC of the coil projecting portion WF. When the value is equal to or less than the value multiplied by, the magnetic field distribution can be made particularly uniform.

本実施の形態1に記載した構造を用いることで、電極内部に磁性体9を配置し、通電したときに生じる温度上昇なしに、磁界を均一にすることができるため、小形で遮断性能に優れた真空バルブを得ることができる。   By using the structure described in the first embodiment, the magnetic body 9 is arranged inside the electrode, and the magnetic field can be made uniform without increasing the temperature when energized. A vacuum valve can be obtained.

実施の形態2.
本実施の形態に係る真空バルブの横断面図を図6に示す。なお、図6においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 2. FIG.
FIG. 6 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 6, similarly to FIG. 2, the fixed side electrode 10 and the movable side electrode 20 are observed from the upper side (the side of the fixed side end plate 2), so the lower surface of the fixed side electrode 10, the fixed side electrode 10. The movable electrode 20 and the like located on the lower side cannot be directly observed. For the parts that cannot be directly seen in this way, the numbers in the figure are parenthesized.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に係る真空バルブと同じであり、実施の形態1に係る真空バルブでは固定側コイル電極12及び可動側コイル電極22が、それぞれ3つの固定側コイル部15、可動側コイル部25に分割され、固定側スリット部17と可動側スリット部27とが重なり合うように配置されていたのに対し、本実施の形態においては、固定側コイル部15、可動側コイル部25が4つに分割され、固定側突出部16と可動側突出部26の位置が重なるように配置されている点で異なっている。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve according to the first embodiment. In the vacuum valve according to the first embodiment, the fixed coil electrode 12 and the movable coil electrode 22 are respectively Whereas the fixed side slit portion 17 and the movable side slit portion 27 are arranged so as to overlap with each other, the fixed side coil portion 15 and the movable side coil portion 25 are arranged so as to overlap each other. The coil part 15 and the movable side coil part 25 are divided into four parts, and are different in that they are arranged so that the positions of the fixed side protruding part 16 and the movable side protruding part 26 overlap.

固定側コイル電極12、可動側コイル電極22をそれぞれの突出部が重なるように位置を合わせた場合においても、固定側コイル部15と可動側コイル部25とが重なる部分では、固定側電極10、可動側電極20の間に電流が流れたときに、同じ円周方向に電流が流れるため軸線方向に強い磁界を生じることができるが、固定側突出部16と可動側突出部26とが重なる部分付近では円周方向の電流は小さく、生じる磁界も弱くなる。   Even when the fixed-side coil electrode 12 and the movable-side coil electrode 22 are aligned so that their protruding portions overlap each other, the fixed-side electrode 10, When a current flows between the movable side electrodes 20, a current flows in the same circumferential direction, so that a strong magnetic field can be generated in the axial direction, but a portion where the fixed side protruding portion 16 and the movable side protruding portion 26 overlap. In the vicinity, the current in the circumferential direction is small and the generated magnetic field is weak.

電極の軸中心から固定側突出部16、可動側突出部26が重なる部分を結ぶ延長線上で、かつ絶縁円筒1とアークシールド8との間に磁性体9を配置する。この磁性体9は実施の形態1と同様に均等な厚みの板状で、アークシールド8の曲面に沿って湾曲した形状であり、本実施の形態では鉄コバルト合金を用いた。磁性体9の配置により固定側突出部16と可動側突出部26とが重なる部分付近の磁界が強められ、磁界分布を均一化することができ、電流遮断時にアークを拡散する面積を拡大することができるため遮断特性を向上させることができる。   A magnetic body 9 is disposed on an extension line connecting a portion where the fixed side protrusion 16 and the movable side protrusion 26 overlap from the axial center of the electrode and between the insulating cylinder 1 and the arc shield 8. The magnetic body 9 is a plate having a uniform thickness as in the first embodiment, and is curved along the curved surface of the arc shield 8. In this embodiment, an iron cobalt alloy is used. By arranging the magnetic body 9, the magnetic field in the vicinity of the portion where the fixed protrusion 16 and the movable protrusion 26 overlap is strengthened, the magnetic field distribution can be made uniform, and the area where the arc is diffused when the current is interrupted is enlarged. Therefore, the blocking characteristic can be improved.

固定側突出部16と可動側突出部26とが重なるように固定側電極10と可動側電極20とを配置した場合、磁性体9の幅WFは、磁性体9の内半径をRF、突出部幅をWC、アーム部幅をWA、スリット部の幅をWS、コイルの半径をRCとしたとき、WC≦WF≦(2×WA+WC+2×WS)×RF/RCとする時、つまり磁性体9の幅WFをコイル突出部の幅WC以上とし、かつ磁界が弱くなる領域の幅である、アーム部に幅WAの2倍とコイル突出部の幅WCとスリット部の幅WSの2倍との和に半径の比率を乗じた値以下とした場合、磁界分布を特に均一にすることができることが磁界解析により判明した。   When the fixed-side electrode 10 and the movable-side electrode 20 are arranged so that the fixed-side protruding portion 16 and the movable-side protruding portion 26 overlap, the width WF of the magnetic body 9 is such that the inner radius of the magnetic body 9 is RF and the protruding portion When the width is WC, the arm width is WA, the slit width is WS, and the coil radius is RC, when WC ≦ WF ≦ (2 × WA + WC + 2 × WS) × RF / RC, that is, the magnetic body 9 The width WF is equal to or larger than the width WC of the coil protrusion, and the width of the region where the magnetic field is weakened. The sum of the width WA of the arm, the width WC of the coil protrusion, and the width WS of the slit It was found from the magnetic field analysis that the magnetic field distribution can be made particularly uniform when the value is not more than the value obtained by multiplying the ratio by the radius ratio.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not arranged inside the electrode, the magnetic field can be made uniform without being adversely affected by the temperature rise at the time of energizing the current, and it is small in size and has a blocking performance. An excellent vacuum valve can be obtained.

実施の形態3.
本実施の形態に係る真空バルブの横断面図を図7に示す。なお、図7においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 3 FIG.
FIG. 7 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 7, similarly to FIG. 2, the fixed side electrode 10 and the movable side electrode 20 are observed from the upper side (the side of the fixed side end plate 2), so the lower surface of the fixed side electrode 10, the fixed side electrode 10. The movable electrode 20 and the like located on the lower side cannot be directly observed. For the parts that cannot be directly seen in this way, the numbers in the figure are parenthesized.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に記載の真空バルブと同じであり、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分割され、重なり合って配置されている。本実施の形態では、これに対応して絶縁円筒1とアークシールド8との間に配置した3つの磁性体の構成が異なっている。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve described in the first embodiment, and the fixed side coil portion 15 constituting the fixed side electrode 10 and the movable side constituting the movable side electrode 20. Each of the coil portions 25 is divided into three parts and arranged so as to overlap each other. In the present embodiment, the configuration of the three magnetic bodies arranged between the insulating cylinder 1 and the arc shield 8 is different correspondingly.

なお、本実施の形態およびこれ以降に示す実施の形態においては、基本的に実施の形態1と固定側電極10、可動側電極20の形状、配置が同様の構成を用いて説明しているが、これに限定されるものではない。固定側電極10、可動側電極20の形状、配置を実施の形態2に示したように、コイル部15、25を4分割して突出部16、26どうしを重なり合う構成とすることもでき、またそれ以外の構成とすることもできる。ただし、固定側電極10、可動側電極20の形状、配置を変更した場合、磁性体9等その他の構成も同時に変更する必要がある場合もあり注意が必要である。   In the present embodiment and the following embodiments, the configuration and arrangement of the fixed-side electrode 10 and the movable-side electrode 20 are basically the same as those in the first embodiment. However, the present invention is not limited to this. As shown in the second embodiment, the shape and arrangement of the fixed side electrode 10 and the movable side electrode 20 can be configured such that the coil parts 15 and 25 are divided into four parts and the protruding parts 16 and 26 overlap each other. Other configurations can also be used. However, when the shape and arrangement of the fixed side electrode 10 and the movable side electrode 20 are changed, it is necessary to change other configurations such as the magnetic body 9 at the same time.

実施の形態1においては、磁性体9は鉄系の合金を用い、均等な厚みの板状で、アークシールド8の形状に沿って湾曲させた形状を用いていた。本実施の形態においては、磁性体9cが2種類の磁性体材料により構成され、円周方向の両端に位置する磁性体9aと、中央部分に位置する磁性体9bを構成する磁性体材料が異なっている。具体的には磁性体9cの円周方向の両端の磁性体9aは鉄からなり、中央部分の磁性体9bは純鉄よりも透磁率の高い鉄コバルト合金で形成されている。   In the first embodiment, the magnetic body 9 is made of an iron-based alloy, is a plate having a uniform thickness, and has a shape curved along the shape of the arc shield 8. In the present embodiment, the magnetic body 9c is composed of two kinds of magnetic materials, and the magnetic body materials constituting the magnetic body 9a located at both ends in the circumferential direction and the magnetic body 9b located in the central portion are different. ing. Specifically, the magnetic bodies 9a at both ends in the circumferential direction of the magnetic body 9c are made of iron, and the magnetic body 9b at the center is formed of an iron cobalt alloy having a higher magnetic permeability than pure iron.

本実施の形態においては、固定側電極10と可動側電極20の位置関係は、実施の形態1と同様であり、それぞれのスリット部17、27が一致するように配置している。この時、固定側コイル電極12のアーム部14と可動側コイル電極22の突出部26とが重なり、また固定側コイル電極12の突出部16と可動側コイル電極22のアーム部24とが重なり合う。これらの部分では円周方向の電流が小さく、生じる磁界も弱くなる。   In the present embodiment, the positional relationship between the fixed side electrode 10 and the movable side electrode 20 is the same as that in the first embodiment, and the slit portions 17 and 27 are arranged so as to coincide with each other. At this time, the arm portion 14 of the fixed coil electrode 12 and the protruding portion 26 of the movable coil electrode 22 overlap, and the protruding portion 16 of the fixed coil electrode 12 and the arm 24 of the movable coil electrode 22 overlap. In these portions, the current in the circumferential direction is small, and the generated magnetic field is also weakened.

この磁界の低い部分を詳細に検討すると、その中央部分で最も磁界が弱く、周辺部分ではやや強くなっている。本実施の形態に用いた磁性体9cは両端には透磁率が低い磁性体材料を用い、中央部分には透磁率の高い磁性体材料を用いているので、中央部分の特に磁界が弱い部分では大きく磁界を強め、その周囲の部分のやや磁界が低い部分では磁界を強める効果は比較的小さく、磁界の分布をより均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   When this low magnetic field part is examined in detail, the magnetic field is the weakest at the central part and slightly strong at the peripheral part. The magnetic body 9c used in the present embodiment uses a magnetic material with low magnetic permeability at both ends and a magnetic material with high magnetic permeability at the center portion. The effect of strengthening the magnetic field greatly and the magnetic field in the surrounding area where the magnetic field is slightly low is relatively small, the distribution of the magnetic field can be made more uniform, and a small vacuum valve with excellent blocking characteristics can be obtained. it can.

本実施の形態において、両端の磁性体9aは、それぞれ磁性体9cの全体の1/4の幅とし、中央部分の磁性体9bは磁性体9cの全体の1/2の幅として3つの部分に分割したがこれに限定されるものではなく、分割比率は自由に設定することができる。ただし、両端部分には透磁率の低い磁性体、中央部分には透磁率の高い磁性体を用いることが重要である。   In the present embodiment, the magnetic body 9a at both ends has a width of 1/4 of the entire magnetic body 9c, and the magnetic body 9b at the center portion has a width of 1/2 of the entire magnetic body 9c. Although it divided | segmented, it is not limited to this, A division | segmentation ratio can be set freely. However, it is important to use a magnetic body having a low permeability at both ends and a magnetic body having a high permeability at the center.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による信頼性の低下はなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not disposed inside the electrode, there is no decrease in reliability due to a temperature rise during current application, the magnetic field can be made uniform, and the shut-off performance is small. An excellent vacuum valve can be obtained.

実施の形態4.
本実施の形態に係る真空バルブの横断面図を図8に示す。なお、図8においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 4 FIG.
FIG. 8 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 8, similarly to FIG. 2, the fixed-side electrode 10 and the movable-side electrode 20 are observed from the upper side (the fixed-side end plate 2 side). The movable electrode 20 and the like located on the lower side cannot be directly observed. For the parts that cannot be directly seen in this way, the numbers in the figure are parenthesized.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に記載の真空バルブと同じであり、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分割されている。これらの構成は、上述のように一例であり、これ以外の構成であっても用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve described in the first embodiment, and the fixed side coil portion 15 constituting the fixed side electrode 10 and the movable side constituting the movable side electrode 20. Each of the coil portions 25 is divided into three. These configurations are examples as described above, and other configurations can be used.

本実施の形態では、絶縁円筒1とアークシールド8との間に配置した3つの磁性体の形状が異なっている。実施の形態1においては、均等な厚みの板状の鉄系合金を用い、アークシールド8の形状に合わせて湾曲した形状の磁性体9を用いていた。本実施の形態においては、鉄系合金を用い、アークシールド8の形状に合わせて湾曲させた磁性体9dを用いる点では実施の形態1と同じであるが、磁性体9dの厚みが均一ではなく、円周方向の両端が薄く、中央部分が厚くなっている点で異なっている。   In the present embodiment, the shapes of the three magnetic bodies arranged between the insulating cylinder 1 and the arc shield 8 are different. In the first embodiment, a plate-like iron-based alloy having an equal thickness is used, and the magnetic body 9 having a curved shape according to the shape of the arc shield 8 is used. This embodiment is the same as Embodiment 1 in that an iron-based alloy is used and a magnetic body 9d curved according to the shape of the arc shield 8 is used, but the thickness of the magnetic body 9d is not uniform. The difference is that both ends in the circumferential direction are thin and the central part is thick.

電極間の通電時に発生する磁界が弱くなる部分は、その中央部分で最も磁界が弱く、その周囲では中央部分よりやや強くなる。一方、磁性体9dの形状が中央部分が厚く、円周方向の両端が薄くなっている。薄い部分ほど磁気飽和が起こりやすく磁界を強める効果は少ないため、最も磁界が弱い中央部分に対応する磁性体9dは厚く、磁界を強める効果が大きく、反対に円周方向の両端では磁性体9dは薄く磁界を強める効果は弱くなるため、磁性体9を用いないときの磁界分布を補い、磁界の分布をより均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   The portion where the magnetic field generated when the current is applied between the electrodes is weakened has the weakest magnetic field at the central portion, and is slightly stronger around the central portion. On the other hand, the shape of the magnetic body 9d is thick at the center and thin at both ends in the circumferential direction. The thinner part is more likely to cause magnetic saturation and the effect of strengthening the magnetic field is less. Therefore, the magnetic body 9d corresponding to the central part where the magnetic field is weakest is thicker and the effect of strengthening the magnetic field is larger. Since the effect of thinly strengthening the magnetic field is weakened, the magnetic field distribution when the magnetic body 9 is not used can be compensated, the magnetic field distribution can be made more uniform, and a small vacuum valve with excellent blocking characteristics can be obtained.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not arranged inside the electrode, the magnetic field can be made uniform without being adversely affected by the temperature rise at the time of energizing the current, and it is small in size and has a blocking performance. An excellent vacuum valve can be obtained.

実施の形態5.
本実施の形態に係る真空バルブの横断面図を図9に示す。なお、図9においても、図2等と同様に上側(固定側端板2の側)から観察しており、直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 5. FIG.
FIG. 9 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 9 as well, the numbers in the figure are parenthesized for portions that are observed from the upper side (fixed side end plate 2 side) as in FIG.

本実施の形態に係る真空バルブも基本的な構成は実施の形態1に記載の真空バルブと同じで、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3か所に分かれて配置している。これらの配置は一例であり、これらと異なる構成も用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve described in the first embodiment, and the stationary coil 15 that constitutes the stationary electrode 10 and the movable coil that constitutes the movable electrode 20. The part 25 is divided into three locations. These arrangements are examples, and configurations different from these can also be used.

本実施の形態においては、それぞれの磁性体9hが上下方向(軸線方向)に延びる棒状である点が異なっている。実施の形態1においては、磁性体9は鉄系の合金を用い、均一な厚みの板状で、アークシールド8の形状に沿って湾曲した形状をしている。本実施の形態においては、磁性体9hは上下方向(軸線方向)に延びる棒状の部材に5分割されており、両端の2つの磁性体9g、中間位置の2つの磁性体9f、中央部分の一つの磁性体9eで構成されている。   The present embodiment is different in that each magnetic body 9h has a rod shape extending in the vertical direction (axial direction). In the first embodiment, the magnetic body 9 uses an iron-based alloy, is a plate having a uniform thickness, and is curved along the shape of the arc shield 8. In the present embodiment, the magnetic body 9h is divided into five rod-shaped members extending in the vertical direction (axial direction), two magnetic bodies 9g at both ends, two magnetic bodies 9f at an intermediate position, and one central portion. It consists of two magnetic bodies 9e.

5つの磁性体9hの断面積は、周囲の磁性体9g<中間位置の磁性体9h<中央部分の磁性体9eの関係となっており、それぞれの磁性体の取付間隔も中央部分から両端に向けて広くなるように構成している。このような磁性体9hの構成とすることにより、左右方向(円周方向)に見ると磁性体9は中央部分の方が両端の部分よりも断面積が広く、両端よりも中央部の方が磁界を強める効果が大きい。   The cross-sectional area of the five magnetic bodies 9h is such that the surrounding magnetic body 9g <the intermediate position magnetic body 9h <the central portion magnetic body 9e, and the mounting interval of each magnetic body is also directed from the central portion toward both ends. It is configured to be wide. With such a configuration of the magnetic body 9h, when viewed in the left-right direction (circumferential direction), the magnetic body 9 has a larger cross-sectional area at the center than at both ends, and the center at the center rather than at both ends. Great effect of strengthening magnetic field.

本実施の形態においては、固定側電極10と可動側電極20の位置関係は、実施の形態1と同様であり、それぞれのスリット部17、27が一致するように配置している。このスリット部17、27を中心とする部分では円周方向の電流が小さく、生じる磁界も弱くなる。さらに詳細には、中央部分で最も磁界が弱く、両端ではやや強くなっている。   In the present embodiment, the positional relationship between the fixed side electrode 10 and the movable side electrode 20 is the same as that in the first embodiment, and the slit portions 17 and 27 are arranged so as to coincide with each other. In the portion centered on the slit portions 17 and 27, the current in the circumferential direction is small, and the generated magnetic field is also weakened. More specifically, the magnetic field is weakest at the center and slightly stronger at both ends.

この磁界が弱くなる部分に、本実施の形態に用いた5つに分割した磁性体9hを用いると中央部分では磁界を強める効果が大きく、両端では磁界を強める効果が小さいので、磁界の分布を均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   If the magnetic material 9h divided into five parts used in the present embodiment is used in the part where the magnetic field is weakened, the effect of strengthening the magnetic field is large at the central part and the effect of strengthening the magnetic field is small at both ends. It is possible to obtain a vacuum valve that can be made uniform and has a small size and excellent blocking characteristics.

本実施の形態においては、磁性体9hを5分割にし、両端方向(円周方向)の磁性体ほど細く、設置間隔を広くしたが、磁性体の幅、設置間隔は特に限定するものではなく、磁性体の断面積が、中央部分で広く、両端の部分では狭くなるようにすればよい。   In the present embodiment, the magnetic body 9h is divided into five parts, and the magnetic body in both end directions (circumferential direction) is thinner and wider in the installation interval. However, the width and installation interval of the magnetic body are not particularly limited, What is necessary is just to make it the cross-sectional area of a magnetic body be large in the center part, and may become narrow in the part of both ends.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。     In the vacuum valve structure shown in the present embodiment, since no magnetic material is disposed inside the electrode, the magnetic field can be made uniform without being adversely affected by the temperature rise during current application, and it is small and has excellent blocking performance. A vacuum valve can be obtained.

実施の形態7.
本実施の形態に係る真空バルブの横断面図を図10に示す。なお、図10においても、図2等と同様に上側(固定側端板2の側)から観察しており、直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 7 FIG.
FIG. 10 shows a cross-sectional view of the vacuum valve according to this embodiment. In FIG. 10 as well, the numbers in the figure are parenthesized for portions that are observed from the upper side (the fixed side end plate 2 side) as in FIG.

本実施の形態に係る真空バルブも基本的な構成は実施の形態1に記載した真空バルブと同じで、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分かれて、重なって配置されている。上述のようにこの構成は一例であり、異なる構成であっても用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve described in the first embodiment, and the fixed coil 15 that constitutes the fixed electrode 10 and the movable coil that constitutes the movable electrode 20. Each of the portions 25 is divided into three parts and arranged in an overlapping manner. As described above, this configuration is an example, and different configurations can be used.

例えば実施の形態1においては、磁性体は、固定側電極10と可動側電極20とによって生じる磁界が弱くなる部分に対応した位置に配置されていた。具体的には、実施の形態1においては、固定側電極10の固定側スリット部17と可動側電極20の可動側スリット部27が重なるように配置されており、この部分近傍では磁界が弱くなる。そこでこの部分に対応した位置に磁性体9を配置していた。   For example, in the first embodiment, the magnetic body is disposed at a position corresponding to a portion where the magnetic field generated by the fixed side electrode 10 and the movable side electrode 20 becomes weak. Specifically, in the first embodiment, the fixed-side slit portion 17 of the fixed-side electrode 10 and the movable-side slit portion 27 of the movable-side electrode 20 are arranged so as to overlap each other, and the magnetic field becomes weak in the vicinity of this portion. . Therefore, the magnetic body 9 is arranged at a position corresponding to this portion.

本実施の形態においては、アークシールド8自体を磁性体材料で形成して、磁性体(兼アークシールド)9iを形成し、実施の形態1で磁性体9を配置した部分、つまり固定側電極10と可動側電極20とによって生じる磁界の弱い部分では、磁性体9iの厚みを大きくして磁性体(肉厚部)9kを形成する。   In the present embodiment, the arc shield 8 itself is formed of a magnetic material to form a magnetic body (also as an arc shield) 9i, and the portion where the magnetic body 9 is disposed in the first embodiment, that is, the fixed electrode 10 In the portion where the magnetic field generated by the movable side electrode 20 is weak, the thickness of the magnetic body 9i is increased to form the magnetic body (thick portion) 9k.

本実施の形態では、磁性体(兼アークシールド)9mは磁性体(肉厚部)9kも含めて鉄系の合金を用いて形成している。磁性体(兼アークシールド)9mの薄い部分も磁性体(肉厚部)9kとも同じ材質で形成しているので基本的には透磁率は同じであり、磁界を強くする効果は同じであるが、薄い部分に比べ磁性体(肉厚部)9kでは、実施の形態4でも説明したように磁気飽和が起こりにくく、電界を強める効果も大きい。そのため磁界の分布を均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   In the present embodiment, the magnetic body (also serving as an arc shield) 9m is formed using an iron-based alloy including the magnetic body (thick portion) 9k. The thin part of the magnetic body (also known as arc shield) 9m is made of the same material as the magnetic body (thick part) 9k, so the magnetic permeability is basically the same and the effect of strengthening the magnetic field is the same. Compared to the thin portion, the magnetic body (thick portion) 9k is less likely to cause magnetic saturation as described in the fourth embodiment, and has a great effect of increasing the electric field. Therefore, the distribution of the magnetic field can be made uniform, and a small vacuum valve having excellent blocking characteristics can be obtained.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the vacuum valve structure shown in the present embodiment, since no magnetic material is disposed inside the electrode, the magnetic field can be made uniform without being adversely affected by the temperature rise during current application, and it is small and has excellent blocking performance. A vacuum valve can be obtained.

1 絶縁円筒、2 固定側端板、3 可動側端板、4 固定側電極棒、5 可動側電極棒、6 ベローズ、7 ベローズカバー、8 アークシールド、9 磁性体、9a、b、c、d、e、f、g、h、i、j、k、m 磁性体、10 固定側電極、11固定側接点、12 固定側コイル電極、13 固定側リング部、14 固定側アーム部、15 固定側コイル部、16 固定側突出部、17 固定側スリット部、18 固定側支持材、20 可動側電極、21 可動側接点、22 可動側コイル電極、23 可動側リング部、24 可動側アーム部、25 可動側コイル部、26 可動側突出部、27 可動側スリット部、28 可動側支持材、RF 磁性体内半径、WF 磁性体幅、RC コイル半径、WC 突出部幅、WA アーム部幅。WS スリット部幅。 DESCRIPTION OF SYMBOLS 1 Insulating cylinder, 2 Fixed side end plate, 3 Movable side end plate, 4 Fixed side electrode rod, 5 Movable side electrode rod, 6 Bellows, 7 Bellows cover, 8 Arc shield, 9 Magnetic body, 9a, b, c, d , E, f, g, h, i, j, k, m Magnetic body, 10 fixed side electrode, 11 fixed side contact, 12 fixed side coil electrode, 13 fixed side ring part, 14 fixed side arm part, 15 fixed side Coil part, 16 Fixed side protrusion, 17 Fixed side slit part, 18 Fixed side support material, 20 Movable side electrode, 21 Movable side contact, 22 Movable side coil electrode, 23 Movable side ring part, 24 Movable side arm part, 25 Movable side coil part, 26 Movable side protrusion part, 27 Movable side slit part, 28 Movable side support material, RF magnetic body radius, WF magnetic body width, RC coil radius, WC projecting part width, WA arm part width. WS Slit width.

Claims (12)

円筒状の絶縁円筒の一方の端部を固定側端板、他方の端部を可動側端板で覆う真空容器と、
前記固定側端板に固設された固定側電極棒と、
前記可動側端板に進退可能に設けられた可動側電極棒と、
前記固定側電極棒と前記可動側電極棒の対向端に各々取り付けられた固定側電極、可動側電極と、
前記真空容器の内側で、前記固定側電極と前記可動側電極の周りに配置したアークシールドと、を備え、
前記固定側電極と前記可動側電極は、相互に対向する固定側接点、可動側接点と、
前記固定側接点と前記可動側接点の背面に各々配置され、前記固定側電極棒と前記可動側電極棒の間に電流が流れる場合に、電極棒の軸線に直交する円周方向に電流を流す固定側コイル電極、可動側コイル電極を各々有し、
前記固定側コイル電極と前記可動側コイル電極は、
中央部分に位置し前記固定側電極棒、前記可動側電極棒と各々接続する固定側リング部、可動側リング部と、
前記固定側リング部、前記可動側リング部の前記軸線に直交する面内に位置し、各々固定側スリット部、可動側スリット部により円周方向に複数に分割された同心円状の固定側コイル部、可動側コイル部と、
前記固定側リング部、前記可動側リング部から前記軸線に直交する方向へ延出し、前記固定側リング部と前記固定側コイル部の一端、前記可動側リング部と前記可動側コイル部の一端を各々接続する複数本の固定側アーム部、可動側アーム部と、
前記固定側コイル部の他端から前記固定側接点へ、前記可動側コイル部の他端から前記可動側接点へ突出し、電気的に各々接続する固定側突出部、可動側突出部と、
を有する真空バルブであって、
前記固定側コイル電極、前記可動側コイル電極の分割位置に対応し、前記アークシールドと前記真空容器との間に磁性体を備えたことを特徴とする真空バルブ。
A vacuum vessel covering one end of a cylindrical insulating cylinder with a fixed side end plate and the other end with a movable side end plate;
A fixed-side electrode rod fixed to the fixed-side end plate;
A movable-side electrode rod provided on the movable-side end plate so as to be movable back and forth;
A stationary electrode, a movable electrode, and a stationary electrode attached to opposite ends of the stationary electrode rod and the movable electrode rod,
An arc shield disposed around the fixed side electrode and the movable side electrode inside the vacuum vessel, and
The fixed-side electrode and the movable-side electrode are a fixed-side contact and a movable-side contact facing each other,
When the current flows between the fixed-side electrode rod and the movable-side electrode rod, the current flows in the circumferential direction perpendicular to the axis of the electrode rod. Each has a fixed coil electrode and a movable coil electrode,
The fixed coil electrode and the movable coil electrode are
A fixed-side ring portion that is located in a central portion and is connected to the movable-side electrode rod, and a movable-side ring portion;
A concentric fixed side coil portion that is located in a plane orthogonal to the axis of the fixed side ring portion and the movable side ring portion and is divided into a plurality of portions in the circumferential direction by the fixed side slit portion and the movable side slit portion, respectively. A movable coil portion;
The fixed side ring part, extending from the movable side ring part in a direction perpendicular to the axis line, the fixed side ring part and one end of the fixed side coil part, the movable side ring part and one end of the movable side coil part A plurality of fixed-side arm portions, movable-side arm portions each connected,
A fixed-side protruding portion, a movable-side protruding portion that protrudes from the other end of the fixed-side coil portion to the fixed-side contact, and protrudes from the other end of the movable-side coil portion to the movable-side contact;
A vacuum valve having
A vacuum valve comprising a magnetic material between the arc shield and the vacuum vessel, corresponding to the division position of the fixed coil electrode and the movable coil electrode.
前記固定側コイル電極、前記可動側コイル電極の分割数と前記磁性体の数が同数であることを特徴とする請求項1に記載の真空バルブ。   2. The vacuum valve according to claim 1, wherein the number of divisions of the stationary coil electrode and the movable coil electrode is the same as the number of the magnetic bodies. 前記固定側電極と前記可動側電極とが、前記固定側スリット部の位置と前記可動側スリット部の位置と各々重なり合って配置し、
前記軸線と前記両スリット部とを結ぶ線の延長線上に前記磁性体が配置されていることを特徴とする請求項1又は2に記載の真空バルブ。
The fixed side electrode and the movable side electrode are arranged so as to overlap with the position of the fixed side slit portion and the position of the movable side slit portion, respectively.
The vacuum valve according to claim 1 or 2, wherein the magnetic body is arranged on an extension line of a line connecting the axis and the slit portions.
前記磁性体の幅をWF、前記軸線から前記磁性体の距離をRF、突出部の幅をWC、スリット部の幅をWS、コイル電極の内半径をRCとしたときに、磁性体の幅WFは、
WC≦WF≦(2×WC+WS)×RF/RC
の関係を満たすことを特徴とする請求項3に記載の真空バルブ。
When the width of the magnetic body is WF, the distance of the magnetic body from the axis is RF, the width of the protrusion is WC, the width of the slit is WS, and the inner radius of the coil electrode is RC, the width WF of the magnetic body Is
WC ≦ WF ≦ (2 × WC + WS) × RF / RC
The vacuum valve according to claim 3, wherein:
前記固定側電極と前記可動側電極が、前記固定側突出部の位置と前記可動側突出部の位置と各々重なり合って配置し、
前記軸線と前記両突出部とを結ぶ線の延長線上に前記磁性体が配置されていることを特徴とする請求項1又は2に記載の真空バルブ。
The fixed side electrode and the movable side electrode are arranged so as to overlap with the position of the fixed side protruding portion and the position of the movable side protruding portion, respectively.
3. The vacuum valve according to claim 1, wherein the magnetic body is disposed on an extension of a line connecting the axis and the protrusions.
前記磁性体の幅をWF、前記軸線から前記磁性体の距離をRF、突出部の幅をWC、アーム部の幅をWA、スリット部の幅をWS、コイル電極の内半径をRCとしたときに、磁性体の幅WFは、
WC≦WF≦(2×WA+WC+2×WS)×RF/RC
の関係を満たすことを特徴とする請求項5に記載の真空バルブ。
When the width of the magnetic material is WF, the distance of the magnetic material from the axis is RF, the width of the protrusion is WC, the width of the arm is WA, the width of the slit is WS, and the inner radius of the coil electrode is RC The width WF of the magnetic material is
WC ≦ WF ≦ (2 × WA + WC + 2 × WS) × RF / RC
The vacuum valve according to claim 5, wherein:
前記磁性体が前記軸線に直交する円周方向に形成された複数の領域から構成され、前記各領域が、磁性体材料の異なる2種以上の領域からなることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   The said magnetic body is comprised from the some area | region formed in the circumferential direction orthogonal to the said axis line, and each said area | region consists of 2 or more types of area | regions from which a magnetic material differs. The vacuum valve according to any one of the above. 前記磁性体が前記軸線に直交する円周方向に形成された複数の領域から構成され、両端の領域ほど透磁率が高い磁性体材料で形成されていることを特徴とする請求項7に記載の真空バルブ。   The said magnetic body is comprised from the several area | region formed in the circumferential direction orthogonal to the said axis line, and it is formed with the magnetic body material with a high magnetic permeability in the area | region of both ends. Vacuum valve. 前記磁性体が前記軸線に直交する円周方向に厚みが変化しており、両端の領域ほど薄く、中央ほど厚く形成されていることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   The thickness of the said magnetic body is changing in the circumferential direction orthogonal to the said axis, It is formed so that the area | region of both ends is thin and it is thick at the center, It is any one of Claims 1-6 characterized by the above-mentioned. Vacuum valve. 前記磁性体が前記軸線に直交する円周方向に複数の領域に分割されており、両端ほど前記磁性体の断面積を小さくして隙間を空けて配置することを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   The magnetic body is divided into a plurality of regions in a circumferential direction orthogonal to the axis, and the cross-sectional area of the magnetic body is made smaller at both ends so as to leave a gap. The vacuum valve according to any one of the above. 前記磁性体と前記アークシールドが同一材料で一体に形成されていることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   The vacuum valve according to claim 1, wherein the magnetic body and the arc shield are integrally formed of the same material. 前記磁性体と前記アークシールドが同一材料で一体に形成され、前記磁性体が前記軸線に直交する円周方向に厚みを変化し、両端の領域ほど薄く、中央部分ほど厚く形成されていることを特徴とする請求項11に記載の真空バルブ。   The magnetic body and the arc shield are integrally formed of the same material, and the magnetic body has a thickness that changes in the circumferential direction perpendicular to the axis, and is thinner at both end regions and thicker at the central portion. The vacuum valve according to claim 11, which is characterized by:
JP2016018800A 2016-02-03 2016-02-03 Vacuum valve Active JP6651878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018800A JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018800A JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Publications (3)

Publication Number Publication Date
JP2017139116A true JP2017139116A (en) 2017-08-10
JP2017139116A5 JP2017139116A5 (en) 2018-09-13
JP6651878B2 JP6651878B2 (en) 2020-02-19

Family

ID=59566893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018800A Active JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Country Status (1)

Country Link
JP (1) JP6651878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117810018A (en) * 2023-12-15 2024-04-02 华中科技大学 Inter-circuit transverse magnetic field shielding structure of multi-fracture vacuum circuit breaker and optimization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117810018A (en) * 2023-12-15 2024-04-02 华中科技大学 Inter-circuit transverse magnetic field shielding structure of multi-fracture vacuum circuit breaker and optimization method

Also Published As

Publication number Publication date
JP6651878B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US3946179A (en) Vacuum interrupter
CN100409389C (en) Vacuum interrupter
JPS62103928A (en) Vacuum circuit breaker
EP0329410B1 (en) Vacuum interrupter
JP5281171B2 (en) Vacuum valve
JP5274676B2 (en) Vacuum valve
JP6651878B2 (en) Vacuum valve
JPS6113518A (en) Vacuum bulb for breaker
US9330869B2 (en) Vacuum valve
US9496106B2 (en) Electrode assembly and vacuum interrupter including the same
JPS58157017A (en) Vacuum valve for breaker
WO2011052109A1 (en) Vacuum valve
JP3568683B2 (en) Vacuum valve
JP5302723B2 (en) Vacuum valve
US20170032914A1 (en) Vacuum valve
JP3243162B2 (en) Vacuum valve
US20230154705A1 (en) Vacuum interrupter
JP2895449B2 (en) Vacuum valve
JPS6245401Y2 (en)
JPS5849975B2 (en) Vacuum cutter
JP2006019077A (en) Vacuum valve
JPH0547274A (en) Vacuum valve
JPH01163938A (en) Vacuum valve
JPH01117217A (en) Vacuum circuit breaker
JPS6347215B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R151 Written notification of patent or utility model registration

Ref document number: 6651878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250