JP2017137213A - Glassware for raman spectroscopy - Google Patents

Glassware for raman spectroscopy Download PDF

Info

Publication number
JP2017137213A
JP2017137213A JP2016018836A JP2016018836A JP2017137213A JP 2017137213 A JP2017137213 A JP 2017137213A JP 2016018836 A JP2016018836 A JP 2016018836A JP 2016018836 A JP2016018836 A JP 2016018836A JP 2017137213 A JP2017137213 A JP 2017137213A
Authority
JP
Japan
Prior art keywords
glass
raman
raman spectroscopy
sample
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016018836A
Other languages
Japanese (ja)
Inventor
克 岩尾
Katsu Iwao
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016018836A priority Critical patent/JP2017137213A/en
Publication of JP2017137213A publication Critical patent/JP2017137213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide glassware for Raman spectroscopy characterized by a low intensity of fluorescence emitted in Raman spectroscopy, a low production cost, and excellent water resistance.SOLUTION: The glassware for Raman spectroscopy comprises silicate glass in which the ratio between a maximum and a minimum of fluorescence intensity in the range of 1000-1600 cmwhen irradiated with excitation light at the wavelength of 785 nm, (maximum/minimum), is 4 or less.SELECTED DRAWING: Figure 1

Description

本発明は試料に励起光を照射し、試料からのラマン散乱光を観察するラマン分光装置に用いられる、試料を保持するためのスライドガラスやカバーガラス等のラマン分光測定用ガラス器具に関する。   The present invention relates to a glass instrument for Raman spectroscopic measurement such as a slide glass or a cover glass for holding a sample, which is used in a Raman spectroscopic apparatus that irradiates a sample with excitation light and observes Raman scattered light from the sample.

ラマン分光測定は、試料に励起光を照射した際に概ね1000〜1600cm−1の波数範囲において試料から発せられるラマン散乱光を検出することにより、構造の同定を行う測定方法である。通常、試料はスライドガラス上に載置し、その上をカバーガラスで覆った状態で測定を行う。ここで、試料に対し励起光を照射した際、スライドガラスやカバーガラスからは上記波数範囲において蛍光が発せられる。そのため、本来必要な試料からのラマン散乱光が、スライドガラスやカバーガラスからの蛍光に埋もれてしまい、正確に測定できないことがある。 Raman spectroscopic measurement is a measurement method for identifying a structure by detecting Raman scattered light emitted from a sample in a wave number range of approximately 1000 to 1600 cm −1 when the sample is irradiated with excitation light. Usually, the sample is placed on a slide glass and the measurement is performed with the sample covered with a cover glass. Here, when the sample is irradiated with excitation light, fluorescence is emitted from the slide glass or the cover glass in the wave number range. For this reason, the Raman scattered light from the originally required sample is buried in the fluorescence from the slide glass or the cover glass, and may not be measured accurately.

そこで特許文献1には、励起光を照射した際の蛍光の発生が比較的少ないCaF単結晶、合成石英ガラスまたはフッ化物ガラスからなる透明体を用いて試料を保持するラマン顕微分光装置が提案されている。 Therefore, Patent Document 1 proposes a Raman microspectroscopic device that holds a sample using a transparent body made of CaF 2 single crystal, synthetic quartz glass, or fluoride glass, which generates relatively little fluorescence when irradiated with excitation light. Has been.

特開2012−237646号公報JP2012-237646A

特許文献1に記載の透明体は気相法を用いて作製されるため、大量生産に不向きであり、製造コストが高くなりやすい。また、フッ化物ガラスは耐水性に乏しく、水を含む試料を保持する際に加水分解するおそれがあるため、試料の保持具としては適さない。   Since the transparent body described in Patent Document 1 is manufactured using a vapor phase method, it is not suitable for mass production and the manufacturing cost tends to be high. In addition, fluoride glass is poor in water resistance and may be hydrolyzed when holding a sample containing water, and thus is not suitable as a sample holder.

以上に鑑み、ラマン分光測定時に発せられる蛍光の強度が小さく、かつ、製造コストが安価であり、耐水性にも優れたラマン分光測定用ガラス器具を提供することを目的とする。   In view of the above, an object of the present invention is to provide a glass instrument for Raman spectroscopic measurement that has a low intensity of fluorescence emitted at the time of Raman spectroscopic measurement, has low manufacturing cost, and is excellent in water resistance.

本発明のラマン分光測定用ガラス器具は、波長785nmの励起光を照射した際に1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比(最大値/最小値)が4以下であるケイ酸塩ガラスからなることを特徴とする。 The glass instrument for Raman spectroscopic measurement of the present invention has a ratio (maximum value / minimum value) of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 when irradiated with excitation light having a wavelength of 785 nm. It consists of a certain silicate glass.

ラマン分光測定装置の励起光源には一般にレーザー光が用いられる。励起波長は400〜1100nmの範囲から選択され、一般的には波長488nm、523nm、633nm、785nm等の光が用いられる。C−H結合やC−C結合の振動を有する有機化合物や生体組織等の有機物質のラマン分光測定において、488nmや523nmの低波長の励起光を用いると、光エネルギーが高すぎて有機成分が損傷してしまい、観察が困難になるおそれがある。そこで有機物質のラマン分光測定には、光エネルギーの低い波長633nmや785nm、好ましくは785nmの高波長の励起光を用いられる。   Laser light is generally used as an excitation light source for a Raman spectrometer. The excitation wavelength is selected from the range of 400 to 1100 nm, and generally light having a wavelength of 488 nm, 523 nm, 633 nm, 785 nm, or the like is used. In Raman spectroscopic measurement of organic compounds having vibrations of C—H bonds and C—C bonds, and organic materials such as biological tissues, if excitation light with a low wavelength of 488 nm or 523 nm is used, the light energy is too high and the organic components are It may be damaged, making observation difficult. Therefore, for the Raman spectroscopic measurement of an organic substance, excitation light having a high wavelength of 633 nm or 785 nm, preferably 785 nm, having a low light energy is used.

試料保持のための透明基板として市販されている一般的なスライドガラスは、波長785nmの光で励起すると1400cm−1(880nm)付近に高い強度の蛍光ピークが発現する。この蛍光ピークにより、本来測定すべき試料のラマンスペクトルが隠れて不明瞭となり、測定が妨げられる。 When a general slide glass marketed as a transparent substrate for holding a sample is excited with light having a wavelength of 785 nm, a fluorescent peak with a high intensity appears in the vicinity of 1400 cm −1 (880 nm). This fluorescence peak hides the Raman spectrum of the sample to be originally measured and obscure it, thereby hindering measurement.

本発明のラマン分光測定用ガラス器具は、波長785nmの励起光を照射した際に1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比が4以下であり、蛍光ピークが比較的小さいため、試料によるラマン散乱光の検出に影響を与えにくい。また、本発明のラマン分光測定用ガラス器具はケイ酸塩ガラスからなるため、通常の溶融急冷法により比較的容易に製造でき、製造コストが安価であるとともに、従来のラマン分光測定用の試料保持具と比較して耐水性にも優れるという利点がある。 The glass instrument for Raman spectroscopic measurement of the present invention has a ratio of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 when irradiated with excitation light having a wavelength of 785 nm, and the fluorescence peak is relatively low. Since it is small, it hardly affects the detection of Raman scattered light by the sample. In addition, since the glass instrument for Raman spectroscopic measurement of the present invention is made of silicate glass, it can be manufactured relatively easily by a normal melting and quenching method, the manufacturing cost is low, and a conventional sample holder for Raman spectroscopic measurement is used. There is an advantage that it is excellent in water resistance as compared with the tool.

本発明のラマン分光測定用ガラス器具を構成するケイ酸塩ガラスにおいて、Fe、MnO、Cr、V、NiO、Co、CeO及びCuOの合量が200ppm以下であることが好ましい。これらは波長785nmの励起光を照射した際に、1400cm−1付近に強い蛍光ピークを発現する成分である。これらの成分の含有量を上記の通り規制することにより、励起光を照射した際の1000〜1600cm−1の範囲における蛍光の発生を低減することができる。 In the silicate glass constituting the glass instrument for Raman spectroscopic measurement of the present invention, the total amount of Fe 2 O 3 , MnO 2 , Cr 2 O 3 , V 2 O 5 , NiO, Co 2 O 3 , CeO 2 and CuO Is preferably 200 ppm or less. These are components that exhibit a strong fluorescence peak in the vicinity of 1400 cm −1 when irradiated with excitation light having a wavelength of 785 nm. By regulating the contents of these components as described above, the generation of fluorescence in the range of 1000 to 1600 cm −1 when irradiated with excitation light can be reduced.

本発明のラマン分光測定用ガラス器具を構成するケイ酸塩ガラスが、質量%で、SiO 40〜80%、Al 0〜30%、B 0〜30%、RO 0〜20%(RはLi、Na及びKから選択される少なくとも1種)、R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種) 0〜30%を含有することが好ましい。このよいにすれば、耐候性に優れたガラス器具が得られやすくなる。 Silicate glass constituting the Raman spectrometry glassware of the present invention, in mass%, SiO 2 40~80%, Al 2 O 3 0~30%, B 2 O 3 0~30%, R 2 O 0 to 20% (R is at least one selected from Li, Na and K), R'O (R 'is at least one selected from Mg, Ca, Sr and Ba) 0 to 30% It is preferable. If it makes this good, it will become easy to obtain the glassware excellent in the weather resistance.

本発明のラマン分光測定用ガラス器具を構成するケイ酸塩ガラスがAsを含有しないことが好ましい。Asは環境負荷物質であるため、上記構成にすれば、ガラス器具の環境負荷を低減することができる。 It is preferable that silicate glass constituting the Raman spectrometry glassware of the present invention does not contain As 2 O 3. Since As 2 O 3 is an environmentally hazardous substance, the above configuration can reduce the environmental burden of the glass apparatus.

本発明のラマン分光測定用ガラス器具は、波長600nm以上の励起光を用いたラマン分光測定に使用されることが好ましい。本発明のラマン分光測定用ガラス器具は、特に波長600nm以上の高波長の励起光を照射した際の蛍光の発生が比較的少ないため、試料からのラマン散乱光の検出に影響を与えにくい。そのため、波長600nm以上の励起光を用いたラマン分光測定に好適である。   The glass instrument for Raman spectroscopic measurement of the present invention is preferably used for Raman spectroscopic measurement using excitation light having a wavelength of 600 nm or more. Since the glass instrument for Raman spectroscopic measurement of the present invention generates relatively little fluorescence particularly when irradiated with excitation light having a high wavelength of 600 nm or more, it hardly affects detection of Raman scattered light from a sample. Therefore, it is suitable for Raman spectroscopic measurement using excitation light having a wavelength of 600 nm or more.

本発明のラマン分光測定用ガラス器具は、ラマン分光測定用のスライドガラスまたはカバーガラスとして使用されることが好ましい。   The glass instrument for Raman spectroscopic measurement of the present invention is preferably used as a slide glass or cover glass for Raman spectroscopic measurement.

本発明のラマン分光測定用ガラス器具は、ラマン分光測定時に発せられる蛍光の強度が小さく、かつ、製造コストが安価であり、耐水性にも優れている。   The glass instrument for Raman spectroscopic measurement of the present invention has low intensity of fluorescence emitted at the time of Raman spectroscopic measurement, low manufacturing cost, and excellent water resistance.

実施例で得られた各試料の蛍光スペクトルを示す。The fluorescence spectrum of each sample obtained in the example is shown.

本発明のラマン分光測定用ガラス器具は、ラマン分光測定において試料を保持するためのスライドガラスやカバーガラス等のガラス板として使用されるものである。その他にも、試料を保持するための容器(セル)やチューブとしても使用することも可能である。   The glass instrument for Raman spectroscopic measurement of the present invention is used as a glass plate such as a slide glass or a cover glass for holding a sample in Raman spectroscopic measurement. In addition, it can also be used as a container (cell) or tube for holding a sample.

本発明のラマン分光測定用ガラス器具は、波長785nmの励起光を照射した際に1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比(最大値/最小値)が4以下、好ましくは3.7以下であるケイ酸塩ガラスからなる。ケイ酸塩ガラスの蛍光強度の最大値と最小値の比が大きすぎると、試料から発せられるラマン散乱光が、ケイ酸塩ガラスから発せられる蛍光に埋もれて明瞭に検出されにくくなる。ケイ酸塩ガラスの蛍光強度の最大値と最小値の比の下限値は特に限定されないが、現実的には1以上、さらには1.05以上である。 When the glass instrument for Raman spectroscopic measurement of the present invention is irradiated with excitation light having a wavelength of 785 nm, the ratio (maximum value / minimum value) of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 is 4 or less, Preferably it consists of silicate glass which is 3.7 or less. If the ratio between the maximum value and the minimum value of the fluorescence intensity of the silicate glass is too large, the Raman scattered light emitted from the sample is buried in the fluorescence emitted from the silicate glass and is not clearly detected. The lower limit value of the ratio between the maximum value and the minimum value of the fluorescence intensity of the silicate glass is not particularly limited, but is practically 1 or more, and further 1.05 or more.

本発明のラマン分光測定用ガラス器具を構成するケイ酸塩ガラスにおいて、主に不純物として含まれるFe、MnO、Cr、V、NiO、Co、CeO及びCuOといった遷移金属成分は、励起光を照射した際の蛍光発生の原因となるため、極力少ないことが好ましい。具体的には、Fe、MnO、Cr、V、NiO、Co、CeO及びCuOの合量が200ppm以下、100ppm以下、50ppm以下、30ppm以下、特に20ppm以下であることが好ましい。なおこれらの成分の含有量は、それぞれ上記酸化物換算での値を指す。 In the silicate glass constituting the glass apparatus for Raman spectroscopic measurement of the present invention, Fe 2 O 3 , MnO 2 , Cr 2 O 3 , V 2 O 5 , NiO, Co 2 O 3 , CeO mainly contained as impurities Since transition metal components such as 2 and CuO cause generation of fluorescence when irradiated with excitation light, it is preferable that the transition metal component is as small as possible. Specifically, the total amount of Fe 2 O 3 , MnO 2 , Cr 2 O 3 , V 2 O 5 , NiO, Co 2 O 3 , CeO 2 and CuO is 200 ppm or less, 100 ppm or less, 50 ppm or less, 30 ppm or less, In particular, it is preferably 20 ppm or less. In addition, content of these components points out the value in conversion of the said oxide, respectively.

なお、波長600nm未満、例えば波長488nmや523nmの励起光をガラス器具に照射した場合、ガラス構造の振動に由来する1100cm−1付近のピークが観察される傾向がある。上記の遷移金属成分の含有量を上記範囲に規制することにより、本発明のラマン分光測定用ガラス器具は、当該1100cm−1付近の蛍光ピークも低減することが可能となる。その結果、波長600nm未満の励起光によるラマン分光測定が可能である無機物質等の構造同定にも好適となる。 In addition, when a glass fixture is irradiated with excitation light having a wavelength of less than 600 nm, for example, a wavelength of 488 nm or 523 nm, a peak around 1100 cm −1 due to vibration of the glass structure tends to be observed. By regulating the content of the transition metal component within the above range, the glass instrument for Raman spectroscopic measurement of the present invention can also reduce the fluorescence peak near 1100 cm −1 . As a result, it is also suitable for structural identification of inorganic substances and the like that can be subjected to Raman spectroscopic measurement with excitation light having a wavelength of less than 600 nm.

本発明のラマン分光測定用ガラス器具を構成するケイ酸塩ガラスの組成としては特に限定されないが、例えば、質量%で、SiO 40〜80%、Al 0〜30%、B 0〜30%、RO 0〜20%(RはLi、Na及びKから選択される少なくとも1種)、R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種) 0〜30%を含有するものが挙げられる。このようにガラス組成範囲を限定した理由を以下に説明する。 No particular limitation is imposed on the composition of the silicate glass constituting the Raman spectrometry glassware of the present invention, for example, in mass%, SiO 2 40~80%, Al 2 O 3 0~30%, B 2 O 3 0~30%, R 2 O 0~20 % ( at least one R is selected from Li, Na and K), at least one R'O (R 'is selected from Mg, Ca, Sr and Ba Seeds) Those containing 0-30%. The reason for limiting the glass composition range as described above will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は40〜80%、特に45〜75%であることが好ましい。SiOの含有量が少なすぎると、耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、溶融温度が高くなる傾向がある。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 40 to 80%, particularly 45 to 75%. When the content of SiO 2 is too small, weather resistance and mechanical strength tends to decrease. On the other hand, if the content of SiO 2 is too large, there is a tendency that the melting temperature is high.

Alは耐候性や機械的強度を向上させる成分である。Alの含有量は0〜30%、0.1〜28%、1〜25%、特に3〜20%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves weather resistance and mechanical strength. The content of Al 2 O 3 is preferably 0 to 30%, 0.1 to 28%, 1 to 25%, particularly 3 to 20%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

はガラスネットワークを形成する成分である。Bの含有量は0〜30%、0.1〜28%、1〜25%、特に5〜20%であることが好ましい。Bの含有量が多すぎると、耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network. The content of B 2 O 3 is preferably 0 to 30%, 0.1 to 28%, 1 to 25%, particularly preferably 5 to 20%. If the B 2 O 3 content is too large, the weather resistance tends to lower.

O(RはLi、Na及びKから選択される少なくとも1種)は溶融温度を低下させて溶融性を改善する成分である。ROの含有量は0〜20%、特に0.1〜18%であることが好ましい。ROの含有量が多すぎると、耐候性が低下する傾向がある。なお、LiO、NaO及びKOの含有量は各々0〜20%、特に0.1〜18%であることが好ましい。 R 2 O (R is at least one selected from Li, Na, and K) is a component that improves the meltability by lowering the melting temperature. The content of R 2 O is preferably 0 to 20%, particularly preferably 0.1 to 18%. When the content of R 2 O is too large, the weather resistance tends to decrease. Incidentally, Li 2 O, the content of Na 2 O and K 2 O are each 0-20%, particularly preferably from 0.1 to 18%.

R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種)は溶融温度を低下させて溶融性を改善する成分である。R’Oの含有量は0〜30%、0.1〜25%、特に1〜20%であることが好ましい。R’Oの含有量が多すぎると、耐候性が低下する傾向がある。なお、MgO、CaO、SrO及びBaOの含有量は各々0〜30%、0.1〜25%、特に1〜20%であることが好ましい。   R′O (R ′ is at least one selected from Mg, Ca, Sr and Ba) is a component that improves the meltability by lowering the melting temperature. The content of R′O is preferably 0 to 30%, 0.1 to 25%, particularly 1 to 20%. When the content of R′O is too large, the weather resistance tends to decrease. In addition, it is preferable that content of MgO, CaO, SrO, and BaO is 0 to 30%, 0.1 to 25%, especially 1 to 20%, respectively.

ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜20%、0.1〜15%、特に0.5〜10%であることが好ましい。ZnOの含有量が多すぎると、耐候性が低下する傾向がある。   ZnO is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 20%, 0.1 to 15%, particularly preferably 0.5 to 10%. When there is too much content of ZnO, there exists a tendency for a weather resistance to fall.

上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、La、Ta、TeO、TiO、Nb、Gd、Y、Eu、Sb、SnO、P、Bi及びZrO等をそれぞれ15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。 In addition to the above components, various components can be contained within a range not impairing the effects of the present invention. For example, La 2 O 3 , Ta 2 O 5 , TeO 2 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 , P 2 O 5 , Bi 2 O 3, ZrO 2, etc. may each be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.

Asは清澄剤として機能するが、環境負荷物質であるため、含有しないことが好ましい。清澄剤を使用する場合は、SnO、Sb、Cl等の比較的環境負荷の小さい物質を用いることが好ましい。 As 2 O 3 functions as a fining agent, but it is preferably not contained because it is an environmentally hazardous substance. When a clarifier is used, it is preferable to use a substance having a relatively small environmental load such as SnO 2 , Sb 2 O 3 , and Cl.

本発明のラマン分光測定用ガラス器具をスライドガラスとして用いる場合、その厚みは通常0.5〜3mmである。また、本発明のラマン分光測定用ガラス器具をカバーガラスとして用いる場合、その厚みは通常0.01〜0.3mmである。スライドガラスやカバーガラス等のガラス板は、オーバーフローダウンドロー法、スロットダウンドロー法、フロート法、ロールアウト法、リドロー法等により作製することができる。なかでも、表面品位に優れ、かつ薄型のガラス板を容易に得ることができるオーバーフローダウンドロー法が好ましい。   When using the glass instrument for Raman spectroscopic measurement of this invention as a slide glass, the thickness is 0.5-3 mm normally. Moreover, when using the glass instrument for Raman spectroscopic measurement of this invention as a cover glass, the thickness is 0.01-0.3 mm normally. Glass plates such as slide glass and cover glass can be produced by an overflow down draw method, a slot down draw method, a float method, a roll out method, a redraw method, or the like. Of these, the overflow downdraw method is preferred because it is excellent in surface quality and can easily obtain a thin glass plate.

本発明のラマン分光測定用ガラス器具の表面には、銀、金、アルミニウム等の金属ナノ粒子層が形成されていることが好ましい。このようにすれば、試料から発せられたラマン散乱光が、金属ナノ粒子層による表面プラズモン共鳴現象により増強され、より強いラマンピーク強度を得ることができ、構造同定が容易になる。例えば、スライドガラスやカバーガラスの場合は、一方の表面(好ましくは試料保持面)に金属ナノ粒子層が形成されていることが好ましい。   It is preferable that a metal nanoparticle layer of silver, gold, aluminum, or the like is formed on the surface of the glass instrument for Raman spectroscopy of the present invention. In this way, the Raman scattered light emitted from the sample is enhanced by the surface plasmon resonance phenomenon caused by the metal nanoparticle layer, a stronger Raman peak intensity can be obtained, and the structure identification is facilitated. For example, in the case of a slide glass or a cover glass, it is preferable that a metal nanoparticle layer is formed on one surface (preferably the sample holding surface).

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

表1は本発明の実施例(No.1〜3)及び比較例(No.4、5)を示す。   Table 1 shows examples (Nos. 1 to 3) and comparative examples (Nos. 4 and 5) of the present invention.

表1に記載のガラス組成になるように調合した原料バッチを白金坩堝に入れ、1200〜1550℃で24時間溶融した。原料バッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、徐冷点付近の温度で30分間徐冷することによりガラス板を得た。ガラス板の表面を鏡面研磨し、所定の形状に切断加工することにより、試料を得た。得られた試料について蛍光スペクトルの測定を行った。   The raw material batch prepared so as to have the glass composition shown in Table 1 was put in a platinum crucible and melted at 1200 to 1550 ° C. for 24 hours. In melting the raw material batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured out on the carbon plate, formed into a plate shape, and then slowly cooled at a temperature near the annealing point for 30 minutes to obtain a glass plate. The surface of the glass plate was mirror-polished and cut into a predetermined shape to obtain a sample. The fluorescence spectrum of the obtained sample was measured.

なお、ガラス中の微量成分(遷移金属成分)の含有量は、試料毎に原料の純度を適宜選択することにより調整した。   In addition, content of the trace component (transition metal component) in glass was adjusted by selecting suitably the purity of a raw material for every sample.

蛍光スペクトルの測定は、日本分光株式会社製の分光装置(型番:NFS‐230HKG)を用い、励起波長785nm、露光時間10秒、積算回数20回の条件で行った。得られた蛍光スペクトルを図1に示す。蛍光スペクトルから1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比(最大値/最小値)を求めた。結果を表1に示す。 The fluorescence spectrum was measured using a spectroscopic device (model number: NFS-230HKG) manufactured by JASCO Corporation under the conditions of an excitation wavelength of 785 nm, an exposure time of 10 seconds, and an integration count of 20 times. The obtained fluorescence spectrum is shown in FIG. The ratio (maximum value / minimum value) of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 was determined from the fluorescence spectrum. The results are shown in Table 1.

表1から明らかなように、実施例であるNo.1〜3の試料は、1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比が1.2〜3.5と小さかった。一方、比較例であるNo.4、5の試料は、1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比が4.2〜5.7と大きかった。 As is apparent from Table 1, No. 1 as an example. In the samples 1 to 3, the ratio of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 was as small as 1.2 to 3.5. On the other hand, No. which is a comparative example. In the samples 4 and 5, the ratio of the maximum value and the minimum value of the fluorescence intensity in the range of 1000 to 1600 cm −1 was as large as 4.2 to 5.7.

Claims (6)

波長785nmの励起光を照射した際に1000〜1600cm−1の範囲における蛍光強度の最大値と最小値の比(最大値/最小値)が4以下であるケイ酸塩ガラスからなることを特徴とするラマン分光測定用ガラス器具。 It is characterized by comprising a silicate glass having a ratio (maximum value / minimum value) of a maximum value and a minimum value of fluorescence intensity in a range of 1000 to 1600 cm −1 when irradiated with excitation light having a wavelength of 785 nm. Glass instrument for Raman spectroscopy. ケイ酸塩ガラスにおいて、Fe、MnO、Cr、V、NiO、Co、CeO及びCuOの合量が200ppm以下であることを特徴とする請求項1に記載のラマン分光測定用ガラス器具。 The silicate glass is characterized in that the total amount of Fe 2 O 3 , MnO 2 , Cr 2 O 3 , V 2 O 5 , NiO, Co 2 O 3 , CeO 2 and CuO is 200 ppm or less. The glass instrument for Raman spectroscopic measurement according to 1. ケイ酸塩ガラスが、質量%で、SiO 40〜80%、Al 0〜30%、B 0〜30%、RO 0〜20%(RはLi、Na及びKから選択される少なくとも1種)、R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種) 0〜30%を含有することを特徴とする請求項1または2に記載のラマン分光測定用ガラス器具。 Silicate glass, in mass%, SiO 2 40~80%, Al 2 O 3 0~30%, B 2 O 3 0~30%, R 2 O 0~20% (R is Li, Na and K 3), R′O (R ′ is at least one selected from Mg, Ca, Sr and Ba), and 0 to 30%. 3. Glass instrument for Raman spectroscopy. ケイ酸塩ガラスがAsを含有しないことを特徴とする請求項1〜3のいずれか一項に記載のラマン分光測定用ガラス器具。 Raman spectrometry glassware according to any one of claims 1 to 3 silicate glass is characterized in that it does not contain As 2 O 3. 波長600nm以上の励起光を用いたラマン分光測定に使用されることを特徴とする請求項1〜4のいずれか一項に記載のラマン分光測定用ガラス器具。   The glass instrument for Raman spectroscopy measurement according to any one of claims 1 to 4, which is used for Raman spectroscopy measurement using excitation light having a wavelength of 600 nm or more. ラマン分光測定用のスライドガラスまたはカバーガラスとして使用されることを特徴とする請求項1〜5のいずれか一項に記載のラマン分光測定用ガラス器具。   It is used as a slide glass or cover glass for Raman spectroscopy measurement, The glass instrument for Raman spectroscopy measurement as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2016018836A 2016-02-03 2016-02-03 Glassware for raman spectroscopy Pending JP2017137213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018836A JP2017137213A (en) 2016-02-03 2016-02-03 Glassware for raman spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018836A JP2017137213A (en) 2016-02-03 2016-02-03 Glassware for raman spectroscopy

Publications (1)

Publication Number Publication Date
JP2017137213A true JP2017137213A (en) 2017-08-10

Family

ID=59566624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018836A Pending JP2017137213A (en) 2016-02-03 2016-02-03 Glassware for raman spectroscopy

Country Status (1)

Country Link
JP (1) JP2017137213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436776A (en) * 2019-07-29 2019-11-12 江苏华东耀皮玻璃有限公司 A kind of green glass of ultraviolet-cutoff

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219342A (en) * 1990-12-17 1992-08-10 Hoya Corp Low fluorescent glass
JPH11228603A (en) * 1997-08-21 1999-08-24 Bayer Ag Production of partially hydrogenated acrylonitrile-butadiene rubber by on-line application of raman spectroscopy
JP2005083813A (en) * 2003-09-05 2005-03-31 Horiba Ltd Cofocal microscopic raman spectrum analyzing method
WO2007094373A1 (en) * 2006-02-14 2007-08-23 Nippon Sheet Glass Company, Limited Glass composition
JP2010083723A (en) * 2008-09-30 2010-04-15 Ohara Inc Optical glass, sample holding tool and optical element
JP2012237646A (en) * 2011-05-11 2012-12-06 Univ Of Tokyo Raman microspectroscopic apparatus and raman spectroscopic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219342A (en) * 1990-12-17 1992-08-10 Hoya Corp Low fluorescent glass
JPH11228603A (en) * 1997-08-21 1999-08-24 Bayer Ag Production of partially hydrogenated acrylonitrile-butadiene rubber by on-line application of raman spectroscopy
JP2005083813A (en) * 2003-09-05 2005-03-31 Horiba Ltd Cofocal microscopic raman spectrum analyzing method
WO2007094373A1 (en) * 2006-02-14 2007-08-23 Nippon Sheet Glass Company, Limited Glass composition
JP2010083723A (en) * 2008-09-30 2010-04-15 Ohara Inc Optical glass, sample holding tool and optical element
JP2012237646A (en) * 2011-05-11 2012-12-06 Univ Of Tokyo Raman microspectroscopic apparatus and raman spectroscopic method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436776A (en) * 2019-07-29 2019-11-12 江苏华东耀皮玻璃有限公司 A kind of green glass of ultraviolet-cutoff

Similar Documents

Publication Publication Date Title
US10689288B2 (en) Ultraviolet transmitting glass
EP1593657B1 (en) Glass for display substrate
KR101808346B1 (en) Alkali-free glass having high thermal and chemical stability, sheet prepared therefrom, and process of making the same
US20090088309A1 (en) Glass Composition
JP2021505503A (en) Black Lithium Silica Glass Ceramic
US11932576B2 (en) Aluminosilicate glass composition, aluminosilicate glass, preparation method therefor and application thereof
US20150093561A1 (en) Alkali-free glass and alkali-free glass plate using same
TW201927714A (en) Zircon compatible, ion exchangeable glass with high damage resistance
EP3190096B1 (en) Borosilicate glass for pharmaceutical container and glass tube for pharmaceutical container
JP2008222479A (en) Optical glass
JP2015127281A (en) Glass
JP2016074557A (en) Optical glass and optical element
WO2015098485A1 (en) Glass
JPWO2019151404A1 (en) Colored glass and its manufacturing method
US20180215652A1 (en) Ultraviolet light transmitting glass
Jiang et al. Europium doped transparent glass ceramics containing CaF 2 micron-sized crystals: structural and optical characterization
JP2010083723A (en) Optical glass, sample holding tool and optical element
JP2017137213A (en) Glassware for raman spectroscopy
WO2018101220A1 (en) Glass plate
JP2002128539A (en) Low fluorescent optical glass
JPWO2003104157A1 (en) Glass and glass manufacturing method
CN109219583A (en) Chemical strengthening glass and chemically reinforced glass
WO2022044965A1 (en) Gas detection material
JP2022036906A (en) Gas detection material
TW202315848A (en) Colored glass articles having improved mechanical durability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200611